

Cleanup on Energy Savings on Aisle 7! Saving Energy in Supermarket Design and Operation

Better Buildings Summit Monday, May 9, 2016 3:35-5:00 PM

- 3:35 Welcome & Introductions
- 3:40 Mick Schwedler, ASHRAE
- 4:00 Aaron Daly, Whole Foods Market
- 4:20 Richard Heath, Southeastern

Grocers

4:40 Group Discussion/Q&A

Today's Presenters

Mick Schwedler

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) **Aaron Daly** Whole Foods Market

Richard Heath Southeastern Grocers

Recommendations for 50% Energy Reduction in Grocery Stores Mick Schwedler

Clean up on Aisle 7: Recommendations for 50% Energy Reduction in Grocery Stores

> Mick Schwedler, PE, FASHRAE, LEED AP BD+C Trane Applications Engineering Manager AEDG Steering Committee Chair Emeritus

Advance Energy Design Guides (AEDG) Partnership

- Collaboration of professional organizations and DOE
- Specialized Project Committee for each guide
- Oversight is provided via AEDG Steering Committee
- Backed by DOE's national laboratory leadership, energy simulation, technical analysis and support
- Open peer review and commentary process

AEDG Presents

- "A Way Not The Only Way..." to achieve the desired savings
- How to use energy modeling for design of buildings not amenable to tables
- A prescriptive path by climate zone to achieve desired savings
- How-to tips and caveats for selected energy conservation measures

Advanced Energy Design Guides

Advar for Sr

Six 50% Guides

- 100,000+ copies
- 50% energy savings over 90.1-2004
 - 50% on the way to zero net energy

Free download at:

www.ashrae.org/freeaedg

Advanced Energy Design Guide for Grocery Stores

Achieving 50% Energy Savings Toward a Net Zero Energy Building

Developed by: ASHRAE The American Institute of Architects Illuminating Engineering Society of North America U.S. Green Building Council U.S. Department of Energy

50% Grocery AEDG Project Committee

- Paul Torcellini, Chair, National Renewable Energy Laboratory
- Bernie Bauer, IES Representative, Integrated Lighting Concepts
- Aaron Daly, Member-at-Large, Whole Foods Market
- **Don Fisher**, Member-at-Large, PG&E Food Service Technology Center
- Michael Lane, IES Representative, Puget Sound Energy
- Ken Lowney, AIA Representative, Lowney Architecture
- Merle McBride, ASHRAE Representative, Owens Corning
- Jim McClendon, ASHRAE Representative, Walmart Stores, Inc.
- Daniel Nall, AIA/USGBC Representative, Syska Hennessy Group
- Caleb Nelson, Member-at-Large Refrigeration, CTA
- Doug Scott, Member-at-Large Refrigeration, VaCom Technologies
- Eric Bonnema, Analysis Support, National Renewable Energy Laboratory
- Lilas Pratt, Staff Liaison, ASHRAE

AEDG Table of Contents

- Chapter 1 Introduction
 - How to use this document
- Chapter 2 Integrated Design Process
 - How the design process changes in order to achieve 50% energy savings
- Chapter 3 Design Concepts and Practices
 - Overview of the technical approaches to achieving 50% savings
 - Subsystem integration
- Chapter 4 Design Strategies and Recommendations by Climate Zone
 - Specific technical requirements to meet the 50% goal
- Chapter 5 How To Implement Recommendations
 - Specific technical guidance for implementation of recommendations, including technical resources and warnings

Climate Zones

AEDG Savings by Climate Zone

Recommendation Tables

Recommendation Table Contents

- How-to Tips contain
 - Specific recommendations
 - Guidance on good practice for implementation
 - Cautions to avoid known problems

Refrigeration – Energy Reduction

Reducing Load

- Reduces compressor size
- Reduces condenser size
- Examples
 - Insulation
 - Case LEDs
 - Doors on Cases

Refrigeration & HVAC Interactions

Refrigeration & HVAC Interactions

- Dehumidification
 - Required store condition: 75°F/55% R.H.
 - Refrigeration COP vs. A/C COP
 - Anti-sweat heater control

Kitchen Equipment

Climate Zone 4 Recommendation Table for Grocery Stores (Continued)

	ltem	Component	Recommendation	How-to Tips	~	
hen	Kitchen Equipment	Cooking equipment	ENERGY STAR or utility rebate-qualified equipment	<u>KE1–2, 4, 6</u>		
Kitc	ratement Equipment	Exhaust hoods	Side panels or end walls, larger overhangs, rear seal behind appliances, proximity hoods, DCKV	<u>KE1, 3, 5, 6</u>		

- New technology for AEDGs
 - DCKV (Demand Controlled Kitchen Ventilation)

Lighting Goals

- Support
 - <u>Attracting customers</u>
 - Facilitating merchandise
 evaluation
 - <u>Enabling completion of</u>
 <u>the sale</u>

- Lower Lighting Power Densities can be achieved by
 - High efficacy light sources
 - Lighting controls
 - Good design practice

Lighting Design

Use LED task and accent lighting to highlight key merchandise locations or vignettes to "feature display" light levels (<u>three to ten times the general</u> <u>merchandise lighting level in the area of</u> <u>the display</u>). The use of accent lighting to highlight all merchandise does not create the proper contrast ratios and should be avoided.

Bonus Savings and Renewables How-To Tips

Not required, available for additional savings

- Natural Ventilation
- Thermal Storage
- Cogeneration
- Evaporative Cooling
- Solar Thermal
- Photovoltaics
- Wind Energy

Case Studies

Refrigeration

- Case doors
- A.S. control
- LED
- EC motors

HVAC

- Desiccant wheel
- Heat Reclaim
- Reduced airflow
 / Fan savings

<u>Kitchen</u>

- Hood side panels
- DCKV responds to heat/smoke

50% AEDG for Grocery Stores

- ractitioners consider the AEDG Developed by AIA, ASHRAE, IES and USC supported by the U.S. DOE
- Grocery store own committ
- tables a menu of vetted options for deep energy savings!
 - ings are attainable
- May download for free; www.ashrae.org/freeaedg

Special Acknowledgement

- Michael Lane, Puget Sound Energy
- Daniel Nall, Syska Hennessy Group
- Caleb Nelson, CTA
- Paul Torcellini, NREL

Questions?

www.ashrae.org/freeaedg

Aaron Daly

Cleanup on Energy Savings on Aisle 7!

Aaron Daly Global Energy Coordinator

Who We Are

- Multi-Stakeholder Model
- Focus on Food
- Sustainability Commitment
- Distributed Decision-Making

New Stores

Challenges

- Multiple Stakeholders
- Competing Objectives
- Site/Shell Constraints

Continuous Learning Process

- Iterative Design Improvements Process
- Accounting for...
 - Climate
 - Building Type
 - Functional Needs
 - Technological Change

Case Study: 3rd & 3rd Brooklyn, NY

- Rooftop Power
- Rooftop Farm
- Local Recycled Materials
- Energy Efficient Systems

FROM SUPERFUND TO LEED PLATINUM

Efficient Existing Stores

Challenges

- Existing Equipment
- Maintenance
- Technology Integration

Case Study: "MarketZero"

With funding from the California Energy Commission, we are collaborating to retrofit a store to scalable nearzero net energy use.

WHÔLE FOODS MARKET

Leveraging the AEDG

Prescriptive

- Specific Strategies Recommended
 - Included in Specs for New Buildings & Equipment

Custom

- Modeling for interactive effects
- Testing Assumptions

Thank You!

Aaron Daly, CEM Global Energy Coordinator, Whole Foods Market <u>Aaron.Daly@wholefoods.com</u>; 512-431-0360

Master the Fundamentals Richard Heath

Saving Energy is Fundamental

Richard Heath - Director of Engineering & Energy

Home of

Winn, Dixie

Fundamentals

Admiral Rickover -Father of the Nuclear Navy

Take the Path of Least Resistance:

- Maximize the Opportunity
- Master the Fundamental Objective
- Avoid Betting on the Come (Data Driven Picks – My Secret to Success)
- Validate Solutions

(Solution Must meet the Fundamental Objective)

Maximize the Opportunity

VS.

Existing Stores with Excessive Energy Use provide the biggest opportunity for Energy Reduction in Supermarkets.

Energy Hog Stores exceed the Average Energy use by a minimum of 20% with no limit on the high end.

- 24% of existing Stores are Energy Hogs
- 7% of Stores are New Construction

Correcting the operational issues that create Energy Hog Stores produces 3 times more energy savings opportunity than would reducing New Store Energy by 50%.

Master the Fundamental Objective

Align with the Fundamental Objective – Deliver what they require

Avoid Betting on the Come

Use ALL available Data to Stack the Deck in your Favor:

For Existing Stores you have all the Data that you need to ensure your investment in Energy Reduction will provide a return.

Store #	EBITDA FY.2015.P9	Store SqFt	Annualized kWh	Annual kWh/SqFt	Annual Avg Rate	Target kWh/Sq Ft	Potential Annual Energy Expense Savings	TOTAL_STR_ REPAIRS	Projected Capital Spend (based on 3 YR Simple PB)
1	\$ 100,508.81	47,718	3,812,852	79.9	\$ 0.096	52	\$ 127,802	\$ 79,062	\$ 383,406.75
2	\$ 597,127.55	45,136	3,137,600	69.5	\$ 0.127	52	\$ 100,372	\$ 184,200	\$ 301,117.12
3	\$ 1,847,691.07	48,397	3,456,294	71.4	\$ 0.105	52	\$ 98,883	\$ 118,027	\$ 296,649.77
4	\$ 14,672.34	48,150	3,486,337	72.4	\$ 0.091	52	\$ 88,980	\$ 66,387	\$ 266,940.09
5	\$ 961,295.62	48,406	3,230,101	66.7	\$ 0.113	52	\$ 80,238	\$ 101,595	\$ 240,715.16
6	\$ 251,322.14	47,918	3,301,200	68.9	\$ 0.097	52	\$ 78,803	\$ 60,054	\$ 236,410.39
7	\$ 643,430.97	45,802	3,144,800	68.7	\$ 0.099	52	\$ 75,810	\$ 51,896	\$ 227,429.71
8	\$ 1,168,600.35	48,467	3,191,143	65.8	\$ 0.109	52	\$ 73,222	\$ 129,272	\$ 219,666.70
9	\$ 274,435.93	49,004	3,366,503	68.7	\$ 0.090	52	\$ 73,954	\$ 117,518	\$ 221,861.04
10	\$ 805,769.13	49,366	3,569,507	72.3	\$ 0.074	52	\$ 74,234	\$ 140,766	\$ 222,701.93
				70.4			\$872,300		\$ 2,616,898.68

This makes Capital Planning Easy

Validate Solutions

Consequences of Losing Sight of the Fundamentals

What is the most Fundamental Parameter for Supermarket Refrigeration?

📆 StoreView																									_	8 ×
1 23																					WINN DIXIE 007 Danfor					<u>665</u>
File Dashboard	Alarms System Vi	ew [Detail	Sche	dules	Info	Histor	y Co	nfigura	tion																4 × °
Schedules View Text Print Save PDF Save CSV										\bigcirc																
Shutdown		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Defrost	#0 - B10 RI BEE B 10a																									
Denost	#0 - B10 RI BEE B 10b																									
Case Lights	#0 - B10 RI BEE B 10c																									
Night Setback	#0 - B10 RI BEE B 10d																									
	#0 - B11 RI NATU B 11																									
	#0 - B12 WET RA B 12a																									
	#0 - B12 WET RA B 12b																									
	#0 - B13 MD CUT B 13a																									
	#0 - B13 MD CUT B 13b																									
	#0 - B13 MD CUT B 13c																									

If our solutions violate Fundamental Principles we must re-evaluate our Path

Discussion

Thank you!

Contact Information:

- Holly Carr: <u>Holly.Carr@ee.doe.gov</u>
- Mick Schwedler: <u>MSchwedler@trane.com</u>
- Aaron Daly: <u>Aaron.Daly@wholefoods.com</u>
- Richard Heath: <u>RichardHeath@segrocers.com</u>

43