

Results from the Field: Highlights from Technology Demonstration Projects

Wednesday, May 11, 2016 3:45-5:00 PM

- 1. The Benefits of Tech Demos: Highlights from the Green Proving Ground
- 2. HVAC Load Reduction Modules
- 3. Q-Sync Motors
- 4. Commercial Advanced Lighting Controls

Open House Poster Session

Today's Presenters

- 1. Kevin Powell, General Services Administration
- 2. Michael Wolf, enVerid Systems
- 3. PJ Piper, QM Power
- 4. Gabe Arnold, Northeast Energy Efficiency Partnerships and Design Lights Consortium

Highlights from the Green Proving Ground Kevin Powell, General Services Administration

"The Government's Landlord"

8,792 assets

- Owned: 1,621 assets
- Assets in all 50 states, 6 U.S. territories, and Washington D.C.

374M square feet

- Owned: 183M square feet
- 1.1 million federal employees

\$365M annual energy costs

Green Proving Ground leverages GSA's real estate portfolio to evaluate innovative sustainable building technologies.

Federal Leadership by Example

Energy Independence and Security Act, 2007

30% reduction in energy use intensity (EUI) by 2015, over 2003 levels

GSA Response: -30.0% EUI reduction EOFY2015*

Executive Order 13693, 2015

2.5% annual reduction in EUI through 2025, over 2015 levels

GSA Response:

-3.5% 2016 EUI reduction as of FY2016 Q2*

* February 2016, GSA Average EUI = 51.3 kBTU/GSF/yr, as reported per legislative mandate; Commercial office average EUI = 77.8 kBTU/SF/yr, 2012 CBECS, eia.gov GSA buildings are 33%* more efficient than typical U.S. office buildings.

GSA Fosters Outstanding Building Performance

GSA buildings are 33%* more efficient than typical U.S. commercial buildings. 10 8 77.8 33% 4 51.3 2 0 NATIONAL CBECS OFFICE AVERAGE GSA AVERAGE

ENERGY USE INTENSITY (EUI)

*February 2016, GSA Average EUI = 51.3 kBTU/GSF/yr, as reported per legislative mandate; 2012 CBECS, eia.gov

The Development of Innovative Tech

4 out of 5 technologies fail to cross the Technological Valley of Death because of the financial and operational risks they pose to early adopters.

Tech Demos take on first-use risk to accelerate market acceptance by objectively assessing innovative building technologies in real-world environments.

How Does GPG Work?

Identify promising technologies in pre- or early-commercial phases

Pilot technology installations within GSA's real estate portfolio

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Recommend technologies with broad deployment potential

Green Proving Ground, 2011-2015

Received	560	technology applications
Selected	48	technologies for M&V
Published	26	DOE laboratory assessments
Identified	17	broad deployment potential

Google Ranking

GPG technology evaluations consistently appear within the top 5 Google search results

Opportunity — 17 Technologies with Broad Deployment Potential

Category	Technology	% Saved at Test Beds	Projected Payback (yrs)
	Wireless Sensor Networks	17%	2
Energy Management	Socially Driven HVAC	20% cooling, 47% heating	NA
	Advanced Power Strips	26 - 48%	2
	Occupant Responsive Lighting	27 - 63%	6
	LED Downlights Lamps	40%	3
Lighting	Integrated Daylighting	27%	6
	LEDs + Wireless ALC	78%	6
	LEDs with Integrated Controls	69%	9
Building Envelope	Hi-R Windows	41%	7
	EC Windows for LPOEs	9%	NA
	Solar Control Film	22%	9
	Condensing Boilers	14%	7
HVAC	Maglev Chiller	42%	5
	Fan Belts	2 - 20%	4
	Wireless Draumatic Thermostate	20% cooling, 43%	C
	Wireless Pheumatic Thermostats	neating	
Water	Weather Station Irrigation	66%	4
	Non-Chemical Water Treatment	NA	2

GPG

GPG Technology Deployments 2012-2016 9 Technologies in over 200 Locations within GSA buildings

Wireless Sensor Networks for Data Centers	3 GSA-operated data centers in Chantilly, VA; Fort Worth, TX; and Denver, CO.
Advanced Power Strips	16,000+ deployed throughout GSA portfolio in 2014
Condensing Boilers	60 locations in GSA's portfolio, many through ESCO-financing
Variable-Speed Maglev Chiller	40 locations in GSA's portfolio, many through ESCO-financing
LEDs with Integrated Controls	23,000 GSF as part of a Total Workplace project in Portland, OR.
Wireless Advanced Lighting Controls	5.5M GSF of workspace in California, through ESPC
Hi-R Windows	3M GSF of workspace in New York, through ESPC
Wireless Pneumatic Thermostats	4M GSF of workspace in New York, through ESPC
Socially Driven HVAC Optimization	230,000 GSF of workspace in California, through ESPC

GSA Portfolio Energy Impact— 9 Deployed Technologies

ANNUAL ENERGY REDUCTION	EUI REDUCTION
265,000 MMBtu/yr	1.5 kBtu/sf/year 2.8% contribution to EUI Reduction Goal

Thank You!

Kevin Powell kevin.powell@gsa.gov gsa.gov/GPG

HVAC Load Reduction Modules Michael Wolf, enVerid

Maintaining Indoor Air Quality Today

Conventional Air Handling

- Commercial buildings use a lot of outside air
- The reason: ensuring indoor air quality (ASHRAE 62.1)
- A universal, but *inefficient* practice

A Better Alternative: Clean & <u>Recycle</u> Indoor Air

Remove molecular contaminants

Reduce amount of outside air

Lower energy costs & maintain indoor air quality

© enVerid Systems. All rights reserved. Confidential.

Retrofit Economics

- Typical annual savings 20%
- Peak load reduction routinely exceed 40%
- ROI for retrofit is 2 3 years
- Significant savings on maintenance
- Impact of financing, rebates, credits

New Construction Economics

Target Application

- Central HVAC systems in Commercial Buildings of at least 50,000 ft², and zones of at least 10,000 ft²
- Buildings in cities with long summers and/or winters
- Buildings with long hours of operation or high occupancy rates
 - Buildings with indoor air quality issues
- Examples : Office buildings, University/campus settings, Government buildings

Project: University of Miami Wellness Center June 2015

In HLR Savings Mode:

- 29% reduction in energy consumption
- All three IAQ measurements improved

Project: University of Miami Wellness Center June 2015 – Cooling Energy Savings

Project: University of Miami Wellness Center June 2015 – Energy Savings

HLR Savings Mode Conventional Mode

Summary

- Substantial energy savings
- Excellent indoor air quality
- Retrofit or new construction projects

Change is in the air.

Works anywhere. Changes everything.

Q-Sync Motors PJ Piper, QM Power

QM POWER

Q-SYNC[™]

Reinventing the High-Efficiency Motor

Q-Sync is a Department of Energy High Impact Technology

What's the Big Deal With Motor Efficiency?

- Over 50% of all electricity used in buildings is consumed by motors Source: Department of Energy
- Up to 98% of the total cost of an electric motor is in the energy it consumes
- Most motors in operation today are based on Tesla's design from the late 1800s

- Jamie Childress, Boeing Research and Technology

THE MOST EFFICIENT COMMERCIAL REFRIGERATION MOTOR IN HISTORY

INTRODUCING THE NEXT BIG LEAP IN EFFICIENCY

Q-Sync in HVACR fan applications "could reduce source energy consumption by as much as one quad or more [annually], with proportional environmental benefits."

-Dr. Brian Fricke Former ASHRAE Technical Committee Chairman, Commercial Refrigeration and R&D Staff member in the Building

Equipment Research Group at Source: See page 13 of "Q-Sync Motors in Commercial Refrigeration: Preliminary Test Results and Projected Benefic? A Misper COP IN A Monable Source (Control of Control of

QM POWER

Q-Sync Technology Explained: Why is Q-Sync Superior to an ECM?

- Get the advantage of permanent magnets without the losses associated with continual power conversions found in ECM designs
- ECMs consume more electricity because they must convert AC to DC and synthetically "chop it up" to artificially create an AC waveform to run the motor
- QM Power's motor is perfectly synced to the 60Hz AC line frequency
- The yellow lines in the diagram on the right show the power losses and wasted energy inherent in an ECM design

Types of Refrigeration Fan Motors in a Supermarket

QM POWER

Total Energy Savings from Q-Sync Motor in Supermarkets Over 353 Million kWh saved every year for 15 years

	Coffin 4-8W	Case 9-12W	Walk-Ins 38-50W	Combined Year One Savings*	Combined Savings Over 15 Years*		
Q-Sync Fan Motor					\$	kWh	CO ² Emissions (lbs)
Annual Cost Savings Per Motor:							
vs ECM Motor	\$4.83	\$8.18	\$18.67				
vs PSC Motor	\$6.10	\$15.30	\$84.11				
vs Shaded Pole Motor	\$34.77	\$57.26	\$218.47				
Per Store Cost Savings From Retrofitting with Q-Sync Motors (By Type):							
Average Motors Per Store	100	300	70				
Upgrading from all ECM	\$483	\$2,454	\$1,307	\$4,244	\$63,653	581,837	913,485
Upgrading from all PSC	\$610	\$4,589	\$5,888	\$11,087	\$166,300	1,520,112	2,386,576
Upgrading from all Shaded Pole	\$3,477	\$17,177	\$15,293	\$35,947	\$539,205	4,928,750	7,738,138
Chain-Wide Cost Savings From Retrofitting by Scenario:							
Store Count	1,000	1,000	1,000				
Assumed % of Stores With ECM	10%	35%	20%				
Assumed % of Stores With PSC	0%	0%	20%				
Assumed % of Stores With Shaded Pole	90%	65%	60%				
Savings Upgrading All Stores to Q-Sync	\$3,178,005	\$12,023,808	\$10,614,460	\$25,816,273	\$387,244,099	3,539,708,403	5,557,342,193

* Data provided in this chart is for example only. All competing motor data and efficiency levels used in calculating cost and energy savings were verified in the field by third parties. Sources include NCI and PNLL, 2011; ORNL, 2015; and SDGE, 2016.

Real Results: Hy-Vee Retrofit Demonstration Q-Sync motors consumed 27.4% less electricity than incumbent ECMs

Real Results: Price Chopper Demonstration Q-Sync motors consumed 78.4% less electricity than shaded pole motors

Real Results: Vons (Safeway-Albertsons) Q-Sync motors consumed 71% less electricity than incumbent motors

Q-Sync Roll Out: Sep 2015-Sep 2016

Advanced Lighting Controls Gabe Arnold, Northeast Energy Efficiency Partnerships and Design Lights Consortium

DesignLights Consortium drives efficient lighting forward by defining quality and delivering tools and resources to the lighting market through open dialogue and collaboration

<u>Commercial Advanced Lighting</u> <u>Control Project</u>

Demonstration Projects

 Selected Technologies by RFQ

Scoring Criteria heavily weighted to products that used innovative approaches to overcome technology adoption barriers

Features that were scored highly

- Simple to Install, Commission, and Use
- "Embedded" or "Integrated" Sensors
- Wireless
- Open-standards based or as interoperable as possible
- Distributed Intelligence
- Embedded energy meter
- Auto-Commissioning
- Well-executed programming interface or GUI

First Five Projects

	Two Roads Brewing Company – Stratford, CT • Install Complete • Status: Analyzing Metering Results	
	Rhode Island Public Utilities – Warwick, RI • Install Complete • Status: Post-Metering	PHILIPS
	Multi-Tenant Medical Office Building – Avon, CT • Install Complete • Status: Post Metering	CREE
	University of Vermont PFG Sports Complex – Burlington, • Status: Finalizing Scope/Budget • Install over Summer	VT enlighted
STORASHOR	Super Stop & Shop – New Bedford, MA • Status: Scope Budget Complete, Developing M&V Plan • Install begins July 8	Wir Daintree Networks

Two Roads Brewing Company

Technology: Digital Lumens Intelligent Lighting System

Low-Bay Areas

Office Areas (Integrated into Philips Evokit Troffer)

High-Bay Areas

Preliminary Results – Digital Lumens at Two Roads Brewing

49

DESIGNLIGHT

Demonstration Projects – Next Five

 Site Recruitment Underway

Thank You!

Gabe Arnold garnold@neep.org 781-860-9177 x161

Please join us for open discussion and posters.

