

Better Buildings Summit Space Conditioning: Advanced Solutions for Packaged HVAC

Michael Deru NREL

Washington, DC May 7, 1:00-2:15

Agenda

- Introductions
- Update on RTU Challenge and controls demonstrations
- Advanced RTU Campaign update
- Ventilation strategies in retail and small office
 - Scott Williams, Target and Lisa Ng, NIST
- High-Efficiency Gas Heaters What's possible?
 - Marc Braun, Cambridge Engineering
- Open discussion
 - New challenges and opportunities

Advanced RTU Campaign Update

- 84 Supporting partners and 27 Participating partners
- Webinars 12, over 1,100 participants
- In the News 25 articles by third parties
 - "Facility managers who have already done low-hanging-fruit lighting upgrades know the RTU is the largest target." Greentech Media, Dec 13, 2013.
- Installations and energy saved

Year	High-Efficiency RTU Installations	RTU Retrofits	Estimated Annual Savings (kWh)
2013	7,080	6,279	137,310,863
2014			
commitments	7,096	7,000	144,059,982

RTU Challenge and Advanced Controls Updates

- RTU Challenge (officially over, but
 - Two more manufacturers with products coming soon
 - RTU Comparison Calculator will be updated to include RTU challenge data and variable speed controls
 - Reports
 - PNNL Modeled performance
 - NREL Navy demonstration
 - More demonstrations in the works

RTU Advanced Controls

- Reports
 - PNNL retail and office demonstrations
 - NREL Navy demonstrations
- More demonstrations in the works

Why is Ventilation a Big Deal?

Ventilation is ~ 9% of CB energy consumption¹

¹ DOE (2012). 2011 Buildings Energy Data Book, U.S. Department of Energy

ASHRAE Standard 62.1

Prescriptive path

- Prescribed ventilation rates by space type
 - Per area (cfm/ft²) and per person (cfm/occupant)

Performance path

- Determine Contaminants of Concern
- Determine maximum threshold levels
- Measure indoor contaminant levels at various conditions
- Provide subjective feedback on acceptability of indoor air
- Apply results to determine operational ventilation rate

ANSI/ASHRAE Standard 62.1-2013 (Supersedes ANSI/ASHRAE Standard 62.1-2010) Includes ANSI/ASHRAE addenda listed in Appendix J

Ventilation for Acceptable Indoor Air Quality

See Appendix) for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addends or reventions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submitted form, instructions, and deadlines may be obtained in electronic form from the ASHRAE website (www.ashrae.org) or in paper form from the ASHRAE website (www.ashrae.org) or in paper form from the ASHRAE website (www.ashrae.org) or in paper form from ASHRAE Standard may be purchased from the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tallie Circle, NE, Atlanta, GA 30229-2305, E-mail: orden:@ashrae.org, Fax: 404-321-5478. Talephone: 404-636-84000 (word/wide), or toil free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2013 ASHRAE ISSN 1041-2336

AD-RAD In 193 state framework AD-RAD Adams restanting permitted without lawnee from 193 License-Halling Revealed Review Lab 56 487040001, Use Not be Revalle, 0101/0014 10:45.00 MRT

6

ASHRAE Research Project 1596 Ventilation and Indoor Air Quality in Retail Stores

- Tested 14 retail stores (Texas and Pennsylvania)
- Few complaints about IAQ
- Formaldehyde was the contaminant of concern
 - 86% of stores exceed California 8-hour recommended exposure limit
 - 43% exceeded the NIOSH 8-hour exposure limit
 - Air exchange rates would have to increase significantly
 - More effective to control the contaminant
 - Pressed wood products, permanent press clothing, floor coverings

7

NIST Project on Ventilation and IAQ in Retail Buildings Lisa Ng

NIST Ventilation Simulations

CONTAM Simulations

- Formaldehyde emissions (50 µg/h-m² | 5 µg/h-m²)
- Occupant-generated CO₂
- Ventilation rates
- ASHRAE Standard 62.1, 50%, and 2X requirements
- Chicago weather; hourly for one year

Ng et al. (2013), The IAQ and Energy Impacts of Reducing Formaldehyde Emissions in Commercial Buildings, Proceedings of ASHRAE IAQ2013

Research Results

- Doubling ventilation rate:
 40% increase in energy use,
 15% reduction in formaldehyde
- Reducing formaldehyde emissions (Standard 62.1 ventilation rate): 63% reduction in formaldehyde
- Reduced emissions & 50% ventilation:
 60% reduction in formaldehyde, 21% reduction in energy use
- CO₂ levels below 1800 mg/m³ (984 ppm_v)

Daily average HCHO concentration (µg/m³)

10 Ng et al. (2013), The IAQ and Energy Impacts of Reducing Formaldehyde Emissions in Commercial Buildings, Proceedings of ASHRAE IAQ2013

of Days

Target Ventilation Approaches Scott Williams, Group Manager of Mechanical Engineering

Why is optimized ventilation important?

Peak Load Analysis

Target Experience: Ventilation Strategy

- Prescriptive rates in off sales floor areas
- Indoor Air Quality Procedure (IAQP) is used on Sales floor

NREL/PIX 19503

Target Experience: Ventilation Strategy (History)

- 1997 U of MN Study at Stillwater MN
 - Tested 4 times over a year to account for varied product mix
 - Formaldehyde was found to be primary contaminant approaching threshold limit
 - Good air quality at 0.15 cfm/ ft² outdoor air during occupied periods (about half prescriptive rate)
- 2007- 2009 U of MN Study at three various format stores in different climate zones
 - Tested 4 times over a year to account for varied product mix
 - Formaldehyde was found to be primary contaminant approaching threshold limit
 - Results showed 0.068 cfm/ft² outdoor air with continuous ventilation provided good IAQ
 - Stores since 2009 designed at 0.08 cfm/ft2 outdoor air on Sales Floor

Target Experience: Ventilation Strategy (Application)

- IAQP method puts responsibility on Engineer of Record for proper application.
- Optimized ventilation significantly reduces ventilation load (sensible and latent) allowing reduction in equipment size (25%) and energy savings (up to 40% of HVAC).
- Identification of Contaminants allows application of source control.
- Recent testing has found significant reduction of airborne Formaldehyde levels due to reduction in product use.
- Source control removes contaminants from manufacturing, distribution, store environments, and customer's homes.

Ventilation – Energy and IAQ

- Questions
- Challenges
- Opportunities

High-Efficiency Gas Heaters with 100% outside air requirements Marc Braun, Cambridge Engineering

High Efficiency Heating Technologies

High Efficiency Heating Technologies

- Currently entering the commercial marketplace
 - High Efficiency Packaged RTU's
 - Condensing, Indirect Fired RTU (and Duct Furnaces)
 *Research by Gas Technology Institute
 - High Efficiency Unit Heaters (DOE/BBA Advanced Technology Specification)
 - Condensing
 - Direct Fired

Efficiencies > 90%

What Options Exist

Summary of Thermal and Seasonal Efficiency for Gas-Fired Heaters (Sachs, 2003)

Technology	Thermal Efficiency	Seasonal Efficiency
Pilot Light, Gravity Vent	78%-82%	63%
Intermittent Ignition Device, Gravity Vent	78%-82%	66%
Intermittent Ignition Device, Power Vent	80%-83%	80%
Separated Combustion	80%-83%	80%
Pulse Combustion	90%	82%
Condensing Heat Exchanger	>90%	90%
Direct-Fired Heater *	>90%	90%

* Sourced from Cambridge Engineering, Inc. (2011). Sachs (2003) only discusses unit heaters and not other gas heating technologies.

Ultra Efficient (HTHV) Space Heater

- Ultra Efficient 92%
- 250 MBH/1200 CFM
- (HT) Blow Thru® 160F Discharge
- (HV) Induced Air Turnover
- Optional Ventilation (Summer/Winter)
- Simulated savings 38% gas and 93% electric (fan)

RETROFIT CASE STUDY

High-efficiency Space Heaters vs. Unit Heaters Food Distribution Warehouse

Building Specifications

- 540,700 ft²
- Located in Cleveland, OH
- 61 Dock Doors

Before – Unit Heaters

Performance

- Uneven temperatures
- Cold dock areas
- High gas costs
- Poor Indoor Air Quality

Operating Costs

Based on:

196,918 therms for 2006 -07 heating season Normalized to 30 year averages

\$0.36/ft² Total cost

After – High-efficiency Space Heaters

Performance

- More even temperatures
- Better Indoor Air Quality
- Lower Energy Cost

Operating Costs

Based on:

136,042 therms for 2007-08 heating season Normalized to 30 year averages

\$0.25ft² Total cost

Summary

The high-efficiency system saved **31% in gas** while providing better overall temperatures in the building. The high-efficiency system saved approximate **y \$59,500/year** operating at \$0.25/ft² vs. \$0.36/ft².

Open Discussion

Open Discussion

- Recent Successes
- Challenges
- New opportunities

Backup Slides

Size of the Opportunity

3rd Party Energy Modeling (EnergyPlus)

Energy Consumption		Gas (therms)	Fan Electric (kWh)
	ASHRAE 90.1 Baseline	32,563	78,594
	Blow-Thru (HTHV)	20,220	5,758
	Draw-Thru (LTLV)	27,506	7,589
	Recirculation	27,805	52,644
	Unit Heater	32,833	16,875
	Air Turnover	26,822	17,153
	Infrared	32,156	, 64
	% Savings vs. 90.1 B	aseline	
	Blow-Thru (HTHV)	37.9%	_92.7%
	Draw-Thru (LTLV)	/15.5%	90.3%
	Recirculation	14.6%	33.0%
	Unit Heater	-0.8%	78.5%
	Air Turnover	17.6%	78.2%
	Infrared	1.2%	85.8%
38%	6 Gas Savings and		
93% Electrical Savings			
over AHRAF 90 1 Energy		r	
Standard			U.S
	Januaru		

High Discharge Temperature (HT) Importance

