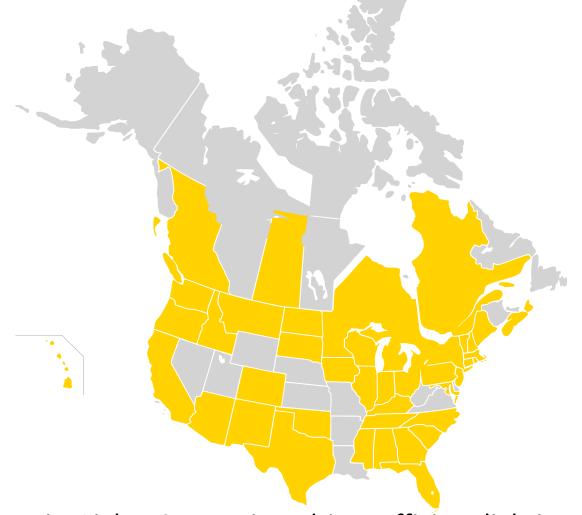


Today's Presenters

- Pranav Jampani: Las Vegas Sands Corp.
- Gabe Arnold: Design Lights Consortium
- Linda Sandahl (moderator): Pacific Northwest National Lab



Tell us about your organization and what you are working on

DesignLights Consortium drives efficient lighting by defining quality, facilitating thought leadership, and delivering tools and resources to the lighting market through open dialogue and collaboration

Ameren

FORTIS BC

System Operator

Natural Resources Canada



SOUTHERN CALIFORNIA

A unit of American Electric Power

<u>Commercial Advanced Lighting</u> <u>Control Project</u>

Demonstration Projects in Partnership with US DOE

Performance Spec and Qualified Products List

Training Programs for Designers and Installers

Advanced Control Savings Calculator

Support for Industry Standards

New Nationally Adopted EE Program Offerings

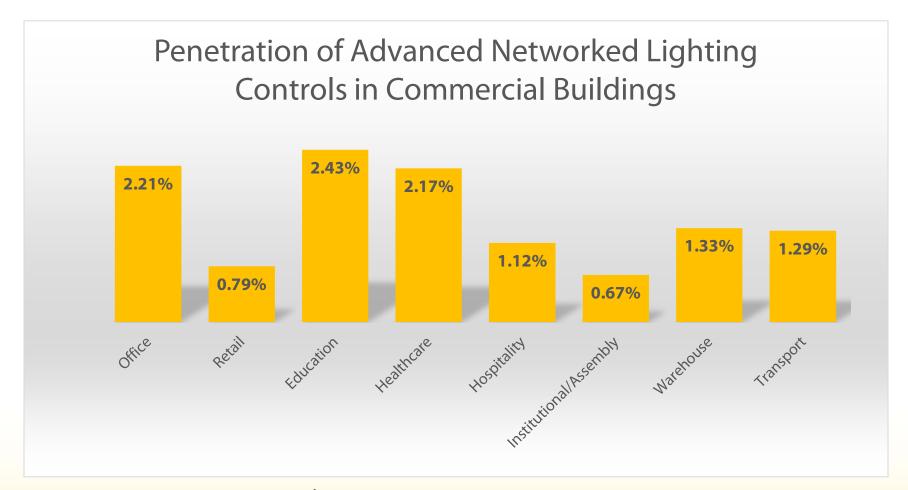
<u>Commercial Advanced Lighting</u> <u>Controls Project</u>

Goal

Support utilities, industry, designers, and other stakeholders with full scale deployment of Advanced Lighting Control Technologies

Objectives

Create tools and resources to:


Reduce or eliminate market barriers that prevent large-scale adoption

Enable energy efficiency programs to scale up with the technology

Support industry, designers, and other market actors in scaling up with the programs

Advanced Lighting Controls – A Missed Opportunity

Source: DLC, Navigant Consulting 2014

- Knowledge and Experience
- Complexity
- Lack of Standardization
- High Costs
- Weak Value Proposition

Can you tell us more about this specification and qualified products list and how that will be useful to building owners?

Networked Lighting Control Of Signification and Qualified Product List

DLC Qualified Systems:

- Have been independently reviewed to meet a minimum level of performance
- Are pre-qualified for utility rebates
- Are required to meet applicable industry standards

Structure of Specification and Qualified Product List

...coming Q4 2016

'Required' System Capabilities

- Networking
- Occupancy Sensing
- Daylight Harvesting
- High-End Trim
- Zoning
- Luminaire and Device Addressability
- Continuous Dimming

Understand, Identify, Compare Control Systems

What capabilities?

How?

'Optional' System Capabilities

- Type of User Interface
- Luminaire Level Control
- Integrated Luminaire Level Control
- Localized Processing / Distributed Intelligence
- Scheduling
- Personal Control
- Load Shedding (DR)
- Plug Load Control
- BMS/EMS/HVAC Integration
- Energy Monitoring
- Device Monitoring / Remote Diagnostics

BMS/EMS Compatible?

Open Standard?
Proprietary?

Stand-Alone, Local Server, or Cloud?

Case Studies?

Energy Monitoring?

IT Server Required?

Wired? Wireless?

12

What about the demonstration projects? Can you tell us more about those?

Demonstration Projects

enlighted Enlighted
₩ DaintreeNetworks Daintree ControlScope
PHILIPS Philips Connected PoE
Digital Lumens Digital Lumens
Cree SmartCast
PHILIPS Philips SpaceWise
©LUTRON Lutron Energi Tri-pak
OSRAM 🚱 OSRAM Encelium
Eaton DLVP

- Selected Technologies by RFQ
- Scoring Criteria
 heavily weighted to
 products that used
 innovative approaches
 to overcome
 technology adoption
 barriers

Features that were scored highly

- "Embedded" or "Integrated" Sensors
- Wireless
- Open-standards based or as interoperable as possible
- Distributed Intelligence
- Embedded energy meter
- Auto-Commissioning
- Well-executed programing interface or GUI

First Five Projects

Two Roads Brewing Company – Stratford, CT

- Install Complete
- Status: Analyzing Metering Results

Rhode Island Public Utilities – Warwick, RI

- Install Complete
- Status: Post-Metering

Multi-Tenant Medical Office Building – Avon, CT

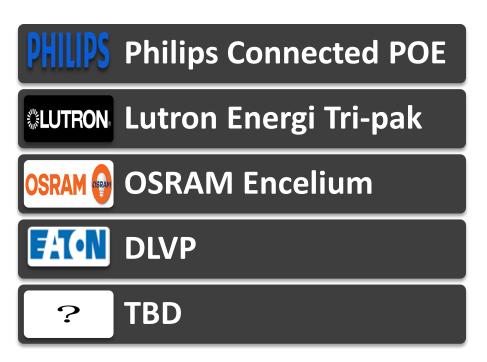
- Install Complete
- Status: Post Metering

University of Vermont PFG Sports Complex – Burlington, VT

- Status: Finalizing Scope/Budget
- Install over Summer

Super Stop & Shop – New Bedford, MA

- Status: Scope Budget Complete, Developing M&V Plan
- Install begins July 8



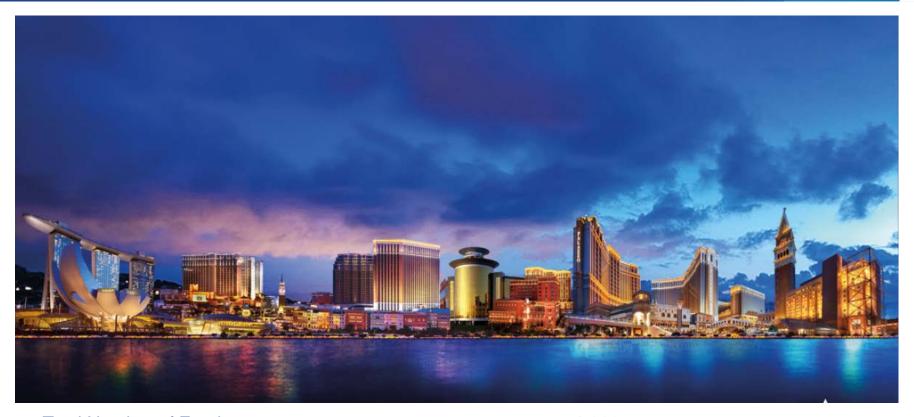
Early Metering Results

To Be Updated week before event

Demonstration Projects – Next Five

Site Recruitment
 Underway

As building owners are considering troffer and interior lighting improvements, what advice do you have for them regarding controls? What options should they consider?


Recommendations

- New fixtures or retrofit kits over LED tubes
- Integrated/Embedded Controls
 - But make sure it is networked so you can create zones
- Wireless for retrofits
- The right system for the right customer and application
 - Sophisticated systems for sophisticated applications and customers
 - Attributes of a sophisticated system
 - Simpler systems for simpler customers
 - Attributes of a simpler system

Las Vegas Sands Corporation

Total Number of Employees:

Total Hotel Rooms:

Total Integrated Resort Space:

(includes Gaming, Convention, Retail, Hotel, Theaters etc.)

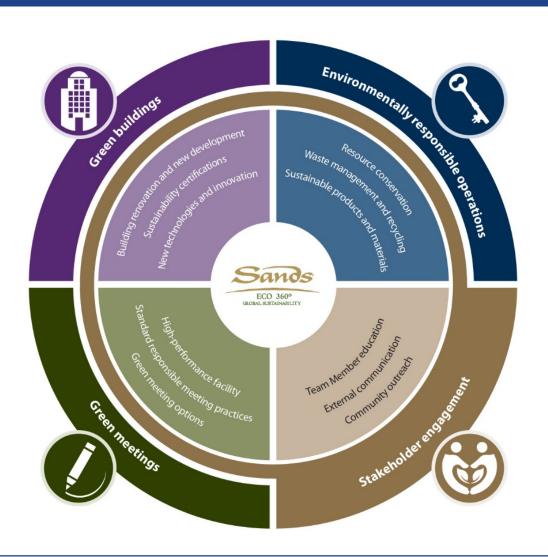
Number of Restaurants:

Number of Theater/Arena Seats:

over 51,000

19,300 rooms

43 million sq. ft.


324

56,500

Sands ECO360 Global Sustainability Strategy

What has been your company's experience with adopting LED lighting?

Our LED Lighting Journey

2011

• When LED was still a new concept in the market, we set up our own lighting lab and started evaluating the technology.

2012

• After testing thousands of LED light bulbs, we became a topic expert and standardized global implementation based on our own life-cycle cost analysis tool.

2013

• We partnered with several manufacturers to design and develop new LED lamps specific to our buildings and space types.

2015

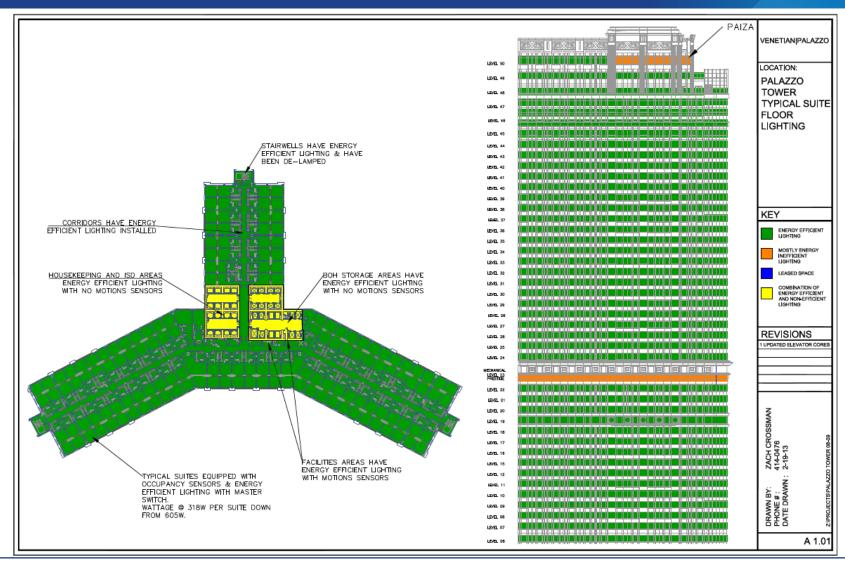
- St. Regis and Parisian properties in Macao were designed to be our first 100% LED properties.
- We have replaced more than 520,000 inefficient light bulbs with LEDs globally since 2011, achieving more than 82 million kWh of energy savings (equivalent of 7,500 U.S. annual household usage)

2016+

 We are researching and evaluating LED lighting for high-bay and outdoors spaces where previously available technology did not fully meet our requirements.

How did you evaluate options and select projects to pursue?

Lighting Property Database


Sample Property Lighting Database

Area	Sub-Area	Light Fixture	Lamp	Manufac	Bulb	Quantity	kWh	ССТ	CRI	Lumens	Efficacy	Rated	HOU	Life Span	Cost	Lighting	Air
			Туре	turer	Number						·	Life		in years		Control Type	Conditioned
вон	Offices	Ceiling (such as T8s)	Т8	GE	F32T8/SPP 35/ECO	3	32	3500	80	2900	91	17000	9	5.2	\$ 4	Switch	Yes
вон	Offices	Downlights	MR16 Halogen	GE	Q50MR16/ C/CG55	8	50	3050	80	775	16	6000	24	0.7	\$ 16	Switch	Yes
Hotel	Lobby	Dowlights (such as cans)	T4 CFL	GE	F26TBX/83 5/A/ECO	34	26	3500	82	1800	69	17000	24	1.9	\$ 23	Switch	Yes
Hotel	Lobby	Wall washers	MR16 LED		5MR16/EN D/F24 3000	14	5.5	3000	82	300	55	25000	24	2.9	\$ 18	Switch	Yes
Hotel	Hotel Hallways	Dowlights (such as cans)	A19 LED	Sylvania	LEDA19/F/ 827/G2	300	10	2700	80	850	85	25000	24	2.9	\$ 5	Switch	Yes
Hotel	Elevator	Dowlights (such as cans)	R12 LED	TCP	LE2WGBF	9	2.2	3000	80	110	50	25000	24	2.9	\$ 11	Breaker	Yes
Casino	Mass gaming	Cove lighting	T5	GE	F35W/T5/8 41/ECO	238	35	4100	85	3650	104	36000	24	4.1	\$ 20	Breaker	Yes
Casino	Mass gaming	Dowlights (such as cans)	PAR 20 HID	GE	CMH39UPA R20FL25	1920	39	4200	90	1950	50	10000	24	1.1	\$ 46	Breaker	Yes
Food Court	Seating	Dowlights (such as cans)	T4 HID	GE	CMH20T/U 830GU6.5	40	20	3000	81	1615	81	12000	24	1.4	\$ 49	Breaker	Yes
Meeting Rooms	Lehigh Room	Dowlights (such as cans)	T4 CFL	1	F26TBX/83 5/A/ECO	24	26	3500	82	1800	69	17000	24	1.9	\$ 23	Switch	Yes
Exterior Lighting	Garage	Downlights (exterior)	ED18 HPS	GE	LU400/H/E CO	75	400	2100	22	51000	128	24000	24	2.7	\$ 27	Breaker	No
Retail	Common Areas	Downlight	T4 HID	GE	CMH39/T/ U/930/GU6 .5	158	39	3000	88	3400	87	10000	24	1.1	\$131	Switch	Yes
Restaurants	Chop House	Uplights	MR16 HID	GE	CMH39MR 16/930/FL	21	39	3000	90	2200	56	10000	12	2.3	\$ 93	Switch	Yes

Lighting Building Maps

LED Lighting Evaluation Criteria

Seven step review process to evaluate each LED product:

- 1. Research and select LED technologies for evaluation.
- Review manufacturers products for photometric performance, chromaticity, and lumen maintenance (watts, lumens, efficacy, CCT, CRI).
- 3. Test product in lighting lab for performance and compatibility with the dimming system.
- 4. Product mockups to evaluate each product for performance, maintenance, durability and ease of installation.
- 5. Lighting design and on-site lighting measurements.
- 6. Select top 3 samples and conduct ROI analysis.
- 7. Management walk through for feedback on product mockups and review and approval of funding for the project.

Please describe the projects, expected versus observed performance, and key challenges and lessons learned

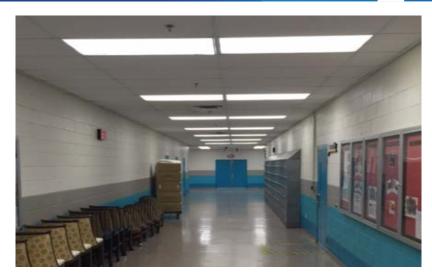
LED Lighting Showcase Projects The Venetian, The Palazzo, and Sands Expo

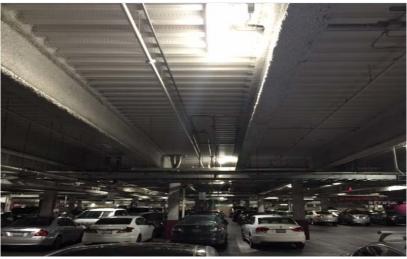
T8 LED Lighting Project for Back of House and Parking Garage Areas

Project Description:

- Installation of 38,000 high-performance and high-efficiency T8 LED lamps for the parking garages, stairwells and back of the house areas.
- Total Area: over 3 million sq. ft.

Project Details:


Project cost: \$1.45 millionOp Ex savings: \$0.35 million


Payback: 4.1 years

(3.7 years with utility rebate included)

Project Results:

- Electricity reduction: 4.3 million kWh/year
- Utility Rebate: \$156K

T8 LED Lighting Project for Back of House Areas & Parking Garages

	OLD LIGHTING	NEW LED LIGHTING
Light Source	Standard T8 fluorescent lamp	T8 LED lamp
Quantity	38,000 lamps	38,000 lamps
Wattage	32 watts (28.5 watts actual draw)	16 watts (15.5 watts actual draw)
Efficacy	89 lumens/watt	110 lumens/watt
CCT	3000K	4000K
Lamp Life	20,000 hours	50,000 hours
Warranty	2 years	5 years
Controls	No	No
Annual Operating Hours	8,760	8,760

T8 LED Lighting Project for Back of House and Parking Garage Areas

Lamps Testing:

- From distribution panels
- From AEMC power & energy logger

					Before i	etrofit		After re	trofit		Savings Watts/Lamp
Location	Panel	circuit#	quantity of lamps	print#	volts	amps	watts	volts	amps	watts	
BOH Hallway	LBHBK01	1	24	E4.05J/K	278.1	3.3	917.73	278.8	2.21	616.14	12.6
	LBHBK01	3	8	E4.05J/K	275.2	3.524	969.81	276.3	3.37	931.13	4.8
Security Hall	XAEHBF01	9	30	E4.05F/K	277	4.89	1354.53	276.8	3.8	1051.3	10.1
	NEHBF01	24	30	E4.05F/K	276.2	3.99	1102.03	279.6	2.71	757.71	11.5
Sustainability											
Office	NEHBF01	26	16	E4.05E	277.3	3.69	1023.23	277.9	2.88	800.35	13.9
Stairwells	XAFHBFN02	1	30	E4.05E	277.1	6.273	1738.46	277.2	4.802	1331.11	13.6
P4 Garage	JEHP1G01	2			277	2.825	782.53	277.4	2	554.8	
	JEHP1G01	4			279.3	2.752	768.64	279.7	1.968	550.45	
Total/Average			232				15,048			12,016	13.1
Bench Testing of Single 2 Lamp Fixture at 277V with precision meter:											
Fixture			2				57.0			31.0	13.0

Best Practices & Lessons Learned:

- Replacement of entire fixture did not appear cost competitive due to the cost of the equipment and labor.
- Evaluated various products and conducted long-term tests to ensure manufacturer specifications are not exaggerated.
- Challenging to keep track of areas completed and missed due to the property size.
- Did not anticipate lamp failures due to extreme heat in non-conditioned spaces and vehicle vibration in multi-level parking garages resulting in increased maintenance costs.

High-Bay LED Lighting & Controls Project For Convention Space

Project Description:

- Replaced existing (124) 1,080 watt metal halide fixtures with high-efficiency 270 watt LED fixtures in Sands Expo Exhibit Hall D.
- Wireless lighting control system was installed allowing automatic operation and the dimming of fixtures to various lighting levels by areas and individual zones.
- Total Area: 100,600 sq. ft.

Project Details:

Project cost: \$156 KOp Ex savings: \$27 K

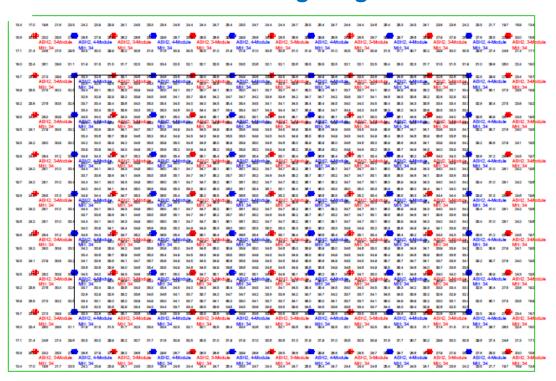
Payback: 5.8 years

Project Results:

Electricity reduction: 370,771 kWh/year

Utility Rebate: \$32K

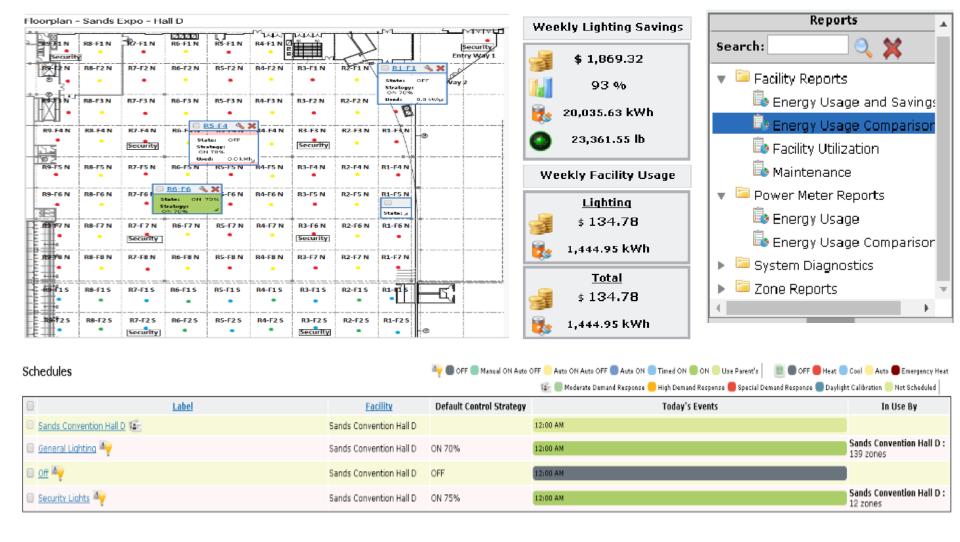
High-Bay LED Lighting & Controls Project For Convention Space


	OLD LIGHTING	NEW LED LIGHTING
Light Source	High bay metal halide fixture	High bay LED fixture
Quantity	124 fixtures	124 fixtures
Wattage	1,080 watts	270
Efficacy	65 lumens/watt	113 lumens/watt
CCT	3000K	4000K
Lamp Life	12,000 hours	100,000 hours
Warranty	1 year	5 years
Controls	Yes	Yes
Annual Operating Hours	3,075	3,075

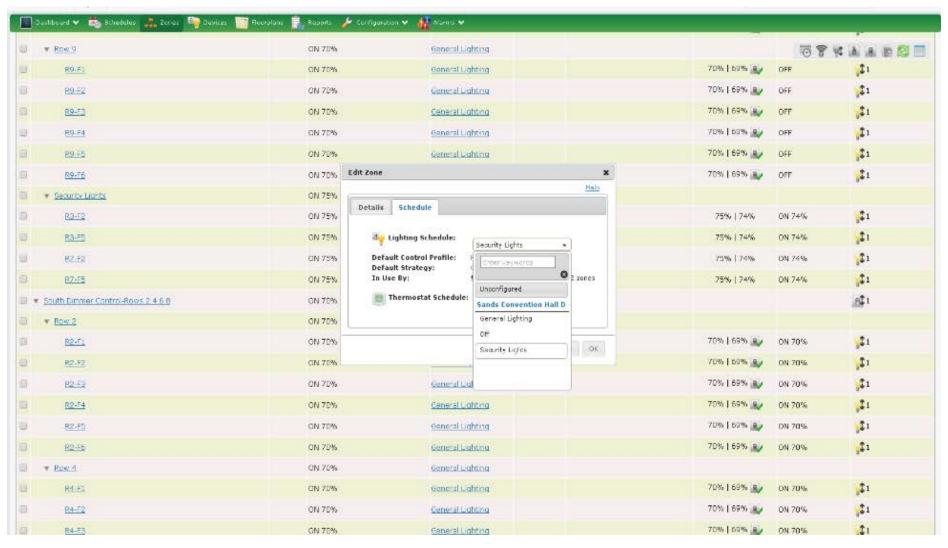
Lighting Design:

New LED Lighting

Illuminance Comparison


Metal Halide	LED
Lighting	Lighting
24.6 fc	31.3 fc

Luminaire Sch	edule						
Symbol	Qty	Label	Arrangement	LLF	Description	Lum. Watts	Lum. Lumens
#	63	ABH2, 3-Module	SINGLE	0.879	ABH2x3V471xxxxxxx at	270	28000
	54	ABH2, 4-Module	SINGLE	0.879	ABH2x4V471xxxxxxx at	359	37325


Fixtures modeled at 25,000 hours

Calculation Summary							
Label	CalcType	Units	Avg	Max	Min	Avg/Min	Max/Min
Full Room	Illuminance	Fc	31.26	36.6	13.4	2.33	2.73
Inner Area	Illuminance	Fc	34.56	36.1	32.5	1.06	1.11

Lighting Control System:

Lighting Control System:

What are the top 3 lessons learned?

Major Benefits:

- Energy (electricity and heat load) and cost savings.
- Improve lighting requirements and provide better customer experience to our exhibition clients.
- Improve operational efficiencies as LED lamps turn on/off instantly and will last for more than 100,000 hours (8 times longer than MH fixtures).

Best Practices & Lessons Learned:

- Conducted in-depth lighting design study and mockups to ensure manufacturer specifications are not exaggerated.
- Tested first generation of the installed fixtures which seemed to work well, but the technology evolved and the efficiency of the fixtures and costs improved which helped our ROI.
- Lighting control system is performing better than expected. Easy to schedule and control and overall usability has improved lighting in the entire exhibit hall. System operators received robust training.

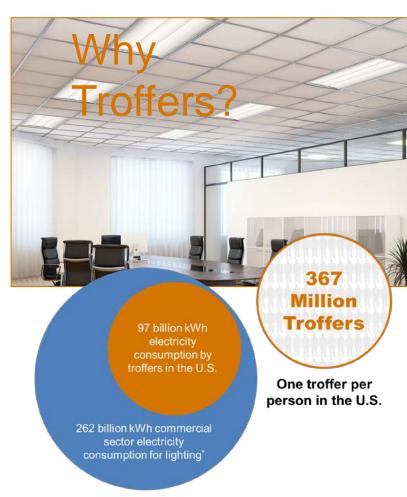
What projects are you considering moving forward?

What's next?

- LED troffer retrofit kits in Offices
- High-bay LED fixtures in Exhibit Halls
- LED cove lighting for Meeting Rooms
- Exterior LED lighting
- LED theatrical lighting for Showrooms & Theaters
- LED lighting for Hotel Towers

Interior Lighting Campaign – Overview

Launched May 2015 by:



- First year focus
 - High-efficiency troffers and controls applications
- First year goal
 - Document by May 2016 1 M high-efficiency troffers installed or planned for installation by May 2018
 - Retrofit and new construction
 - Includes TLEDs, LED retrofit kits, high efficiency luminaires
 - Encourages use of controls for added energy savings

Troffers consume the equivalent electricity use of 8.9 million homes

* U.S. Department of Energy-Energy Information Administration, Annual Energy Outlook 2014 with Projections to 2040, 2014

Interior Lighting Campaign – WIIFM

Resources

- ✓ Incentive lists
- ✓ Technology reports
- ✓ Case studies
- ✓ Calculation tools
- √ Webinars

- ✓ Building owners
- ✓ Building managers
- ✓ Others end users including federal, state, and municipal buildings

Technical Assistance

- ✓ Site identification
- ✓ Technology option evaluation
- ✓ Application of specification
- ✓ Award entry content

Join as a Supporter

- ✓ Energy efficiency groups
- ✓ Manufacturers
- ✓ Utilities
- √ ESCOs
- ✓ Lighting designers
- ✓ Others who influence but don't directly manage buildings

Be Recognized

- ✓ Listed/linked on Campaign website
- √ Case studies of recognized projects
- ✓ Newsletter articles and tweets
- ✓ Awards for exemplary projects 2016 BOMA International Conference and Expo, June 27 plenary event
 - o New construction and retrofits awards
 - o Small, medium, large project awards
 - Energy savings, portfolio adoption, and use of controls awards

Interior Lighting Campaign – Learn More

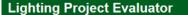
- Free resources
- Free to join
- Free technical assistance

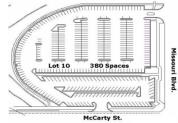
http://www.interiorlightingcampaign.org



Interior Lighting Campaign – Resources

Specifications




The Lighting Project Evaluator allows you to estimate the energy savings of a new lighting system against a specified energy code. This tool can also compare proposed lighting upgrades to your

This tool is the preferred method of data submission for the Interior Lighting Campaign, which is a great place to go for troffer-specific lighting resources and to receive awards and recognition for implementing an energy saving lighting system using high-efficiency troffers and controls

Energy Estimator to compare against code

Technical Assistance (limited)

Indoor Lighting -	Troffers (incl retr	rofit kit	ts), C	ontrols

State 🔻	Technology 🔻	Product
PA	Controls	Occupancy S
PA	Fluorescent	High Perforn
PA	LED	High Perforn
	PA PA	PA Controls PA Fluorescent

List of utility incentives

Discussion

Gabe Arnold garnold@neep.org 781-860-9177 x161

Linda Sandahl <u>Linda.sandahl@pnnl.gov</u> 509-375-2609

Pranav Jampani

Pranav.jampani@sands.com

781-860-9177 x161

Felipe Leon
Felipe.leon@pnnl.gov
509-372-6516

