

Making the Cut: Slicing Through Food Service Energy Costs With Cutting-edge Technologies

Better Buildings Summit

Tuesday, May 10, 2016

11:15 AM-12:30 PM

Agenda

- 11:15 Welcome & Introductions
- 11:20 David Zabrowski, The Food Service Technology Center
- 11:35 Jay Fiske, Powerhouse Dynamics
- 11:50 George Huettel, Ecova
- 12:05 Group Discussion/Q&A

Today's Presenters

David Zabrowski The Food Service Technology Center

Jay Fiske Powerhouse Dynamics

George Huettel Ecova

How Restaurants Use Energy and Water David Zabrowski

CALIFORNIA INVESTOR-OWNED UTILITIES PARTNERING FOR ENERGY EFFICIENCY

MAKING THE CUT: SLICING THROUGH FOOD SERVICE ENERGY COSTS

May 10, 2016

SAVE ENERGY, SAVE MONEY, SAVE THE ENVIRONMENT

www.pge.com/fstc

sdge.com/foodservice

www.sce.com/CTAC

©2016 PG&E Food Service Technology Center

More than 3 Billion CFM...

...exhausted from Commercial Kitchens in the U.S.

©2016 PG&E Food Service Technology Center

...dominated by single-speed systems!

Hotel Kitchen 3:00 PM No appliance use...but exhaust at 100%

Front Line

Back Line

©2016 PG&E Food Service Technology Center

CAUTION:

The CKV system must work effectively as single-speed system before DCV is applied.

Kitchen Ventilation Lab

What the Eye Sees!

8-Ft Wall Mounted Canopy Hood

What the Camera Sees

Research Project RP 1202 Effect of Appliance Diversity And Position On Commercial Kitchen Hood Performance

Three Nuggets

Push Back

©2016 PG&E Food Service Technology Center

Overhang Sensitivity for 3 Fryers

Overhang Sensitivity for 3 Fryers at 2400 cfm (240 cfm/ft)

6 inches of Front Overhang

18 inches of Front Overhang

Add Side Panels

A bit more stainless steel can be cheap insurance!

Multiple configurations of appliances under various 10-ft. wall canopy hoods (approx. 90 tests) <u>with and without</u> partial side panels

30% reduction in airflow!

Side Panels Pass the Test!

Bigger Hood

Not enough overhang!

Optimize Your Hood (Guides available at Fishnick.com)

Then...add DCKV

©2016 PG&E Food Service Technology Center

Technical Feature: ASHRAE Journal February 2013

Future of DCV For Commercial Kitchens

By Don Fisher, P.Eng., Associate Member ASHRAE; and Rich Swierczyna, Associate Member ASHRAE; Angelo Karas

Corporate Cafeteria

Exhaust System (w/o EMS)

- Exhaust Fan 1 (4000 CFM) - Exhaust Fan 2 (4500 CFM) - Make-Up Air

Average Energy Rate (kW)

Time of Day

©2016 PG&E Food Service Technology Center

Exhaust System (with EMS)

- Exhaust Fan 1 (4000 CFM) - Exhaust Fan 2 (4500 CFM) - Make-Up Fan

Average Energy Rate (kW)

Time of Day

©2016 PG&E Food Service Technology Center

Time of Date

©2016 PG&E Food Service Technology Center

Average Energy Rate (kW)

Total Daily Fan Energy

©2016 PG&E Food Service Technology Center

Climate Effect

DCKV Typical energy/cost savings total 40 to 50%

Case Studies available at:

www.fishnick.com

©2016 PG&E Food Service Technology Center

DCKV-ROI Recap:

- The larger the exhaust airflow (in cfm), the greater the energy savings potential.
- DCKV works best with a mixed duty cookline.
- The CKV system must work effectively as singlespeed system before DCKV is applied.
- Effective commissioning of a DCKV system will maximize its performance.
- And in the future, the DCKV system should communicate/integrate with the EMS system.

CALIFORNIA INVESTOR-OWNED UTILITIES PARTNERING FOR ENERGY EFFICIENCY

Glad to be of service." www.socalgas.com/business

www.pge.com/fstc

www.sdge.com/foodservice

www.sce.com/CTAC

©2016 PG&E Food Service Technology Center

SiteSage: Arby's Corporate Case Study Jay Fiske

Can you find the lost profits in this picture?

Restaurants spend 3 times more on energy per sq. ft. than other businesses

Energy costs unknown until the bill arrives - long after anything can be done Reactive equipment repairs are 3 times as expensive as planned repairs

According to PRSM, proactive repairs average ~ \$200 vs. \$600+ for reactive

Are there any other products or services you buy this way? Do you get notified before equipment fails?

Energy Management Success: It's Not Just About Energy

Components of an Energy-*and* **Asset-Management Solution**

Arby's Case Study

- SiteSage installed in all 970+ US corporate-owned stores after competitive evaluation
- Energy savings alone deliver payback in <2 years
 - Enterprise HVAC Control + HVAC Analytics
- Positioned as Energy Management and Food Safety Platform
 - Kitchen equipment vendors interface with SiteSage as part of Arby's Smart Kitchen initiative
- SiteSage is also used as repository for all equipment asset data
- Arby's has reported a >15% reduction in restaurant energy costs across the chain

"We have been very impressed by the capabilities of SiteSage. Not only will the system enable us to get HVAC costs under control, but it will also help identify problems with both rooftop cooling units and refrigeration equipment."

- Arby's SVP

Arby's Case Study: Automating Food Safety Reporting

Implemented Solution with SiteSage

Arby's Case Study: Automating Food Safety Reporting

Implemented Solution with SiteSage

	Alto	-Shaam	Oven (1545)		
	Target Internal Temperature	150°F	Actual Internal Temperature	151°F	
	Target Probe Temperature	138°F	Operating Mode 🔕	Hold	
	Probe 1 Temperature	164°F	Probe 2 Temperature 🚦	Offline	
	Probe 3 Temperature	Offline	Probe 4 Temperature 🛔	Offline	
Day V Actua Probe	m Oven (1545) Veek Month Year Internal Temperature — Target Pr 2 Temperature — Probe 3 Temper	obe Tempera ature	iture — Probe 1 Temperature Probe 4 Temperature	Sunday	02-07-2016
			/		- 250°
	·····	·····	J		
					100°
					50*
					- 0*

rbvs	, on a no	(HACC	P)	UTILL!	Cook Mox	te Targe	t Temp *	Minimum Roa	st Beef	Dweil Tin	4	Restaun	ent #	-	#7874	AM S/	Roast		_
0					Day Part	DIP 1	18 F	30	minutes		10	Date		02	07/2016	PM \$/	Roast		
			000	ING *Critical	Control Poin	L			_	_	H	OT HOL	DING *	Critical	Control Po	int	_	_	_
Date & Code	Cook Mode	Roast #	Raw or Leftover Temp.	Cooking Start Time	Cooking Stop Time	Cooking Duration (hh/mm)	Cooked to Temp CC/	P Time** (hh:mm)	Tim		н жио	Temp	CCP CCP	INTE NOT	*CCP Reviews Mgmt (ini	rs rd by itials)	sPod #	Probe #	ľ
									F										ŧ
04/06/18:358/06	ON	1	38	00:18	04:02	03.44	135	07:41	11:44			160					1580	1	t
04/06/16:358/06	ON	2	31	00:18	04:19	04:01	135	07:57	12:17			154					1589	2	Г
04/06/16:358/06	ON	3	27	00:18	04:42	04:24	135	08.22	13:05			160					1589	3	Г
04/06/16:358/06	DIP	4	27	09:55	14:31	04:36	138	01:17	15:49			160					1623	1	Г
04/10/18:358/04	DP	5	30	09:55	13:24	03.29	138										1623	2	Г
04/06/16:358/06	DIP	6	30	13:50	18:20	04:30	138	03:18									1545	1	Г
04/06/18:358/06	DIP	7	28	13:50	17:32	03.42	138										1545	2	Г
04/10/16:358/06	ON	8	30	17:38			135										1580	1	Γ
																_			L
	<u> </u>						<u> </u>		<u> </u>	\vdash		-			<u> </u>	-		<u> </u>	ł
	-							-	-	$\left \right $		-				-		-	ł
								1		\vdash		\vdash				-			t
																			L
																_			Ļ
																			L

- System generates real-time data on cooking roast
- Automates creation of HACCP Beef Sheet Report & emails report daily

Energy Management Success: It's Not Just About Energy

Remote control of HVAC & other equipment

- Off-hours usage
- Water leaks
- Underperforming equipment

... also provides:

- Enhanced Food Safety
- Improved guest comfort
- Increased staff productivity

Enhanced asset management: • Advanced fault

warnings Condition – based maintenance

Thank you!

Jay Fiske Vice President Business Development (6

One Bridge Street Newton, MA 02458 opment (617) 340-6582 x203 c: (781) 570-9047 f: (617) 849-5655 jay@powerhousedynamics.com www.powerhousedynamics.com

Leverage Data, Technology and Services to Reduce Operating Costs George Huettel

total energy and sustainability management

MAKING THE CUT: SLICING THROUGH FOOD SERVICE ENERGY COSTS

Leverage Data, Technology and Services to reduce operating costs

A

SEE MORE SAVE MORE

SUSTAIN MORE

Today's Agenda

- Strategic Process
- Solid Foundation in Data
- Identify Opportunities
- Take Action
- Continually Monitor
- Client Examples
- Q&A

Implement a Strategic Process

Life-cycle approach

- Analyze data to reveal resource saving opportunities
- Identify operational patterns to provide insight into cost drivers and outlier sites
- **Take Action** by implementing changes and modifying operational procedures
- Monitor, track, and report on cost and operational data and trends to ensure solutions are sustainable

Collaborative engagement with clients guides the energy program towards a best practice, continuous energy improvement approach.

ecova

It all starts with the data

PAYMENT PROCESS INITIATED BILLS CONSOLIDATED, SINGLE FILE PRESENTED TO CLIENT FOR REVIEW AND PAYMENT DETAILED RESOURCE AND FINANCIAL DATA IS AVAILABLE IN ONLINE REPORTING PLATFORM

ecova[®]

Extend to site level meter data

Asset level measurement of energy usage

Track Operating Costs by Asset

ecova

4:00am

8:00am

12:00pm

4:00pm

8:00pm

90

80°

70°

60°

50° Apr 18

52

Resource Performance Reporting

Benchmark, Trend and Analysis Reports

- Benchmarking Reports comparing sites nationwide and against industry peers
- Trending Reports comparing sites to past performance
- Cost drivers Identify what is influencing energy cost
- Weather and calendar normalized comparison of sites on both a per service and combined kBtu basis to identify performance trends and Outliers

ecova

Identify Energy Cost Drivers

What's really behind year over year performance changes

Identify impact on energy usage absent of weather, utility rates and other important factors

ecov₉

Identify Outliers and Energy Usage Trends

Determine where to focus resources of time, manpower and capital

Determine optimum course of action

Leverage expertise to make sense of all the data

ecova[®]

Implement Continuous Monitoring

Primary Components

- Service Call Response
- Alarm Management
- Workflow Management
- Designated toll-free number and email address to the 24/7/365 OCC
- Web-based Ticket Activity and Performance Dashboard

Key Benefits

- More effective maintenance and repair operations through improved issue tracking/reporting
- Improved first-call resolution through accurate diagnoses and description of equipment issues
- Improved visibility into facility operations & better documentation of equipment performance

6C0A9.

Automated Business Rules Engine

- Implement advanced analysis of site data, EMS programmed alarms and advanced system alerts
- Create Business Rules to process and identify meaningful issues, analyze their impact and prioritize actions
- Reduce alarms, site activity, energy and maintenance costs

Example – Slicing through Alarm Data

2015 Statistics

- 403,170 alarms processed
- 70,260 determined actionable
- 59,610 processed by OCC
- 7,470 Avoided Service Dispatch
 - Issues resolved without a dispatch
 - Ecova Building Specialists
 provide remote resolution
- 3,180 Avoided Risk of Product Loss
 - Issues resolved by early service dispatch resolution
 - Timely identification eliminates food safety product loss event
- Annual cost avoidance is \$1.83 million in 2015

ecova[®]

Example – Slicing through Operational Data

Savings Identified by Category						
New Total						
Configuration	\$	1,493	\$	35,515		
Food Safety	\$	-	\$	-		
Mechanical	\$	-	\$	390		
Operations	\$	-	\$	30		
Schedule	\$	447	\$	19,293		
Setpoint	\$	1,661	\$	173,010		
Total	\$	3,601	\$	228,237		

Savings from Top 10 Issues						
		New		Total		
Occ Cooling	\$	-	\$	59,717		
UnOcc Heating	\$	1,411	\$	47,918		
Thermostat Lock-o	\$	1,246	\$	33,442		
Pre-Open Cooling	\$	-	\$	31,998		
UnOcc Cooling	\$	-	\$	14,135		
Open	\$	-	\$	11,393		
Pre-Close Cooling	\$	-	\$	9,392		
Occ Heating	\$	196	\$	6,448		
Pre-Open Heating	\$	48	\$	2,803		
Christmas	\$	-	\$	2,703		

Top Outliers								
Site	Incidents	Cost						
611	22	\$2,064						
7606	36	\$1,668						
53	23	\$1,607						
7137	23	\$1,514						
1022	28	\$1,499						
993	27	\$1,487						
929	26	\$1,398						
7056	23	\$1,380						
879	29	\$1,304						
1044	27	\$1,229						

	Current	Last Week
Gateways	27	26
eMonitors	97	96
Thermostats	456	443
Sensors	1,327	1,329

Issues Identified by Category					
	New	Total			
Sites Analyzed	19	862			
Configuration	36	906			
Food Safety	0	5			
Mechanical	0	275			
Operations	0	12			
Schedule	36	3,560			
Setpoint	43	3,794			

Total Savings by Category

		_				
Alerts by Type						
	New	Total				
Temperature Exceeded Threshold on WIC	0	166,073				
Temperature Exceeded Threshold on WIF	0	77,606				
SiteSage Has Detected a Circuit On Too Long	0	12,797				
WIC Temperature too High	0	10,320				
WIF Temperature too High	0	4,856				
Thermostat Lost Connectivity	0	1,595				
Temperature Exceeded Threshold on RTU 2 (Lobby Supply)	0	955				
Temperature Exceeded Threshold on WIC 2	0	498				
Temperature Exceeded Threshold on WIC #2	0	497				
Thermostat Not Reaching Target: #9002	0	430				
Your SiteSage Device is Offline	0	428				
Temperature Exceeded Threshold on RTU 3 (Kitchen Return)	0	382				

Top Alert Sites - Last Week						
Туре	Site	Count				
#0537 - RTU 1 (Kitchen) On Too Long	#0537	43				
#0161 - WIC Evaporator Temperature too High	#0161	42				
#0251 - RTU 2 Dining On Too Long	#0251	42				
#0255 - WIC Evaporator Temperature too High	#0255	42				
#0990 - WIC Evaporator Temperature too High	#0990	42				
#1438 - wic right Evaporator Temperature too High	#1438	42				
#1824 - WIC Evaporator Temperature too High	#1824	42				
#1833 - WIF Evaporator Temperature too High	#1833	42				
#1956 - WIC Evaporator Temperature too High	#1956	42				
#5021 - WIC Evaporator Temperature too High	#5021	42				

ecova[®]

Example – Slicing through Energy Data

- Detailed breakdown of electricity usage
- Heat lamps use nearly as much energy as the WIC and WIF combined, and 2nd unit can be turned off overnight
- Waffle irons use approximately 4.5% of the total electricity use
- Walk-in freezer doors are left open often
- Ventilation and refrigeration are significant opportunities

ecova

Summary

Program Objectives

- Reduce energy consumption and operational costs
- Maintain a comfortable store environment
- Ensure Product Quality, Food Safety and Compliance
- Leverage People, Process and Technology
- Correlate Energy and Site performance
 - Identify and investigate Outlier Sites
 - Identify and prioritize under-performing assets
- Implement Intelligent Dispatch
 - Reduce service dispatch quantity
 - Minimize onsite service technician time

ecova[®]

Discussion/Q&A

Contact Information:

- Adam Spitz: <u>Adam.Spitz@icfi.com</u>
- David Zabrowski: <u>Dzabrowski@fishnick.com</u>
- Jay Fiske: <u>Jay@powerhousedynamics.com</u>
- George Huettel: <u>GHuettel@ecova.com</u>

