15. Biogeochemical Cycles 1 2 **Convening Lead Authors** 3 James N. Galloway, University of Virginia 4 William H. Schlesinger, Cary Institute of Ecosystem Studies 5 6 Lead Authors 7 Christopher M. Clark, U.S. EPA 8 Nancy B. Grimm, Arizona State University 9 Robert B. Jackson, Duke University 10 Beverly E. Law, Oregon State University Peter E. Thornton, Oak Ridge National Laboratory 11 Alan R. Townsend, University of Colorado Boulder 12 13 14 **Contributing Author** 15 Rebecca Martin, Washington State University Vancouver 16 **Key messages** 1. Human activities have increased atmospheric carbon dioxide by about 40% over 17 pre-industrial levels and more than doubled the amount of nitrogen available to 18 19 ecosystems. Similar trends have been observed for phosphorus and other elements, and these changes have major consequences for biogeochemical cycles and climate 20 21 change. 22 2. In total, land in the U.S. absorbs CO₂ equivalent to approximately 17% of annual U.S. fossil fuel emissions. U.S. forests and associated wood products account for 23 most of this land sink, absorbing 7% to 24% of annual U.S. fossil fuel emissions, 24 25 with a best estimate of 16%. The effect of this carbon "storage" partially offsets 26 warming from emissions of CO₂ and other greenhouse gases. 27 3. Altered biogeochemical cycles together with climate change increase the 28 vulnerability of biodiversity, food security, human health, and water quality to 29 changing climate. However, natural and managed shifts in major biogeochemical 30 cycles can help limit rates of climate change. Introduction

31

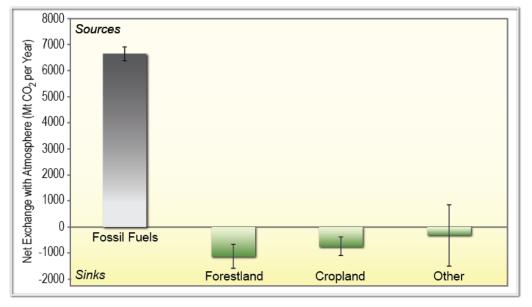
32 Biogeochemical cycles involve the fluxes of chemical elements among different parts of the Earth: from living to non-living, from atmosphere to land to sea, and from soils to plants. They 33 are called "cycles" because matter is always conserved and because elements move to and from 34 35 major pools via a variety of two-way fluxes, although some elements are stored in locations or in 36 forms that are differentially accessible to living things. Human activities have mobilized Earth 37 elements and accelerated their cycles – for example, more than doubling the amount of reactive nitrogen that has been added to the biosphere since pre-industrial times.^{1,2} Reactive nitrogen is 38 any nitrogen compound that is biologically, chemically, or radiatively active, like nitrous oxide 39 and ammonia, but not nitrogen gas (N₂). Global-scale alterations of biogeochemical cycles are 40 occurring, from human activities both in the U.S. and elsewhere, with impacts and implications 41

- now and into the future. Global carbon dioxide emissions are the most significant driver of 1
- 2 human-caused climate change. But human-accelerated cycles of other elements, especially
- 3 nitrogen, phosphorus, and sulfur, also influence climate. These elements can affect climate
- 4 directly or act as indirect factors that alter the carbon cycle, amplifying or reducing the impacts
- 5 of climate change.
- 6 Climate change is having, and will continue to have, impacts on biogeochemical cycles, which
- 7 will alter future impacts on climate and affect our capacity to cope with coupled changes in
- 8 climate, biogeochemistry, and other factors.

Human-induced Changes 9

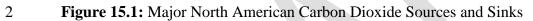
- Human activities have increased atmospheric carbon dioxide by about 40% over pre-10
- 11 industrial levels and more than doubled the amount of nitrogen available to ecosystems.

12 Similar trends have been observed for phosphorus and other elements, and these changes


- 13 have major consequences for biogeochemical cycles and climate change.
- 14 The human mobilization of carbon, nitrogen, and phosphorus from the Earth's crust and

15 atmosphere into the environment has increased 36, 9, and 13 times, respectively, over pre-

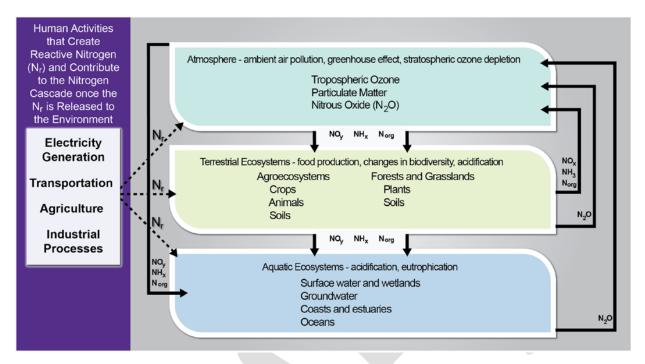
- industrial times.^{3,4} Fossil-fuel burning, land-cover change, cement production, and the extraction 16
- and production of fertilizer to support agriculture are major causes of these increases.⁵ Carbon 17
- 18 dioxide (CO_2) is the most abundant of the heat-trapping greenhouse gases that are increasing due
- 19 to human activities, and its production dominates atmospheric forcing of global climate change.⁶
- 20 However, methane (CH_4) and nitrous oxide (N_2O) have higher greenhouse-warming potential per
- 21 molecule than CO₂, and both are also increasing in the atmosphere. In the U.S. and Europe,
- sulfur emissions have declined over the past three decades, especially since the mid-1990s, 22
- because of efforts to reduce air pollution.⁷ Changes in biogeochemical cycles of carbon, nitrogen, 23
- phosphorus, and other elements and the coupling of those cycles can influence climate. In 24
- 25 turn, this can change atmospheric composition in other ways that affect how the planet absorbs
- 26 and reflects sunlight (for example, by creating small particles known as aerosols that can reflect
- 27 sunlight).


State of the Carbon Cycle 28

- 29 The U.S. was the world's largest producer of human-caused CO₂ emissions from 1950 until
- 2007, when it was surpassed by China. U.S. emissions account for approximately 85% of North American emissions of $CO_2^{\ 8}$ and 18% of global emissions.^{9,10} Ecosystems represent potential 30
- 31
- "sinks" for CO₂, which are places where carbon can be stored over the short or long term (see 32
- "U.S. Carbon Sink" box). At the continental scale, there has been a large and relatively 33
- consistent increase in forest carbon stocks over the last two decades,¹¹ due to recovery from past 34
- 35 forest harvest, net increases in forest area, improved forest management regimes, and faster
- growth driven by climate or fertilization by CO_2 and nitrogen.^{8,12} The largest rates of disturbance 36
- and "regrowth sinks" are in southeastern, south central, and Pacific northwestern regions.¹² 37
- 38 However, emissions of CO₂ from human activities in the U.S. continue to increase and exceed
- 39 ecosystem CO₂ uptake by more than three times. As a result, North America remains a net source
- of CO_2 into the atmosphere⁸ by a substantial margin. 40

Major North American Carbon Dioxide Sources and Sinks

1



3 **Caption:** The release of carbon dioxide from fossil fuel burning in North America 4 (shown here for 2010) vastly exceeds the amount that is taken up and temporarily stored 5 in forests, crops, and other ecosystems (shown here is the annual average for 2000-

6 2006). (Figure source: King et al. 2012^8).

7 Sources and fates of reactive nitrogen

- 8 The nitrogen cycle has been dramatically altered by human activity, especially by the use of
- 9 nitrogen fertilizers, which have increased agricultural production over the past half century.^{1,2}
- 10 Although fertilizer nitrogen inputs have begun to level off in the U.S. since 1980,¹³ human-
- 11 caused reactive nitrogen inputs are now at least five times greater than those from natural
- 12 sources.^{14,15,16,17} At least some of the added nitrogen is converted to nitrous oxide (N_2O), which
- 13 adds to the greenhouse effect in Earth's atmosphere.

1

Figure 15.2: Human Activities that Form Reactive Nitrogen and Resulting Consequences
 in Environmental Reservoirs

4 **Caption:** Once created, a molecule of reactive nitrogen has a cascading impact on people 5 and ecosystems as it contributes to a number of environmental issues. Molecular terms 6 represent oxidized forms of nitrogen primarily from fossil fuel combustion (such as 7 nitrogen oxides, NO_x , reduced forms of nitrogen primarily from agriculture (such as 8 ammonia, NH₃), and organic forms of nitrogen (Norg) from various processes. NO_v is all 9 nitrogen-containing atmospheric gases that have both nitrogen and oxygen, other than 10 nitrous oxide (N₂O). NH_x is the sum of ammonia (NH₃) and ammonium (NH₄). (Figure source: adapted from EPA 2011;¹⁴ Galloway et al. 2003;¹⁸ with input from USDA. 11 USDA contributors were Adam Chambers and Margaret Walsh). 12

13 An important characteristic of reactive nitrogen is its legacy. Once created, it can, in sequence,

14 travel throughout the environment (for example, from land to rivers to coasts, sometimes via the

atmosphere), contributing to environmental problems such as the formation of coastal low-

16 oxygen "dead zones" in marine ecosystems in summer. These problems persist until the reactive

- 17 nitrogen is either captured and stored in a long-term pool, like the mineral layers of soil or deep
- 18 ocean sediments, or converted back to nitrogen gas.^{18,19} The nitrogen cycle affects atmospheric
- 19 concentrations of the three most important human-caused greenhouse gases: carbon dioxide,
- 20 methane, and nitrous oxide. Increased available nitrogen stimulates the uptake of carbon dioxide

21 by plants, the release of methane from wetland soils, and the production of nitrous oxide by soil

22 microbes.

23

1 **Phosphorus and other elements**

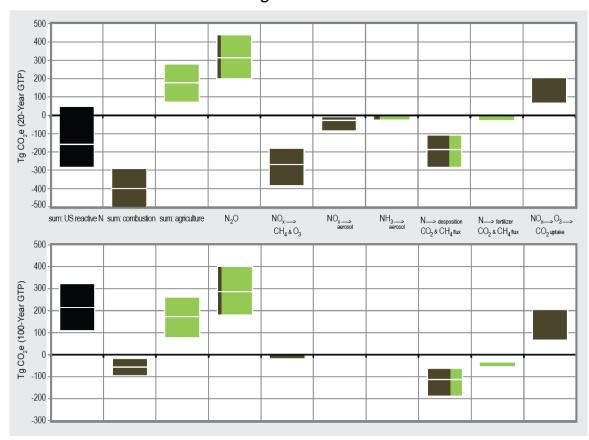
- The phosphorus cycle has been greatly transformed in the U.S.,²⁰ primarily from the use of 2
- phosphorus fertilizers in agriculture. Phosphorus has no direct effects on climate, but does have 3
- 4 an indirect effect: increasing carbon sinks by fertilizing plants. Emissions of sulfur, as sulfur
- 5 dioxide, can reduce the growth of plants and stimulate the leaching of soil nutrients needed by
- plants.²¹ 6

7 Carbon Sinks

- 8 In total, land in the U.S. absorbs CO₂ equivalent to approximately 17% of annual U.S.
- 9 fossil fuel emissions. U.S. forests and associated wood products account for most of this
- 10 land sink, absorbing 7% to 24% of annual U.S. fossil fuel emissions, with a best estimate of
- 11 16%. The effect of this carbon "storage" partially offsets warming from emissions of CO₂
- 12 and other greenhouse gases.
- 13 Considering the entire atmospheric CO_2 budget, the temporary net storage on land is small
- 14 compared to the sources: more CO_2 is emitted than can be taken up (see "U.S. Carbon Sink"
- box).^{1,8,22,23,24} Other elements and compounds affect that balance by direct and indirect means (for 15
- example, nitrogen stimulates carbon uptake [direct] and nitrogen decreases the soil methane sink 16
- [indirect]). The net effect on Earth's energy balance from changes in major biogeochemical 17
- cycles (carbon, nitrogen, sulfur, and phosphorus) depends upon processes that directly affect 18 how the planet absorbs or reflects sunlight, as well as those that indirectly affect concentrations
- 19
- 20 of greenhouse gases in the atmosphere.

21 Carbon

- In addition to the CO₂ effects described above, other carbon-containing compounds affect 22
- climate change, such as methane and volatile organic compounds (VOCs). As the most abundant 23
- 24 non-CO₂ greenhouse gas, methane is 20 to 30 times more potent than CO₂ over a century
- 25 timescale. It accounted for 9% of all human-caused greenhouse gas emissions in the United
- States in 2011,⁹ and its atmospheric concentration today is more than twice that of pre-industrial 26
- times.^{25,26} Methane has an atmospheric lifetime of about 10 years before it is oxidized to CO₂, 27
- but it has about 25 times the global warming potential of CO₂ An increase in methane 28
- 29 concentration in the industrial era has contributed to warming in many ways.²⁷
- 30 Methane also has direct and indirect effects on climate because of its influences on atmospheric
- 31 chemistry. Increases in atmospheric methane and VOCs are expected to deplete concentrations
- of hydroxyl radicals, causing methane to persist in the atmosphere and exert its warming effect 32
- for longer periods.^{26,28} The hydroxyl radical is the most important "cleaning agent" of the 33
- troposphere (the active weather layer extending up to about 5 to 10 miles above the ground), 34
- 35 where it is formed by a complex series of reactions involving ozone and ultraviolet light.⁴


36 **Nitrogen and Phosphorus**

- The climate effects of an altered nitrogen cycle are substantial and complex.^{5,29,30,31,32} Carbon 37
- dioxide, methane, and nitrous oxide contribute most of the human-caused increase in climate 38
- 39 forcing, and the nitrogen cycle affects atmospheric concentrations of all three gases. Nitrogen
- 40 cycling processes regulate ozone (O_3) concentrations in the troposphere and stratosphere, and
- 41 produce atmospheric aerosols, all of which have additional direct effects on climate. Excess

- reactive nitrogen also has multiple indirect effects that simultaneously amplify and mitigate 1
- 2 changes in climate. Changes in ozone and organic aerosols are short-lived, whereas changes in
- 3 carbon dioxide and nitrous oxide have persistent impacts on the atmosphere.
- The strongest direct effect of an altered nitrogen cycle is through emissions of nitrous oxide 4
- (N_2O) , a long-lived and potent greenhouse gas that is increasing steadily in the atmosphere.^{26,27} 5
- Globally, agriculture has accounted for most of the atmospheric rise in N₂O.^{33,34} Roughly 60% of 6
- agricultural N₂O derives from elevated soil emissions resulting from the use of nitrogen 7
- 8 fertilizer. Animal waste treatment accounts for about 30%, and the remaining 10% comes from
- crop-residue burning.³⁵ The U.S. reflects this global trend: around 75% to 80% of U.S. human-9
- caused N₂O emissions are due to agricultural activities, with the majority being emissions from 10
- fertilized soil. The remaining 20% is derived from a variety of industrial and energy sectors.^{36,37} 11
- While N₂O currently accounts for about 6% of human-caused warming,²⁷ its long lifetime in the 12
- atmosphere and rising concentrations will increase N₂O-based climate forcing over a 100-year 13
- time scale.^{34,38,39} 14
- 15 Excess reactive nitrogen indirectly exacerbates changes in climate by several mechanisms.
- Emissions of nitrogen oxides (NO_x) increase the production of tropospheric ozone, which is a 16
- greenhouse gas.⁴⁰ Elevated tropospheric ozone may reduce CO_2 uptake by plants and thereby 17
- reduce the terrestrial CO_2 sink.⁴¹ Nitrogen deposition to ecosystems can also stimulate the release 18
- of nitrous oxide and methane and decrease methane uptake by soil microbes.⁴² 19
- 20 However, excess reactive nitrogen also mitigates changes in greenhouse gas concentrations and
- 21 climate through several intersecting pathways. Over short time scales, NO_x and ammonia
- emissions lead to the formation of atmospheric aerosols, which cool the climate by scattering or 22
- absorbing incoming radiation and by affecting cloud cover.^{27,43} In addition, the presence of NO_x 23
- in the lower atmosphere increases the formation of sulfate and organic aerosols.⁴⁴ At longer time 24
- 25 scales, NO_x can increase rates of methane oxidation, thereby reducing the lifetime of this
- 26 important greenhouse gas.
- 27 One of the dominant effects of reactive nitrogen on climate stems from how it interacts with
- 28 ecosystem carbon capture and storage, and thus, the carbon sink. As mentioned previously,
- 29 addition of reactive nitrogen to natural ecosystems can increase carbon storage as long as other
- factors are not limiting plant growth, such as water and nutrient availability.⁴⁵ Nitrogen 30
- 31 deposition from human sources is estimated to contribute to a global net carbon sink in land
- 32 ecosystems of 917 to 1,830 million metric tons (1,010 to 2,020 million tons) of CO₂ per year.
- 33 These are model-based estimates, as comprehensive, observationally-based estimates at large
- 34 spatial scales are hindered by the limited number of field experiments. This net land sink
- 35 represents two components: 1) an increase in vegetation growth as nitrogen limitation is
- 36 alleviated by human-caused nitrogen deposition, and 2) a contribution from the influence of
- 37 increased reactive nitrogen availability on decomposition. While the former generally increases
- 38 with increased reactive nitrogen, the net effect on decomposition in soils is not clear. The net effect on total ecosystem carbon storage was an average of 37 metric tons (41 tons) of carbon
- 39 40

stored per metric ton of nitrogen added in forests in the U.S. and Europe.⁴⁶

- 1 When all direct and indirect links between reactive nitrogen and climate in the U.S. are added up,
- 2 a recent estimate suggests a modest reduction in the rate of warming in the near term (next
- 3 several decades), but a progressive switch to greater net warming over a 100-year timescale.^{29,30}
- 4 That switch is due to a reduction in nitrogen oxide (NO_x) emissions, which provide modest
- 5 cooling effects, a reduction in the nitrogen-stimulated CO_2 storage in forests, and a rising
- 6 importance of agricultural nitrous oxide emissions. Current policies tend to reinforce this switch.
 7 For example, policies that reduce nitrogen oxide and sulfur oxide emissions have large public
- Pol example, policies that reduce introgen oxide and surful oxide emissions have large public
 health benefits, but also reduce the indirect climate mitigation co-benefits by reducing carbon
- storage and aerosol formation.
- 10 Changes in the phosphorus cycle have no direct effects on climate, but phosphorus availability
- 11 constrains plant and microbial activity in a wide variety of land- and water-based ecosystems.^{47,48}
- 12 Changes in phosphorus availability due to human activity can therefore have indirect impacts on
- 13 climate and the emissions of greenhouse gases in a variety of ways. For example, in land-based
- 14 ecosystems, phosphorus availability can limit both CO_2 storage and decomposition^{47,49} as well as
- 15 the rate of nitrogen accumulation.⁵⁰ In turn, higher nitrogen inputs can alter phosphorus cycling
- 16 via changes in the production and activity of enzymes that release phosphorus from decaying
- 17 organic matter,⁵¹ creating another mechanism by which rising nitrogen inputs can stimulate
- 18 carbon uptake.
- 19

Nitrogen Emissions

1

2 **Figure 15.3:** Nitrogen Emissions

Caption: Figure shows how climate change will affect U.S. reactive nitrogen emissions, in Teragrams (Tg) CO₂ equivalent, on a 20-year (top) and 100-year (bottom) global temperature potential basis. Positive values on the vertical axis depict warming; negative values reflect cooling. The height of the bar denotes the range of uncertainty, and the white line denotes the best estimate. The relative contribution of combustion (dark brown) and agriculture (green) is denoted by the color shading. (Figure source: adapted from Pinder et al. 2012^{29}).

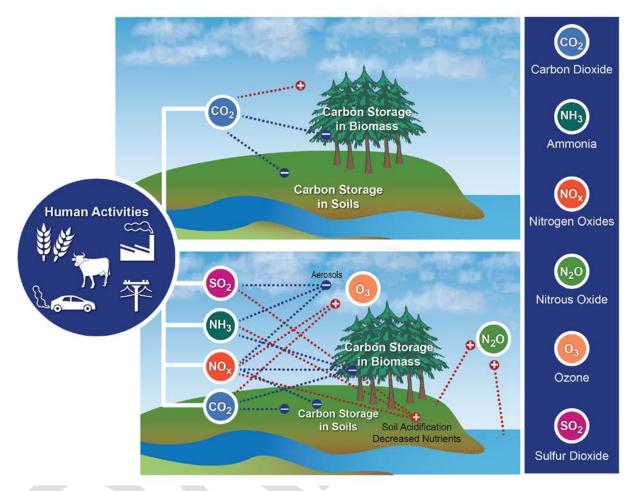
10 **Other Effects: Sulfate Aerosols**

11 In addition to the aerosol effects from nitrogen mentioned above, there are both direct and

12 indirect effects on climate from other aerosol sources. Components of the sulfur cycle exert a

13 cooling effect, through the formation of sulfate aerosols created from the oxidation of sulfur

14 dioxide (SO_2) emissions.²⁷ In the U.S., the dominant source of sulfur dioxide is coal combustion.


15 Sulfur dioxide emissions rose until 1980, but have since decreased by more than 50% following

- 16 a series of air-quality regulations and incentives focused on improving human health and the
- 17 environment, as well as reductions in the delivered price of low-sulfur coal.⁵² That decrease in
- 18 emissions has had a marked effect on U.S. climate forcing: between 1970 and 1990, sulfate
- 19 aerosols caused cooling, primarily over the eastern U.S., but since 1990, further reductions in

- 1 sulfur dioxide emissions have reduced the cooling effect of sulfate aerosols by half or more.⁴³
- 2 Continued declines in sulfate aerosol cooling are projected for the future,⁴³ particularly if coal
- 3 continues to be replaced by natural gas (which contains far fewer sulfur impurities) for electricity
- 4 generation. Here, as with nitrogen oxide emissions, the environmental and socioeconomic trade-
- 5 offs are important to recognize: lower sulfur dioxide and nitrogen oxide emissions remove some
- 6 climate cooling agents, but improve ecosystem health and save lives.^{17,32,53}
- 7 Three low-concentration industrial gases are particularly potent for trapping heat: nitrogen
- 8 trifluoride (NF₃), sulfur hexafluoride (SF₆), and trifluoromethyl sulfur pentafluoride (SF₅CF₃).
- 9 None currently makes a major contribution to climate forcing, but since their emissions are
- 10 increasing and their effects last for millennia, continued monitoring is important.

11 Impacts and Options

- 12 Altered biogeochemical cycles together with climate change increase the vulnerability of
- 13 biodiversity, food security, human health, and water quality to changing climate. However,
- 14 natural and managed shifts in major biogeochemical cycles can help limit rates of climate
- 15 change.
- 16 Climate change alters key aspects of biogeochemical cycling, creating the potential for feedbacks
- 17 that alter both warming and cooling processes into the future. For example, as soils warm, the
- 18 rate of decomposition will increase, adding more CO₂ to the atmosphere. In addition, both
- 19 climate and biogeochemistry interact strongly with environmental and ecological concerns, such
- 20 as biodiversity loss, freshwater and marine eutrophication (unintended fertilization of aquatic
- 21 ecosystems that leads to water quality problems), air pollution, human health, food security, and
- 22 water resources. Many of the latter connections are addressed in other sections of this
- assessment, but we summarize some of them here because consideration of mitigation and
- 24 adaptation options for changes in climate and biogeochemistry often requires this broader
- context.
- 26

1 BOX 1. Many Factors Combine to Affect Biogeochemical Cycles

2

3 **Figure 15.4**

Caption: Top panel shows the impact of the alteration of the carbon cycle alone on 4 5 radiative forcing. The bottom panel shows the impacts of the alteration of carbon, nitrogen, and sulfur cycles on radiative forcing. SO₂ and NH₃ increase aerosols and 6 7 decrease radiative forcing. NH₃ is likely to increase plant biomass, and consequently decrease forcing. NO_x is likely to increase the formation of tropospheric ozone (O₃) and 8 increase radiative forcing. Ozone has a negative effect on plant growth/biomass, which 9 10 might increase radiative forcing. CO₂ and NH₃ act synergistically to increase plant growth, and therefore decrease radiative forcing. SO₂ is likely to reduce plant growth, 11 perhaps through the leaching of soil nutrients, and consequently increase radiative 12 13 forcing. NO_x is likely to reduce plant growth directly and through the leaching of soil nutrients, therefore increasing radiative forcing. However, it could act as a fertilizer that 14 would have the opposite effect. 15

16 --End box --

1 Climate-Biogeochemistry Feedbacks

- 2 Both rising temperatures and changes in water availability can alter climate-relevant
- 3 biogeochemical processes. For example, as summarized above, nitrogen deposition drives
- 4 temperate forest carbon storage both by increasing plant growth and by slowing organic-matter
- 5 decomposition.⁵⁴ Higher temperatures will counteract soil carbon storage by increasing
- 6 decomposition rates and subsequent emission of CO₂ via microbial respiration. However, that
- 7 same increase in decomposition accelerates the release of reactive nitrogen (and phosphorus)
- 8 from organic matter, which in turn can fuel additional plant growth.⁴⁵ Temperature also has
- 9 direct effects on net primary productivity (the total amount of CO₂ stored by a plant through
- 10 photosynthesis minus the amount released through respiration). The combined effects on
- 11 ecosystem carbon storage will depend on the extent to which nutrients constrain both net primary
- 12 productivity and decomposition, on the extent of warming, and on whether any simultaneous
- 13 changes in water availability occur.⁵⁵
- 14 Similarly, natural methane sources are sensitive to variations in climate; ice core records show a
- 15 strong correlation between methane concentrations and warmer, wetter conditions.⁵⁶ Thawing
- 16 permafrost in polar regions is of particular concern because it stores large amounts of methane
- 17 that could potentially be released to the atmosphere.

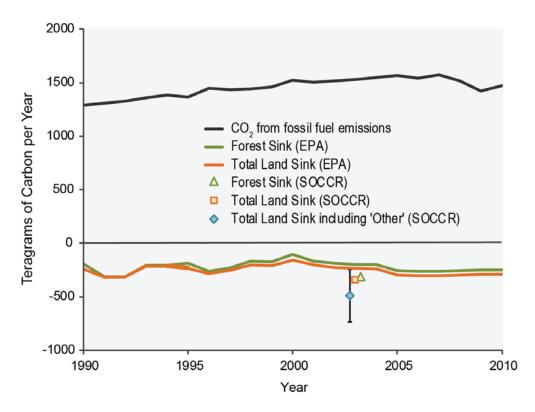
18 Biogeochemistry, Climate, and Interactions with Other Factors

- 19 Societal options for addressing links between climate and biogeochemical cycles must often be
- 20 informed by connections to a broader context of global environmental changes. For example,
- 21 both climate change and nitrogen deposition can reduce biodiversity in water- and land-based
- 22 ecosystems. The greatest combined risks are expected to occur where critical loads are
- 23 exceeded.^{57,58} A critical load is defined as the input rate of a pollutant below which no
- 24 detrimental ecological effects occur over the long-term according to present knowledge.⁵⁸
- 25 Although biodiversity is often shown to decline when nitrogen deposition is high due to fossil
- 26 fuel combustion and agricultural emissions,^{58,59} the compounding effects of multiple stressors are
- 27 difficult to predict. Warming and changes in water availability have been shown to interact with
- nitrogen in additive or synergistic ways to exacerbate biodiversity loss.⁶⁰ Unfortunately, very few
- 29 multi-factorial studies have been done to address this gap.
- 30 Human induced acceleration of the nitrogen and phosphorus cycles already causes widespread
- 31 freshwater and marine eutrophication, 61,62 a problem that is expected to worsen under a warming
- 32 climate.^{62,63} Without efforts to reduce future climate change and to slow the acceleration of
- 33 biogeochemical cycles, existing climate changes will combine with increasing inputs of nitrogen
- 34 and phosphorus into freshwater and estuarine ecosystems. This combination of changes is
- 35 projected to have substantial negative effects on water quality, human health, inland and coastal
- 36 fisheries, and greenhouse gas emissions.^{19,62}
- 37 Similar concerns and opportunities for the simultaneous reduction of multiple environmental
- 38 problems (known as "co-benefits") exist in the realms of air pollution, human health, and food
- 39 security. For example, methane, volatile organic compounds, and nitrogen oxide emissions all
- 40 contribute to the formation of tropospheric ozone, which is a greenhouse gas and has negative
- 41 consequences for human health and crop and forest productivity.^{38,64,65} Rates of ozone formation
- 42 are accelerated by higher temperatures, creating a reinforcing cycle between rising temperatures

- and continued human alteration of the nitrogen and carbon cycles.⁶⁶ Rising temperatures also 1
- work against some of the benefits of air pollution control.⁶⁵ Some changes will trade gains in one 2
- arena for declines in others. For example, lowered NO_x, NH_x, and SO_x emissions remove cooling 3
- agents from the atmosphere, but improve air quality. 17,32 Recent analyses suggest that targeting 4
- 5 reductions in compounds like methane and black carbon aerosols that have both climate and air-
- 6 pollution consequences can achieve significant improvements in not only the rate of climate change, but also in human health.³² Finally, reductions in excess nitrogen and phosphorus from 7
- 8 agricultural and industrial activities can potentially reduce the rate and impacts of climate
- change, while simultaneously addressing concerns in biodiversity, water quality, food security, 9
- and human health.⁶⁷ 10

11 **BOX 2. Estimating the U.S. Carbon Sink**

- 12 Any natural or engineered process that temporarily or permanently removes and stores carbon
- 13 dioxide (CO₂) from the atmosphere is considered a carbon "sink." Temporary (10 to 100 years)
- 14 CO_2 sinks at the global scale include absorption by plants as they photosynthesize, as well as
- CO₂ dissolution into the ocean. Forest biomass and soils in North America offer large temporary 15
- 16 carbon sinks in the global carbon budget; however, the spatial distribution, longevity, and
- mechanisms controlling these sinks are less certain.⁶⁸ Understanding these processes is critical 17
- 18 for predicting how ecosystem carbon sinks will change in the future, and potentially for
- 19 managing the carbon sink as a mitigation strategy for climate change.
- 20 Both inventory (measurement) and modeling techniques have been used to estimate land-based
- 21 carbon sinks at a range of scales in both time and space. For inventory methods, carbon stocks
- are measured at a location at two points in time, and the amount of carbon stored or lost can be 22
- 23 estimated over the intervening time period. This method is widely used to estimate the amount of
- 24 carbon stored in forests in the United States over timescales of years to decades. Terrestrial
- 25 biosphere models estimate carbon sinks by modeling a suite of processes that control carbon
- 26 cycling dynamics, such as photosynthesis (CO₂ uptake by plants) and respiration (CO₂ release by
- 27 plants, animals, and microorganisms in soil and water). Field-based data and/or remotely sensed
- 28 data are used as inputs, and also to validate these models. Estimates of the land-based carbon
- sink can vary depending on the data inputs and how different processes are modeled.²³ 29
- 30 Atmospheric inverse models use information about atmospheric CO₂ concentrations and
- atmospheric transport (like air currents) to estimate the terrestrial carbon sink.⁶⁹ This approach 31
- 32 can provide detailed information about carbon sinks over time. However, because atmospheric
- 33 CO_2 is well-mixed and monitoring sites are widely dispersed, these models estimate fluxes over
- large areas and it is difficult to identify processes responsible for the sink from these data.²³ 34
- 35 Recent estimates using atmospheric inverse models show that global land and ocean carbon sinks
- are stable or even increasing globally. 70 36
- 37 The U.S. Environmental Protection Agency (EPA) conducts an annual inventory of U.S.
- greenhouse gas emissions and sinks as part of the nation's commitments under the Framework 38
- 39 Convention on Climate Change. Estimates are based on inventory studies and models validated
- 40 with field-based data (such as the CENTURY model) in accordance with the Intergovernmental
- Panel on Climate Change best practices.⁷¹ An additional comprehensive assessment, The First 41
- State of the Carbon Cycle Report (SOCCR), provides estimates for carbon sources and sinks in 42
- the U.S. and North America around 2003.⁶⁸ This assessment also utilized inventory and field-43

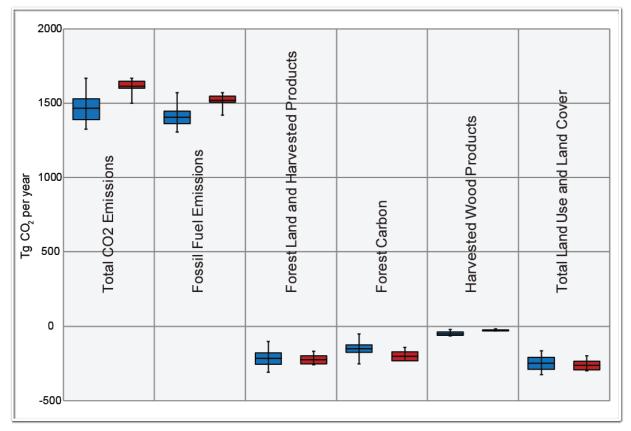

- 1 based terrestrial biosphere models, and incorporated additional land sinks not explicitly included
- 2 in EPA assessments.
- 3 Data from these assessments suggest that the U.S. carbon sink has been variable over the last two
- 4 decades, but still absorbs and stores a small fraction of CO₂ emissions. The forest sink comprises
- 5 the largest fraction of the total land sink in the U.S., annually absorbing 7% to 24% (with a best
- 6 estimate of 16%) of fossil fuel CO_2 emissions during the last two decades. Because the U.S.
- 7 Forest Service has conducted detailed forest carbon inventory studies, the uncertainty
- 8 surrounding the estimate for the forest sink is lower than for most other components (see Pacala
- 9 et al. 2007, Table 2^{24}). The role of lakes, reservoirs, and rivers in the carbon budget, in particular,
- 10 has been difficult to quantify and is rarely included in national budgets.⁷² The IPCC guidelines 11 for estimating greenhouse gas sources or sinks from lakes, reservoirs, or rivers are included in
- 11 The "wetlands" category, but only for lands converted to wetlands. These ecosystems are not
- 13 included in the Environmental Protection Agency's estimates of the total land sink. Rivers and
- 14 reservoirs were estimated to be a sink in the State of the Carbon Cycle analysis,²⁴ but recent
- 15 studies suggest that inland waters may actually be an important source of CO_2 to the
- 16 atmosphere.⁷³ It is important to note that these two methods use different datasets, different
- 17 models, and different methodologies to estimate land-based carbon sinks in the United States. In
- 18 particular, we note that the EPA Inventory, consistent with IPCC Guidelines for national
- 19 inventories, includes only carbon sinks designated as human-caused, while the SOCCR analysis
- 20 does not make this distinction.

	C sink (Tg C/y)	
Land Area	(95% CI)	Method
Forest	-256 (+/- 50%)	inventory, modeled
Wood products	-57 (+/- 50%)	inventory
Woody encroachment	-120 (+/->100%)	inventory
Agricultural soils	-8 (+/- 50%)	modeled
Wetlands	-23 (+/->100%)	inventory
Rivers and reservoirs	-25 (+/- 100%)	inventory
Net Land Sink	-489 (+/- 50%)	inventory

21

22 **Table 15.1:** Ecosystem Carbon Sinks

Caption: Carbon (C) sinks and uncertainty estimated by Pacala et al. for the first State of
 the Carbon Cycle Report.²⁴ Forests take up the highest percentage of carbon of all land based carbon sinks. Due to a number of factors, there are high degrees of uncertainty in
 carbon sink estimates.



U.S. Carbon Sinks Absorb a Fraction of CO2 Emissions

1 2

Figure 15.5: U.S. Carbon Sinks Absorb a Fraction of CO₂ Emissions

Caption: Figure shows growth in fossil fuel CO₂ emissions (black line) and forest and
total land carbon sinks in the U.S. from 1990–2010 (green and orange lines; EPA 2012)
and for 2003 (symbols) from the first State of the Carbon Cycle Report (2007). Carbon
emissions are significantly higher than the total land sink's capacity to absorb and store
them. (Data from EPA 2012 and CCSP 2007^{22,68}).

U.S. Carbon Sources and Sinks from 1991 to 2000 and 2001 to 2010

1

2 Figure 15.6: U.S. Carbon Sources and Sinks from 1991 to 2000 and 2001 to 2010

Caption: Changes in CO₂ emissions and land-based sinks in two recent decades,
 showing among-year variation (lines: minimum and maximum estimates among years;
 boxes: 25th and 75th quartiles; horizontal line: median). Total CO₂ emissions, as well as
 total CO₂ emissions from fossil fuels, have risen; land-based carbon sinks have increased
 slightly, but at a much slower pace. (Data from EPA 2012 and CCSP 2007^{22,68}).

8 -- end box --

1

Traceable Accounts

2 Chapter 15: Biogeochemical Cycles

Key Message Process: The key messages and supporting text summarize extensive evidence documented in two technical input reports submitted to the NCA: 1) a foundational report supported by the Departments of Energy and Agriculture: *Biogeochemical cycles and biogenic greenhouse gases from North American terrestrial ecosystems: A Technical Input Report for the National Climate Assessment*,³¹ and 2) an external report: *The role of nitrogen in climate change and the impacts of nitrogen-climate interactions on terrestrial and aquatic ecosystems, agriculture, and human health in the United States: a Technical Report submitted to the U.S. National Climate Assessment.*⁵ The latter report was supported by the International Nitrogen Initiative, a National Science Foundation grant, and the David and Lucille Packard Foundation.

11 Author meetings and workshops were held regularly for the foundational report,³¹ including a workshop at the 2011

12 Soil Science Society of America meeting. A workshop held in July 2011 at the USGS John Wesley Powell Center

13 for Analysis and Synthesis in Fort Collins, CO, focused on climate-nitrogen actions and was summarized in the

second primary source.⁵ An additional 15 technical input reports on various topics were also received and reviewed

15 as part of the Federal Register Notice solicitation for public input.

16 The entire author team for this chapter conducted its deliberations by teleconference from April to June, 2012, with

17 three major meetings resulting in an outline and a set of key messages. The team came to expert consensus on all of

18 the key messages based on their reading of the technical inputs, other published literature, and professional

19 judgment. Several original key messages were later combined into a broader set of statements while retaining most

20 of the original content of the chapter. Major revisions to the key messages, chapter, and these traceable accounts

21 were approved by authors; further minor revisions were consistent with the messages intended by the authors.

Key message #1/3	Human activities have increased atmospheric carbon dioxide by about 40% over pre-industrial levels and more than doubled the amount of nitrogen available to ecosystems. Similar trends have been observed for phosphorus and other elements, and these changes have major consequences for biogeochemical cycles and climate change.		
Description of	The author team evaluated technical input reports (17) on biogeochemical cycles, including the two primary sources. ^{5,32} In particular, one report ⁵ focused on changes in the nitrogen cycle and was comprehensive. Original literature was consulted for changes in other biogeochemical cycles. The foundational report ³¹ updated several aspects of our understanding of the carbon balance in the United States.		
evidence base	Publications have shown that human activities have altered biogeochemical cycles. A seminal paper comparing increases in the global fluxes of carbon (C), nitrogen (N), sulfur (S), and phosphorous (P) was published in 2000 ³ and was recently updated. ⁴ Changes observed in the nitrogen cycle ^{1,18,19} show anthropogenic sources to be far greater than natural ones. ^{15,37,48} For phosphorus, the effect of added phosphorus on plants and microbes is well understood. ^{20,47,48} Extensive research shows that increases in CO ₂ are the strongest human impact forcing climate change, mainly because the concentration of CO ₂ is so much greater than that of other greenhouse gases. ^{36,8}		

22

New information and remaining uncertainties	The sources of C, N, and P are from well-documented processes, such as fossil-fuel burning and fertilizer production and application. The flux from some processes is well known, while others have significant remaining uncertainties.
	Some new work has synthesized the assessment of global and national CO ₂ emissions, ⁸ and categorized the major CO ₂ sources and sinks. ^{5,31} Annual updates of

	CO_2 emissions and sink inventories are done by the EPA (e.g., ⁹). Advances in the knowledge of the nitrogen cycle have quantified that human- caused reactive nitrogen inputs are now at least five times greater than natural inputs. ^{5,14,15}	
Assessment of confidence based on evidence	High confidence. Evidence for human inputs of C, N, and P come from academic, government, and industry sources. The data show substantial agreement. The likelihood of continued dominance of CO ₂ over other greenhouse gases as a	
	driver of global climate change is also judged to be high , because its concentration is an order of magnitude higher and its rate of change is well known.	

1

CONFIDENCE LEVEL			
Very High	High	Medium	Low
Strong evidence (established theory, multiple sources, consistent results, well documented and accepted methods, etc.), high consensus	Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus	Suggestive evidence (a few sources, limited consistency, models incomplete, methods emerging, etc.), competing schools of thought	Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor documentation and/or methods not tested, etc.), disagreement or lack of opinions among experts

2

1 Chapter 15: Biogeochemical Cycles

2 **Key Message Process:** See key message #1.

Key message #2/3	In total, land in the U.S. absorbs CO ₂ equivalent to approximately 17% of annual U.S. fossil fuel emissions. U.S. forests and associated wood products account for most of this land sink, absorbing 7% to 24% of annual U.S. fossil fuel emissions, with a best estimate of 16%. The effect of this carbon "storage" partially offsets warming from emissions of CO ₂ and other greenhouse gases.
Description of evidence base	The author team evaluated technical input reports (17) on biogeochemical cycles, including the two primary sources. ^{5,31} The "U.S. Carbon Sink" box relies on multiple sources of data that are described therein.
	Numerous studies of the North American and U.S. carbon sink have been published in reports and the scientific literature. Estimates of the percentage of fossil-fuel CO ₂ emissions that are captured by forest, cropland, and other lands vary from a low of 7% to a high of about 24%, when the carbon storage is estimated from carbon inventories. ^{8,23,37} The forest sink has persisted in the U.S. as forests that were previously cut have regrown. Further studies show that carbon uptake can be increased to some extent by a fertilization effect with reactive nitrogen ^{45,46} and phosphorus, ^{47,48,49} both nutrients that can limit the rate of photosynthesis. The carbon sink due to nitrogen fertilization is projected to lessen in the future as controls on nitrogen emissions come into play. ²⁹
	While carbon uptake by ecosystems has a net cooling effect, trace gases emitted by ecosystems have a warming effect that can offset the cooling effect of the carbon sink. ²⁷ The most important of these gases are methane and nitrous oxide (N ₂ O), the concentrations of which are projected to rise. ^{26,27,34,38,39}
New information and remaining uncertainties	The carbon sink estimates have very wide margins of error. The percent of U.S. CO_2 emissions that are stored in ecosystems depends on which years are used for emissions and whether inventories, ecosystem process models, atmospheric inverse models, or some combination of these techniques are used to estimate the sink size (see "Box 1: The U.S. Carbon Sink"). The inventories are continually updated (for example, ⁹), but there is a lack of congruence on which of the three techniques is most reliable. A recent paper that uses atmospheric inverse modeling suggests that the global land and ocean carbon sinks are stable or increasing. ⁷⁰
	While known to be significant, continental-scale fluxes and sources of the greenhouse gases N_2O and CH_4 are based on limited data and are potentially subject to revision. Recent syntheses ²⁹ evaluate the dynamics of these two important gases and project future changes. Uncertainties remain high.
Assessment of confidence based on evidence	We have very high confidence that the value of the forest carbon sink lies within the range given, 7% to 24% (with a best estimate of 16%) of annual U.S. greenhouse gas emissions. There is wide acceptance that forests and soils store carbon in North America, and that they will continue to do so into the near future. The exact value of the sink strength is very poorly constrained, however, and knowledge of the projected future sink is low. As forests age, their capacity to store carbon in living biomass will necessarily decrease, ¹¹ but if other, unknown sinks are dominant, ecosystems may continue to be a carbon sink.
	We have high confidence that the combination of ecosystem carbon storage of human-caused greenhouse gas emissions and potential warming from other trace gases emitted by ecosystems will ultimately result in a net warming effect. This is

based primarily on one recent synthesis,²⁹ which provides ranges for multiple factors and describes the effects of propagating uncertainties. However, the exact amount of warming or cooling produced by various gases is not yet well known, because of the interactions of multiple factors.

1

CONFIDENCE LEVEL			
Very High	High	Medium	Low
Strong evidence (established theory, multiple sources, consistent results, well documented and accepted methods, etc.), high consensus	Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus	Suggestive evidence (a few sources, limited consistency, models incomplete, methods emerging, etc.), competing schools of thought	Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor documentation and/or methods not tested, etc.), disagreement or lack of opinions among experts

2

1 Chapter 15: Biogeochemical Cycles

2 **Key Message Process:** See key message #1.

Altered biogeochemical cycles together with climate change increase the vulnerability of biodiversity, food security, human health, and water quality to changing climate. However, natural and managed shifts in major biogeochemical cycles can help limit rates of climate change.
The author team evaluated technical input reports (17) on biogeochemical cycles, including the two primary sources. ^{5,31}
The climate–biogeochemical cycle link has been demonstrated through numerous studies on the effects of reactive nitrogen and phosphorus on forest carbon uptake and storage, and decomposition of organic matter; ^{45,54} temperature effects on ecosystem productivity; ⁵⁵ and sensitivity of natural methane emissions to climate variation. ⁵⁶
Where the nitrogen and phosphorus cycles are concerned, a number of publications have reported effects of excess loading on ecosystem processes ^{61,62} and have projected these effects to worsen. ^{62,63} Additionally, studies have reported the potential for future climate change and increasing nitrogen and phosphorus loadings to have an additive effect and the need for remediation. ^{19,62} The literature suggests that co-benefits are possible from addressing the environmental concerns of both nutrient loading and climate change. ^{5,32,65,66,67}
Scientists are still investigating the impact of nitrogen deposition on carbon uptake, and of sulfur and nitrogen aerosols on radiative forcing.
Recent work has shown that more than just climate change aspects can benefit from addressing multiple environmental concerns (air/water quality, biodiversity, food security, human health, etc.)
High . We have a high degree of confidence that climate change will affect
biogeochemical cycles through its effects on ecosystem structure and function (species composition and productivity). Similarly, there is high confidence that
altered biogeochemical cycles will affect climate change, as for example in the increased rates of carbon storage in forests and soils that often accompany excess nitrogen deposition.

3

CONFIDENCE LEVEL			
Very High	High	Medium	Low
Strong evidence (established theory, multiple sources, consistent results, well documented and accepted methods, etc.), high consensus	Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus	Suggestive evidence (a few sources, limited consistency, models incomplete, methods emerging, etc.), competing schools of thought	Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor documentation and/or methods not tested, etc.), disagreement or lack of opinions among experts

4

1 **References**

- Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P.
 Seitzinger, and M. A. Sutton, 2008: Transformation of the nitrogen cycle: recent trends, questions, and
 potential solutions. *Science*, **320**, 889-892, doi:10.1126/science.1136674
- Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and
 D. G. Tilman, 1997: Human alteration of the global nitrogen cycle: Sources and consequences. *Ecological Applications*, **7**, 737-750, doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
- 8 3. Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S.
 9 Linder, F. T. Mackenzie, B. Moore, III, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, and W. Steffen,
 10 2000: The global carbon cycle: a test of our knowledge of earth as a system. *Science*, 290, 291-296,
 11 doi:10.1126/science.290.5490.291 [Available online at <Go to ISI>://000089818100034]
- Schlesinger, W. H., and E. S. Bernhardt, 2013: *Biogeochemistry: An Analysis of Global Change, 3rd Edition.* Academic Press, 672 pp
- Suddick, E. C., and E. A. Davidson, Eds., 2012: The role of nitrogen in climate change and the impacts of nitrogen-climate interactions on terrestrial and aquatic ecosystems, agriculture, and human health in the United States: a technical report submitted to the US National Climate Assessment. North American Nitrogen
 Center of the International Nitrogen Initiative (NANC-INI), Woods Hole Research Center
- IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z.
 Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. Cambridge University Press, 996 pp.
 [Available online at
- http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_p
 hysical_science_basis.htm]
- Shannon, J. D., 1999: Regional trends in wet deposition of sulfate in the United States and SO2 emissions
 from 1980 through 1995. *Atmospheric Environment*, **33**, 807-816, doi:10.1016/S1352-2310(98)00143-5;
- 26
 Stern, D. I., 2005: Global sulfur emissions from 1850 to 2000. Chemosphere, 58, 163-175,

 27
 doi:10.1016/j.chemosphere.2004.08.022
- King, A. W., D. J. Hayes, D. N. Huntzinger, O. Tristram, T. O. West, and W. M. Post, 2012: North America carbon dioxide sources and sinks: Magnitude, attribution, and uncertainty. *Frontiers in Ecology and the Environment*, **10**, 512-519, doi:10.1890/120066
- EPA, 2013: Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2011. U.S. Environmental Protection
 Agency, Washington, D.C. [Available online at
 http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2013-Main-Text.pdf]
- IEA, 2012: CO2 Emissions from Fuel Combustion: Highlights, 138 pp., International Energy Agency, Paris.
 [Available online at <u>http://www.iea.org/co2highlights/co2highlights.pdf</u>]
- Woodbury, P. B. S., James E.; Heath, Linda S., 2007: Carbon sequestration in the US forest sector from 1990 to
 2010. Forest Ecology and Management, 241, 14-27, doi:10.1016/j.foreco.2006.12.008
- Williams, C. A., G. J. Collatz, J. Masek, and S. N. Goward, 2012: Carbon consequences of forest disturbance
 and recovery across the conterminous United States. *Global Biogeochemical Cycles*, 26, GB1005,
 doi:10.1029/2010gb003947
- 41 13. USGS, 2010: Nitrogen (fixed)-ammonia statistics *Historical Statistics for Mineral and Material Commodities in the United States. U.S. Geological Survey Data Series 140*, U.S. Geological Survey, 1-2. [Available online at
 43 http://minerals.usgs.gov/ds/2005/140/ds140-nitro.pdf]

- 14. EPA, 2011: Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequence, and
 Management Options. A Report of the EPA Science Advisory Board. (EPA-SAB-11-013), 172 pp., U.S.
 Environmental Protection Agency,, Washington, D.C. [Available online at
 http://yosemite.epa.gov/sab/sabproduct.nsf/WebBOARD/INCSupplemental?OpenDocument]
- Houlton, B. Z., E. Boyer, A. Finzi, J. Galloway, A. Leach, D. Liptzin, J. Melillo, T. S. Rosenstock, D. Sobota, and A.
 R. Townsend, 2013: Intentional versus unintentional nitrogen use in the United States: trends, efficiency and
 implications. *Biogeochemistry*, **114**, 11-23, doi:10.1007/s10533-012-9801-5. [Available online at
 http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9801-5.pdf]
- 9
 16. Sobota, D. J., J. E. Compton, and J. A. Harrison, 2013: Reactive nitrogen inputs to US lands and waterways:
 10
 How certain are we about sources and fluxes? *Frontiers in Ecology and the Environment*, **11**, 82-90,
 11
 doi:10.1890/110216
- Suddick, E. C., P. Whitney, A. R. Townsend, and E. A. Davidson, 2013: The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: Foreword to thematic issue.
 Biogeochemistry, **114**, 1-10, doi:10.1007/s10533-012-9795-z. [Available online at http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9795-z.pdf]
- 16
 18. Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling, and B. J. Cosby, 2003:

 17
 The nitrogen cascade. *BioScience*, **53**, 341-356, doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.

 18
 [Available online at http://www.bioone.org/doi/pdf/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.

 19
 3568%282003%29053%5B0341%3ATNC%5D2.0.CO%3B2]
- Baron, J. S., E. K. Hall, B. T. Nolan, J. C. Finlay, E. S. Bernhardt, J. A. Harrison, F. Chan, and E. W. Boyer, 2013:
 The interactive effects of human-derived nitrogen loading and climate change on aquatic ecosystems of the
 United States. *Biogeochemistry*, **114**, 71-92, doi:10.1007/s10533-012-9788-y. [Available online at
 http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9788-y.pdf]
- 20. MacDonald, G. K., E. M. Bennett, P. A. Potter, and N. Ramankutty, 2011: Agronomic phosphorus imbalances
 across the world's croplands. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 3086-3091, doi:10.1073/pnas.1010808108. [Available online at
 http://www.pnas.org/content/108/7/3086.full.pdf];
- Smil, V., 2000: Phosphorus in the environment: Natural flows and human interferences. *Annual Review of Energy and the Environment*, **25**, 53-88, doi:10.1146/annurev.energy.25.1.53. [Available online at
 http://home.cc.umanitoba.ca/~vsmil/pdf_pubs/originalpdfs/aree2000-2.pdf]
- Likens, G. E., C. T. Driscoll, and D. C. Buso, 1996: Long-term effects of acid rain: Response and recovery of a
 forest ecosystem. *Science*, 272, 244-246, doi:10.1126/science.272.5259.244
- EPA, 2012: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010, 389 pp., U.S. Environmental
 Protection Agency, Washington, D.C. [Available online at
 http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2012-Annexes.pdf]
- 36 23. Hayes, D. J., D. P. Turner, G. Stinson, A. D. McGuire, Y. Wei, T. O. West, L. S. Heath, B. de Jong, B. G.
 37 McConkey, R. A. Birdsey, A. R. Jacobson, D. N. Huntzinger, Y. Pan, W. M. Post, and R. B. Cook, 2012:
 38 Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere
 39 models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory40 based data. *Global Change Biology*, 18, 1282-1299, doi:10.1111/j.1365-2486.2011.02627.x. [Available online
 41 at http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02627.x/pdf]
- Pacala, S., R. A. Birdsey, S. D. Bridgham, R. T. Conant, K. Davis, B. Hales, R. A. Houghton, J. C. Jenkins, M.
 Johnston, G. Marland, and K. Paustian, 2007: The North American carbon budget past and present. *The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle*, A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z. Rose,

1and T. J. Wilbanks, Eds., 29-170. [Available online at2http://nrs.fs.fed.us/pubs/jrnl/2007/nrs 2007 pacala 001.pdf]

- Sousquet, P., P. Ciais, J. B. Miller, E. J. Dlugokencky, D. A. Hauglustaine, C. Prigent, G. R. Van der Werf, P.
 Peylin, E. G. Brunke, C. Carouge, R. L. Langenfelds, J. Lathiere, F. Papa, M. Ramonet, M. Schmidt, L. P. Steele,
 S. C. Tyler, and J. White, 2006: Contribution of anthropogenic and natural sources to atmospheric methane
 variability. *Nature*, 443, 439-443, doi:10.1038/nature05132
- Montzka, S. A., E. J. Dlugokencky, and J. H. Butler, 2011: Non-CO₂ greenhouse gases and climate change.
 Nature, 476, 43-50, doi:10.1038/nature10322
- Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G.
 Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, 2007: Ch. 2: Changes in atmospheric
 constituents and in radiative forcing. *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change*, S.
 Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds., Cambridge
 University Press. [Available online at http://www.ipcc.ch/publications and data/ar4/wg1/en/ch2.html]
- Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, S.
 Reimann, P. Salameh, S. O'Doherty, R. H. J. Wang, L. W. Porter, B. R. Miller, and P. B. Krummel, 2005:
 Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. *Geophysical Research Letters*, 32, L07809, doi:10.1029/2004gl022228. [Available online at
 http://onlinelibrary.wiley.com/doi/10.1029/2004GL022228/pdf]
- Pinder, R., W. Schlesinger, G. Bonan, N. Bettez, T. Greaver, W. Wieder, and E. A. Davidson, 2012: Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. *The role of nitrogen in climate change and the impacts of nitrogen-climate interactions on terrestrial and aquatic ecosystems, agriculture, and human health in the United States: a technical report submitted to the US National Climate Assessment,* E. C.
 Suddick, and E. A. Davidson, Eds., North American Nitrogen Center of the International Nitrogen Initiative (NANC-INI), Woods Hole Research Center, 45-65. [Available online at http://www.whrc.org/resources/publications/pdf/SuddicketalWHRC.12.pdf]
- Pinder, R. W., N. D. Bettez, G. B. Bonan, T. L. Greaver, W. R. Wieder, W. H. Schlesinger, and E. A. Davidson,
 2013: Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. *Biogeochemistry*, 114,
 25-40, doi:10.1007/s10533-012-9787-z. [Available online at
 http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9787-z.pdf]
- Post, W. M., R. T. Venterea, M. A. Cavigelli, S. J. DelGrosso, F. A. Dijkstra, A. W. King, P. H. Templer, and H.
 Tian, 2012: Biogeochemical Cycles and Biogenic Greenhouse Gases from North American Terrestrial
 Ecosystems, 368 pp., Oak Ridge National Laboratory, Oak Ridge, TN. [Available online at
 info.ornl.gov/sites/publications/Files/Pub35286.docx]
- Shindell, D., J. C. I. Kuylenstierna, E. Vignati, R. van Dingenen, M. Amann, Z. Klimont, S. C. Anenberg, N.
 Muller, G. Janssens-Maenhout, F. Raes, J. Schwartz, G. Faluvegi, L. Pozzoli, K. Kupiainen, L. Hoglund-Isaksson,
 L. Emberson, D. Streets, V. Ramanathan, K. Hicks, N. T. K. Oanh, G. Milly, M. Williams, V. Demkine, and D.
 Fowler, 2012: Simultaneously mitigating near-term climate change and improving human health and food
 security. *Science*, **335**, 183-189, doi:10.1126/science.1210026
- 33. Matson, P. A., R. Naylor, and I. Ortiz-Monasterio, 1998: Ch. 5: Integration of environmental, agronomic, and
 economic aspects of fertilizer management. *Restoring Lands Coordinating Science, Politics and Action: Complexities of Climate and Governance*, H. A. Karl, L. Scarlett, J. C. Vargas-Moreno, and M. Flaxman, Eds.,
 Springer, 112-115
- Robertson, G. P., T. W. Bruulsema, R. J. Gehl, D. Kanter, D. L. Mauzerall, C. A. Rotz, and C. O. Williams, 2013:
 Nitrogen-climate interactions in US agriculture. *Biogeochemistry*, **114**, 41-70, doi:10.1007/s10533-012-9802(Available online at http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9802-4.pdf]

- Robertson, G. P., 2004: Abatement of nitrous oxide, methane, and the other non-CO₂ greenhouse gases: The need for a systems approach. *The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World*,
 C. B. Field, and M. R. Raupach, Eds., Island Press, 493-506
- 36. Cavigelli, M. A., S. J. D. Grosso, M. A. Liebig, C. S. Snyder, P. E. Fixen, R. T. Venterea, A. B. Leytem, J. E. McLain,
 and D. B. Watts, 2012: Agricultural N₂O emissions: context, status, and trajectory. *Technical Input Report for the National Climate Assessment: Biogeochemical cycles and biogenic greenhouse gases from North American terrestrial ecosystems*, Chapter 4
- 8 37. EPA, 2011: Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2009. U.S. Environmental Protection
 9 Agency, Washington, D.C.
- 10 38. Davidson, E. A., 2012: Representative concentration pathways and mitigation scenarios for nitrous oxide.
 11 *Environmental Research Letters*, 7, 1-7, doi:10.1088/1748-9326/7/2/024005. [Available online at http://iopscience.iop.org/1748-9326/7/2/024005/pdf/1748-9326/7/2/024005/pdf]
- Prinn, R. G., 2004: Non-CO₂ greenhouse gases. *The global carbon cycle*, C. B. Field, and M. R. Raupach, Eds.,
 Island Press, 205-216;
- Robertson, G. P., and P. M. Vitousek, 2009: Nitrogen in agriculture: Balancing the cost of an essential
 resource. *Annual Review of Environment and Resources*, **34**, 97-125,
 doi:10.1146/annurev.environ.032108.105046
- 18 40. Derwent, R., D. Stevenson, R. Doherty, W. Collins, M. Sanderson, and C. Johnson, 2008: Radiative forcing from surface NOx emissions: spatial and seasonal variations. *Climatic Change*, 88, 385-401, doi:10.1007/s10584-20
 20 007-9383-8. [Available online at http://dx.doi.org/10.1007/s10584-007-9383-8]
- Long, S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nosberger, and D. R. Ort, 2006: Food for thought: Lower-than expected crop yield stimulation with rising CO2 concentrations. *Science*, **312**, 1918-1921,
 doi:10.1126/science.1114722;
- Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford, 2007: Indirect radiative forcing of climate change
 through ozone effects on the land-carbon sink. *Nature*, 448, 791-794, doi:10.1038/nature06059. [Available
 online at http://www.clas.ufl.edu/users/rrusso/gly6932/Sitch_etal_Nature07.pdf]
- 42. Liu, L. L., and T. L. Greaver, 2009: A review of nitrogen enrichment effects on three biogenic GHGs: The CO₂
 sink may be largely offset by stimulated N₂O and CH₄ emission. *Ecology Letters*, **12**, 1103-1117,
 doi:10.1111/j.1461-0248.2009.01351.x. [Available online at
 http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2009.01351.x/pdf]
- 43. Leibensperger, E. M., L. J. Mickley, D. J. Jacob, W. T. Chen, J. H. Seinfeld, A. Nenes, P. J. Adams, D. G. Streets,
 N. Kumar, and D. Rind, 2012: Climatic effects of 1950-2050 changes in US anthropogenic aerosols Part 1:
 Aerosol trends and radiative forcing. *Atmospheric Chemistry and Physics*, **12**, 3333-3348, doi:10.5194/acp-123333-2012. [Available online at http://atmos-chem-phys.net/12/3333/2012/acp-12-3333-2012.pdf]
- Shindell, D., G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, and S. E. Bauer, 2009: Improved attribution of
 climate forcing to emissions. *Science*, **326**, 716-718, doi:10.1126/science.1174760. [Available online at
 http://saive.com/911/DOCS/AAAS-Aerosols-not-CO2-Cause-Global-Warming.pdf]
- Melillo, J. M., S. Butler, J. Johnson, J. Mohan, P. Steudler, H. Lux, E. Burrows, F. Bowles, R. Smith, L. Scott, C.
 Vario, T. Hill, A. Burton, Y. M. Zhou, and J. Tang, 2011: Soil warming, carbon-nitrogen interactions, and forest carbon budgets. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 95089512, doi:10.1073/pnas.1018189108. [Available online at http://www.pnas.org/content/108/23/9508.full.pdf+html]
- 43 46. Butterbach-Bahl, K., E. Nemitz, S. Zaehle, G. Billen, P. Boeckx, J. W. Erisman, J. Garnier, R. Upstill-Goddard, M.
 44 Kreuzer, O. Oenema, S. Reis, M. Schaap, D. Simpson, W. de Vries, W. Winiwarter, and M. A. Sutton, 2011: Ch.
 45 19: Nitrogen as a threat to the European greenhouse balance. *The European Nitrogen Assessment: Sources,*

- *Effects and Policy Perspectives*, M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt,
 H. van Grinsven, and B. Grizzetti, Eds., Cambridge University Press, 434-462
- 47. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom,
 J. B. Shurin, and J. E. Smith, 2007: Global analysis of nitrogen and phosphorus limitation of primary producers
 in freshwater, marine and terrestrial ecosystems. *Ecology Letters*, **10**, 1135-1142, doi:10.1111/j.14610248.2007.01113.x. [Available online at onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2007.01113.x/pdf]
- Vitousek, P. M., S. Porder, B. Z. Houlton, and O. A. Chadwick, 2010: Terrestrial phosphorus limitation:
 mechanisms, implications, and nitrogen-phosphorus interactions. *Ecological Applications*, 20, 5-15,
 doi:10.1890/08-0127.1
- 49. Cleveland, C. C., and A. R. Townsend, 2006: Nutrient additions to a tropical rain forest drive substantial soil
 carbon dioxide losses to the atmosphere. *Proceedings of the National Academy of Sciences of the United States of America*, **103**, 10316-10321, doi:10.1073/pnas.0600989103
- Houlton, B. Z., Y.-P. Wang, P. M. Vitousek, and C. B. Field, 2008: A unifying framework for dinitrogen fixation
 in the terrestrial biosphere. *Nature*, **454**, 327-331, doi:10.1038/nature07028. [Available online at
 http://dx.doi.org/10.1038/nature07028]
- Vitousek, P. M., and C. B. Field, 2001: Input/output balances and nitrogen limitation in terrestrial ecosystems.
 Global biogeochemical cycles in the climate system, S. E.D., S. P. Harrison, M. Heimann, E. A. Holland, J. Lloyd,
 I. C. Prentice, and D. Schimel, Eds., 217-225;
- 19Marklein, A. R., and B. Z. Houlton, 2012: Nitrogen inputs accelerate phosphorus cycling rates across a wide20variety of terrestrial ecosystems. New Phytologist, 193, 696-704, doi:10.1111/j.1469-8137.2011.03967.x.21[Available online at http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03967.x
- EPA, 2010: Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2008, 407 pp., U.S. Environmental
 Protection Agency,, Washington, D.C. [Available online at
 http://www.epa.gov/climatechange/Downloads/ghgemissions/508 Complete GHG 1990 2008.pdf]
- Fann, N., and D. Risley, 2013: The public health context for PM2.5 and ozone air quality trends. *Air Quality, Atmosphere & Health*, 6, 1-11, doi:10.1007/s11869-010-0125-0
- Janssens, I. A., W. Dieleman, S. Luyssaert, J. A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A. J. Dolman, J.
 Grace, G. Matteucci, D. Papale, S. L. Piao, E. D. Schulze, J. Tang, and B. E. Law, 2010: Reduction of forest soil
 respiration in response to nitrogen deposition. *Nature Geoscience*, **3**, 315-322, doi:10.1038/ngeo844;
- Knorr, M., S. D. Frey, and P. S. Curtis, 2005: Nitrogen additions and litter decomposition: A meta-analysis.
 Ecology, 86, 3252-3257, doi:10.1890/05-0150
- 55. Dijkstra, F. A., S. A. Prior, G. B. Runion, H. A. Torbert, H. Tian, C. Lu, and R. T. Venterea, 2012: Effects of
 elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field
 experiments. *Frontiers in Ecology and the Environment*, **10**, 520-527, doi:10.1890/120059 ;
- Schimel, D. S., J. I. House, K. A. Hibbard, P. Bousquet, P. Ciais, P. Peylin, B. H. Braswell, M. J. Apps, D. Baker, A.
 Bondeau, J. Canadell, G. Churkina, W. Cramer, A. S. Denning, C. B. Field, P. Friedlingstein, C. Goodale, M.
 Heimann, R. A. Houghton, J. M. Melillo, B. Moore III, D. Murdiyarso, I. Noble, S. W. Pacala, I. C. Prentice, M. R.
 Raupach, P. J. Rayner, R. J. Scholes, W. L. Steffen, and C. Wirth, 2001: Recent patterns and mechanisms of
 carbon exchange by terrestrial ecosystems. *Nature*, **414**, 169-172. [Available online at
 http://www.unc.edu/courses/2010spring/geog/595/001/www/Schimel2001.pdf];
- 41 Wu, Z., P. Dijkstra, G. W. P. Koch, J., and B. A. Hungate, 2011: Responses of terrestrial ecosystems to
- 42 temperature and precipitation change: a meta-analysis of experimental manipulation. *Global Change Biology*,
- 43 **17**, 927-942, doi:10.1111/j.1365-2486.2010.02302.x

- 56. Loulergue, L., A. Schilt, R. Spahni, V. Masson-Delmotte, T. Blunier, B. Lemieux, J. M. Barnola, D. Raynaud, T. F.
 Stocker, and J. Chappellaz, 2008: Orbital and millennial-scale features of atmospheric CH4 over the past
 800,000 years. *Nature*, 453, 383-386, doi:10.1038/nature06950. [Available online at
 http://www.nature.com/nature/journal/v453/n7193/pdf/nature06950.pdf]
- 5 57. Baron, J. S., 2006: Hindcasting nitrogen deposition to determine an ecological critical load. *Ecological* 6 *Applications*, **16**, 433-439, doi:10.1890/1051-0761(2006)016[0433:hndtda]2.0.co;2
- 58. Pardo, L. H., M. E. Fenn, C. L. Goodale, L. H. Geiser, C. T. Driscoll, E. B. Allen, J. S. Baron, R. Bobbink, W. D.
 Bowman, C. M. Clark, B. Emmett, F. S. Gilliam, T. L. Greaver, S. J. Hall, E. A. Lilleskov, L. L. Liu, J. A. Lynch, K. J.
 Nadelhoffer, S. S. Perakis, M. J. .Robin-Abbott, J. L. Stoddard, K. C. Weathers, and R. L. Dennis, 2011: Effects of
 nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. *Ecological Applications*, 21, 3049-3082, doi:10.1890/10-2341.1. [Available online at
 http://mds.marshall.edu/cgi/viewcontent.cgi?article=1017&context=bio_sciences_faculty]
- 13 59. Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E.
 14 Davidson, F. Dentener, B. Emmett, J. W. Erisman, M. Fenn, F. Gilliam, A. Nordin, L. Pardo, and W. De Vries,
 15 2010: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. *Ecological* 16 *Applications*, 20, 30-59, doi:10.1890/08-1140.1
- Porter, E. M., W. D. Bowman, C. M. Clark, J. E. Compton, L. H. Pardo, and J. L. Soong, 2013: Interactive effects
 of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity.
 Biogeochemistry, **114**, 93-120, doi:10.1007/s10533-012-9803-3. [Available online at
 http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9803-3.pdf]
- Carpenter, S. R., 2008: Phosphorus control is critical to mitigating eutrophication. *Proceedings of the National Academy of Sciences of the United States of America*, **105**, 11039-11040, doi:10.1073/pnas.0806112105.
 [Available online at http://www.pnas.org/content/105/32/11039.full.pdf];
- 24Smith, V. H., and D. W. Schindler, 2009: Eutrophication science: Where do we go from here? Trends in25Ecology & Evolution, 24, 201-207, doi:10.1016/j.tree.2008.11.009
- Howarth, R., F. Chan, D. J. Conley, J. Garnier, S. C. Doney, R. Marino, and G. Billen, 2011: Coupled
 biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems.
 Frontiers in Ecology and the Environment, 9, 18-26, doi:10.1890/100008. [Available online at
 http://dx.doi.org/10.1890/100008]
- 30 63. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L.
 31 Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M.
 32 Reizenstein, H. J. Malmquist, Z. W. Liu, D. Balayla, and X. Lazzaro, 2010: Impacts of climate warming on lake
 33 fish community structure and potential effects on ecosystem function. *Hydrobiologia*, 646, 73-90,
 34 doi:10.1007/s10750-010-0171-5;
- Rabalais, N. N., R. E. Turner, R. J. Diaz, and D. Justic, 2009: Global change and eutrophication of coastal
 waters. *ICES Journal of Marine Science*, 66, 1528-1537, doi:10.1093/icesjms/fsp047. [Available online at
 http://icesjms.oxfordjournals.org/content/66/7/1528.full.pdf+html]
- Chameides, W. L., P. S. Kasibhatla, J. Yienger, and H. Levy, 1994: Growth of continental-scale metro-agro plexes, regional ozone pollution, and world food production. *Science*, 264, 74-77
- 40 65. Jacob, D. J., and D. A. Winner, 2009: Effect of climate change on air quality. *Atmospheric Environment*, 43, 5141 63, doi:10.1016/j.atmosenv.2008.09.051. [Available online at
 42 http://www.sciencedirect.com/science/article/pii/S1352231008008571]
- 43 66. Peel, J. L., R. Haeuber, V. Garcia, L. Neas, and A. G. Russell, 2012: Impact of nitrogen and climate change
 44 interactions on ambient air pollution and human health. *Biogeochemistry*, doi:10.1007/s10533-012-9782-4.
 45 [Available online at http://link.springer.com/content/pdf/10.1007%2Fs10533-012-9782-4]

- Forward, A. R., and S. Porder, 2012: Agricultural legacies, food production and its environmental
 consequences. *Proceedings of the National Academy of Sciences of the United States of America*, **109**, 5917 5918, doi:10.1073/pnas.1203766109. [Available online at <Go to ISI>://WOS:000303246100014]
- 68. CCSP, 2007: The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and
 Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the
 Subcommittee on Global Change Research. U.S. Climate Change Science Program Synthesis and Assessment
 Product 2.2. A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. H. Marland, A. Z. Rose,
 and T. J. Wilbanks, Eds., 242 pp., Climate Change Science Program, Washington, D.C. [Available online at
 http://cdiac.ornl.gov/SOCCR/pdf/sap2-2-final-all.pdf]
- Ciais, P., J. G. Canadell, S. Luyssaert, F. Chevallier, A. Shvidenko, Z. Poussi, M. Jonas, P. Peylin, A. W. King, and
 E. D. Schulze, 2010: Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land based accounting? *Current Opinion in Environmental Sustainability*, 2, 225-230,
 doi:10.1016/j.cosust.2010.06.008;
- Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y. H. Chen, P. Ciais, S.
 Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M.
 Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen, 2002: Towards robust
 regional estimates of CO₂ sources and sinks using atmospheric transport models. *Nature*, 415, 626-630,
 doi:10.1038/415626a
- Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White, 2012: Increase in observed net carbon
 dioxide uptake by land and oceans during the past 50 years. *Nature*, 488, 70-72, doi:10.1038/nature11299
- Presentational Strategies (IGES), Japan. [Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html]
- Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J.
 A. Downing, J. J. Middelburg, and J. Melack, 2007: Plumbing the global carbon cycle: integrating inland waters
 into the terrestrial carbon budget. *Ecosystems*, **10**, 172-185, doi:10.1007/s10021-006-9013-8
- Butman, D., and P. A. Raymond, 2011: Significant efflux of carbon dioxide from streams and rivers in the
 United States. *Nature Geoscience*, 4, 839-842, doi:10.1038/ngeo1294
- 30