

How Smart is your Refrigeration System?

Robert Zogg

Lead, Refrigeration Team

Agenda

- Introduction to Better Buildings and Refrigerated Display-Case Controllers: Benefits and Drawbacks
 - Bob Zogg, Navigant, BBA Technology Team Lead
- Manufacturer Perspective Danfoss
 - Guest Speaker: Peter Dee, Danfoss
- Manufacturer Perspective Emerson
 - Guest Speaker: John Wallace, Emerson Climate Technologies
- Discussion

2

Introduction to the Better Buildings Team and case controllers

Introduction: Current Focus of Refrigeration Team Activities

The Refrigeration Team is currently focused on case controllers and retrofit of open display cases.

- DOE's 2015 analysis of High Impact Technologies (HIT) identifies two priorities for commercial refrigeration:
 - Retrofit of Open Display Cases
 - Currently have many valuable assets on our Webpage
 - Looking to document additional demonstrations/success stories
 - Refrigeration Controls
 - Focusing on case controllers
 - Looking to document additional demonstrations/success stories
 - Ongoing review of literature and documenting available data
 - Planning additional activities
 - See DOE webpage on High Impact Technology Catalyst:
 - <u>http://energy.gov/eere/buildings/high-impact-technology-catalyst</u>

Introduction: Refrigeration Team Resources

DOE has revamped and moved the Refrigeration Team page—check it out!

- Reorganized content for faster access
- Updated content, including links to other sources
- See the Refrigeration Team page on the DOE Better Buildings Solution Center:

http://betterbuildingssolutioncenter.energy. gov/alliance/technologysolution/refrigeration

Topics Covered in Today's Session

- What are refrigerated display-case controllers?
- Types and levels of benefits possible
- History and market adoption
- What are some challenges and barriers to adoption?
- Example cost and performance data
- Retrofits challenges and considerations
- Conclusions and next steps

6

What are Case Controllers?

- Distributed control of display cases
- Includes an Electronic Expansion Valve ("EEV" or "EXV"), which facilitates:
 - Improved superheat control
 - Floating head pressure
 - Floating suction

- Enables point control of one or more of the following:
 - Case lighting
 - Evaporator fans
 - Defrost (adaptive)
 - Anti-sweat heaters

Estimated Energy Savings

Control Type	Estimated Energy Savings*	Comments
Floating Head-Pressure and Suction-Pressure	4 – 13%	Facilitated by EEV; benefits greater in colder climates
Anti-Sweat	7 – 11%	
Adaptive Defrost (Low- Temp. Only)	7 – 9%	
Lighting	2 - 8%	
Evaporator Fan	3 – 8%	
Combined	15 – 30%	Savings are not additive

* Compared to transparent-doored medium- and low-temperature cases that comply with current energy conservation standards.

Some Challenges and Barriers to Adoption

- Higher initial cost
 - Control equipment and EEVs add cost
 - But, there is savings in other costs (infrastructure, installation, commissioning, and start-up time)
- Few detailed/independent case studies or other publicly available test results that document benefits
- Economic attractiveness in retrofits varies

Guest Speaker Presentation Peter Dee Danfoss *North America Sales & Services Director*

Outline

- History of case controllers
 - When and where introduced
- Market penetration estimates
 - Europe
 - US
 - Other regions?
- Experiences with case controllers
 - Benefits and issues experienced with customers
 - How does one evaluate possible payback and ROI for retrofits?
- Most compelling types of applications
 - Which applications?
 - What makes them compelling?

Case Controls

Historically, supermarkets relied on a **single central control device** to monitor and manage multiple refrigerated units in a store.

The introduction of case controllers changed this approach, first in Europe and later — in the early 1990s — in the United States, as **energy prices climbed** and the food industry became better acquainted with the **proven technology**.

Historic Adoption of Case Controllers

13

Market Penetration Estimates

- Europe Early adopters of case controls, with 90% of the market using case controls, and has benefited from energy savings, reduced carbon emissions and increased food safety and quality.
- US Slow adopters of case controls; estimated 20% of the market using case controls; however, this is increasing as food retail end-users benefit from case controllers.

Market Penetration Estimates

Challenges of Case Controls (US)

- Application experience
 - Contractor
 - **Designing Engineer**
- Industry adoption of new technology
- First cost barriers

Advantages of Case Controls

Installation Cost EPR Control vs. Case Control 65,000ft² Store 280-HP Refrigeration System

Case Controller vs Conventional Control Comparison									
65,000 square ft, 280 HP Refrigeration Systems									
Conventional-Circuit with EPR Control			Case Controller						
	Units	Co	ost/Unit	Extend		Units	C	ost/Unit	Extend
Labor-Hours					Labor-Hours				
Cable-Rough	380	\$	125.00	\$47,500.00	Cable-Rough	150	\$	125.00	\$18,750.00
Cable-termination	500	\$	50.00	\$25,000.00	Cable-termination	150	\$	50.00	\$7,500.00
Hardware Install	80	\$	125.00	\$10,000.00	Hardware Install	30	\$	125.00	\$3,750.00
Power Wiring-Control	40	\$	125.00	\$5,000.00	Power Wiring-Control	40	\$	125.00	\$5,000.00
Power Wiring-Anti-Sweat	80	\$	125.00	\$10,000.00	Power Wiring-Antisweat	40	\$	125.00	\$5,000.00
Power Wiring-Lighting	80	\$	125.00	\$10,000.00	Power Wiring-Lighting	40	\$	125.00	\$5,000.00
Power Wiring-Defrost	80	\$	125.00	\$10,000.00	Power Wiring-Defrost	80	\$	125.00	\$10,000.00
Sub-Total				\$117,500.00	Sub-Total				\$55,000.00
Materials/Misc.				\$0.00	Materials/Misc.				\$0.00
Cable	40,000	\$	0.50	\$20,000.00	Cable	10,000	\$	0.50	\$5,000.00
Hardware	500	\$	6.00	\$3,000.00	Hardware	200	\$	6.00	\$1,200.00
Scissor Lifts	4	\$	500.00	\$2,000.00	Scissor Lifts	2	\$	500.00	\$1,000.00
Power Wiring	10,000	\$	2.00	\$20,000.00	Power Wiring	8,000	\$	2.00	\$16,000.00
Sub-Total				\$45,000.00	Sub-Total				\$23,200.00

Estimated Savings = **\$21,800.00**

Retrofit Project

- No. of refrigerated cases/cold rooms:
 - 24 low temperature cases
 - 48 medium temperature cases
 - 9 cold rooms
- Removed existing controllers
- Installed new electronic expansion controllers
- Set up all controllers for energy savings

Retrofit Energy Results

The Case for Case Controllers

\$10/day	Cost of energy of an average display case. (@ \$0.098/kwh)
At least 7.5%	Energy saved with
	case controllers.
\$18,000/yr.	Saved in an average
	store of 65 cases. (\$50/day)
\$900,000	Additional
	merchandise sales
	required annually to match the return.

ENERGY

Case Controls to be Successful.

Guest Speaker Presentation John Wallace Emerson Climate Technologies *Director, Innovation*

Control Architectures

- Control Elements At Refrigeration Rack Or Electrical Panel
- "Home Runs" For Sensors

- Control Elements At Case
- Communication "Daisy Chain" To EMS
- Load Control At Refrigeration Case

Installation Costs Similar Across Architectures

Case Control Shifts Electronics From Electrical/Rack Rooms to Case

EMERSON

Flexibility in Case Control Functionality

Functionality	Temp Control Only	Superheat Control	ESR Control
Temp Control	\checkmark	\checkmark	\checkmark
Defrost Control	\checkmark	\checkmark	\checkmark
Load Control	\checkmark	\checkmark	\checkmark
Superheat Control (EXV or EEV)		\checkmark	
Electronic Suction Regulator (ESR or EEPR)			\checkmark
Load Control Includes Lights, Fans, Antisweats	A	В	С

Case Evaporator Control Types

Conventional/Mechanical

Electronic Expansion Valves (EXV)

- An Electronic Expansion Valve (EXV) Solution Measures and Controls System Superheat Electronically
- EXV Solution Components
 - Controller
 - Temperature Sensor(s)
 - Pressure Transducer/Sensor
- Provides Improved System Performance
 - Efficiency
 - Wide Operating Range
- Can Be Used With Multiple Refrigerants
- Faster Pull-Downs, Faster Recovery

Case Control Architecture Reduces Field Wiring and Provides Electrical Savings

- Reduce Line Voltage Wiring
 - Reduce Branch Feeder Wiring by 30% or More
 - Reduce or Eliminate Circuit Panels and Breakers
 - Eliminate Line Voltage Control Home Runs to Rack
 - Simplified Power Connections at Case
- Reduce Low Voltage Wiring
 - Eliminate Low Voltage Control Home Runs to Rack
 - Simplified Low Voltage Control Connections at Case
- Reduce Case Field Wiring
 - OEM Factory Wiring of Control and Sensors
 - Facilitates Factory Checkout Versus Field Troubleshooting

Case Control Enables Loop Piping, Which Reduces Piping and Leak Rates

Piping Savings up to 50 %; Refrigerant Charge Reduction 10+%

Case Controls Facilitate Faster Startups

Reduced Startup Time Enabled By

- Fewer Joints Mean Quicker Leak Checks
- Reduced Refrigerant Charge
- Superheat Set/Checked Automatically; No Manual Adjustment Needed
- Utilize Data Generated to Shorten Commissioning Cycle
 - Graphing and Data Analysis Reducing Commissioning/Measurement Time

Reduced Commissioning and Startup Time Results in Faster Store Openings

Data Provided Can Be Used To Reduce Maintenance Costs

- Reduce Labor Costs
 - Additional Sensors Enable Remote Diagnostics and Facilitate Faster and More Reliable Troubleshooting
 - Remote Setpoint Adjustment Can Eliminate Service Calls
 - No Seasonal Expansion Valve/EPR/ Temperature Adjustments
- Reduce Material Costs
 - Lower Refrigerant Leak Rate
- Use Technology to Supplement Technicians
 - Reduced Technician Knowledge Base Can Be Offset By Remote Diagnostics

Remote Troubleshooting

Driving Operational Efficiencies By Leveraging Data From Case Controllers

- Sensors Used For Control Can Also Be Utilized For Analytics To Drive Better Operational Decisions
- Additional Data Points Typically Include Evaporator Coil Temperature & Pressure
- Data Can Be Collected & Analyzed To Provide Deep Insight Into Operation
- Aggregated Data Provides Insight Across An Estate
- Supports Informed Decision Making Regarding Capital Outlay, Efficiency Projects, etc.

Trend Analysis From Additional Sensors Provides Actionable Insights

Consider Life Cycle Savings In Addition To First Costs When Evaluating Case Control

Case Control Drives Life Cycle Savings

Conclusions and Next Steps

Conclusions and Next Steps

Conclusions:

- Promising, proven technology
- U.S. adoption has been relatively slow
- Cost-effective in new installations, but economics can vary for retrofits
- Next steps:
 - We are seeking chains that are willing to share their experiences with case controllers
 - Have you looked at this technology?
 - Do you have any experiences to share?

Next Steps: Gathering More Refrigeration Efficiency Information

- Although we are focusing on control-related activities, we remain interested in *documenting and sharing information about a broader* range of energy-saving opportunities:
 - Have you had recent success improving refrigeration efficiency?
 - Do you have any documentation (case studies, fact sheets, white papers, etc.) that you can share?
 - If not, would you be willing to work with us to document your success?

Thank You

Sultan Latif Grocery & Food Service Sector Lead 202-287-1829 Sultan.Latif@ee.doe.gov

Andrew Mitchell DOE Technology Teams Coordinator 202-287-1578 <u>Andrew.Mitchell@ee.doe.gov</u> Robert Zogg Lead, Refrigeration Technology Team 781-270-8363 <u>Robert.Zogg@navigant.com</u>

38