

Strengthening Resiliency with Clean Energy

Strengthening Resiliency through Clean Energy Better Buildings Summit

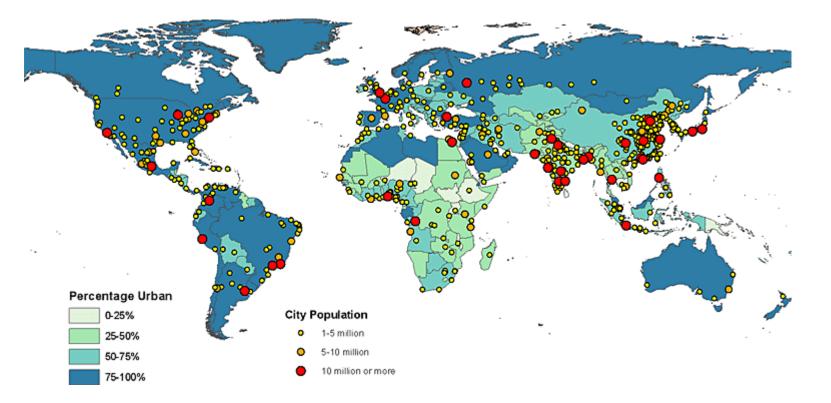
Andrew Peterman | 28 May 2015 | Washington DC, USA

© Arup 2015

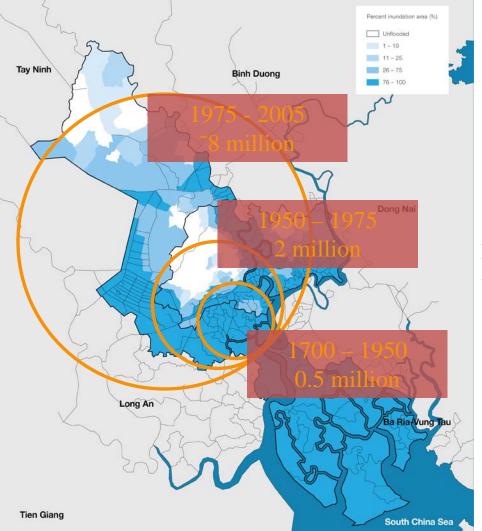
What is resilience?


Resilience is more than Disaster Risk Recovery

Resilience is the capacity of people, organizations and systems to prepare for, respond to, recover from and thrive in the face of hazards, and to adapt to continual change. Why Resilience?



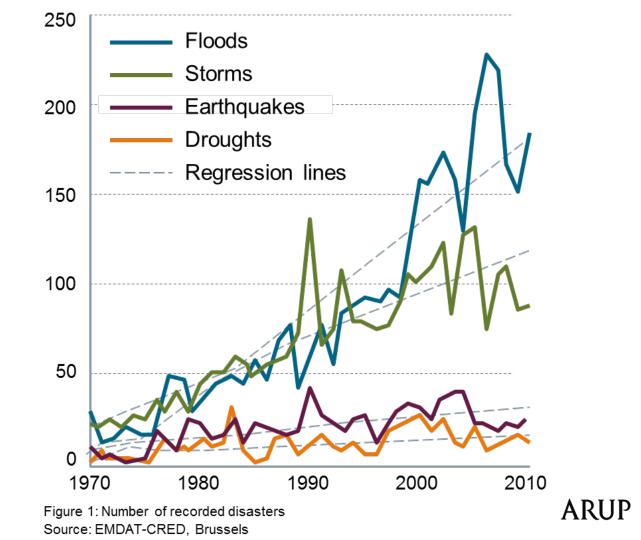
Increasing urbanization



Increasing urbanization

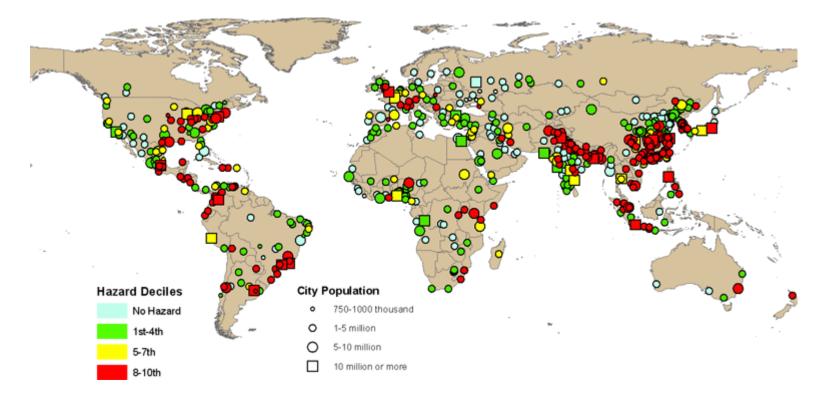
ARUP

Source: United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects, the 2011 Revision. New York 2012.

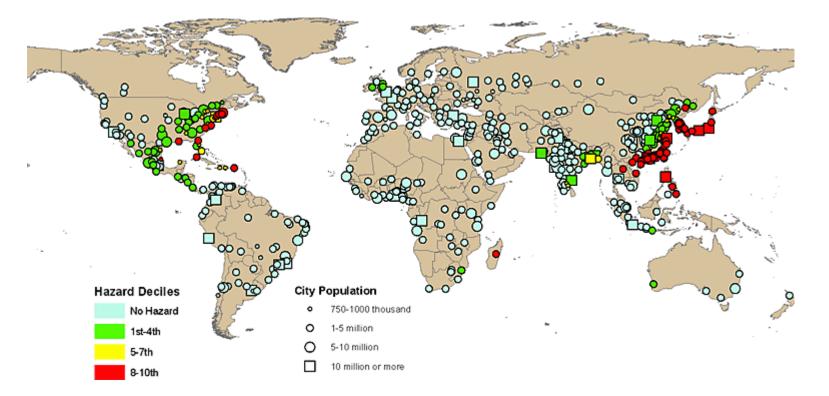

Cities expanding into risk zones

Ho Chi Minh City and other fast-growing urban zones are developing into risk areas.

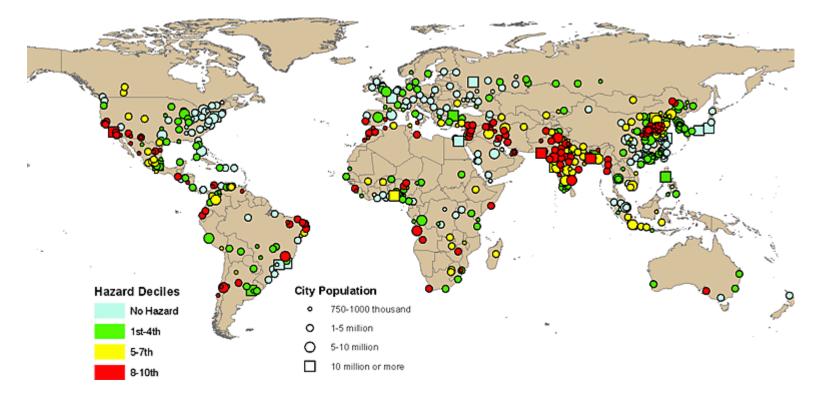
Increasing and changing hazards



Increasing natural disasters


Increasing flood risk

ARUP


Source: United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects, the 2011 Revision. New York 2012.

Increasing hurricane risk

Source: United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects, the 2011 Revision. New York 2012.

Increasing drought risk

ARUP

Source: United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects, the 2011 Revision. New York 2012.

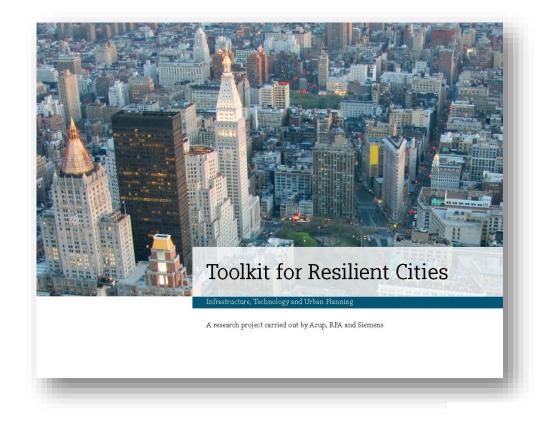
Other Vulnerabilities

Aging infrastructure

High density

Lack of preparedness

How can we measure City Resilience?


New York City Energy Resilience

Changing Frequencies (New York City)

	Flooding Events	Drought	Heat Wave	Wind events (Nor'easter, Hurricane)
Occurrence Past (1970-2000)	• 1 in 100 years	• 1 in 100 years	• 2 per year	• 1 storm per 3 years
Frequency of Projected Future	• 1 in 15 years Climate Change, 2009: ClimAID,	• Unclear	• 8 per year	• More frequent

Toolkit for Resilient Cities Siemens, RPA and Arup

Robustness

Gas insulated switchgear Flood proofing and water proofing Undergrounding Hydrophobic coatings Fuse saving technologies Voltage/VAR controls Battery storage

Redundancy

Vehicle-to-grid Demand reduction and energy efficiency

Diversity and flexibility

 \mathbf{T}

Coordination

Distributed generation Intelligent feeders and relays Automated switches Battery storage Vehicle-to-grid Responsiveness Advanced Metering Infrastructure (AMI) including smart meters Automated Demand Management Intelligent feeders and relays Automated switches Advanced Metering Infrastructure (AMI) Geographic Information Systems (GIS)

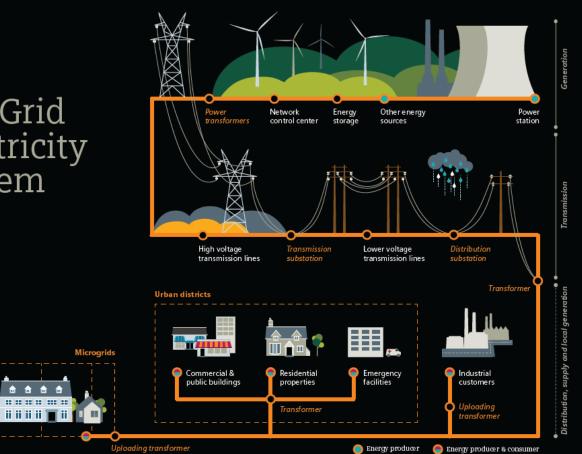
Case Study: New York City Electrical Grid

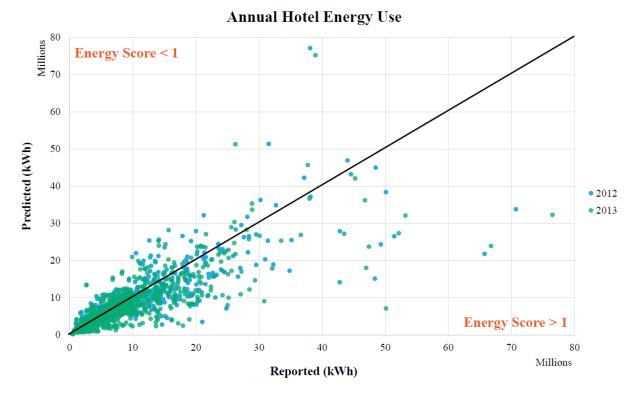
High-level review of vulnerabilities in the NYC electrical grid and assessment of impacts from four types of natural hazards:

- Drought
- Heat wave
- High winds
- Flooding

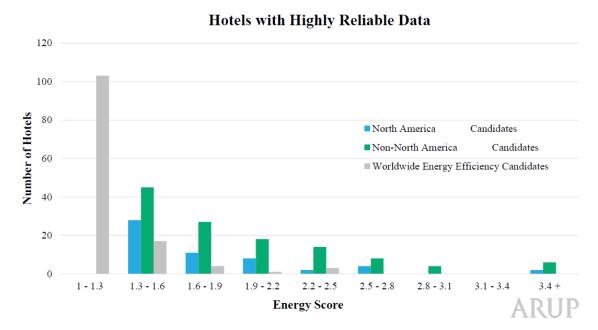
From an analysis of threats to the grid a wide range of investment options were developed, including:

- Equipment hardening
- Peak demand reduction
- Smart grid implementation


Why Corporate Resilience?



Large Portfolio Resilience


The Grid Electricity System

Data-driven approach to energy resilience

	Arup Energy Score	Difference Between Reported Energy Use & Predicted	Number of Hotels
North America Candidates	≥ 1.3	$\geq 1,000,000$ kWh/yr	57
Non-North America Candidates	≥1.3	\geq 1,000,000 kWh/yr	122
Worldwide Energy Efficiency Candidates	≥ 1.0	0 - 1,000,000 kWh/yr	126

Increasing resilience *through* energy efficiency

Conclusion

- 305 properties across a global portfolio were identified as potential candidates for energy efficiency investment, consuming more energy than expected over the past 2-3 years (nearly 25% of the portfolio).
- The 305 poor energy performing buildings represent over \$300M in total energy costs per year.
- Bringing all properties in line with their expected performance would reduce portfolio-wide energy consumption by 1,100 GWh per year.

Resilience Trend

SEGMON

LEARNING CENTER

The second second

and a state of STORM WATER PARK

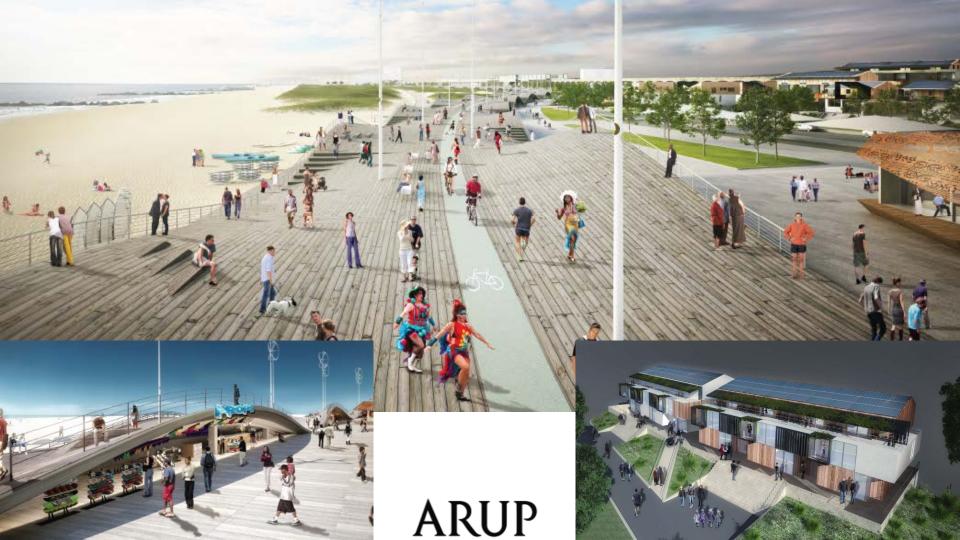
URBAN BLOCKS

1 1

BEABATE

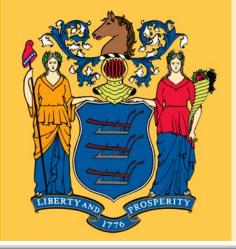
....

18 13 13 B 10


TOWN SQUARE

STORM WATER PARK

A NEIGHBORHOOD BLOCKS


04

Andrew Peterman Ph.D.

Andrew.Peterman@Arup.com

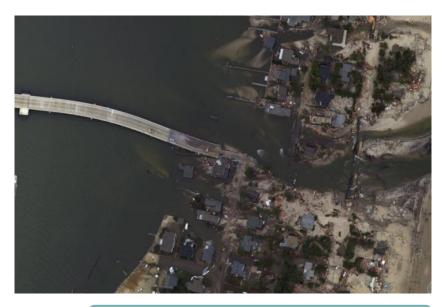
USDOE Better Buildings

Strengthening Resiliency with Better Buildings

Michael Winka – Sr Policy Advisor New Jersey Board of Public Utilities aka the New Jersey State Energy Office May, 2014

Resiliency and Better Buildings

- Background on the storm and the reason for DER
- What is DER and Microgrid
- Background on the current system
- Costs and benefits of DER Microgrids
- NJ Financing/Incentive Programs

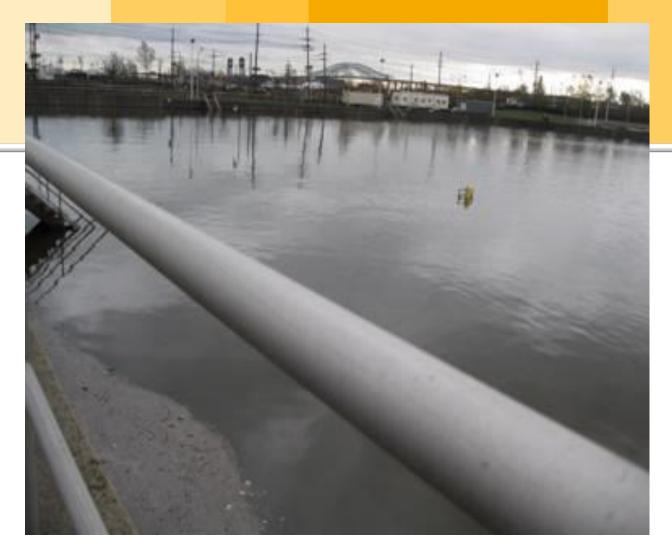


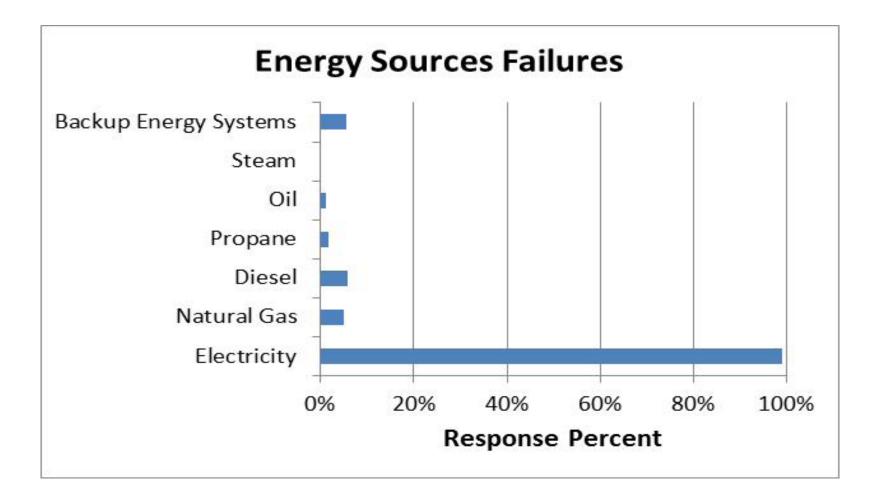
Breach at Rte 35 Mantoloking

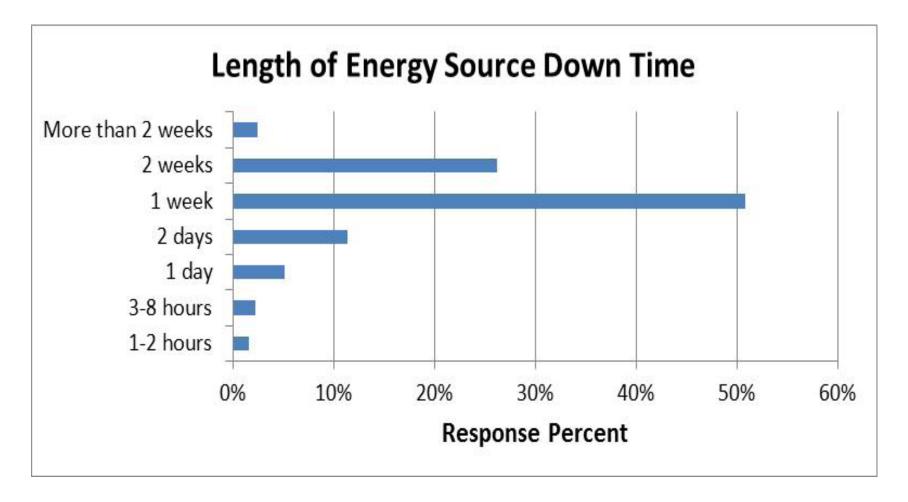
Before

Houses destroyed in Tuckerton Beach

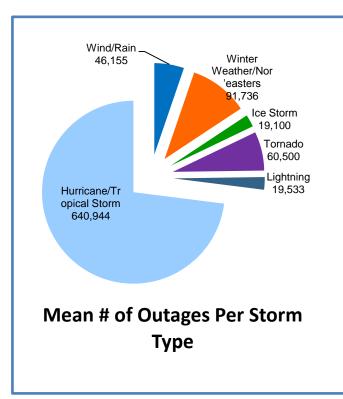
Poles down across the state – Grid down


Impacted Liquid fuels





Critical Infrastructure Flooded and without power



From NREL Survey - Alternative Energy Generation Opportunities in Critical Infrastructure New Jersey E. Hotchkiss, I. Metzger, J. Salasovich, P. Schwabe

From NREL Survey - Alternative Energy Generation Opportunities in Critical Infrastructure New Jersey E. Hotchkiss, I. Metzger, J. Salasovich, P. Schwabe

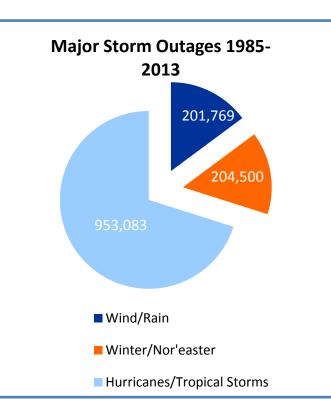
Breakdown of Storm Event "Types" and their respective Mean Outages (1985 – 2013)

	# of Total	# of Cumulative Affected	% of reported	Mean size of customer
	Events	Customers	events	outages
Wind/Rain	96	4,430,900	67.1	46,155
Winter Weather/Nor'easters	22	2,018,200	15.4	91,736
Ice Storm	5	95,500	3.5	19,100
Tornado	2	121,000	1.4	60,500
Lightning	9	175,800	6.3	19,533
Hurricane/Tropical Storm	9	5,768,500	6.3	640,944
Totals	143	12,609,900		

Table 1: Database storm event totals and proportion of storm types/mean outages; from CEEEP Storm Events Database)

Outages refer to outage for a meter and not for a consumer

Breakdown of Storm Event "Types" and their respective Mean Outages (1985 – 2013)


All Storms – Outages: 1985 - 1995

All Storms – Outages: 1996 - 2013

Storm Type	Total # of Storms	Total # Outages	Storm Type	Total # of Storms	Total # Outages
Hurricane/ Tropical Storm	2	277,000	Hurricane/ Tropical Storm	7	5,491,500
Winter Weather/ Nor'easter	2	140,000	Winter Weather/ Nor'easter	20	1,878,200
Wind/Rain	Not Reported	Not Reported	Wind/Rain	96	4,430,900
	Not		Ice Storm	5	95,500
Ice Storm	Reported	Not Reported	Tornado	2	121,000
Tornado	Not Reported	Not Reported	Lightning	9	175,800
Lightning	Not	Net Deve enterd	Total	139	12,192,900
Lightning	Reported	Not Reported			·
Total	6	417,000			

No consistent data available over long period in the way that storms have been reported. The reporting of outages for more types of storms is apparent in these two year brackets.

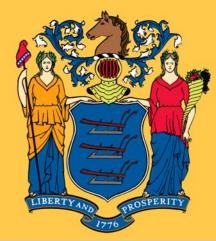
"Major Storms" 1985 – 2013: 100,000 + outages reported/ event

	# of Major Storms	# of Cumulative Affected Customers	% of Major events	Mean size of customer outages
Wind/Rain	13	2,623,000	48.2	201,769
Winter Weather/Nor'easters	8	1,636,000	29.6	204,500
Hurricane/Tropical Storm	6	5,718,500	22.2	953,083
Totals	27	9,977,500		

Table 2: "Major" Storms and their outages (by totals, proportion, and mean outages); from CEEEP Storm Events Database)

Resilient Energy System Are Back-up Generators the Answer?

Is 14 days the ability to spring back or recover quickly?


There is a better way –

if we plan for local energy resiliency

There were locations in New Jersey that operated During and after the storm when the grid was down

And not just with a diesel generator

Clean Distributed Generation that can operate 24/7 under blue skies and Islanded from the grid when there is an emergency – a Microgrid

DER Potential Resiliency Response to Superstorm Sandy Size of the NJ DER Market DER Microgrids

New Jersey current DER				
DER	Number of Systems	MW		
CHP/FC total	219	2,900		
CHP/FC DG	68	309		
CHP/FC (renewable)	15	15		
PV total	27,866	1,273		
PV (grid supply)	115	245		
PV behind the meter	27,751	1,028		
Total DG	27,834	1,352		

Total DG generates approx. 3,534,000 MWh of electricity annual or approx. 4.4% of NJ total electricity No PV currently can operate in island mode and 80% of new CHP/FC are designed to be islandable.

Definition of DER or DG

Distributed energy consists of a range of smaller-scale and modular generation and storage devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers or end user.

Definition of Microgrid

A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.

Types of DER

Solar Photovoltaic Wind Turbines **Engine Generator Sets Turbine Generator Sets Fuel Cells Batteries Capacitors Flywheels Thermal Storage Ice Storage Solar Thermal**

Examples of DER – Electric Generation

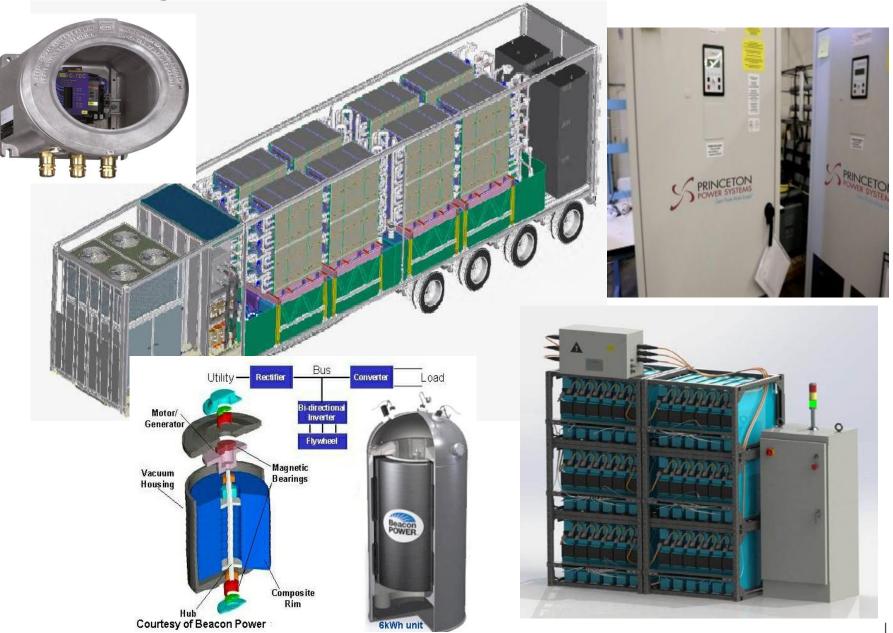
Printed 2014/03/06 01:59 PM Eastern Standard Time

State of New Jersey

Thermally Activated Technologies (uses for heating component of CHP)

Single-Effect Hot Water Absorption Cooling 150 F to 270 F COP 0.5 to 0.7

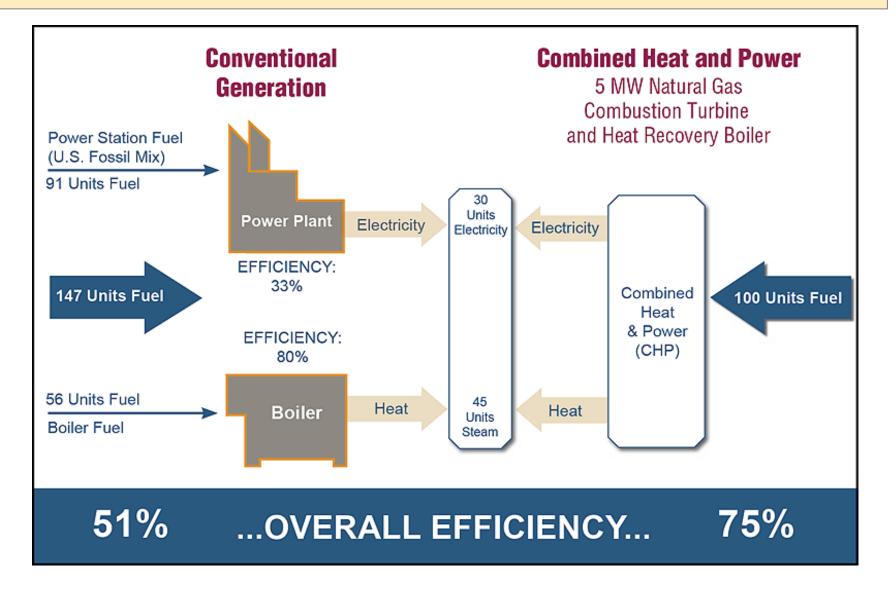
Power


Double-Effect Steam Absorption Cooling High and Medium pressure steam COP 1.1 to 1.7

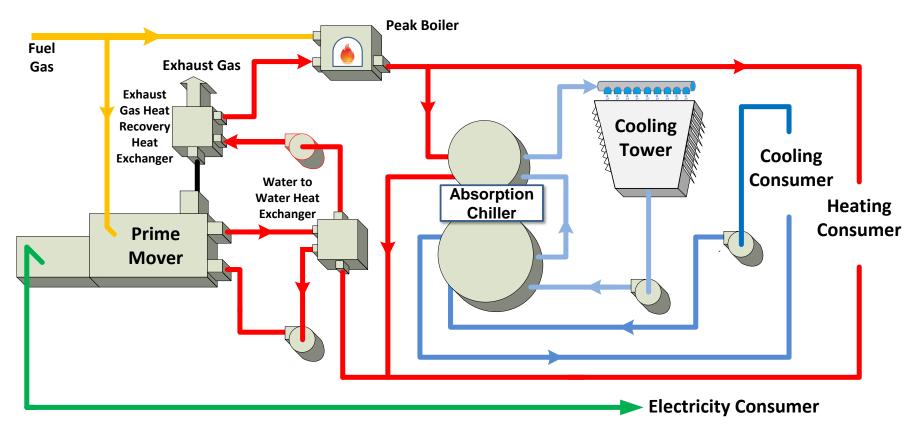
Cooling Technologies

Heat Recoverv **Steam Generator Exhaust Gas Heat Recovery Boiler** Shell & **Tube Heat** Exchanger Heating Plate & Frame **Technologies** Heat Exchanger

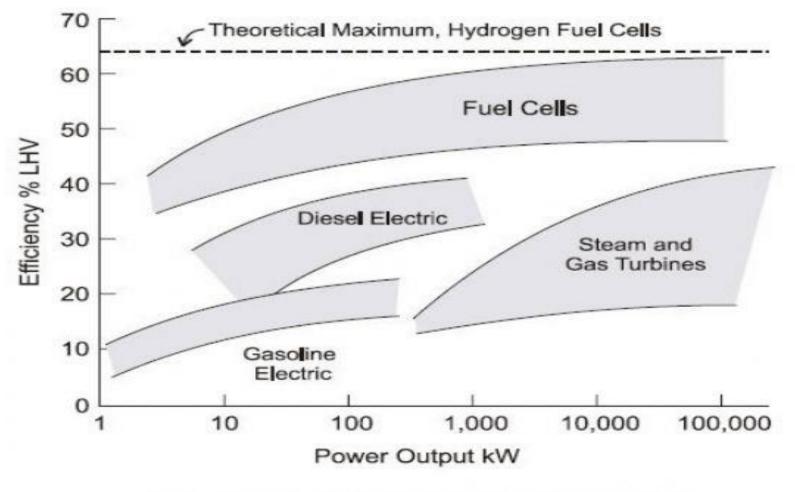
Electric storage



Thermal Storage



Energy Benefits of DER Combined Heat and Power



State of New Jersey

Combined Heat & Power System includes Cooling

Benefits of Distributed Fuel Cells

Efficiency Comparison (www.micro-vett.it)

Costs of Backup Generation vs DER

Backup or Standby Generators - \$600 per kilowatt (kW)

CHP - \$2,000 to \$3,000 per kW - islanding could add up to 30% CHP at Wastewater facilities - \$5,000 to \$10,000 per kW plus

Fuel Cells - \$5,000 to \$7,000 per kW - islanding could add up to 30%

Solar PV - \$2,000 to \$4,000 per kW

Battery/Inverter - \$1,000 per kW (1 hour of runtime)

Why DER – Benefits fourfold

- Energy Efficiency Saves energy uses waste heat – less D&T line losses (avoided GD&T cost to Utilities)
- Environmental Benefits Lower emissions that system marginal rate NOx, SO2, Hg, CO2 Less waste/water usage/wastewater discharge/less land use impacts - MACT standards for boilers

General permit <3 MW (NG) PBR for 500 kW FC

Why DER – Benefits fourfold

- 3. Economic benefits jobs and manufacturing competitiveness - hurt in 2008 recession but rebounding Large-scale CHP with NJ EDA
- 4. Resiliency operates 24/7 under blue skies and can island and blackstart when the grid is down. Office Emergency Management (FEMA)

Your facility is a good candidate for DER if...

- You pay more than approximately \$.10/ kilowatt-hours on average for electricity (including generation, transmission, and distribution)
- Your facility operates for more than 5,000 hours/year
- You have thermal loads throughout the year (including steam, hot water, chilled water, hot air, etc.) Does your facility have an existing central plant?
- You anticipate a facility expansion or new construction project within the next 3-5 years
- You have already implemented energy efficiency measures and still have high energy costs

Good Facility Candidates for DER Good Candidates for DER for Resiliency

Strong Candidates

Healthcare (hospitals and long term care facilities)

Industrial and Manufacturing

Hotels/Lodging

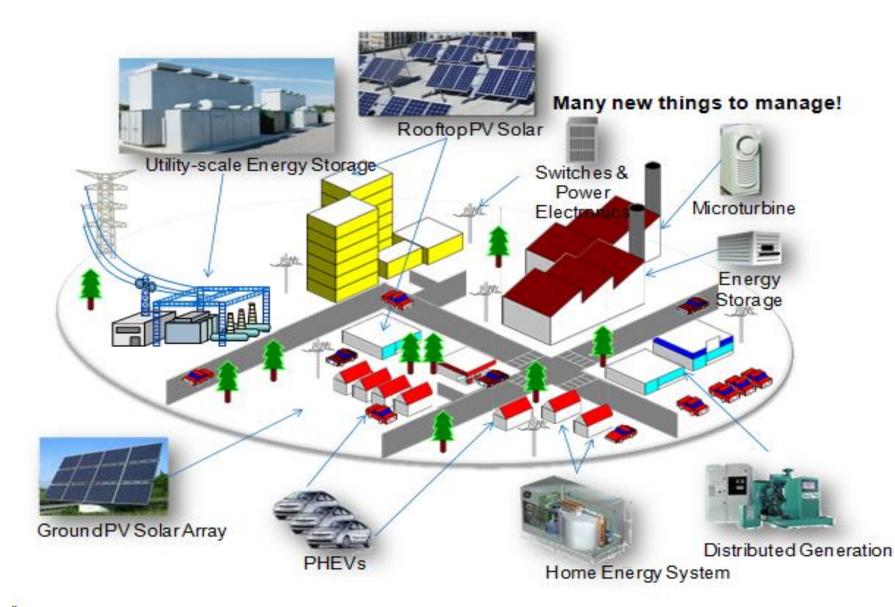
Data Centers

College and Universities (campus settings)

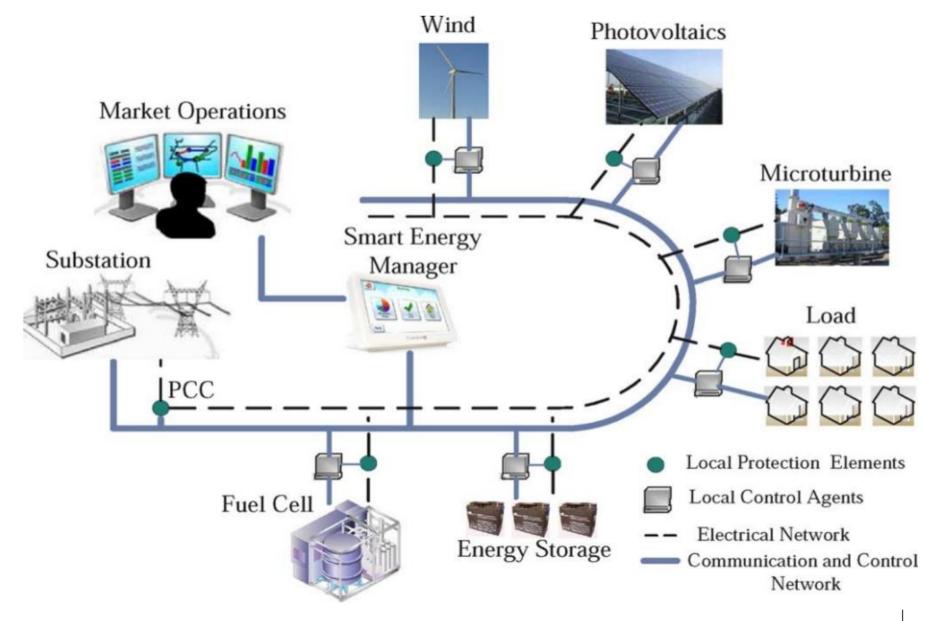
Multi-Family Housing

Water Wastewater Facilities **Potential Candidates**

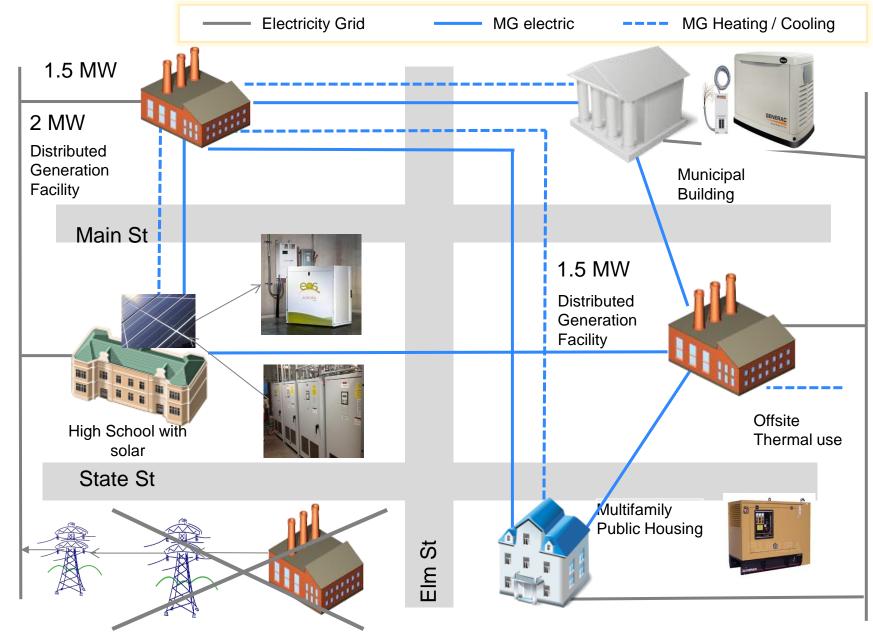
Commercial Office Buildings


K-12 Education Facilities

Government and municipal facilities


Retail Establishments

Health Clubs


Types of MG Distributed Generation or Distributed Energy Resources

Who will operate the MG to get electrons where they are needed

What are the regulatory issues related to a microgrid

Viking Yacht

- ➢ 500,000 ft² manufacturing facility
- Combined Heat & Power (CHP)
 - 390 kW installation consisting of six 65 kW inverter-based, grid connect microturbines with integral heat recovery modules
 - Three 30-ton absorption chillers
- Project Cost: \$2,367,006
- Incentives: \$877,500
- Annual Savings: 979,928 kWh generation; 7,360 MMBtu recovered waste heat to offset 85% of the facility's electrical load and 100% of the heating and cooling loads
- Annual Cost Savings: \$111,902
- Payback Period: 10.5 Years
- 200 new jobs added; additional 175 jobs by end of current year as a result of energy and cost savings

Rider University

- > 280 acre college campus
- Combined Heat and Power (CHP)
 - 1,100 kW internal combustion engine with heat recovery
 - 80-ton absorption chiller
- Project Cost: \$4,594,188 (estimated)
- Incentives: \$1,000,000
- Annual Savings: 8,545,053 kWh generation; 21,029 MMBtu recovered waste heat to provide 47% of campus electric load, 76% heating and hot water load, and 23% cooling load
- Annual Cost Savings: \$527,973
- Payback Period: 6.8 Years
- Manufacturing and construction anticipated to generate 25 temporary full-time jobs

NJCEP Incentives for CHP/ Fuel Cell

Eligible Technology	Size (Installed Rated Capacity)	Incentive (\$/Watt) ⁽²⁾	P4P Bonus ⁽³⁾ (\$/Watt) (cap \$250,000)	% of Total Cost Cap per project	\$ Cap per project
Combined Heat & Power	≤500 kW	\$2.00		30-40% ⁽⁴⁾	\$2 million
Powered by non-renewable fuel source – Gas Internal Combustion Engine	>500 kW - 1 MW	\$1.00	50-40%		\$2 mmon
 Gas Internal Combustion Engine Gas Combustion Turbine Microturbine 	>1 MW - 3 MW ⁽¹⁾	\$0.55		30%	\$3 million
	>3 MW ⁽¹⁾	\$0.35			
	≤ 1 MW w. waste heat	\$4.00		60%	\$2 million
Fuel Cells	≤1 MW	\$3.00	\$0.25		
Powered by non-renewable fuel source. Incentives available for systems both with and without waste heat recovery.	>1 MW w. waste heat	\$2.00		45%	
	>1 MW	\$1.50		45%	\$3 million
Heat Recovery ⁽⁵⁾ Powered by non-renewable fuel source.	≤1 MW	\$1.00	30%		\$2 million
Heat recovery or other mechanical recovery from existing equipment utilizing new electric generation equipment (e.g. steam turbine)	>1 MW	\$0.50		30%	\$3 million

NJCEP Incentives for Energy Audits

- Submit Registration to NJCEP including Resolution
- Draft RFP to 5 Pre Qualified Contractors
 - 5 energy firms substitutes for local bidding
- Evaluate proposals
- Select bid NJCEP review enter into Contract
- Up to \$1000,000 per year
- 100 percent of energy audit covered
- Investment grade for light ASHREA level II
- 2400 building audited
- 300 government entities

Energy Saving Improvement Program

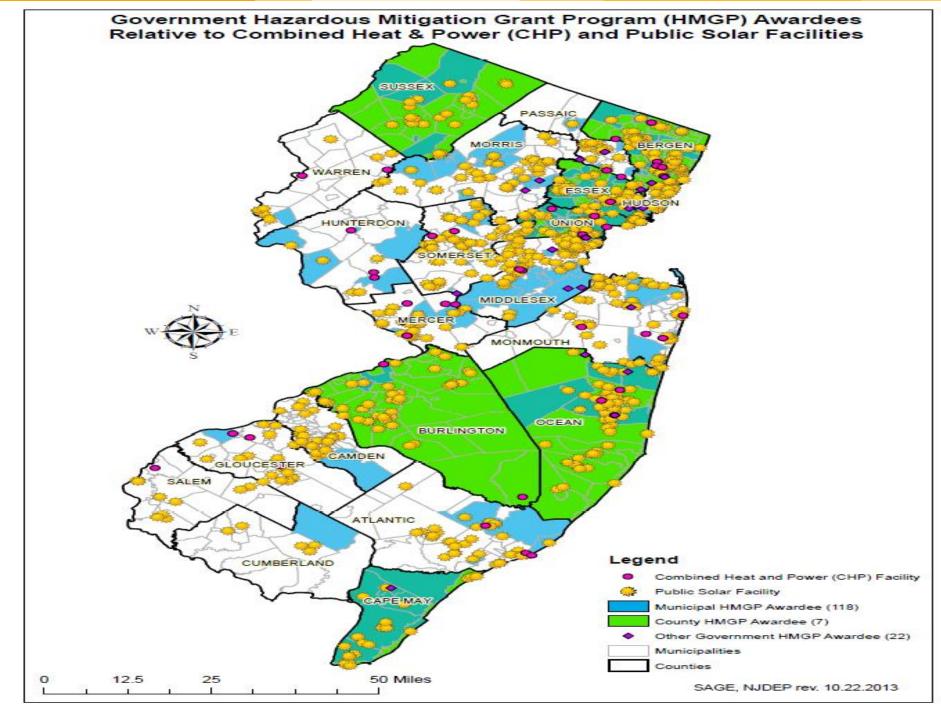
- Retrofitting public facilities with Energy Conservation Measures (ECM) without new capital investment
 - Savings from reduced energy use pays for the improvements = No New Money!
- Applies to all government contracting units, including school districts

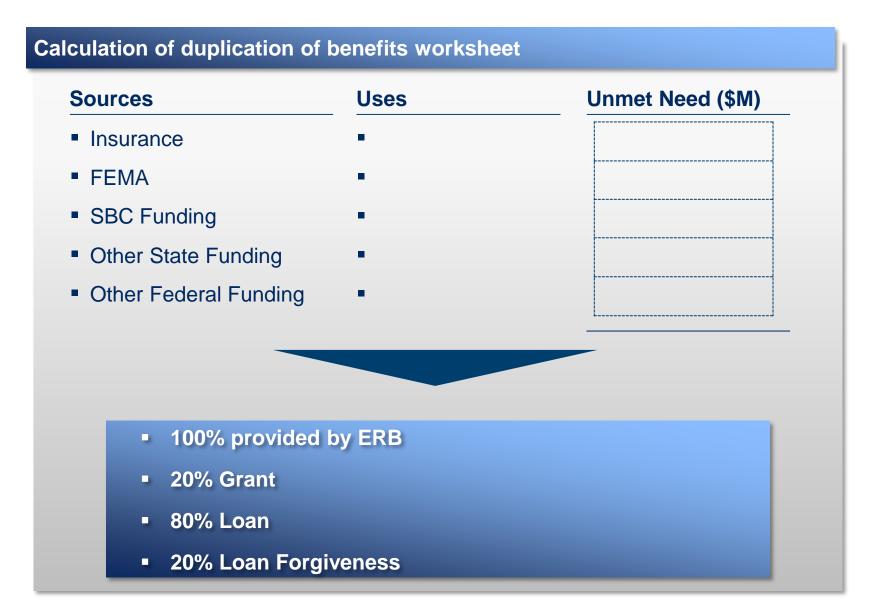
Energy Savings Improvement Program

- 1) Initial Audit
- 2) Decide whether to go forward as an ESCO or DIY project
- 3) Prepare Draft RFP (Boiler Plate Available) / submit to **BPU for review**
- 4) RFP proposal **review by the BPU** completed within 14 days
- 5) RFP circulation must be in local newspapers and direct notification to <u>all</u> DPMC-approved ESCO's
- 6) Select Vendor / award contract
- Vendor Selection review by the BPU completed within 14 days
- Send all Bids to BPU for Reporting
- 8) Investment Grade Audit performed / prepare ESP
- 9) Independent Third Party review of ESP (must send to BPU)
- 10) Review of Energy Savings Plan by BPU completed within 14 days
- 11) Project initiation
- 12) Measurement and Verification sent to Entity and BPU

New Jersey Energy Resilience Bank (ERB) Overview

- The extensive damage and outages caused by Superstorm Sandy prompted the state to prioritize its efforts to minimize the potential impacts of future major power outages and increase energy resiliency
- BPU and EDA have partnered to commit \$200 million in funding for the ERB to assist critical facilities with securing resilient energy technologies that will make them and, by extension, the communities they serve less vulnerable to future severe weather events and other emergencies




High Potential Resiliency System Options

	Option	Description	Suitability for potential resiliency options
CHP		 Combined heat and power (CHP) is the simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream (e.g., reciprocating engines, microturbines) 	 Offers potential energy savings (\$100k per year) Potentially takes advantage of digester gas to further lower costs Thermal and electrical load well balanced to make economics favorable, with a technology proven in WWTPs
Fuel Cell		 Consists of an anode, a cathode and an electrolyte that allows charges to move between the two sides of the fuel cell Rapidly-evolving technology that produces electricity from natural gas with no moving parts 	 Greater capital cost than CHP (e.g., batteries) No opportunity to take advantage of digester gas Ideal for situations with a low thermal load
Solar PV		 Generates power using a photovoltaic (PV) solar panel that can be fed into an electrical grid or local, off-grid electrical network Allows the use of ordinary AC-powered equipment Can only provide power during night/storm if coupled with storage (batteries) 	 Greater capital cost than CHP (e.g., batteries) No opportunity to take advantage of digester gas Reduced ability to capture waste heat for OCUA use (vs. CHP) Can be adapted for use with PV arrays, including maximum power point tracking and anti-islanding protection
Retrofit		 Addition of islanding and blackstart capabilities (e.g., ability to operate independently of the grid) to existing on-site generation system 	 No existing on-site generation to upgrade
Microgrid		 Network combining two or more facilities that share on-site electricity production (and possibly heating), with islanding and blackstart capabilities 	 No nearby facilities to link to microgrid

The ERB will be providing financing for unmet need

FOR DISCUSSION

The ERB could support you with comprehensive financing for your resilience project

Overview of Proposed Total ERB Funding:					
100% unmet funding	Incentive:	 40% of unmet funding need: Grant: 20% of unmet funding need provided as a grant Loan Forgiveness: 20% of unmet funding need may available as a loan that may be forgiven based on performance-based standards 			
	Loan:	60% of unmet funding need			
Terms	 Interest rate: 2%, fixed interest rate for bond rating of BBB- or higher at the time of approval 3% fixed interest rate for applicants with bond rating lower than BBB- or which are not rated at time of approval Collateral: No collateral required Term: Up to 20-year term, based on useful life of majority of assets Principal Moratorium: Up to 2 years' principal moratorium 				

The ERB can cover a range of costs for both new and retrofit systems

Eligible costs

New resilient systems

- Core equipment
- Piping & wiring
- Islanding equipment
- Interconnection
- Fuel pre-treatment (e.g., biogas treatment, or gas compression)
- Installation
- Site work
- Engineering and project management
- Hardening of resilient energy system (e.g., elevation)

Resilient retrofits

- Additional core equipment (e.g., battery storage for existing solar system, biogas storage equipment)
- Islanding equipment
- Interconnection
- Installation
- Engineering and project management
- Hardening of resilient energy system (e.g., elevation)

Non-eligible costs

Backup Generators

- Emergency backup generators
- Onsite fossil fuel storage for emergency generators
- Transfer switches to support backup emergency generators

Other non-energy hardening

- Flood walls
- Elevation

Other

- Used, refurbished equipment
- Solar PV panels

Projects that do not qualify for ERB funding may be eligible for other state programs offered by the state, or could seek private funding

	NJ Energy Resilience Bank	NJ Energy Development Authority	NJ Clean Energy Program	NJ Environmental Infrastructure Trust	NJ Healthcare Facilities Financing Authority
Mission	 Increase resiliency of critical facilities to extreme events 	 Finance small and mid-sized businesses, administer tax incentives, redevelopment initiative 	 Promote energy efficiency and use of clean energy 	 Provide financing for environmental infrastructure projects to protect water sources and safety 	 Provide healthcare providers with low cost capital
Target sectors	 Critical facilities e.g. hospital, WWTP, education 	 NJ-based businesses and communities 	 NJ residents, businesses and local governments 	 Drinking water, wastewater, equipment purchase, storm water, landfill etc. 	 Hospitals, nursing homes, assisted living etc.
Products offered	 Partial grants, loan forgiveness and discounted loan 	 Low interest lending, training, mentoring 	 Partial rebates for installation of energy efficient equipment 	 Loans with some principal forgiveness 	Municipal bond issuanceDirect lending
Eligibility requirements	 Public facilities Damage from specific storms Other 	 Size of business Number of employees Business location Other 	 Varies – based on location, building type, fuel source 	 Various – projects must fall in list of eligible sectors 	 Health care related service in NJ
Funds disbursed to date	 \$200M available 	 ~\$23B in assistance; ~\$52B in public/private investment 	• TBD	 >\$4.3B to local and county government and some private facilities 	 >\$16B in bonds to ~150 organizations in NJ

Resilient Energy System

Who Funds Housing and Storm Recovery - HUD in CDBG

There is a better way –

HUD provides funding for LMI Housing thru CDBG Basically Multifamily Buildings including EE/RE

After FEMA HMGP HUD provides Recovery Funding through CDBG including EE/RE

DER is an efficient and effective way to power a multi-family building both thermal and electric

A DER system can be resilient through islanding/blackstart

HUD provided DER funding under ARRA

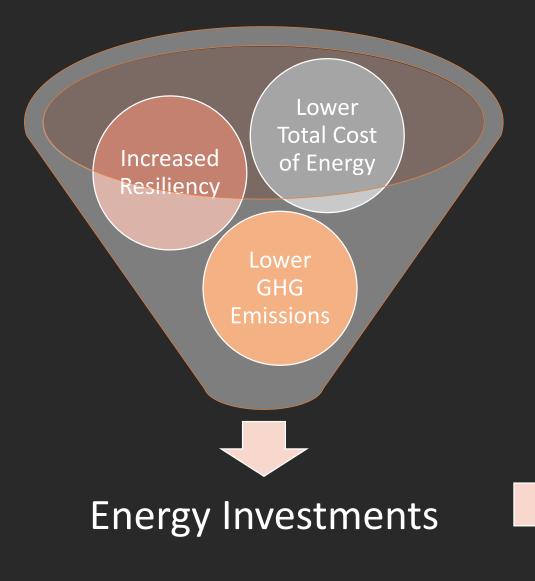
LIBERTYAND

Super Storm Sandy October 29, 2012

Building support for Resiliency Planning in Boston

Prepared for Better Buildings Summit, Washington DC, May 2015

Travis Sheehan


Energy Fellow at Boston Redevelopment Authority

Why is the City of Boston engaging in the resiliency conversation?

Resiliency for vulnerable populations and business continuity

Lower Total Cost of Energy makes the state attractive to all firms and residents

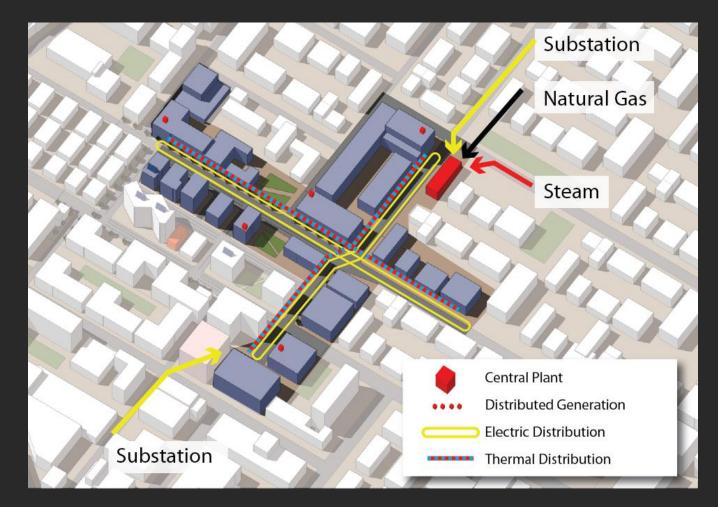
Energy Security make the state more attractive to hitech/ clean tech/ bio tech / advanced manufacturing

Local generation revenues keep capital local, investment potential to spark local industries

Smart Grid: DG (CHP) DG (Renewable) Storage Islanding

Multi-User Microgrid (MUM)

District Heating and Cooling


Business Model for MUM

- DISCO owns the microgrid
- Comes from an innovative and evolving utility partnership
- Potential pathway to respond to the Grid Modernization order
- Technology includes generation and distribution for thermal and electric

Boston's MUM model

- Deploy local generation and storage
- Replace building boilers and chillers with central CHP (applied to new and old districts of the City)
- Develop hot and cold water loops
- Deploy Smart Grid and smart building technologies
- Create islanding capability for local loads

Boston municipal government shaped the conversation....

Business Model

- "Boston Microgrids Workshops"
- 12 Hours of scenario planning
- Utility Corporate Strategy / Gov. Relations, Real Estate
 Developers, Infrastructure investors, Muni-finance
 Advisors, Energy Developers,
 DPU staff and Commissioners,
- Outcomes: Straw proposal outlines business plan

March 2014- June 2014

Boston municipal government shaped the conversation....

Business Model

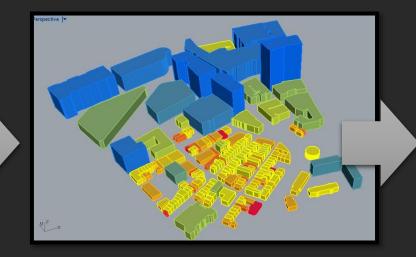
- "Boston Microgrids Workshops"
- ▶ 12 Hours of scenario planning
- Utility Corporate Strategy / Gov. Relations, Real Estate
 Developers, Infrastructure investors, Muni-finance
 Advisors, Energy Developers,
 DPU staff and Commissioners,
- Outcomes: Straw proposal outlines business plan


City Planning

- "Citywide Energy Study"
- Planning Study to identify Microgirds Districts
- Energy model of every building in Boston
- Economic impact analysis will show City-wide benefits: lower total cost of energy, avoided business downtime, local environmental impact

March 2014- June 2014 June 2014- June 2015

SUITABILITY ANALYSIS



Analysis of Critical Assets and Vulnerable Populations

Building-specific energy models (8760 Data)

MICROGRID IDENTIFICATION

SAMPLE: Microgrid (1 of 5) Model Outputs				
		Base Case	Microgrid	
Demand	Source fuel	40 GJ	33 GJ	
Supply	CHP Size	0	5 mw	
	PV	0	350kw	
	Storage- E	0	1mwh	
	Storage- T	0	19mbtu	
Performance	Cost	\$19/sf/yr	\$20/sf/yr	
	Emissions	200 tons	10 tons	
	Resiliency	\$-1M	\$0	

CITYWIDE BENEFITS ANALYSIS

SAMPLE: Citywide Microgrid Capacity					
	Supply	Emissions	Resiliency		
MG1	10 MW	-40000 tCO2e	\$25.0 M US		
MG2	12 MW	-30000 tCO2e	\$1.0 M US		
MG3	2 MW	-2000 tCO2e	\$1.2 M US		
MG4	13.1 MW	-320000 tCO2e	\$0.1 M US		
MG5	5.4 MW	-10000 tCO2e	\$0.6 M US		
Total	42.5 MW	-402000 tCO2e	\$27.9 M US		
SAMP	PLE: SROI	Boston	Massachusett		
Over pr 4 years:	oject span of				
Total Jobs (Direct, Indirect, and Induced)		2,126	2,861		
Gross State Product (2009 dollars)		\$ 174,253,457	\$ 245,947,612		
Personal Income (2009 dollars)		\$ 66,111,927	\$ 199,150,69		
Personal Consumption Expenditures (2009 dollars)		\$ 39,043,480	\$ 115,863,65		
Total State Tax Revenue over 4 years (2009 dollars)		\$ 3,439,645	\$ 10,334,019		

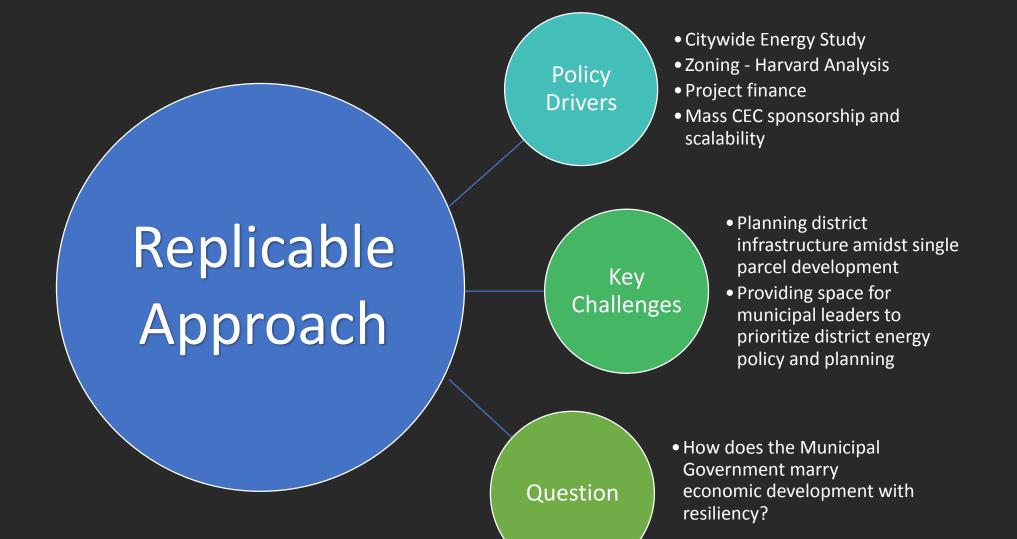
Boston municipal government shaped the conversation....

Business Model

- "Boston Microgrids Workshops"
- 12 Hours of scenario planning
- Utility Corporate Strategy / Gov. Relations, Real Estate
 Developers, Infrastructure investors, Muni-finance
 Advisors, Energy Developers,
 DPU staff and Commissioners,
- Outcomes: Straw proposal outlines business plan

City Planning

- "Citywide Energy Study"
- Planning Study to identify Microgirds Districts
- Energy model of every building in Boston
- Economic impact analysis will show City-wide benefits: lower total cost of energy, avoided business downtime, local environmental impact


March 2014- June 2014 June 2014- June 2015

Pilot Project

- "Microgrid Pilot"
- Local planning to reduce costs for manufacturing hub of Boston (Marine Industrial Park)
- Developing MOU with Eversource
- Engineering study to be completed August 2015, investors ready

Appendix Slides

The Statewide Implications of Boston's MG

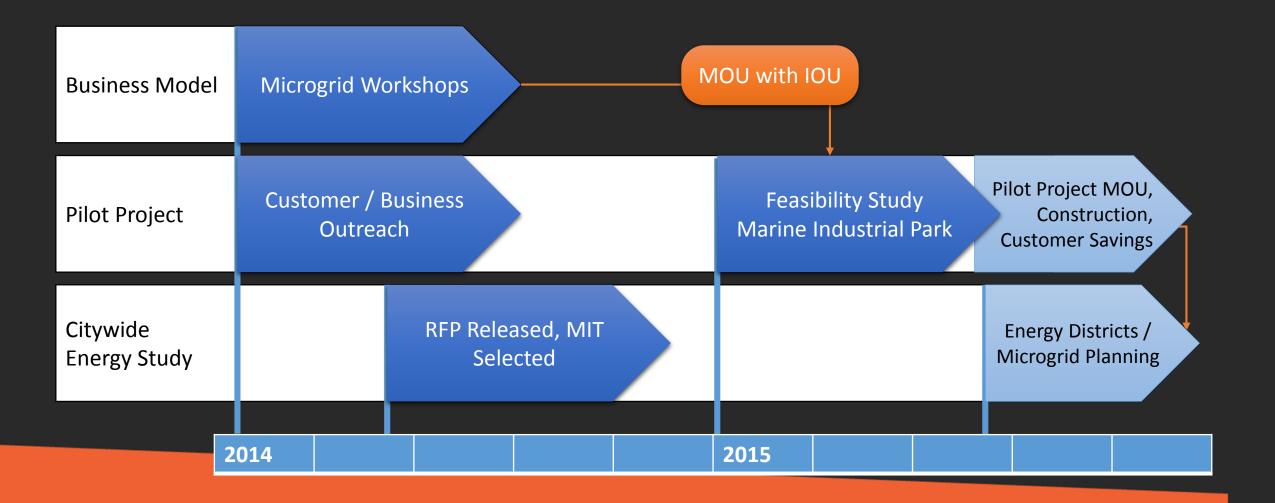
- Collaborations and statewide strategy
 - Plans to export method
 - Potentially export business model
- Department of Homeland Security interactions

Conclusion

- Energy regulatory frameworks are under major transformation
- New investments require new reg. frameworks
- We've partnered with IOU to explore this
- Asking for support: a pilot that explores new project finance
 - Support for exploring revenue streams: frequency regulation, DR, MRAs
- Give Eversource exploration of mixed approach: efficiency and distribution planning
- Support seeking outside assistance to study the 'scaling up' from pilot

Pilot MUM Study

System Design: Generation, Storage, Islandability, Thermal Distribution


Base Case Costs Scenario Costs Delta: Total Cost of Energy O Scenario 1-3: Basic Disco involvement, muni or third party ownership Scenario 4: Energy Efficiency?

- Total Cost of Energy
- Resiliency Metrics
- Environmental Metrics

- Key questions
 - Will Eversource be allowed to rate base aspects of the pilot?
 - Will "Retail Choice" / "Obligation to Serve" be affected ?
 - Will the "district efficiency" project enable local generation ownership?

The Background on Microgrids in Boston/MA

Project Positioning

IIIIIT SUSTAINABLE DESIGN LAB

R1

nationalgrid

PERFORMANCE PER EXCELLENCE IN ELECTRICITY RENEWAL

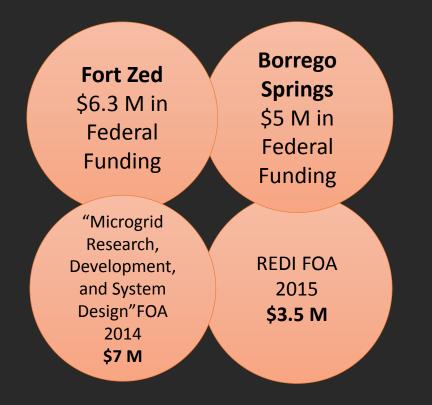
U.S. DOE

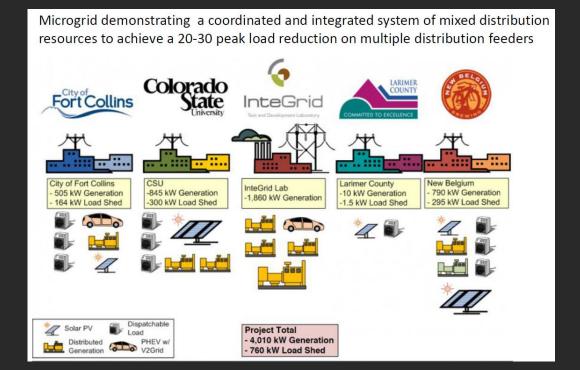
CHP TECHNICAL ASSISTANCE

PARTNERSHIPS

Pace Energy and

Climate Center PACE LAW SCHOOL


IDFA International Conference



National Examples of Pilot Projects

Utility executed microgrids are heavily funded through DOE, Boston's model is to leverage tech transfer and investment in pilot.