

Agenda

- Overview of DOE's Better Building Alliances
- Brief review of troffers and Interior Lighting Campaign
- Princeton University's Icahn Laboratory
- The University Financing Foundation
- Questions and answers

Better Buildings Initiative

Goals:

- Make commercial, industrial buildings & multifamily housing 20%+ more efficient in 10 years
- Save more than \$80B+ for US organizations
- Create American jobs; improve energy security
- Mitigate impacts of climate change

How:

- ✓ Leadership
- ✓ Results
- ✓ Transparency
- ✓ Best Practice Models
- ✓ Recognition
- ✓ Catalyzing Action

Launched 2011, Now 250+
Partners & Allies
Commercial, Industrial, Public,
Private

Represent:

3.5+ Billion Square Feet\$5+ Billion Private Financing650+ Manufacturing plants\$4 B Federal Commitment

Better Buildings Challenge Partners and Allies

Why Do Partners Join Better Buildings?

The Big 3:

- 1. Access to experts, tools, and resources
- 2. Peer to peer learning
- 3. Public recognition

Better Buildings Alliance: How is it organized?

Food Service, Retail & Grocery

Healthcare

Hospitality

Higher Education

Technology Solutions Teams

Lighting

Space Conditioning

Plug & Process Loads

Refrigeration

Energy Information Systems

Renewables Integration

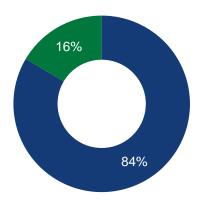
Market Solutions Team

Financing Strategies

Leasing and Tenant Engagement

Training / Workforce

Appraisals and Valuation


Data Access

Higher Education Sector

Higher Education Members Compared to Market Floorspace

There are currently 27 members in the Higher Education sector, accounting for over 292 million sq. ft.; about 16% of the sector's floorspace in the U.S. market.

For more information contact: John Jameson, ICF Account Manager 303-792-7828 John.jameson@icfi.com

Membership

- Stanford University
- University of California, Irvine
- Loyola University
- University of Hawaii at Manoa
- Grand Valley State University
- University of California, Merced
- Massachusetts Institute of Technology (MIT)
- Arizona State University
- Cornell University
- University of Colorado Boulder
- Michigan State University
- University of Utah
- San Mateo Community College District

- Emory University
- University of South Carolina
- University of Miami
- Portland State University
- Clark Atlanta University
- Tulane University
- University of California, Davis
- University of Massachusetts
 Medical School
- University of Miami
- Washtenaw Community College
- University of Wisconsin
- University of Maryland
- University of California, Berkeley

NEW! Better Buildings Solution Center

Proven Solutions for:

- Large and small buildings
- All sectors
- Specific building types

Search by:

- Your energy efficiency barrier
- Your sector
- Your city or state

betterbuildingssolutioncenter.energy.gov/

Many ways to stay informed!

Follow us on social media!

Twitter: @BetterBldgsDOE LinkedIn YouTube

Sign up for newsletters!

Beat Blog (weekly posts)

 Interviews/Q+As, follow-up pieces from partner events and press releases; solution deeper dive

Bulletin

 Monthly digest of new solutions, partners, news, events

Get Involved

 Monthly call to action email listing events, webinars, ways to participate with Better Buildings

Top-10 Solutions

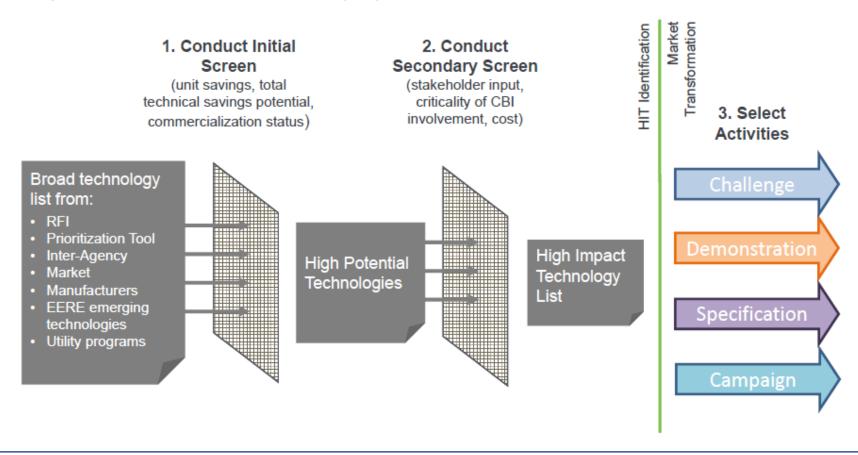
Monthly top ten viewed solutions

Participate in monthly webinar series

Check out the <u>newsroom</u> for press on events highlighting partner accomplishments

2016 SAVE THE DATE BETTER BUILDINGS SUMMIT

WASHINGTON, DC ■ MAY 9-11



How do we Decide what to Focus On?

Identification and Evaluation of HITs

Identify HITs through a rigorous prioritization process; characterize HITs based on their stage in the product life cycle; develop appropriate resources; evaluate and implement the most effective deployment activities.



Other Campaigns: LEEP and ARC

Lighting EnergyEfficiency in Parking(LEEP)

 Advanced Rooftop unit Campaign (ARC)

Interior Lighting Campaign (ILC):

- High Efficiency Troffer Lighting with Controls
- Launched at 2015 Better Buildings Summit
- Goal to replace 1,000,000 standard troffers with high efficiency troffers with controls by May 2016
 - Represents about 60 million kWh savings, worth \$6.2m
- Resources include:
 - troffer specification
 - utility incentives database
 - product lists
 - technical reports
 - case studies
 - free technical assistance.

Credit: Energywise.co

Why Do Participants Join ILC?

The Big 3:

- 1. Access to experts, tools, and resources
- 2. Peer to peer learning
- 3. Public recognition

Example: UC Davis

Indoor Lighting

Working at the edge of design theory and technology, CLTC produces indoor lighting innovations that save energy while enhancing human health and comfort. Advanced control systems developed at the center integrate daylighting and electric lighting, reduce peak demand and electricity consumption, and tailor light levels and distribution to occupants' needs.

Many resources Available a <u>cltc.ucdavis.edu</u>:

- <u>Case Study</u> on adaptive Corridors, UC San Francisco
- Video on UC Davis 2012 lighting project

Example: Towson University

 Stephen Kolb, Energy manager at Towson spoke on our September Lighting team call. "2014 TU Standardizes on LED---everywhere!"

Towson's BBC Partner Profile on the Solution Center

Recognition: ILC Awards at BOMA 2016!

BOMA2016 INTERNATIONAL CONFERENCE & EXPO

Presented by BOMA International and BUILDINGS

JUNE 25-28, 2016 | WASHINGTON, DC

Interior Lighting

 nationalgrid / E Source "Managing Energy Costs in Colleges and Universities https://www.nationalgridus.com/non_html/shared_energyeff_college.pdf

- 2004 estimated that colleges and universities in the U.S. spend an average of \$1.10 per sf on electricity
- In typical higher education buildings, lighting represents 31% of energy use¹
- Troffers make up the majority of installed light fixtures

Troffers by the Numbers

- Estimated 367 million troffers in the US
- ≈1 troffer for every 240 square feet
- ≈1 troffer per person in the U.S.

Troffer Conundrum What do I do?

Option	Action	Light Source	Risk	Controls	Energy Savings Potential
1	Do nothing	Fluorescent		OS or dimming w/ new ballast	
2	Replace lamps	Long life fluorescent		OS or dimming w/ new ballast	
3	Replace lamps	TLED+FL ballast on existing socket	••	OS	\(\frac{1}{2}\)
4	Replace lamps	TLED on mains voltage in existing socket	••	Yes w/ paired controls	☆ ☆
5	Replace lamps	TLED (hybrid) mains or ballast in existing socket	••	OS or if ballast replaced	☆ ☆
6	Replace lamps	TLED w/ proprietary power supply in existing socket	••	Yes paired w/ controls	☆ ☆
7	Retrofit Kit	Fluorescent or LED	••	Many options	\$\$\$
8	New Fixture	Fluorescent or LED	•	Most options	\$\$\$\$

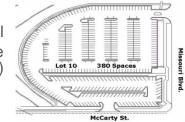
OS = Occupancy Sensor

Interior Lighting Campaign Goal

- 1,000,000 troffers either retrofit (tubes, kits, or new fixtures) or new construction by May 2016
- Awards for both new construction and retrofits
- Technical assistance
- Participants
 - Entities that are end users are eligible to be participants
 - Participants can be building owners, building managements, and tenants
- Supporters
 - Anyone not directly related to the operation / management of the lighting system(s)
 - Supporters are designers, engineers, architects, energy efficiency organizations, utilities, and manufacturers

Interior Lighting Campaign Resources

Specifications


The Lighting Project Evaluator allows you to estimate the energy savings of a new lighting system against a specified energy code. This tool can also compare proposed lighting upgrades to your

This tool is the preferred method of data submission for the Interior Lighting Cam great place to go for troffer-specific lighting resources and to receive awards and recognition for implementing an energy saving lighting system using high-efficiency troffers and controls

Energy Estimator to compare against code

Indoor	Lighting -	Troffers	(incl	retrofit	kits).	Controls
macoi	-10111111111111111111111111111111111111	HOHEIS	(11 10 1	I C CI O I I C	1111001,	COLLUDIA

Utility	State 🔻	Technology 🔻	Product
PPL Electric	PA	Controls	Occupancy S
PPL Electric	PA	Fluorescent	High Perforn
PPL Electric	PA	LED	High Perforn

List of utility incentives

Princeton University Icahn Laboratory Troffer Retrofit CFL Downlight LED Retrofit

- 98,000 sq ft overall
- 35,000 sq ft of labs; 2 floors
- 150 person capacity
- Central glass atrium and 2 story curving glass wall joining them
- Glass wall is shielded by 31 external 40ft vertical aluminum louvers that rotate with the sun to maximize shade, minimize thermal loading
- First building-wide interior
 LED project on campus

- Annual lighting energy use
 - 564,000 kWh
 - \$50,000 annual cost
- Lab and office space lighting
 - 815 recessed 2ft x 2ft luminaires
 - each use (2) 31W T8 fluorescent U-lamps
 - acrylic prismatic lens, draw 59 Watts of power
 - operate an estimated 5,000 hours per year
 - 240,425 kWh annually, or about 43% of the facilities annual lighting energy use

The Issues

- Removal of existing fixtures and replacement with new was not cost competitive, due to the amount of labor required
- Based on past experience with lab users on campus, a simple on/off type occupancy sensor configuration was considered to be a nuisance by users and had a history of being deactivated

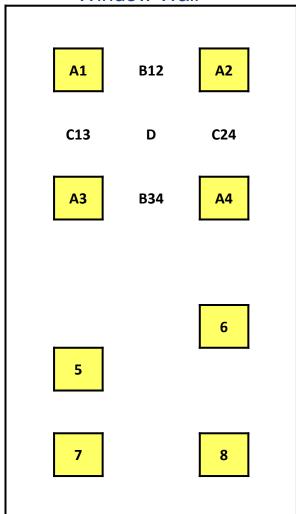
The Troffer Lighting Solution

- LED pan type Retrofit kits from Maxlite
 - 3,315 lumens
 - 45 Watt power input
 - CCT of 4,100K
 - Minimum CRI of 82
 - 0-0-10V Control (off at 0V)
 - Safety Certification from ETL
 - Design Lights Consortium's Qualified Products List member (QPL)
 - Yields over 57,000 kWh in annual energy savings, before controls

The Controls Solution

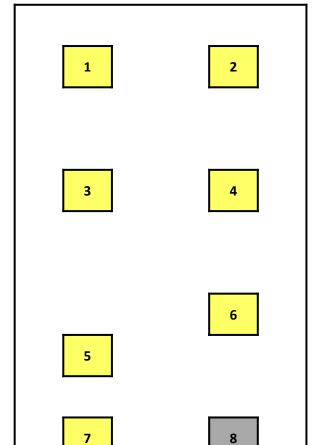
- Lutron Quantum Ecosystem with 0-10V-to-Ecosystem converters to drive groups of fixtures
- Lutron Wireless Motion and Daylight Sensors
- Lutron Pico Wireless Dimmer Switches
- Bi-level dimming philosophy in lab areas

Icahn Lab: Room 222



Icahn Lab: Room 222

Window Wall


ILLUM (HOR) AT COUNTER HEIGHT						
	FC FL	FC LED	LED/FL			
AVE	62.2	103.6	1.67			
MAX:MIN	1.34	1.36				
ILLUM (VERT) AT WINDOW TOP						
AVE	56.5	86.1	1.52			
ILLUM (HOR) AT TOP SHELF						
AVE	91.9	149.3	1.62			
ILLUM (VERT) AT TOP SHELF						
AVE	40.9	65.9	1.61			

Icahn Lab: Room 222

Window Wall

COLOR MEASUREMENTS					
FIXTURE	FL CCT	FL CRI	LED CCT	LED CRI	
1	3715	81	4304	85	
3	2842	86	4323	85	
5	3746	78	4311	85	
7	3158	78	4299	85	
2	3169	77	4336	85	
4	3747	78	4303	85	
6	3750	78	4313	85	
MAX	3750	86	4336	85	
MIN	2842	77	4299	85	

Icahn Lab: Corridor 233

Icahn Lab: Corridor 233

A1 B12 B23 B34 B34 EAST DOOR

- Horizontal illuminances measured at 3' AFF centered under fixture row
- Vertical illuminances measured at 5' AFF along south wall, aligned with horizontal measurement locations

	FL-HOR	LED-HOR	LED/FL
MEAN	53.0	96.8	1.83
MAX:MIN	1.19	1.24	
	FL-VERT	LED-VERT	LED/FL
MEAN	30.4	53.5	1.76
MAX:MIN	1.34	1.16	

Icahn Lab: Open Lab area

Icahn Lab: Open Lab area

- Horizontal illuminances measured along the counter at 2' intervals
- Point 0 is at window end of bench; point 14 at end near inner wall

POINT	FC - FL	FC - LED	LED/FL
0	44.9	72.7	1.62
2	47.5	76.3	1.61
4	52.9	78.3	1.48
6	56.1	76.5	1.36
8	57.5	89.0	1.55
10	57.9	94.8	1.64
12	59.0	98.7	1.67
14	65.1	111.8	1.72
MEAN	55.1	87.3	1.58
MAX:MIN	1.45	1.54	

Icahn Lab: CFL Downlight LED Retrofits

The Downlight Solution:

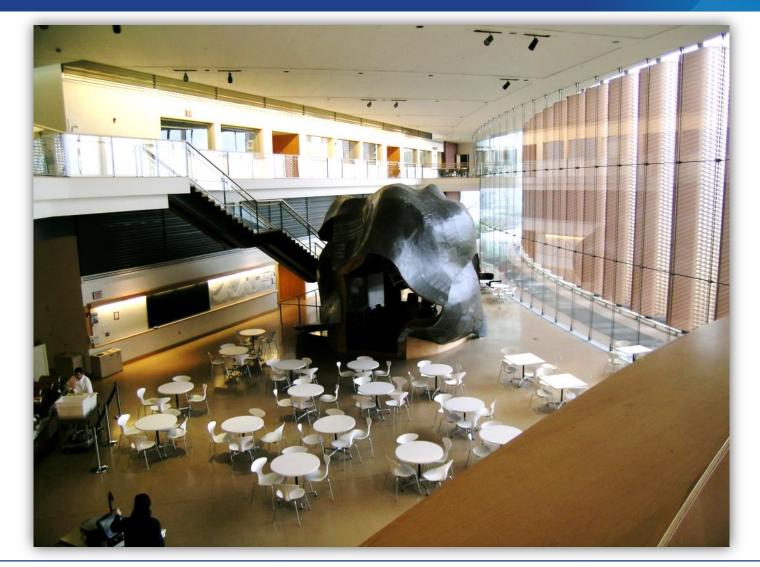
LED downlight retrofit kits from Terralux

- 60,000+ hour L70 lifetime
- 80+ CRI
- 92 Lumens/watt
- Energy Star

Icahn Lab: CFL Downlight LED retrofits

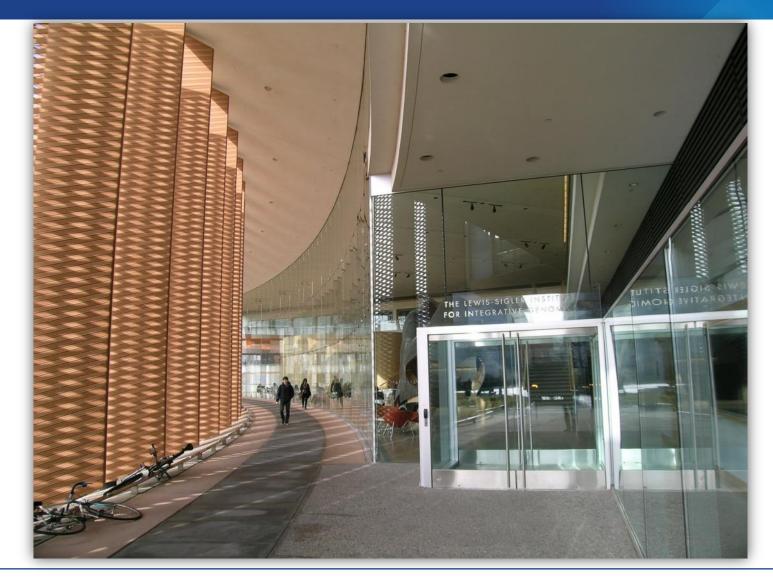
Icahn Lab: CFL Downlight LED retrofits

					WINDOV	V WALL							
LED ILLUMINANCES												Σш	
POINT	HOR fc	VERT fc			2-lp CFL							ROO	
А3	58.8	19.5										CLASSROOM	
A4	54.9	19.0										O	
A5	46.9	17.2		1			3		B35	5		WHITEBOARD WALL	
A6	47.8	17.9											
B34	61.2	16.9											
B35	54.1	17.5					B34		D36	B56			
B46	52.8	17.9											
B56	53.5	19.4										H	
D36	58.4	NA		2			4		B46	6		>	
MEAN	54.3	18.2											
MAX	61.2	19.5						Г.				/ 61	
MIN	46.9	16.9							/ERTICA	L ILL O	ILL ON WALL (6' AF		
MAX:MIN	1.3	1.2							POINT		ILL	.lx	
									5		17	.2	
									56		17	.5	
				7					6		19.5		



Icahn Lab: CFL Downlight LED retrofits

WINDOW WALL									
IOR MEAS	LIDEMENIT	·c 1		2-lp CFL				CLASSROOM	
	1							ם מ	
			1		3	B35	5		
3493	-0.0037								
3497	-0.0038							VALL	
3503	-0.0033	85/29			B34	D36	B56	WHITEBOARD WALL	
3500	-0.0035	85/30						TEBO	
3504	-0.0038	85/30						N N	
3475	-0.0036	85/29	2		4	B46	6		
			7						
	3498 3493 3497 3503 3500 3504	CCT Duv 3498 -0.0037 3493 -0.0037 3497 -0.0038 3503 -0.0033 3500 -0.0035 3504 -0.0038	3498 -0.0037 85/30 3493 -0.0037 85/30 3497 -0.0038 85/30 3503 -0.0033 85/29 3500 -0.0035 85/30 3504 -0.0038 85/30	CCT Duv CRI/R9 3498 -0.0037 85/30 3493 -0.0037 85/30 3497 -0.0038 85/30 3503 -0.0033 85/29 3500 -0.0035 85/30 3504 -0.0038 85/30 3475 -0.0036 85/29	2-lp CFL	2-lp CFL 2-lp CFL	CCT	CCT	



Summary of Princeton Experience

- 24% energy savings (before lighting controls)
- High-level trim and Bi-level motion sensing allows additional savings
- Light levels and color temperature consistency improved
- Lower maintenance costs expected thanks to increased time between failure of fixtures

What came before?

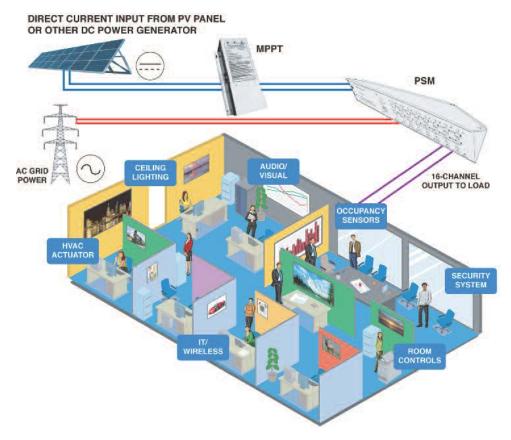
Military Jet Propulsion Technology...

Lockheed F-117 Nighthawk

McDonnell Douglas F/A-18 Hornet

What came before?

...was turned into a 15MW Cogeneration Facility with up to an 80% energy conversion efficiency!



What comes next?

Low Voltage DC Distribution deserves consideration:

*Illustration Courtesy of Nextek Power Systems

What else comes next?

What happens when we think outside the traditional ceiling troffer?

24 VDC LED grid lighting

*Photos Courtesy of Steel Orca and Goldeneye

Thank you!

The path to enlightenment begins with a walk around the block.

- Philip Delves Broughton

The University Financing Foundation, Inc

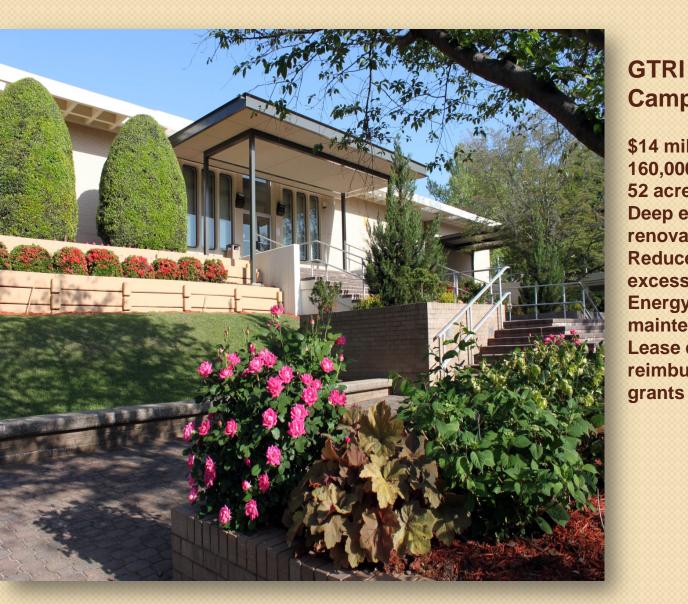
Who is TUFF?

- Non-profit, 501(c)3 private operating foundation formed in 1982
- Mission to assist education and research institutions in obtaining facilities and equipment at below market prices
- Often invited into the early decision making process when an Institution's President says "I have a dilemma that I need your help solving"
- Objective is to provide turn-key facilities, equipment and renovation and energy efficiency projects faster and at a lower overall cost than institutional development methods
- Participant, supporter and sponsor of Better Buildings Challenge since its inception in 2011
- Over \$1 billion in development project financings and loans
- Visit our website at <u>www.tuff.org</u>

What is TUFF?

We are not-

- a speculative developer (i.e. Place Properties, Ambling, American Campus Communities).
- an energy services company (Siemens, Energy Systems Group, Johnson Controls, Schneider).
- a vendor (general contractor, engineer, product supplier).


We are-

- a partner- We sit down with the institutional leadership to understand your desires and needs.
- an advisor- We bring an independent, realistic view of the market from both a financing and cost perspective.
- an accelerator- We are nimble and can provide upfront equity. We assume construction risk, interest rate risk and execution risk.
- an innovator- Lead "activation" of projects to create community.

Financial Structuring Alternatives

- FASB 13 Operating lease financing (Off Balance Sheet)- Developed and financed approximately \$60 million of student housing, life sciences, food service, parking and aquatic facilities for the Florida Institute of Technology. We structured the lease as an operating lease which results in those assets and liabilities not being included on the balance sheet of the school.
- Energy Services Agreement- Developed, renovated and financed a \$12 million central utility plant and later completed a \$4 million expansion, that services approximate 39 buildings (and goring) on the campuses of Clark Atlanta University and Spelman College. The Energy Services Agreements provide that the schools purchase the output of chilled water, hot water and steam generated by the central utility plant based on the relative usage by each school. Neither the asset or liability related to this financing are reflected on the balance sheet of either institution.
- Off-Balance Sheet not Off-Credit- To avoid any confusion, while both of the above examples reflect off-balance sheet financing, that does not mean that the rating agencies do not allocate some or all of the underlying debt when considering the rating of the institutions involved in the above arrangements. Also, proposed changes in accounting rules may change the reporting for these structures in the future.

GTRI Cobb Research Campus

\$14 million renovation of
160,000 sq. ft. research facility on
52 acres
Deep energy retrofit and
renovation
Reduced annual energy costs in
excess of 40%
Energy, capital repairs & annual
maintenance by over \$800,000
Lease costs are fully
reimbursable under research

Clark/Spelman Central Utility Plant

\$12 million renovation and later a \$4 million expansion Chilled water, hot water and steam to 39+ buildings 15,109,080 kwh annual savings of electricity or 27% reduction Equivalent to CO2 emissions from 1555 homes of electricity use per year

CENTERGY ONE

Numerous small projects performed with in-house engineering staff at a capital cost of less than \$150,000

- *Re-lamped building (12,000 lamps)
- *Changed exterior lighting to CFL and LED
- *Lighting controls
- *Day cleaning
- *Continuous commissioning
 Decreased utility consumption by over
 26% Netting annual savings in excess of
 \$350,000

TECHNOLOGY SQUARE RESEARCH BUILDING

NUMEROUS PROJECTS PERFORMED WITH A COMBINATION OF THIRD-PARTY AND IN-HOUSE ENGINEERING STAFF AT A CAPITAL COST OF \$265,000.

DECREASED UTILITY USAGE BY OVER 31.6%; NETTING ANNUAL SAVINGS IN EXCESS OF \$177,000

*PARTICIPATED IN PNNL/DOE BUILDING WIDE BAS AUDIT

*INSTALLED LINE REACTOR CAPACITORS TO MITIGATE REACTIVE POWER AT END USE DEVICES

*LIGHTING RETROFIT THAT ALLOWED REMOVAL OF 1/3 OF LAMPS

*INSTALLED CO2 SENSORS INTEGRATED
INTO VENTILATION DEMAND CONTROLS
*INSTALLED WIRELESS SUB-METERS WITH
OVER 60 ACCESS POINTS FOR BETTER
CONTROL OF ALLOCATION AND DEMAND
*INSTALLED REAL-TIME ENERGY AND WATER
USAGE DASHBOARD IN LOBBY

Contact information:

Vic Clements

The University Financing Foundation, Inc.

Phone: 404-214-9200

Direct: 404-214-9445

Email: vic@tuff.org

Website: www.tuff.org

Summit: www.tuffsummit.org

Questions?

- http://www.interiorlightingcampaign.org/
- #IntLtgCampaign

