

Analyze This: Using Data to Improve Strategic Energy Plans

May 11, 2016

Using Data to Improve Strategic Plans

Greg Dierkers, U.S. DOE, Office of Weatherization and Intergovernmental Programs (WIP)

WIP – Who we are and what we do

Mission: Accelerate deployment of energy efficiency and renewable energy technologies over a wide range of stakeholders in partnership with states and local governments.

Strategic objective: "Deploy the clean energy technologies we have" through near-term activities that result in greater energy efficiency, expanded renewable energy capacity, and economic development.

Pathways:

- Financial assistance: Formula and competitive awards > \$200 M per year to weatherize low-income homes, and assist states to deploy EE and RE projects and programs
- Voluntary programs: Better Buildings Challenge (BBC) & Accelerators
- **Technical assistance:** Resources to assist the public sector with planning, financing, designing and implementing EE and RE programs and accessing and using energy data

Weatherization & Intergovernmental Programs (WIP) Office

WIP activities are focused in three primary areas:

- State Energy Program (SEP): State-led energy projects serve as an important foundation for reducing energy use and costs, developing environmentally conscious state economies, and increasing renewable energy generation.
- Weatherization Assistance Program (WAP): State/local agencies carry out residential energy retrofits in low–income residences that reduce energy consumption while concurrently reducing energy costs for these families.
- **Policy & Technical Assistance (P&TA) Team:** Assists in developing tools and solutions to barriers facing state and local government expansion of energy efficiency policies and programs and replicating successful efforts demonstrated by public sector leaders.

State and Local Solutions Center

Four Action Areas

- Develop a Clean Energy Plan
- Design and Implement Clean Energy Programs
- Pay for Clean Energy
- Access and Use Energy Data
- Take a Closer Look
 - Energy Savings Performance Contacting
 - Benchmarking and Transparency Policies and Programs
 - Outdoor Lighting
 - Energy Efficiency Savings Opportunities and Benefits

Selected DOE and other Resources – Energy Data Management

Resource Description	Description	Resource Link
Asset Scoring Tool	Tool that manages, evaluates, and generates scores based off of data collected from building systems; will also identify cost-effective upgrade opportunities	http://energy.gov/eere/buildings/commer cial-building-energy-asset-scoring-tool
C-LEAP (Cities leading through Energy Analysis and Planning)	Tool to help guide decision-making in early phase city planning and implementation for data-driven energy goals, strategies, analytics, and best practices	https://www.nrel.gov/tech_deployment/st ate_local_governments/blog/cities- leading-through-energy-analysis-and- planning-helps-support-local-clean- energy-innovation
SEEAction (State and Local Energy Efficiency Action Network)	Composition of eight working groups that advance recommendations for design of state and local energy efficiency policies and programs	https://www4.eere.energy.gov/seeaction /topic-category/energy-use-data-access
SLED (State and Local Energy Data)	Application that generates basic energy market summary reports to help state and local governments plan and implement clean energy projects	http://apps1.eere.energy.gov/sled/#/

Selected DOE and other Resources – Energy Data Management cont.

Resource Description	Description	Resource Link
EPA eGrid—	Comprehensive source of environmental characteristics data of almost all electric power generated in the United States	http://epa.gov/egrid
EPA Greenhouse Gas Reporting by Facility	Comprehensive greenhouse gas data reported directly to EPA from across the country that are accessible to the public	http://epa.gov/ghgreporting
Portfolio Manager	Online tool used to track building-level energy and water consumption, as well as greenhouse gas emissions; can also be used to inform investment decisions across an entire building portfolio	http://energystar.gov/buildings /facility-owners-and- managers/existingbuildings/us e-portfolio-manager
SEED Collaborative (Standard Energy Efficiency Data)	Partnership with local, state, and energy efficiency administrators that pursue data-driven program design and implementation in the energy efficiency sector	http://energy.gov/eere/buildi ngs/seed-platform- collaborative

Thank you. Questions?

Greg Dierkers

202-287-1921

Measuring the Co-Benefits of Clean Energy

Christopher Russell Visiting Fellow, ACEEE

ABOUT ACEEE

- 501(c)(3) non-profit
- Catalyst for policies, technologies, investments, and behaviors that advance EE
- Advising policy makers and program managers
- Conferences, workshops, media, education
- \$7.6 MM, (2013) ~50 staff

THE INDUSTRIAL ENERGY HARVEST

Christopher Russell

Managing Energy From the Top Down

Christopher Russell, C.E.M.

Feb 2008

North American ENERGY AUDIT PROGRAM **Best Practices**

Christopher Russel

ssive for their tech mendations can be impressive for the One reason may be a failure to accur Such a discussion would require ti

As capital recovery as its goal. In simple stems, "capital recovery" is the result of it describes how well assets work at creating new increas. The finalmeanth metric for meant is the new of returns on capital. But that's a state of remune, can also of weakh. This is exactly what happens these a proposed inversant in energy foreing energy metric to accure. The result is capital concepts in works.

 cost of borrowing money uple payback, even for reco ndations that involve th

as a realistic energy improvement proposal to seek clarity on a few points. What's wrong ck? And if ratus of ratum are a batter tool, can that be proven? How can the economic and most of energy efficiency investments be demonstrated? By the way, what's the difference and financial justification? What exactly are the financial consequences of ignoring energy its proper will prome all of these equations. The finding school statist proper will propose tho strategui-

WHY IS SIMPLE PAYBACK NOT SUFFICIENT

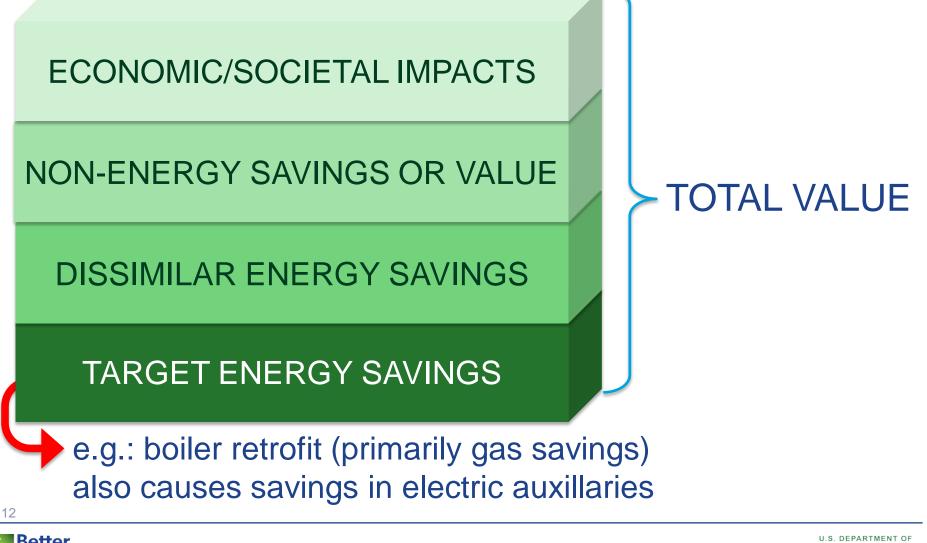
Today, it is still customary to describe the benefits of energy efficiency in terms of "nimple payback," that is, he number of years that it takes for an investment to "pay for itself" through the manual benefits that it executes. This matrix is almost numberably recognized and understood, but that down't manuf that it is truly

- on of the next baselin is ignored. regardly do show benefits accrete? Payback is a measure of time. It fulls to measure the stands of new wolds created from invested capital. Knowing the psychol. of a certain project you nothing show the cost of obtaining investmant capital. It does not compare the project ' m is the geneficiality' of the overall business. Nor does it compare the project returns to those shelf we also that the standard state is the state of the state of the state of the state of the state state of the state of

Monetizing Energy **Solutions**

(2012) www.energypathfinder.com

Understanding Industrial Investment Decision Making (2012) ACEEE.ORG


Recognizing the Value of Energy Efficiency's Multiple Benefits (2015) ACEEE.ORG

Outsourcing Energy Performance (2014) ACEEE.ORG

WHAT ARE MULTIPLE BENEFITS?

MULTIPLE BENEFITS* ACCRUE TO:

END-USERS	ENERGY DISTRIBUTION SYSTEMS	SOCIETY
 Expense reduction Productivity gains Quality improvements Rebates/incentives New revenues Employee engagement Enhanced debt coverage 		 Environment Health Employment Diversified finance

*Business context

13

EVIDENCE OF VALUE: Sparse and Scattered

Better

Buildings

	44%	Ancillary value relative to coincident energy savings 81 U.S. industrials, 1999-2004
RVAL	122%	Value of productivity gains relative to energy savings 52 U.S. industrial case studies in aggregate
INTERVAL DATA	43%	Gain in worker productivity caused by energy improvements Sample of office HVAC upgrades and reconfiguration
_	7%	Percent of respondents that self-detected non-elec savings 1,071 BC industrial kWh efficiency projects
	Sample	Study: Percent of 63 businesses that self-detected:
 92%		Reduced maintenance cost
AN A	71%	Reduced labor costs
NOMINAL DATA	63%	Reduced procurement costs
N –	44%	Enhanced corporate image
14	33%	Permanent capital expenditure avoidance

http://aceee.org/research-report/ie1502

CHALLENGES

- Variance of definition
- Variance of measurement standards
- Reliance on end user self-accounting
- Tendency to recognize year-one value only
- Utilities: meaningful for base load reduction, not peak*

*Realization of multiple benefits may not vary directly with change in rate of energy consumption

ACEEE Study: Ranking Multiple Benefits

- Assume certain kinds of benefits are easier than others to define, detect, measure, document
- Panel of nine experts
- Generate & rank a list of 30 distinct benefits coincident with energy savings
- Rank each for ease of measurement (5=easy, 1=difficult).
- Parse the 30 listed benefits into categories (groups) reflecting affinity and ease of measurement

Results: Seven Classes of Multiple Benefits

- 1. Concurrent facility expense reduction (easiest)
- 2. Business efficiency
- 3. Quality improvements
- 4. Capital value enhancement
- 5. Risk abatement
- 6. Revenue enhancement
- 7. Ancillary benefits (least easy)

MBs PRICE BY PROXY

- \$30,000 office lighting upgrade
- \$10,000 annual savings
- 3 year payback, fails 2-year investment criterion
- Multiple benefit: increased productivity
 - \$800,000 payroll
 - 5% absenteeism reduced to 3% = \$16,000 productivity gain

VALUE PROPOSITION:

An "extra" investment of **\$10,000** (i.e., **\$30,000-\$20,000**) buys a productivity gain = **\$16,000/year**

MULTIPLE BENEFITS IN THE PORTFOLIO OF ENERGY RESOURCE INCENTIVES

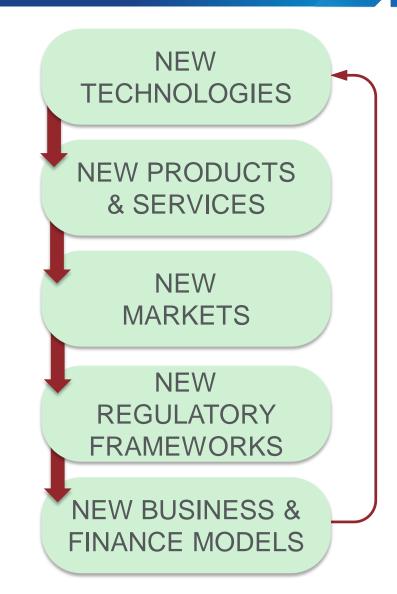
In parallel with prescriptive, custom, etc.

- Obtained with no/low investment or effort...
- Conceptual opposite of "tax"
- Versatile incentive for: EE, RE, DER, smart grid
- Easy to ramp up/down as a program incentive
- Functional linkage to new products/services
- Fosters new types of trade allies
- Anticipates alternative market segmentation

RETHINKING SEGMENTATION

- TRADITIONAL: segment by industry, recognizing the typical mechanical profile of each
- ALTERNATIVE: Segment by coincident impacts and benefits:
 - Capital access and cost recovery formats
 - Management vision & culture
 - Economic (product market) conditions
 - Coordination with other energy solution initiatives
 - Coordination with allied industry initiatives

Coincident (multiple) benefits temper the appetite for energy solutions



CHANGE VS. INERTIA: MBs = CATALYST?

RENEWABLES ENERGY STORAGE ADV. METERING INFRASTRUCTURE INTELLIGENT EFFICIENCY AFV INFRASTRUCTURE

DISTRIBUTED ENERGY RESOURCES MICROGRIDS ENERGY MANAGEMENT SERVICES DEMAND RESPONSE

"PROSUMERS" RENEWABLE PORTFOLIO STANDARDS POWER PURCHASE AGREEMENTS PACE, ON-BILL FINANCING REORIENTATION OF CAPITAL NEW TRADE ALLIES FOR UTILITIES AFFINITY WITH ECON DEVELOPERS

21

THANK YOU!

Christopher Russell

www.energypathfinder.com info@energypathfinder.com crussell@aceee.org

The Future of Energy Efficiency

Matt Golden Senior Energy Consultant, EDF CEO, Open Energy Efficiency

OPEN ENERGY EFFICIENCY

Enabling Markets for Efficiency as Capacity

Better Buildings Summit 2016

Project Finance: The long-term financing of projects based upon projected <u>cash flows</u> rather than the balance sheets of its sponsors.

Get Rebates of up to \$6,500* for Home Upgrade

Find a Home Upgrade Professional to make your home more energy efficient.

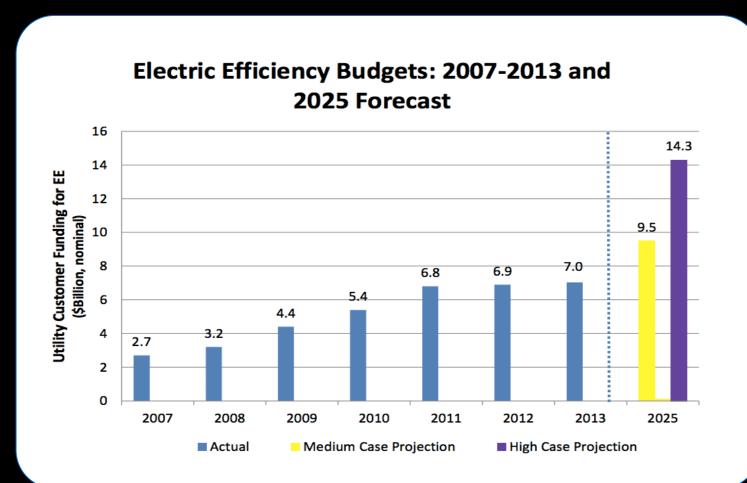
Search Now

WINTER IS COMING!

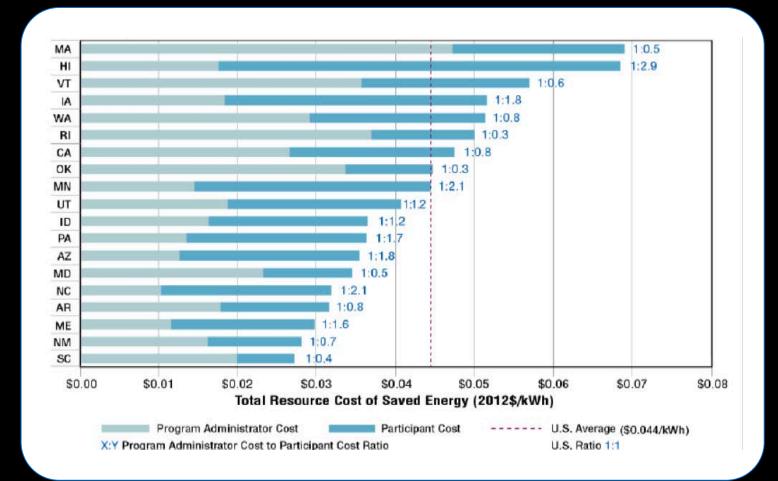
Columbus, Indiana

UP TO \$750 IN REBATES FROM DUKE, REMC & VECTREN

Energy Efficiency Programs

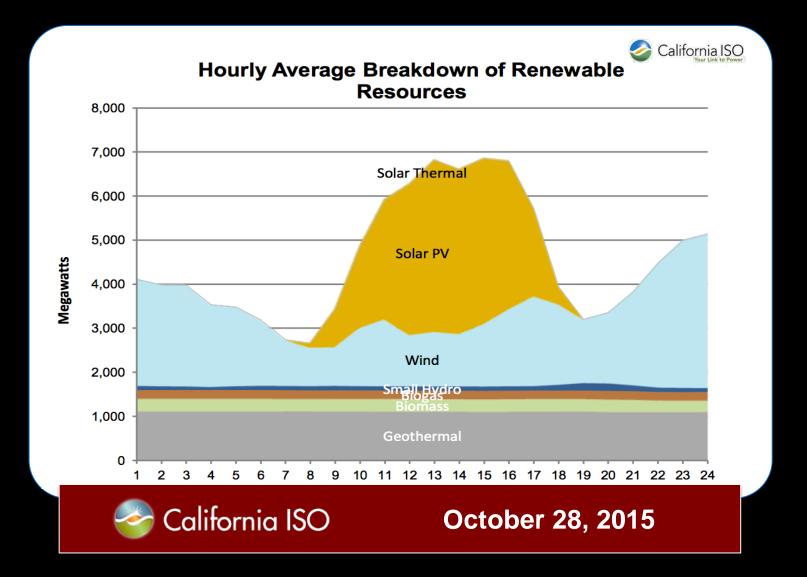

Efficiency Programs

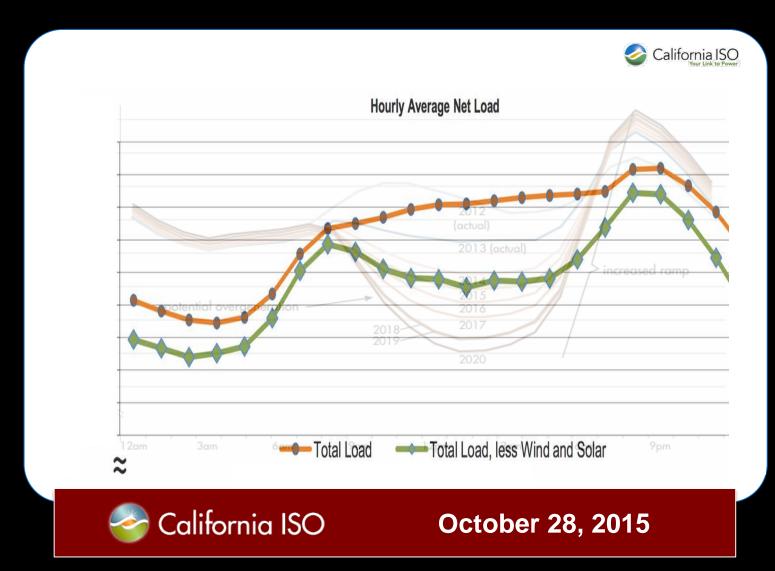
Models, deemed savings, and consultant studies

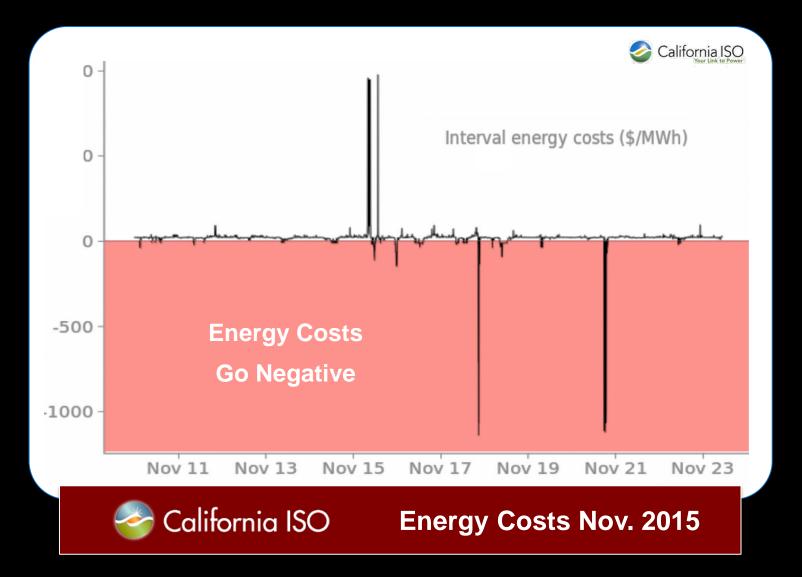

Paid on prediction in advance

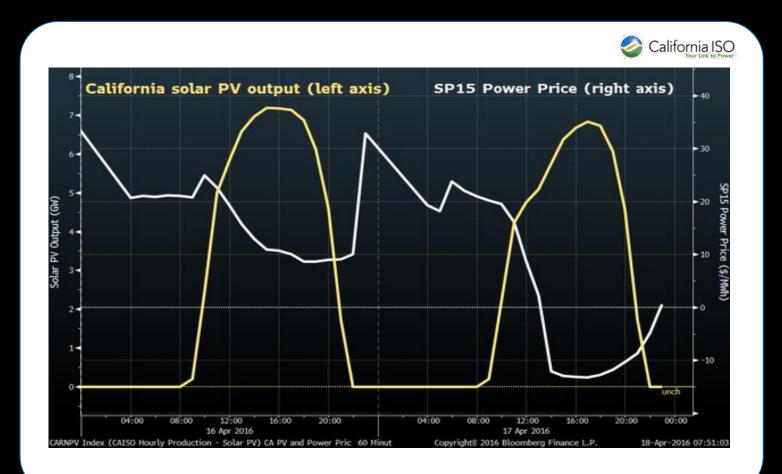
Regulation and program rules

Efficiency Programs are Growing


Ripe for Disruption


Efficiency Must Adapt to The Rules of Grid 2.0


The Grid is Changing


Grid 2.0 Is Real and Right Now

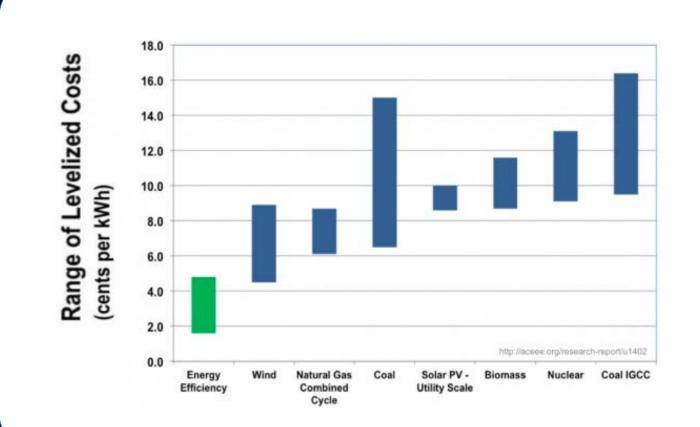
Not All Energy is Created Equal

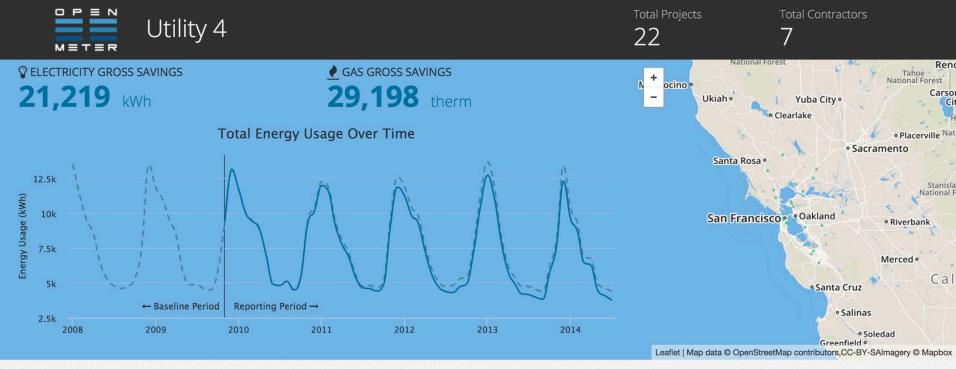
Not All Energy is Created Equal

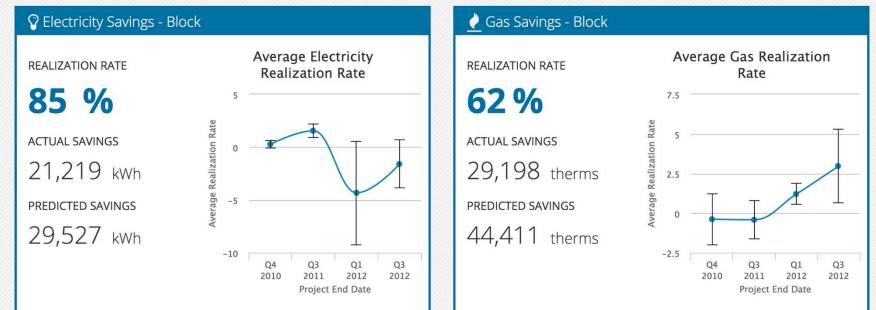
Solar Production vs. CAISO Price - April 17th 2016

Demand Capacity as a Distributed Energy Resource

Energy Efficiency is a Massive Market

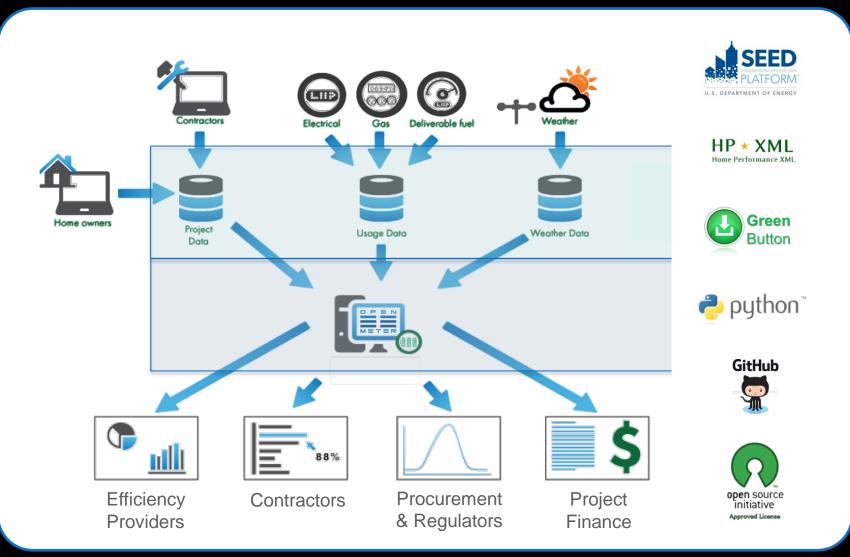



нvас **\$18 В** Roofs **\$12.5 B** Windows & Doors **\$9 B** Insulation / Shell \$3+ B


Residential PACE Finance51,148\$1,045Number of Homes\$1,045Number of HomesmillionEnergy efficiency9,3901%Jobs Created

\$500m California Residential Efficiency Projects in 2015

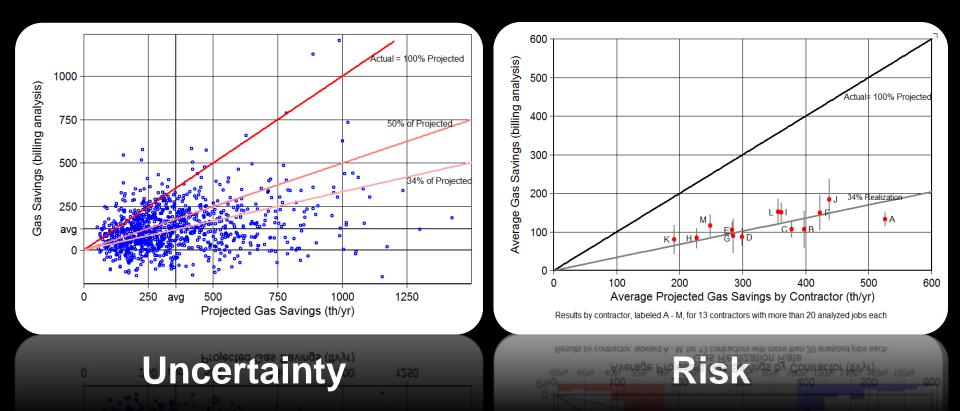
Efficiency is a Competitive Resource

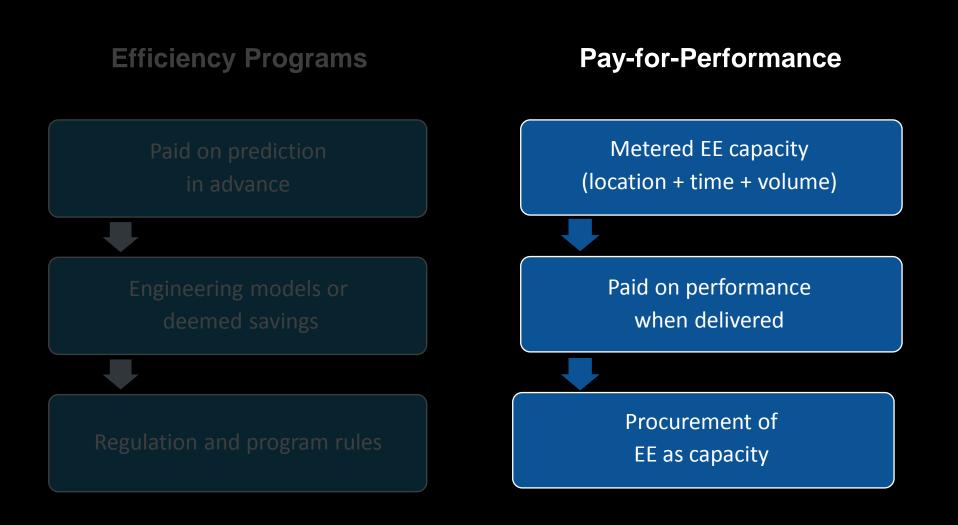


Open EE Meter

OPEN STANDARD

OPEN SOURCE


OPEN DATA


Benefits of Pay-for-Performance

Efficiency is a reliable and procurable resource

- Reliable returns at a portfolio level
- Turn efficiency into demand capacity (savings + time + location)

Solution: Efficiency Procurement

Commercial Pay-for-Performance

Seattle City Light's P4P Program

Three Buildings

Three Years

Three Providers

111 Third Ave

Lake Union Building

One Union Square

Commercial Pay-for-Performance

Incentive #1 - Submittal of complete energy plan Incentive #2 - Installation of recommended measures Incentive #3 - Based on Post-Construction M&V

Metered Pay for Performance is CA Law

- SB-350 / AB-802 Pass Oct 2015
- Increasing California EE goals by 50%
- High Opportunity Pilots Sept '16

Major Changes for Energy Efficiency

- EE = Normalized Metered Savings
- Count all savings including up to code and behavior
- Deploy Pay-4-Performance Pilots

PG&E Residential Pay-for-Performance

AB-802 HOPPs Pilot

- Normalized Metered Savings using CalTRACK
- Pay for Performance over time

Pay-for-Performance

- Aggregators paid for 2 years on metered savings
- Savings Purchase Agreement paid by utility quarterly

Value for Efficiency

- SPA based on discount from current costs
- Future will include time and location

PG&E Residential Pay-for-Performance

Goals Take Res EE to scale Achieve Data Driven M&V by measuring by enticing more "at the meter"* private capital Develop a program Pay for measured that can successfully savings performance transition to gridtied procurement

Matt Golden, CEO

matt@efficiency.org

openEEmeter.org