

Introduction

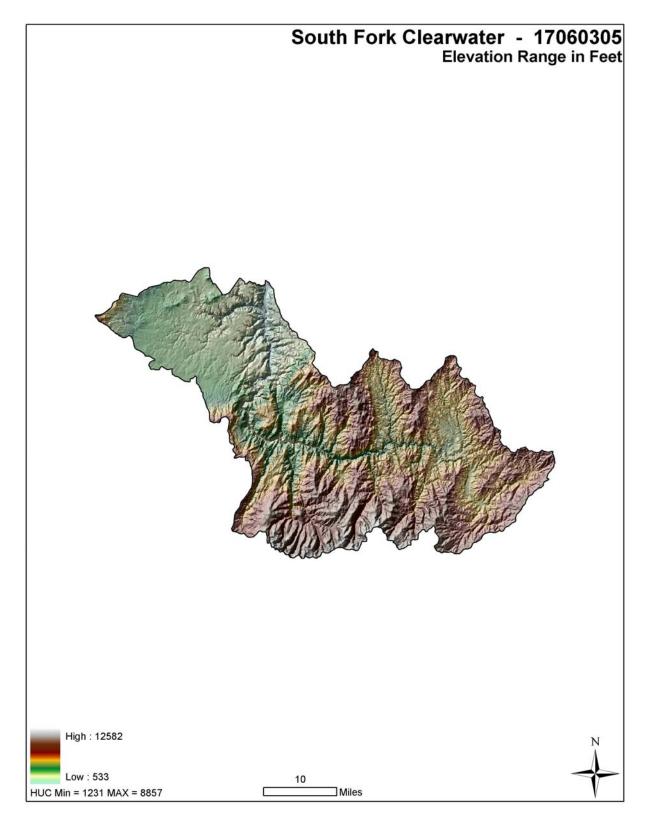
The South Fork Clearwater 8-Digit Hydrologic Unit Code (HUC) subbasin contains 755,000 acres. The entire subbasin is within Idaho County. Twenty-eight percent of the basin is privately owned, approximately 1 percent is Tribal land and 71 percent is public land.

Seventy percent of the basin is in forest, 2 percent is water, wetlands, developed or barren, and 18 percent is in cropland. The remaining 10 percent is in shrubland, rangeland, grass, pasture or hayland.

Elevations range from 1,280 feet at the northern outlet to the Middle Fork of the Clearwater to over 7,000 feet in the southern headwaters of the HUC.

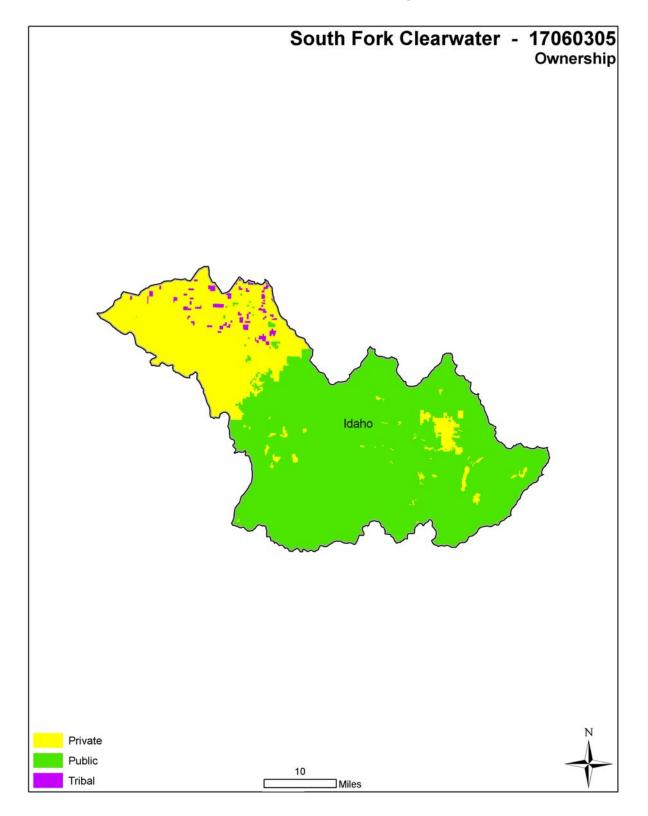
Conservation assistance is provided by the Idaho Soil and Water Conservation District, and the Clearwater Resource Conservation and Development office.

Profile Contents


Introduction Physical Description Landuse Map & Precipitation Map Common Resource Area Resource Settings Progress/Status Resource Concerns Census and Social Data Footnotes/Bibliography Future Conservation Needs

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

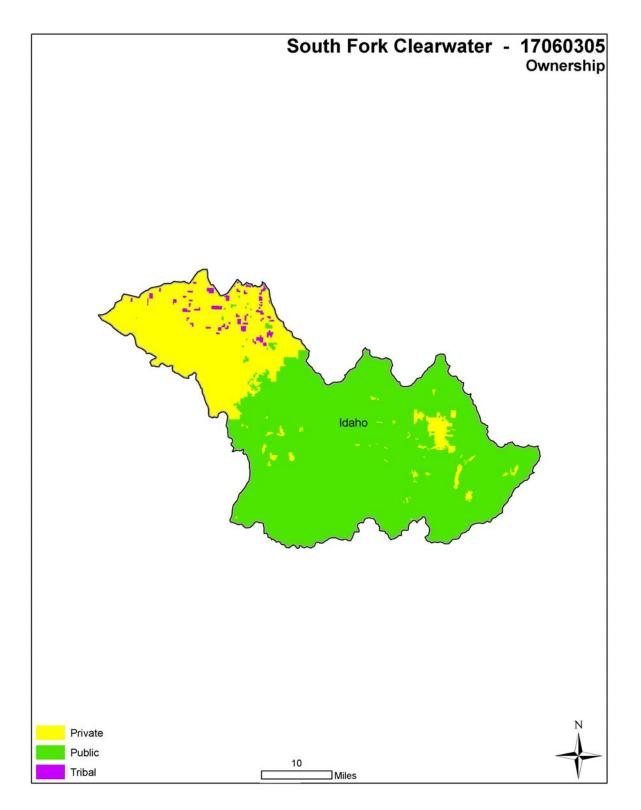


Relief Map

General Ownership^{/1}

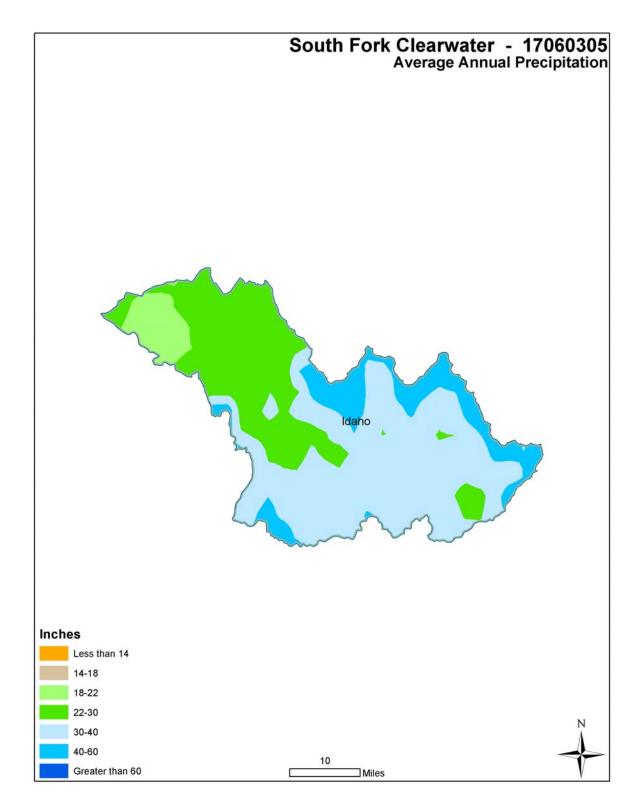
Physical Description

	Ownership - (2003 Draft BLM Surface Map Set $\frac{1}{2}$)								
Publi	с	Priva	nte	Tri	ibal	Tata			
Acres	%	Acres	%	Acres	%		15	% of HUC	
493,730	65%	35,540	5%	890	<1%	530,1	60	70%	
		130,560	17%	4,630	1%	135,1	90	18%	
		(3,370)	(<1%)	(160)	(<1%)	(3,53	0)	(<1%)	
8,500	1%	29,750	1%	1,780	1%	40,03	30	5%	
								0%	
		420	1%	50	1%	470)	<1%	
16,510	1%	13,750	1%	510	1%	30,79	90	4%	
16,350	1%	1,980	1%	30	1%	18,36	50	2%	
535,100	71%	212,000	28%	7,900	1%	755,0	00	100%	
	•	1		1				•	
Type of	Land		ACR	ES				% of HUC	
	Cultivated Cropland				-	-		-	
		ropland *						-	
					-			-	
	Acres 493,730 8,500 8,500 16,510 16,350 535,100 Type of Cultivate Non-Cult Pasturel	Public Acres % Ay3,730 65% Ay3,730 65% Acres Acres 1 Acres	Public Priva Acres % Acres 493,730 65% 35,540 493,730 65% 35,540 493,730 65% 35,540 493,730 65% 35,540 493,730 65% 35,540 130,560 130,560 8,500 1% 29,750 8,500 1% 29,750 16,510 1% 13,750 16,510 1% 13,750 16,350 1% 1,980 535,100 71% 212,000	Public Private Acres % Acres % $493,730$ 65% $35,540$ 5% $493,730$ 65% $35,540$ 17% $$ $130,560$ 17% $$ $(3,370)$ $(<1\%)$ $8,500$ 1% $29,750$ 1% $8,500$ 1% $29,750$ 1% $16,510$ 1% $13,750$ 1% $16,510$ 1% $1,980$ 1% $16,350$ 71% $212,000$ 28% $535,100$ 71% $212,000$ 28% $10,01,01,01,01,01,01,01,000$ 10% 10% 10% $535,100$ 71% $212,000$ 28%	Public Private Tri Acres % Acres % Acres $493,730$ 65% $35,540$ 5% 890 $493,730$ 65% $35,540$ 5% 890 $493,730$ 65% $35,540$ 17% $4,630$ $4,500$ 1 $130,560$ 17% $4,630$ $8,500$ 1% $29,750$ 1% $1,780$ $8,500$ 1% $29,750$ 1% $1,780$ $16,510$ 1% $29,750$ 1% 510 $16,510$ 1% $13,750$ 1% 510 $16,350$ 1% $1,980$ 1% 30 $535,100$ 71% $212,000$ 28% $7,900$ $Vappe of Land$ O O O O $Non-Cultivated Cropland * O O O O $	Public Private Tribal Acres % Acres % Acres % $493,730$ 65% $35,540$ 5% 890 $<1\%$ $493,730$ 65% $35,540$ 5% 890 $<1\%$ $$ $130,560$ 17% $4,630$ 1% $$ $(3,370)$ $(<1\%)$ (160) $(<1\%)$ $8,500$ 1% $29,750$ 1% $1,780$ 1% $8,500$ 1% $29,750$ 1% $1,780$ 1% $8,500$ 1% $29,750$ 1% $1,780$ 1% $16,510$ 1% $13,750$ 1% 510 1% $16,350$ 1% $1,980$ 1% 30 1% $535,100$ 71% $212,000$ 28% $7,900$ 1% $Vape of Land$ 0 $ Non - Cultivated Cropland * $	Public Private Tribal Total Acres % Acres </td <td>Public Private Tribal Totals Acres % Acres % Acres % 493,730 65% 35,540 5% 890 <1%</td> 530,160 130,560 17% 4,630 1% 135,190 (3,370) (<1%)	Public Private Tribal Totals Acres % Acres % Acres % 493,730 65% 35,540 5% 890 <1%	

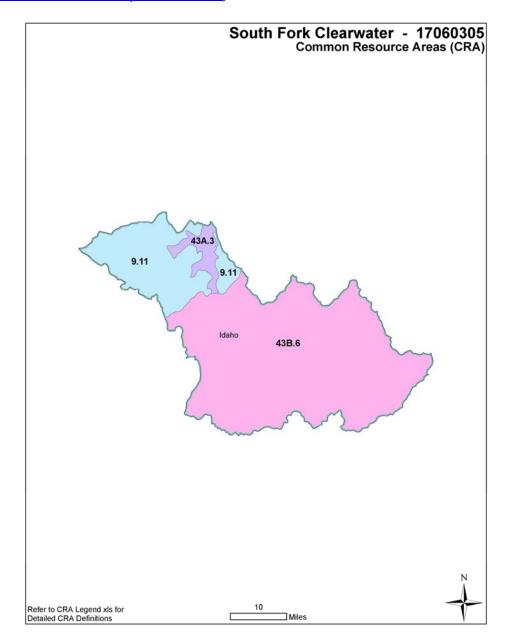

• ^{/3} CRP acres are included in Grass/Pasture/Haylands.

• * Includes permanent hayland and horticultural cropland.

* Any differences between the acres in the above Table and the Future Conservation Needs Tables in the back of this document are due to the differences in Land Cover acres as opposed to Land Use acres. However the Total Private acres balance between the Land Use and Land Cover acres.



Land Use/Land Cover^{/2}


Average Annual Precipitation¹⁵

Common Resource Area Map

The Common Resource Areas (CRA) delineated below for the South Fork Clearwater HUC are described in the next section (for additional information, see http://www.id.nrcs.usda.gov/technical/soils/common_res_areas.html). A CRA is defined as a geographical area where resource concerns, problems, or treatment needs are similar. It is considered a subdivision of an existing Major Land Resource Area (MLRA) map delineation or polygon. Landscape conditions, soil, climate, human considerations, and other natural resource information are used to determine the geographic boundaries of a Common Resource Area (General Manual Title 450 Subpart C 401.21).

8 Digit Hydrologic Unit Profile September 2008

Common Resource Area Descriptions

The National Coordinated CRA Geographic Database provides:

- A consistent CRA geographic database;
- CRA geographic data compatible with other GIS data digitized from 1:250,000 scale maps, such as land use/land cover, political boundaries, Digital General Soil Map of the U.S. (updated STATSGO), and ecoregion boundaries;
- A consistent (correlated) geographic index for Conservation System Guides information and the eFOTG;
- A geographic linkage with the national MLRA framework.

9.11 Palouse and Nez Perce Prairies - Nez Perce Prairie: This unit is a loess-covered plateau. It is higher, cooler, less hilly, and has shallower soils than the Palouse Hills CRA. Idaho fescue and bluebunch wheatgrass are native. Cropland is now extensive and grows wheat, barley, peas, and hay. The headwaters of many perennial streams are impacted by agricultural land use, negatively impacting the water quality of downstream canyon reaches.

43A.6 Northern Rocky Mountains--Lower Clearwater Canyons: The deep, narrow Lower Clearwater Canyons are lower, drier, warmer, and have been more developed than the Lochsa-Selway-Clearwater Canyons. Savanna, Douglas-fir-ponderosa pine forest, and, in riparian areas, western red cedar-western white pine-grand fir forest occur. Forests are more widespread on canyon bottoms than on slopes.

43B.6 Central Rocky Mountains--South Clearwater Forested Mountains: The South Clearwater Forested Mountains ecoregion receives more maritime influence than ecoregions to the south but less than those to the north. Grand fir is usually the sole maritime tree species in the elevational zone between Douglas-fir and subalpine fir. Logging has caused slope instability (especially in granitic areas) and stream sedimentation. Placer gold mining has also heavily affected rivers.

Streamflow Summary⁷

The South Fork Clearwater hydrologic unit (HUC 17060305) encompasses 1,165 square miles upstream of Kooskia, Idaho ranging in elevation from 1,230-8,860 feet. Unlike the North Fork, the South Fork Clearwater River is not regulated by a dam and supports a salmonid fishery. Over 85% of the annual precipitation occurs during the fall, winter, and spring months. In winter and spring, the basin's weather is characterized by prolonged gentle rains, fog, cloudiness, and high humidity; with deep snow accumulations at higher elevations. In contrast, warm dry weather during the summer results in only 10-15% of the annual precipitation. There are two long-term USGS gaging stations that collect streamflow data in the watershed, both are on the main stem of the South Fork Clearwater River. The South Fork Clearwater near Elk City (Station 13337500, period 1945-1974, 2003-present) is furthest upstream, gaging runoff from 261 square miles or 23% of the watershed. The South Fork Clearwater River at Stites (Station 13338500, period 1965-present) is located four miles upstream from the confluence with the Middle Fork Clearwater River near the downstream boundary of the watershed. Mean annual daily streamflow at Stites is 1,029 cfs and totals to an average annual volume of water of 744,500 acre-feet. 70% of the flow occurs between March and June. Streamflows are highest in May with an average of 3,130 cfs. Flows are lowest in September with an average of 237 cfs. The South Fork Clearwater River typically experiences annual flood peaks during late April, early May, or early June. An average spring runoff peak at Stites is about 5,000 to 7,000 cfs. The largest flood of record was on June 8, 1964, with an estimated peak of 17,500 cfs. The South Fork Clearwater Hydrologic Unit has one automated high elevation snow and climatic measuring station on its perimeter. Mountain Meadows SNOTEL is located along the watershed's southeast boundary; it reports hourly climatic data including snow water equivalent, precipitation, air temperature and snow depth. The station is part of the USDA NRCS Snow Survey Data Network operated and maintained by the NRCS.

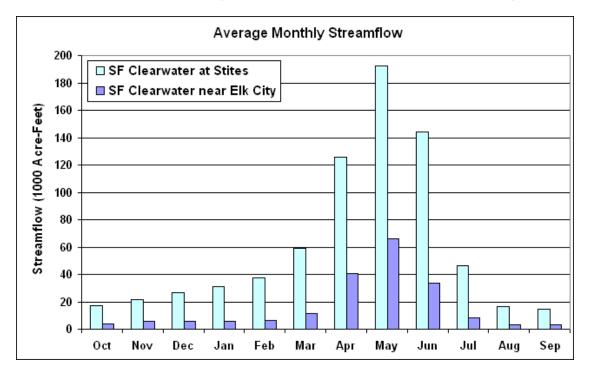


Figure 2: Average Monthly Streamflow for South Fork Clearwater River

Streamflow Summary⁷ – Continued

		CFS	
Irrigated Adjudicated	Surface Water	39.6	
Water Rights ^{/6})	Groundwater	5.2	
	Total Irrigated Adjudicated Water Rights	44.8	
			ACRE-FEET
		Average Annual	744,473
Stream Flow Data ^{/7}	South Fork Clearwater River at Stites (Station 13338500)	April - July Average	499,450
		Percent of Average Annual	67%
		MILES	
Stream Data	Total Stream Miles ^{/8}	2701.2	
*Percent of Total Miles	Water quality impaired streams ^{/9,10}	1635.0	61%
of streams in HUC	Anadromous Fish Presence (Streamnet)/11	645.2	
	Bull Trout Presence (Streamnet) ^{/11}	875.8	
		ACRES	PERCENT
	Forest	68,820	71.2%
Land Cover/Use ^{/2}	Grain Crops	15,450	16%
based on a 100 ft.	Grass/Pasture/Hay Lands	6,130	6.3%
stretch on both sides of all streams	Row Crops	60	<1%
in the 100K Hydro Layer	Shrub/Rangelands – Includes CRP Lands	4,120	4.3%
	Water/Wetlands/Developed/Barren	2,170	2.2%
	Total Acres of 100 ft stream buffers	96,750	100%
	I – slight limitations	0	0%
	II – moderate limitations	40,400	27%
	III – severe limitations	91,000	62%
	IV – very severe limitations	12,800	9%
	V – no erosion hazard, but other limitations	0	0
Land Capability Class ^{/4}	VI – severe limitations, unsuited for cultivation, limited to pasture, range, forest	3,300	2%
	VII – very severe limitations, unsuited for cultivation, limited to grazing, forest, wildlife	0	0
	VIII – misc areas have limitations, limited to recreation, wildlife, and water supply	0	0
	Total Crop, Pasture Lands & CRP	147,500	100%

Streamflow Summary⁷ – Continued

Confined Animal Feeding Operations – Dairies/Feedlots ^{/12,13, 26}											
	Number	<200	200-500	500-750	750-1000	>1000					
Dairy	3	3									
	Number	<300	300-999	1,000-4,999	5,000-9,000	>10,000					
Feedlots	208	207	1								

Resource Settings

Pasture: Non-irrigated riparian pastures with a growing season of 120 to 185 days. Livestock utilization is from late spring through fall, and big game species are present in winter and early spring. Fencing is generally an existing practice. Soils are deep with variable textures and wetland inclusions with slopes from zero to two percent. Annual precipitation is greater than 18 inches with very dry summers. Typically these pastures are adjacent to perennial or intermittent streams. Vegetation ranges from native grass/sedge/rush complexes to improved forage species such as timothy, smooth bromegrass, creeping meadow foxtail, orchard grass and clover.

Upland pastures are located above floodplains on steeper, dissected hillsides or mountain sides. Average annual precipitation is 18 to 40 inches per year. The majority of the precipitation is rain and snow from mid-November to mid-May. Summer months are hot and dry. Soil type is silt loam to gravel. Vegetation is typically introduced species, such as orchard grass and smooth brome. Native species such as bluebunch wheatgrass, Idaho fescue, pine grass, elk sedge, and native shrubs and trees may be found at higher elevations along mountain-sides. The majority of grazing animals are cattle, sheep and horses. Big game utilize pasture for early spring and winter grazing. Wildlife includes elk, black bear, whitetail and mule deer, and moose.

Dry Cropland: Dry cropland with conventional tillage, which may include a moldboard plow, chisel plow, disk and field cultivator. Typical rotations are two to three years and consist of winter wheat/summer fallow, winter wheat/lentils or peas. Precipitation is 18 to 24 inches per year. Fertilizers and pesticides are applied. Soils are typically silt loam cut over timber with slopes ranging from less than five to 25 percent. Wildlife includes deer, elk, moose, small game and nongame birds.

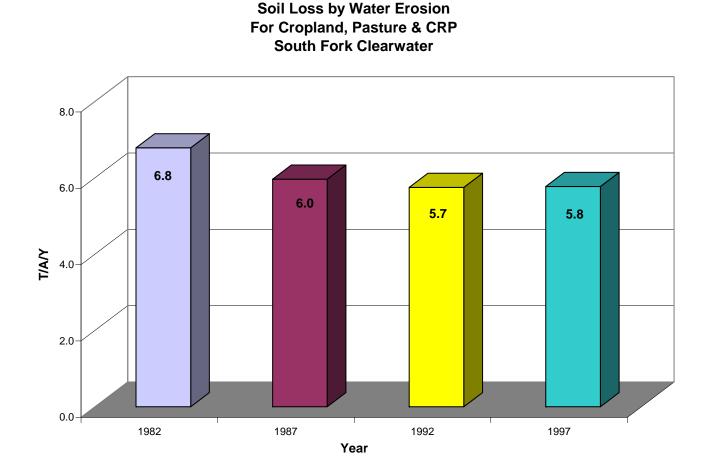
Hayland: Non-irrigated riparian hayland on zero to two percent slopes. Growing season is 120 to 185 days. Soils are deep with variable textures and wetland inclusions. Annual precipitation is greater than 20 inches with very dry summer months. Typically this hayland is adjacent to perennial or intermittent streams. Fertilizers and/or pesticides are periodically applied. Vegetation ranges from grass/sedge/rush complexes to improved species like timothy, smooth bromegrass, creeping meadow foxtail, orchard grass and clover. Big game species are present in winter and early spring. Forage harvest management is usually an existing practice.

Non-irrigated upland hay is found on slopes ranging from three to 30 percent. Vegetation consists of introduced perennial grasses and legumes. Soils vary from loam to silt loams.

Resource Settings – Continued

Renovations occur every six to ten years. Precipitation is 18 inches or greater. One cutting is common.

Conventionally tilled, surface irrigated hayland on zero to seven percent slopes. Precipitation is 16 inches or less per year and the growing season is approximately 100 to 160 days long. Small grains and alfalfa hay are grown in rotation, with alfalfa typically maintained for four to six years. Grazing of crop aftermath may occur. Nutrient and pest management may be less than desirable.


Forests and Grazed Forests: The riparian forest consists of mixed conifers and deciduous trees. The associated understory is comprised of grasses and brush species with inclusions of wetter areas. Soils are silt loams and clay loams that are shallow to deep, and can have low to high rock fragment content. They range from somewhat poorly to well-drained. Average annual precipitation ranges from 22 to 40 inches. The forest landscape is characterized by level to nearly level landforms. Riparian grazing units typically exhibit impacts to riparian vegetation and a loss of woody species. Important wildlife species include elk, deer, moose, bear, raptors and songbirds.

Ponderosa pine and dryer Douglas fir habitat types are found at elevation ranges from 1,800 to 4,000 feet on a variety of soil types. Annual precipitation is less than 25 inches with hot, dry summers. Slopes are less than 35 percent. The forest understory is dominated by ninebark/oceanspray and associated brush species. Grass and forb species are common. Livestock grazing occurs during the summer and early fall period, and overgrazing is common. Important wildlife species include elk, deer, moose, bear, raptors and songbirds.

Douglas fir, grand fir, and wetter habitat types are found at elevations greater than 4,000 feet on a variety of soil types. Slopes are greater than 35 percent. Annual precipitation is greater than 25 inches, most of which falls in the winter and spring. Summers are warm and relatively dry. The forest understory is dominated by forbs and scattered grass species, with associated brush species such as snowberry, willow and alder. Livestock grazing occurs during the midsummer and early fall period, and overgrazing is common. Livestock tend to concentrate along the road corridors and riparian areas. Important wildlife species include elk, deer, moose, bear, raptors and songbirds.

Resource Concerns

Water erosion in the South Fork Clearwater watershed decreased slightly between 1982 and 1987 and has remained essentially static since 1987. A slight decrease in cultivated cropland between 1982 and 1987 probably explains the decrease in water erosion during that period of time.

8 Digit Hydrologic Unit Profile September 2008

Resource Concerns – Continued

Impacted Water Bodies ^{/9,10} (ID17060305)	Stream Miles	Sediment, Siltation or TSS	Nutrients	Bacteria	Temperature	Dissolved Oxygen	Flow/Habitat Alteration ¹	Other or Unknown
American River (CL052_02, 04;	59.4				x ²			
CL055_02, 03)	0.0				2			
Baldy Creek (CL070_02)	8.0				x ² x ²			
Bear Creek (CL063_02)	8.0 6.7	x ³			x x ²			
Beaver Creek (CL065_02) Big Elk Creek (CL058_02, 03)	0.7 19.7	X						
Bidge Creek (CL038_02, 03) Bridge Creek (CL047_02)	7.2				x x ²			
Bridge creek (CL047_02) Buffalo Gulch (CL059_02	6.5	x ³			x x ²			
Butcher Creek (CL011_02)	18.9			x ³	x	x ³	v	
Cottonwood Creek (CL001_02)		X		^	~	^	х	
CL003_02, 03, 04)	80.4	х	х	х	х	х	х	х
Cougar Creek (CL079_02)	17.1	x ³			x ²			
Crooked River (CL031_02, 03;								
CL032_02, 03)	50.9				x ²			
EF American River (CL054_02, 03)	32.1				x ²			
EF Crooked River (CL034_02)	12.0				x ²			
Elk Creek (CL056_02, 03)	4.4				x ²			
Fall Creek (CL076_02)	7.8				x ²			
Gospel Creek (CL015_02, 03)	6.7				x ²			
Hagen Creek (CL021_02)	4.4				x ²			
Haysfork Creek (CL069_02)	9.5				x ²			
Huddleson Creek (CL022_02, 02a)	37.9						х	
Johns Creek (CL014_02, 04; CL017_02,	70.9				x ²			
03; CL018_02, 03)								
Kirks Fork (CL053_02, 03)	15.9				x ²			
Leggett Creek (CL075_02)	11.9				x ²			
Little Elk Creek (CL057_02)	12.7				х			
Long Haul Creek (CL009_02)	15.0	X	Х	х	х	х		х
Lucas Lake (CL052L_00)	0	x ³			2			
Maurice Creek (CL061_02)	2.6				x ²			
Meadow Creek (CL080_02, 03)	47.8				x ²			
Mill Creek (CL013_02, 03)	44.7				x ²			
Moores Creek (CL019_02)	6.4				x ² x ²			
Moose Butte Creek (CL039_02, 03)	15.2							
Mule Creek (CL067_02, 03)	13.8	3			x ²			
Newsome Creek (CL062_02, 04)	12.4	x ³			x ²			
Newsome Creek (CL066_04; CL068_02, 03)	18.0				x ²			
Nugget Creek (CL064_02)	4.6	x ³			x ²			
Otterson Creek (CL048_02)	6.2				x ²			
Peasley Creek (CL078_02)	22.3				x ²			
Pilot Creek (CL071_02, 03)	10.4				x ²			
Rabbit Creek (CL082_02)	11.2			1	x ²			
Red Horse Creek (CL051_02)	14.0				x ²			

8 Digit Hydrologic Unit Profile September 2008

Resource Concerns – Continued

Impacted Water Bodies ^{79,10} (ID17060305) <i>Continued</i>	Stream Miles	Sediment, Siltation or TSS	Nutrients	Bacteria	Temperature	Dissolved Oxygen	Flow/Habitat Alteration ¹	Other or Unknown
Red River (CL037_02, 04; CL038_02, 02a, 04; CL045_02, 03)	125.9				x²			
Red Rock Creek (CL004_02, 03;								
CL005 02)	55.3	x						
Red Rock Creek (CL005_03)	3.5	х						
Relief Creek (CL035_02)	13.5				x ²			
Sally Ann Creek (CL081_02, 03)	18.3				x ²			
Sawmill Creek (CL072_02)	6.0				x ²			
Schwartz Creek (CL012_12a)	44.5						х	
Shebang Creek (CL007_02, 03)	42.0	х	х	х	х	х		
Siegel Creek (CL050_02)	13.6				x ²			
Silver Creek (CL077_02, 02a, 03)	41.0				x ²			
Sing Lee Creek (CL073_02)	4.5	x ³			x ²			
Sixmile Creek (CL029_02, 03)	13.8				x ²			
Soda Creek (CL046_02)	8.0				x ²			
South Fork Clearwater River (CL001_02, 05; CL036_02, 05; CL030_02, 05, CL012_02, 05; CL022_05)	169.5	x			х		x	
SF Cottonwood Creek (CL008_02, 03)	30.0	х	х	х	х	х	х	
SF Red River (CL040_02, 03; CL041_02, 03; CL043_02)	22.1				x ²			
Square Mountain Creek (CL020_02)	5.0				x ²			
Stockney Creek (CL006_02, 03)	52.9	х	х	х	х	х		
Tenmile Creek (CL025_02, 04; CL026_02, 03; CL027_ 02)	43.2				x ²			
Trail Creek (CL049_02)	9.4				x ²			
Threemile Creek (CL010_02, 03)	49.9	x	Х	х	X	Х	Х	
Trapper Creek (CL044_02)	13.8				x ²			
Twentymile Creek (CL024_02, 03)	28.0				x ²			
WF Crooked River (CL033_02)	13.5				x ²			
WF Gospel Creek (CL016_02)	5.1				x ²			
WF Newsome Creek (CL074_02, 02a)	7.3				X ²			
WF Red River (CL042_02, 03)	14.9				x ²			
Whiskey Creek (CL060_02)	4.2				x ²			
Williams Creek (CL028_02)	11.7				x ²			
Wing Creek (CL023_02, 03)	11.0				x ²			
TOTAL STREAM MILES:	1635.0							

¹ Flow and habitat alteration are not considered pollutants by the Idaho Department of Environmental Quality, and are not addressed by the TMDL.

² Assessment documented concerns, and recommends listing for the specified pollutant on the next Integrated Report.

³Assessment recommends delisting on the next Integrated Report.

Shading indicates TMDL in place.

Resource Concerns – Continued

The watershed has a long history of cultivation, grazing, and hydraulic and dredge mining. Timber harvest began in association with mining activities. Glory holes left after hydraulic mining have drastically altered the landscape and continue to contribute significantly to accelerated erosion and sediment loads to streams within the Nez Perce National Forest. Pollutant sources in the basin include wastewater treatment plants, suction dredge mining, AFOs, stormwater runoff, forestry, grazing, agriculture, mining, and roads. Subbasin assessments for the watershed have been completed, and TMDLs developed to restore beneficial uses. It is expected that these TMDLs will improve conditions throughout the subbasin for all aquatic species, including threatened and endangered fish species such as bull trout, spring chinook salmon, and steelhead.

Sediment is a major concern in the watershed, with loadings from agricultural and grazing areas as the primary pollutant sources. Coarse sediment, which effects salmonid spawning, has degraded water quality throughout the basin. Sediment sources in the South Fork Clearwater River are agricultural and grazing areas (10 – 30 times natural background) and forested areas (2 times natural background). Sediment TMDLs were developed for the primary agricultural areas in the watershed (Threemile and Butcher Creeks, and the Cottonwood Creek drainage). Additionally, a sediment TMDL was developed for the SF Clearwater River, with four control points from Harpster to above Crooked River to reduce sediment at appropriate locations in the upper basin. To meet these TMDLs, sediment load reductions from 50% to 95% are needed for streams within the agricultural areas, and at Stites on the South Fork Clearwater (with dilution from the forested part of the watershed) TSS loading needs to be reduced by 25%.

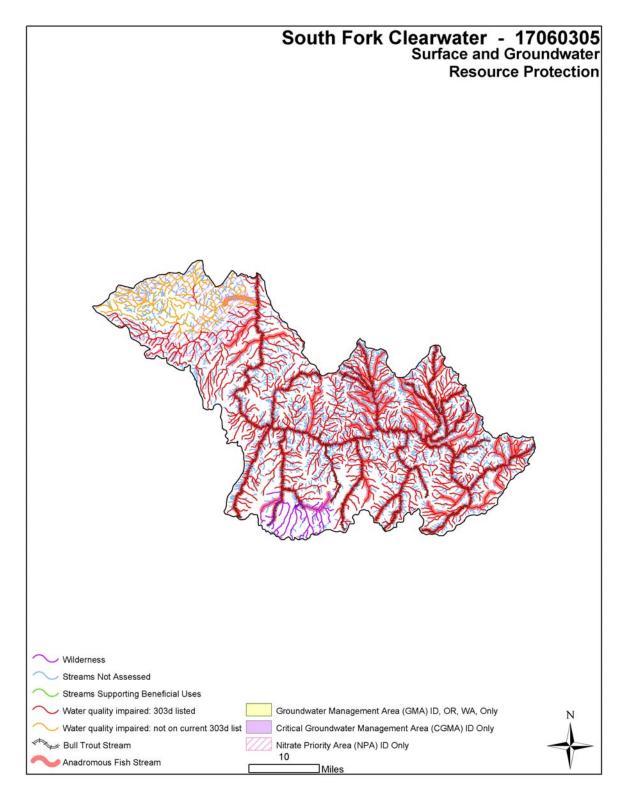
Temperature in the subbasin is also a concern, and the majority of water bodies will be included in the temperature TMDL. It was concluded that many unlisted stream segments throughout the subbasin needed heat load reductions to meet water quality standards. Effective shade and canopy closure will be surrogate targets for temperature improvements associated with the TMDL targets. Bacteria, nutrient, dissolved oxygen, and ammonia TMDLs were also developed for some watershed streams to address impacts from both point and nonpoint sources.

Although not addressed by the TMDLs, flow and habitat alteration impact many watershed streams. A number of studies have been conducted over the last 40 years, looking at impacts to water quality and fish and wildlife. Low flows and high stream temperatures were identified as problems for the Cottonwood Creek drainage as early as 1962. A 1984 assessment by BLM showed poor condition in this drainage due to lack of riparian vegetation and degraded streambanks. Land vegetative cover and subsequent management have resulted in dramatic changes to runoff and peak discharge from the watershed during storm events in the lower basin. Flow changes include higher and greater volume peaks due to land use. Peak flows are estimated to be 60% greater than under historic conditions in the lower basin. Higher peak flows impact stream channels transport large substrate downstream. Less infiltration and higher runoff also reduces summer flows. In the upper basin, forest practices such as harvesting and fire suppression, have altered the disturbance cycle and therefore the resulting hydrology as well. Land managers have identified improved practices for both forestry and agriculture that can address flow and habitat alterations to watershed streams.

Groundwater within the watershed has also been impacted. The Camas Prairie region has been designated a nitrate priority area (fifth priority in the state) by IDEQ, and a portion of this is located in the northwest portion of the watershed. More than half of the wells in the Camas Prairie have nitrate levels exceeding 5 mg/L, and several wells within the watershed exceed the drinking

Resource Concerns – Continued

water standard (10 mg/L). Malfunctioning or poorly maintained septic systems, area livestock, and agricultural activities contribute to groundwater degradation. Sampled wells with the highest nitrate levels tended to be those adjacent to cultivated lands with shallow depth to groundwater. The long-term trends are unclear, but short-term trends in nitrate levels appear to be increasing in the Camas Prairie region. Recent pesticide testing has also shown various pesticide detections in the Cottonwood Creek subwatershed.


Conservation practices that can be used to address these water quality issues include erosion control measures, nutrient and pest management, improved forestry practices, residue management, and riparian buffers.

Watershed Projects, Plar	ns, Studies, and Assessments*
Federal:	State:
NRCS Watershed Plans/Studies/Assessments ^{/14,15}	IDEQ TMDLs ^{/15}
Cottonwood Creek SAWQP (2001)	Cottonwood Creek Subbasin Assessment/TMDL (2000)
	SFClearwater Subbasin Assessment/TMDL (2004)
Cottonwood Creek	IDEQ 319 Projects/ ^{1/}
River Basin Study (2002)	Butcher/Threemile Creek TMDL Implementation(2005)
Cottonwood Creek -	Camas Prairie GW Nitrate Priority Area – Phase I and II (2003, 2006)
Preliminary Investigation Report (1991)	American River WQ Improvement (2007)
	SF Cottonwood TMDL Implementation Phase I and II
	(2001, 2005)
	Cottonwood Creek TMDL Implementation Phase I and II
	(2001, 2003)
NWPCC Subbasin Plans and Assessments ^{/18}	SCC Plans/Projects ^{/19}
Clearwater Subbasin Assessment (2003)	Cottonwood Creek TMDL Implementation Plan (2001)
	Cottonwood Creek Monitoring – IASCD (ongoing)
	ISDA Regional Water Quality Projects ²⁰
	Idaho, Lewiston, Nez Perce Counties Regional GW Study (on-going)
	IDWR Comprehensive Basin Plans ^{/21}
	SF Clearwater Basin Comp State Water Plan (2005)

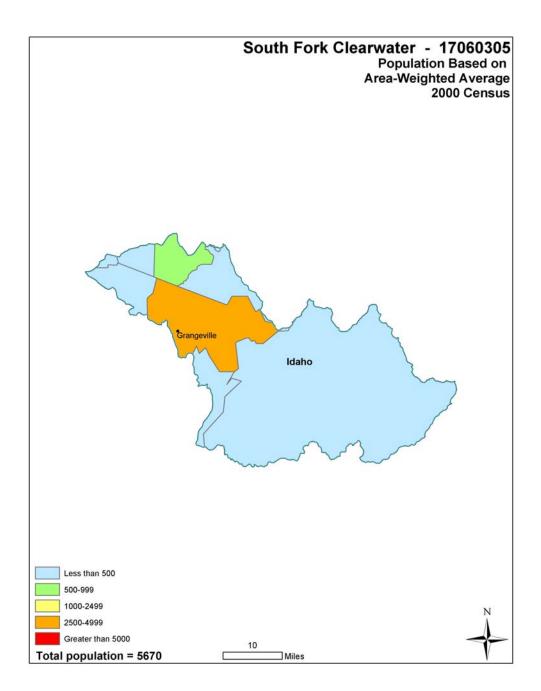
* Listing includes past efforts in the watershed, and on-going studies and assessments.

Surface and Groundwater Resource Protection /22, 23, 24

Resource Concerns – Continued

	Resource Concerns/ Issues by La	and Use	•					
SWAPA*	Specific Resource Concerns/Issues	Pasture	Hayland	Dry Crops	Surface Irrigated Crops	Sprinkler Irrigated Crops	Rangeland	Grazed and Ungrazed Forest
	Sheet and rill			х				
	Ephemeral or classic gully	х	Х	Х			Х	х
Soil Erosion	Irrigation-induced							
	Wind							
	Streambank	х	х	Х			х	х
Water Quantity	Inefficient use on irrigated lands							
Water Quality, Surface	Suspended sediment	х	х	х			х	x
Water Quality, Surface	Nutrients and organics	х	х	х			х	
Water Quality, Ground	Nutrients and organics		х	х				
Water Quality, Cround	Pesticides			х				
Soil Condition	Organic matter depletion	х		х				x
	Compaction	х	х	х			х	x
	Productivity, health and vigor	x	х	Х			Х	x
Plant Condition	Noxious and invasive plants	x	х	х			х	x
	Wildfire hazard			х			х	x
Domestic Animals	Inadequate feed or water	х					Х	х
Fish and Wildlife	Inadequate water	х	х	х			Х	х
	Inadequate cover/shelter	x	х	х			х	x

* SWAPA: - Soil, Water, Air, Plants and Animals


Human considerations: Implementation of conservation practices and enhancement has the potential for change in management and cost of production. Installation of practices will have an upfront cost and require maintenance. In the short run increased management may be required as new techniques are learned. Land may be taken out of production for installation of practices or conversion to other uses, such as wildlife habitat. Long term benefits should result from increased soil health, benefits to water quality and wildlife habitat.

FEDERALLY LISTED THREATENED AND ENDANGERED SPECIES ^{/25}								
Threatened and Endangered Species Candidate Species								
Mammals – Gray Wolf, Lynx Birds – None Fish – Bull Trout, Steelhead Invertebrates – None Plants – None	Plants – None PROPOSED SPECIES - None							
ESSENTIAL FISH HABITAT – Bull Trout	CRITICAL FISH HABITAT – Steelhead							

Census and Social Data^{/26}

Population: 5,670 Number of Farms: 220

Census and Social Data - continued

The Census of Agriculture is authorized under PL 105-113 and uses the definition of a farm as any place from which \$1,000 or more of agricultural products are produced or sold, or normally would have been sold, during the census year.

Census and Social data shown below are based on county-wide statistics and may not accurately reflect the actual watershed-specific portion of the counties.

Sixty-two percent of farm operators are farmers by occupation. The remaining operators have offfarm jobs as their primary occupation. The majority of operators are male; women make up 9.0 percent of the total. Ninety-eight percent of all operators are white. Non-white operators are of Hispanic, American Indian and Asian background.

Farm size ranges from less than 10 acres to more than 1,000 acres with an average of 960 acres. Agricultural land in the watershed is a mix of cropland, range, pasture and hay land. Land users in the watershed utilize EQIP, CRP, Continuous CRP and other programs to implement conservation plans.

For the period of 1997 through 2002, the number of farms in the watershed has decreased by 9.4 percent. Farm size is up 10.3 percent. The market value of production is also up, rising 19.6 percent. Government payments to farmers have increased by 17.4 percent. Farm sales range from less than \$1,000 to more than \$500,000 per year. Seventy-seven percent of farms reported sales of less than \$50,000 per year.

	Number of farms	Average size farm	Market Value of Production (Average	Government Payments
	Turris	Tarini	Farm)	(Average Farm)
1997	243	870	\$44,500	\$8,600
2002	220	960	\$53,200	\$10,100
Change	-9.4%	10.3%	19.6%	17.4%

Economic Profile:

	Watershed	Idaho	United States
Population	5,670	1,294,000	281,422,000
Per Capita Personal Income (2005)	\$22,300	\$28,500	\$34,500
Median Home Value (2000)	\$88,600	\$106,600	\$119,600
Percent Unemployment (2006)	6.1%	3.4%	4.6%
Percent Below Poverty Level (2004)	14.6%	11.5%	12.7%

8 Digit Hydrologic Unit Profile September 2008

Progress/Status

PRS Data							
Conservation Treatment Acres	FY04	FY05	FY06	FY07	FY08	Avg/Year	Total
Access Road (560) ft	24	0	6110	1875	840	1769.8	8849
Animal Trails and Walkways							
(575) ft	0	130	0	0	0	26.0	130
Comprehensive Nutrient							
Management Plan (100) number	0	1	1	4	1	1.4	7
Conservation Cover (327) acres	435	0	0	308	0	148.6	743
Conservation Crop Rotation (328)							
acres	776	635	3352	3723	1735	2044.2	10221
Contour Farming (330) acres	747	449	3612	3372	1774	1990.8	9954
Diversion (362) ft	0	1400	0	0	301	340.2	1701
Fence (382) ft	1410	5340	5816	7414	37152	11426.4	57132
Forage Harvest Management							
(511) acres	0	0	0	15	42	11.4	57
Forest Stand Improvement							
(666) acres	0	0	18	17	0	7.0	35
Heavy Use Area Protection							
(561) acres	0	0	3	7	3	2.6	13
Nutrient Management (acres)	2052	2173	4901	3914	1272	2862.4	14312
Pasture Planting (512) acres	0	24	38	526	12	120.0	600
Pest Management (595) acres	40	497	2962	3461	938	1579.6	7898
Pipeline (516) ft	0	1283	2071	7095	10419	4173.6	20868
Pond (378) number	0	0	1	1	1	0.6	3
Prescribed Grazing (528 & 528A)							
acres	181	0	0		0	45.3	181
Pumping Plant (533) number	0	0	0	2	1	0.6	3
Range Planting (550) acres	0	0	0	3	0	0.6	3
Residue Management, Direct Seed							
(777) acres	1087	1921	2403	2932	734	1815.4	9077
Residue Management, Mulch Till							
(329B&345) acres	56	150	0	1220	545	394.2	1971
Residue Management, No-							
Till/Strip Till (329A&329) acres	763	872	3887	1731	777	1606.0	8030
Riparian Herbaceous Cover (390)							
acres	0	0	0	1		0.3	1
Roof Runoff Structure (558)							
number	0	0	0	0	2	0.4	2

8 Digit Hydrologic Unit Profile September 2008

Progress/Status (continued)

PRS Data (continued)							
Conservation Treatment Acres	FY04	FY05	FY06	FY07	FY08	Avg/Year	Total
Spring Development (574) number	0	1	3	1	1	1.2	6
Tree/Shrub Establishment (612)							
acres	0	0	0	155	4	31.8	159
Tree/Shrub Site Preparation							
(490) acres	0	0	0	40	0	8.0	40
Underground Outlet (620) ft	0	0	0	0	230	46.0	230
Upland Wildlife Habitat							
Management (645) acres	0	0	0	165	0	33.0	165
Use Exclusion (472) acres	318	0	0	308	0	125.2	626
Waste Storage Facility (313)							
number	0	2	0	0	0	0.4	2
Waste Treatment Lagoon (359)							
number	0	0	1	0	0	0.2	1
Water Well (642) number	1	0	0	4	0	1.0	5
Watering Facility (614) number	0	3	4	5	11	4.6	23
Wildlife Watering Facility (648)							
number	1	0	0	0	0	0.2	1
Windbreak/Shelterbelt							
Establishment (380) ft	0	1420	0	0	678	419.6	2098

Progress in the last five years has been focused on:

- ~ residue management and erosion control on cropland
- ~ wildlife habitat management on upland and riparian
- ~ waste, nutrient and pest management systems
- ~ prescribed grazing on pasture and rangeland
- ~ surface and groundwater quality
- ~ forest management

Resource concerns that require ongoing attention:

- ~ erosion control
- ~ surface and groundwater quality
- ~ waste, nutrient and pest management
- ~ forest productivity and improving watershed health
- ~ improved grazing management
- ~ wildlife habitat improvements
- ~ threatened and endangered anadromous and resident fisheries

Lands Removed from Production through Farm Bill Programs

- Conservation Reserve Program (CRP): 3,530 acres
- Wetland Reserve Program (WRP): None

Footnotes/Bibliography

All data is provided "as is". There are no warranties, express or implied, including warranty of fitness for a particular purpose, accompanying this document. Use for general planning purposes only.

- 1. Ownership Layer Source: This spatial data contains surface management land status (sometimes known as "ownership") and Public Land Survey System (PLSS) information for Idaho. The Bureau of Land Management (BLM) in Idaho creates and maintains these spatial data layers. The primary source of the spatial features is the BLM Geographic Coordinate Database (GCDB), which contains official survey records and corresponding geodetic control information maintained by the BLM Cadastral program. In areas where GCDB records are unavailable, the spatial features are taken from a variety of sources including the BLM Idaho Resource Base Data collection, US Geological Survey Digital Line Graphs (DLGs), and US Forest Service Cartographic Feature Files (CFFs), among others. The source of the attribute information is the BLM Master Title Plats (MTPs) and careful cooperation with other government agencies that own or manage land parcels. The layer is available from the Inside Idaho (Interactive Numeric & Spatial Information Data Engine): http://inside.uidaho.edu For current ownership status, consult official records at appropriate federal, state or county offices. Ownership classes grouped to calculate Public Ownership vs. Private Ownership.
- 2. National Land Cover Dataset (NLCD): NLCD 92 (National Land Cover Data 1992) is a 21-category land cover classification scheme that has been applied consistently over the conterminous U.S. It is based primarily on the unsupervised classification of Landsat TM (Thematic Mapper) 1992 imagery. Ancillary data sources included topography, census, agricultural statistics, soil characteristics, other land cover maps, and wetlands data. The NLCD 92 classification is provided as raster data with a spatial resolution of 30 meters. The layer is available from: <u>http://edcwww.cr.usgs.gov/products/landcover/nlcd.html</u> Description: Abstract: These data can be used in a geographic information system (GIS) for any number of purposes such as assessing wildlife habitat, water quality, pesticide runoff, land use change, etc. The State data sets are provided with a 300 meter buffer beyond the State border to facilitate combining the State files into larger regions.
- 3. Farm Services Agency, USDA, 2005. CRP acres from GIS (CLU) database.
- 4. ESTIMATES FROM THE 1997 NRI DATABASE (REVISED DECEMBER 2000) REPLACE ALL PREVIOUS REPORTS AND ESTIMATES. Comparisons made using data published for the 1982, 1987, or 1992 NRI may produce erroneous results. This is due to changes in statistical estimation protocols, and because all data collected prior to 1997 were simultaneously reviewed (edited) as 1997 NRI data were collected. All definitions are available in the glossary. In addition, this December 2000 revision of the 1997 NRI data updates information released in December 1999 and corrects a computer error discovered in March 2000. For more information: <u>http://www.nrcs.usda.gov/technical/NRI/</u>
- 5. PRISM Climate Mapping Project. Annual precipitation data. See <u>http://www.ocs.orst.edu/prism_new.html</u> for further information.
- 6. Irrigated Adjudicated Water Rights Idaho Department of Water Resources <u>http://www.idwr.idaho.gov/water/srba/mainpage/</u>
- 7. USGS Idaho Streamflows, gaging station data (<u>http://waterdata.usgs.gov/id/nwis/sw/</u>) and estimates for ungaged streams based on statistical data (<u>http://water.usgs.gov/osw/streamstats/idaho.html</u>).
- 8. National Hydrography Dataset (NHD). Developed by the US Geological Survey in cooperation with U.S. Environmental Protection Agency and other state and local partners (<u>http://nhd.usgs.gov</u>).
- 9. IDEQ. 2002 Integrated Report (approved December 2005). http://www.deq.idaho.gov/water/data_reports/surface_water/monitoring/integrated_report.cfm.
- 10. IDEQ. 2004. South Fork Clearwater Subbasin Assessment and TMDL. <u>http://www.deq.state.id.us/water/data_reports/surface_water/tmdls/clearwater_river_sf/clearwater_river_sf.cfm</u>; and IDEQ. 2000. Cottonwood Creek Subbasin Assessment and TMDL.

8 Digit Hydrologic Unit Profile September 2008

http://www.deq.state.id.us/water/data_reports/surface_water/tmdls/cottonwood_creek/cottonwood_creek .cfm

- 11. StreamNet is a cooperative venture of the Pacific Northwest's fish and wildlife agencies and tribes and is administered by the <u>Pacific States Marine Fisheries Commission</u>. Streamnet provided data and data services in support of the region's Fish and Wildlife Program and other efforts to manage and restore the region's aquatic resources. Official Streamnet website: <u>http://www.streamnet.org/</u>
- 12. (Dairy) Idaho Department of Water Resources: <u>http://www.idwr.idaho.gov/gisdata/gis_data.htm</u>
- 13. (Feedlot) Idaho State Department of Agriculture: <u>http://www.agri.state.id.us/</u> FOIA request.
- 14. Natural Resource Conservation Service, Watershed Projects Planned and Authorized, http://www.nrcs.usda.gov/programs/watershed
- 15. Natural Resource Conservation Service, Watershed Plans, Studies and Assessments completed, <u>http://www.nrcs.usda.gov/programs/watershed/Surveys_Plng.html#Watershed%20Surveys%20and%20P</u> lan
- 16. Idaho Department of Environmental Quality (IDEQ), Surface Water Quality: Subbasin Assessments, TMDLs, and Implementation Plans. <u>http://www.deq.state.id.us/water/data_reports/surface_water/tmdls/sba_tmdl_master_list.cfm</u>
- 17. Idaho Department of Environmental Quality, Watershed protection: Nonpoint source management (319 grant), Reports and program resources. http://www.deq.idaho.gov/water/data_reports/surface_water/nps/reports.cfm
- 18. Subbasin assessments and plans are developed by local groups (SWCDs, Watershed Councils, Tribes and others) as part of the Northwest Power and Conservation Council's fish and wildlife program in the Columbia River Basin. This program is funded and implemented by the Bonneville Power Administration. http://www.nwcouncil.org/fw/subbasinplanning/
- 19. Idaho Soil Conservation Commission (SCC), TMDL watershed implementation plans: agricultural component, <u>http://www.scc.state.id.us/waq.htm</u>, and Water Quality Program, <u>http://www.scc.state.id.us/Docs/WQPA%20FACT%20SHEET.doc</u>
- 20. Idaho State Department of Agriculture (ISDA). Groundwater water quality regional projects. <u>http://www.agri.state.id.us/Categories/Environment/water/gwReports.php</u>
- 21. Idaho Department of Water Resources (IDWR). State Comprehensive Water Plans. <u>http://www.idwr.idaho.gov/waterboard/planning/Comp_Basin_Plans.htm</u>
- 22. IDEQ. 2002 Integrated Report (approved December 2005). http://www.deq.idaho.gov/water/data_reports/surface_water/monitoring/integrated_report.cfm.
- 23. Groundwater Management Areas and Critical Groundwater Management Areas designated by the Idaho Department of Water Resources. <u>http://www.idwr.idaho.gov/hydrologic/projects/gwma/</u>
- 24. Nitrate Priority Areas. IDEQ has developed a list of degraded ground water areas. This list focuses on nitrate and ranks the top 25 nitrate-degraded areas (referred to as "nitrate priority areas") in the state based on the severity of the degradation, the population affected, and the trend; the rank of "1" indicates the most severely impacted area in the state. http://www.deg.state.id.us/water/prog_issues/ground_water/nitrate.cfm#ranking
- 25. NRCS Field Office Technical Guide, Section II, Threatened and Endangered List and the Idaho Conservation Data Center, Idaho Department of Fish and Game <u>http://fishandgame.idaho.gov/cms/tech/CDC/</u>
- 26. Data were taken from the 2002 Agricultural Census and adjusted by percent of HUC in the county or by percent of zip code area in the HUC, depending on the level of data available. Data were also taken from the U.S. Census, 2000 by zip code and adjusted by percent of zip code in the HUC. <u>http://www.agcensus.usda.gov/Publications/2002/Census_by_State/Idaho/index.asp</u>

8 Digit Hydrologic Unit Profile

Conservation Activities and Future Conservation Needs

The following Current Conditions tables have been developed to estimate the present level of conservation installed within the HUC, based on what has been reported in the PRMS and PRS reporting systems for the years 2004 through 2008.

The following Future Conditions Tables are estimates of the future needs of conservation practices in the watershed.

Estimates of future needs in the watershed are based on the following factors:

- 1. Estimates of total additional conservation needs to reach "Resource Management System" level of treatment based on benchmark conditions in the watershed
- 2. Local knowledge of the area, past and ongoing project activities and professional judgment
- 3. Practices previously installed which have exceeded their expected life (life span), are no longer accomplishing the conservation objective, and may need to be replaced or upgraded.

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Dry Cropland/Hayland

Current Conditions	Total acres	Riparian Potential
Total Dry Cropland	135,660	12,210
Typical Management Unit/Ownership	960	
Current Farm Bill participation		

Future Conditions	Riparian Potential	Total Acres
Dry Cropland Acres		123,450
Conversion to Riparian RMS	12,210	
Total Acres		135,660

Projected Treatment Needs for Dry Crop	land:											
Dry Cropland	C	Quantity	Cost	S		Effects			Imp	lemer	ntatio	ก
Practices	Unit	Quantity	Additional Investment Cost	Annual O&M and Mngt. Cost	Water Conservation	Water Storage	Habitat	WQ	EQIP	WHIP	CREP	Other
Dry Cropland	Ac.	123,450			+3	+2	+2	+3				
Conservation Crop Rotation (328)	Ac.	123,450	\$-	\$-					Х			Χ
Contour Farming (330)	Ac.	123,450	925,900	308,600					Х			Χ
Deep Tillage (324)	Ac.	61,725	2,777,600	925,900					Х			Χ
Diversion (362)	Ft.	238,500	655,900	13,100					Х			Х
Forage Harvest Management (511)	Ac.	37,035	-	-					Х			Χ
Grassed Waterway (412)	Ac.	870	1,566,000	31,300					Х	Х		Χ
Nutrient Management (590)	Ac.	123,450	1,851,800	617,300					Х			Χ
Pasture & Hayland Planting (512)	Ac.	9,380	7,900,800	79,000					Х		Χ	Χ
Pest Management (595)	Ac.	123,450	2,962,800	987,600					Х			Χ
Residue Management, Mulch Till (345)	Ac.	61,720	2,777,400	925,800					Х			Χ
Residue Management, No Till/Strip Till/Direct Seed (329)	Ac.	123,450	11,110,500	3,703,500					X			x

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Dry Cropland/Hayland – Continued

Projected Treatment Needs for Dry Crop	oland (Continued):		3	Jen Pres Jen P							
Dry Cropland	C	uantity	Cost	s		Effects			Imp	lemer	ntatior	۱
Practices	Unit	Quantity	Investment Cost	Annual O&M and Mngt. Cost	Water Conservation	Water Storage	Habitat	WQ	EQIP	WHIP	CREP	Other
Sediment Basin (350)	No.	620	1,178,000	35,300					Х		Х	Χ
Stripcropping (585)	Ac.	30,860	771,500	7,700					Х			Х
Terrace (600)	Ft.	845,700	2,368,000	23,700					Х			Χ
Upland Wildlife Habitat Management (645) Water and Sediment Control Basin (638)	Ac. No.	<u>18,520</u> 610	555,600	185,200					X X			x x
Water and Sediment Control Basin (636) Windbreak/Shelterbelt Establishment (380)	Ft.	1,540	1,050 2,300	-					X			x
Dry Cropland Riparian	Ac.	12,210			+3	+2	+3	+3				
Channel Bank Vegetation (322)	Ft.	149,860	\$ 307,200	\$ 6,100					Х			Χ
Channel Stabilization (584)	Ft.	149,860	3,746,500	187,300					Х			Χ
Fence (382)	Ft.	200,640	435,400	8,700					Х	Χ		Χ
Nutrient Management (590)	Ac.	12,210	183,200	61,100					Х	Χ		Χ
Pest Management (595)	Ac.	12,210	293,000	97,700					Х			Χ
Pipeline (516)	Ft.	201,460	590,300	3,000					Х			Χ
Prescribed Grazing (528)	Ac.	12,210	183,200	61,100					Х			Χ
Pumping Plant (533)	No.	75	216,000	2,200					Х			Χ
Riparian Forest Buffer (391)	Ac.	3,440	5,160,000	51,600					Х			Х
Riparian Herbaceous Cover (390)	Ac.	3,440	1,032,000	10,300					Х	Χ		Χ
Streambank & Shoreline Prot (580)	Ft.	74,900	3,557,800	177,900					Х	Χ		Х
Tree/Shrub Establishment (612)	Ac.	1,720	808,400	8,100					Х			Χ
Upland Wildlife Management (645)	Ac.	1,830	54,900	18,300					Х	Χ		Χ
Use Exclusion (472)	Ac.	610	20,700	600					Х	Χ		Χ
Watering Facility (614)	No.	150	130,500	1,300					Х			Χ
Wetland Wildlife Management (644)	Ac.	1,220	36,600	12,200					Х			Χ
Total RMS Costs			\$ 54,160,850	\$8,551,500								

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Dry Cropland – Continued

Potential RMS Effects Summary for Dry Cropland		
Cost Items and Programs	Costs	O&M Costs
Non Farm Bill Programs	\$ 2,708,000	\$ 427,600
Potential Farm Bill Programs	\$ 51,452,850	\$8,123,900
Operator O&M and Management Cost		\$8,551,500
Annual Management Incentives (3 yrs - Incentive Payments)	\$ 23,712,500	
Operator Investment	\$ 16,578,200	
Federal Costshare	\$ 13,870,150	
Total RMS Costs	\$ 54,160,850	\$8,551,500
Estimated Level of Participation		75%
Total Acres in RMS System		101,745
Anticipated Cost at Estimated Level of Participation	\$	40,620,600
Participating landowners will be in compliance with TMDLs		
Improves habitat for ESA endangered & threatened species		

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Rangeland, Pasture and Hayland

5,500

45,790

Current Conditions	Grazed	Ungrazed	Riparian/Wetland/Potential	Total Acres
Private Rangeland and Dry Pasture	45,790		5,500	45,790
Typical Management Unit/Ownership	960			
Current Farm Bill participation	15%			
Future Conditions	Rangelar	nd / Pasture	Riparian	Total Acres

40,290

Projected Treatment Needs for Grazed	Rangelan	d, Pasture an	d Hayland:										
	Qı	uantity	Co	sts		Effects					ement	ation	
Practices	Unit	Quantity	Investment Cost	Annual O&M and Mngt. Cost	Water Conservation	Water Storage	Habitat	WQ	EQIP	WHIP	WRP	CREP	Other
Grazed Range, Pasture & Hayland	Ac.	40,290			+3	+2	+3	+3					
Animal Trails and Walkways (575)	Ft.	332,640	\$1,663,200	\$ 16,600					Х				Χ
Brush Management (314)	Ac.	13,300	665,000	6,700					Χ				Χ
Fence (382)	Ft.	332,640	721,800	4,400					Χ				Χ
Firebreak (394)	Ft.	166,320	332,600	6,700					Χ				Χ
Pasture & Hayland Planting (512)	Ac.	4,030	644,800	6,400					Х				Χ
Pest Management (595)	Ac.	40,290	967,000	322,300					Χ				Χ
Pipeline (516)	Ft.	166,320	487,300	2,400					Х				Χ
Pond (378)	No.	16	108,800	1,100					Х				Χ
Prescribed Grazing (528)	Ac.	40,290	241,700	80,600					Χ				Χ
Range Planting (550)	Ac.	13,300	1,330,000	13,300					Χ				Χ
Spring Development (574)	No.	60	144,000	700					Χ	Х			Χ
Upland Wildlife Management (645)	Ac.	6,040	181,200	60,400					Х	Х			Χ
Watering Facility (614)	No.	60	52,200	500					Х				Χ
Well (642)	No.	25	168,800	1,700					Χ				Χ

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Rangeland, Pasture and Hayland – Continued

Projected Treatment Needs for Grazed	Rangelan	d, Pasture a	nd Hayland (Co	ontinued):									
	Qu	antity	Cos			Effects				Imple	ement	ation	
Practices	Unit	Quantity	Investment Cost	Annual O&M and Mngt. Cost	Water Conservation	Water Storage	Habitat	WQ	EQIP	dIHM	WRP	CREP	Other
Range & Pasture Riparian	Ac.	5,500			+3	+2	+3	+3					
Channel Bank Vegetation (322)	Ft.	50,760	104,100	2,100					X				х
Channel Stabilization (584)	Ft.	50,760	1,269,000	63,500					Х				x
Fence (382)	Ft.	44,880	97,400	1,900					Х	Х	Х		x
Pasture & Hayland Planting (512)	Ac.	550	88,000	900					Х				х
Pest Management (595)	Ac.	5,500	132,000	44,000					Х				Х
Pipeline (516)	Ft.	22,700	66,500	300					Χ				х
Prescribed Grazing (528)	Ac.	5,500	33,000	11,000					Χ				Х
Pumping Plant (533)	No.	10	28,800	300					X				X
Riparian Forest Buffer (391) Riparian Herbaceous Cover (390)	Ac. Ac.	1,160 1,160	1,740,000 348,000	17,400 3,500					X X	Х	X		X X
Stream Crossing (578)	No.	65	227,500	11,400					X	X	X		X
Streambank & Shoreline Prot (580)	Ft.	25,380	1,205,600	60,300					X	X			X
Tree/Shrub Establishment (612)	Ac.	290	136,300	1,400					Х				X
Upland Wildlife Management (645)	Ac.	1,100	33,000	11,000					Х	Х			Х
Use Exclusion (472)	Ac.	275	9,400	300					Х	Х	Χ		Х
Watering Facility (614)	No.	17	14,800	100					Х		Χ		Х
Wetland Wildlife Management (644)	Ac.	550	16,500	5,500					Χ		Χ		Х
Total RMS Costs			13,258,300	\$ 768,700									

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Rangeland, Pasture and Hayland – Continued

RMS Cost Summary for Grazed Rangeland, Pasture and Hayland											
Cost Items and Programs	Costs		O&M Costs								
Non Farm Bill Programs	\$ 662,	900	\$ 38,400								
Potential Farm Bill Programs	\$12,595,	400	\$ 730,300								
Operator O&M and Management Cost			\$ 768,700								
Annual Management Incentives (3 yrs - Incentive Payments)	\$ 1,604,	400									
Operator Investment	\$ 5,059,	300									
Federal Costshare	\$ 6,594,	600									
Total RMS Farm Bill Costs	\$13,258,	300									
Estimated Level of Participation			35%								
Total Acres in RMS System			14,100								
Anticipated Cost at Estimated Level of P	articipation	\$	4,640,400								
Total Annual Forage Production Benefits	acre unit months)		2,400								
Improves infiltration and storage of water	r in soil profile										
Improves upland wildlife habitat for deer,	elk, antelope and other	specie	S								
Improves water quality by reducing erosi	on and sediment deliver	y to str	eams								

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Forestland

Current Conditions		Total Acres
Total Private Forestland		36,430
Riparian Potential		4,370
Current Farm Bill participation		0%

Future Conditions	Riparian Potential	Total Acres
Private Forestland Acres		32,060
Conversion to Riparian RMS	4,370	
Total Acres		36,430

Projected Treatment Needs for Graz	zed Fores	stland:											
Forestland	Q	uantity	Co	osts	Effects					Imple	ement	ation	
Practices	Unit	Quantity	Investment Cost	Annual O&M and Mgt. Cost	Water Conser- vation	Water Storage	Habitat	WQ	EQIP	WHIP	WRP	CREP	Other
Forestland (Grazed)	Ac.	32,060			+2	+2	+3	+3					
Access Road (560)	Ft.	33,000	\$4,702,800	\$ 470,300							Χ		Χ
Animal Trails and Walkways (575)	Ft.	264,000	\$ 1,320,000	\$ 13,200					Χ				Χ
Critical Area Planting (342)	Ac.	3,210	\$ 1,508,700	\$ 45,300							Χ		Χ
Fence (382)	Ft.	132,000	\$ 286,400	\$ 5,700					Χ				Χ
Firebreak (394)	Ft.	66,000	\$ 132,000	\$ 2,600							Χ		Χ
Forest Slash Treatment (384)	Ac.	900	\$ 135,000	\$-									Χ
Forest Stand Improvement (666)	Ac.	16,030	\$ 4,969,300	\$ 24,800							Χ		Χ
Forest Trails and Landings (655)	Ac.	320	\$ 80,000	\$ 400									Χ
Fuel Break (383)	Ac.	110	\$ 63,800	\$ 600									Χ
Nutrient Management (590)	Ac.	32,060	\$ 480,900	\$ 160,300									Χ
Pest Management (595)	Ac.	32,060	\$ 769,400	\$ 256,500							Χ		Χ
Pipeline (516)	Ft.	264,000	\$ 773,500	\$ 3,900					Χ				Χ
Prescribed Burning (338)	Ac.	250	\$ 40,000	\$-							Χ		X

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Forestland - Continued

Projected Treatment Needs for Grazed Forestland (Continued):															
Forestland	Q	uantity		Co	osts			Effe	cts			Imple	ement	ation	
Practices	Unit	Quantity	١n	vestment Cost		ual O&M Mgt. Cost	Water Conser- vation	Water Storage	Habitat	WQ	EQIP	WHIP	WRP	CREP	Other
Prescribed Forestry (409)	Ac.	1,000	\$	22,500	\$	7,500		g					Х		Χ
Prescribed Grazing (528)	Ac.	32,060	\$	480,900	\$	160,300					Χ				Х
Silvopasture Est pasture (381)	Ac.	4,810	\$	481,000	\$	4,800									Х
Spring Development (574)	No	50	\$	120,000	\$	600					Х	Х			Χ
Tree/Shrub Establishment (612)	Ac.	8,010	\$ 3	3,764,700	\$	37,600							Х		Χ
Forest Site Preparation (490)	Ac.	3,210	\$	866,700	\$	-							Х		Χ
Tree/Shrub Pruning (660)	Ac.	750	\$	202,500	\$	2,000									Χ
Upland Wildlife Habitat Mngt (645)	Ac.	6,410	\$	192,300	\$	64,100						Χ	Χ		Χ
Watering Facility (614)	No.	100	\$	87,000	\$	900					Χ				Χ
Wetland Wildlife Management (644)	No.	50	\$	1,500	\$	500							Χ		Χ
Forestland Riparian	Ac.	4,370					+2	+2	+3	+3					
Access Road (560)	Ft.	4,620	\$	658,400	\$	65,800							Χ		Χ
Animal Trails and Walkways (575)	Ft.	36,960	\$	184,800	\$	1,800					Χ				Χ
Critical Area Planting (342)	Ac.	440	\$	206,800	\$	6,200						Х	Χ		Χ
Fence (382)	Ft.	422,400	\$	916,600	\$	18,300					Χ				Χ
Firebreak (394)	Ft.	9,240	\$	18,500	\$	400						Χ	Х		Χ
Forest Slash Treatment (384)	Ac.	130	\$	19,500	\$	-									Χ
Forest Stand Improvement (666)	Ac.	2,190	\$	678,900	\$	3,400						Χ	Х		Χ
Forest Trails and Landings (655)	Ac.	40	\$	10,000	\$	100									Χ
Fuel Break (383)	Ac.	16	\$	9,300	\$	100									Χ
Nutrient Management (590)	Ac.	4,370	\$	65,600	\$	21,900									Χ
Pest Management (595)	Ac.	4,370	\$	104,900	\$	35,000						Х	Х		Χ
Pipeline (516)	Ft.	39,960	\$	117,100	\$	600					Χ				Χ
Prescribed Burning (338)	Ac.	35	\$	5,600	\$	-						Х	Х		Χ
Prescribed Forestry (409)	Ac.	140	\$	3,200	\$	1,100						Χ	Χ		Χ

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Forestland - Continued

Projected Treatment Needs for Grazed Forestland (Continued):																
Forestland	Q	uantity	Costs				Effects				Implementation					
Practices	Unit	Quantity	Inv	vestment Cost		ual O&M Vgt. Cost	Water Conser- vation	Water Storage	Habitat	WQ	EQIP	WHIP	WRP	CREP	Other	
Prescribed Grazing (528)	Ac.	4,370	\$	65,600	\$	21,900					Х				Χ	
Riparian Forest Buffer (391)	Ac.	940	\$	1,410,000	\$	14,100						Χ	Χ		Χ	
Silvopasture Est pasture (381)	Ac.	660	\$	66,000	\$	700									Χ	
Spring Development (574)	No	20	\$	40,000	\$	200					Х	Χ			Χ	
Stream Habitat Improve & Mgnt (395)	Ft.	41,100	\$	205,500	\$	2,100						x	х		x	
Streambank&Shoreline Protec (580)	Ft.	20,540	\$	965,400	\$	48,300						Χ	Х		Χ	
Tree/Shrub Establishment (612)	Ac.	1,090	\$	490,500	\$	4,900						Χ	Χ		Χ	
Forest Site Preparation (490)	Ac.	440	\$	132,000	\$	-						Χ	Χ		Χ	
Tree/Shrub Pruning (660)	Ac.	110	\$	29,700	\$	300									Χ	
Upland Wildlife Habitat Mngt (645)	Ac.	870	\$	26,100	\$	8,700						Χ	Χ		Χ	
Watering Facility (614)	No.	15	\$	13,100	\$	100					Х	Х	Χ		Χ	
Wetland Wildlife Management (644)	No.	10	\$	300	\$	100						Χ	Χ		Χ	
Total RMS Costs			\$27	,924,300	\$ 1	,518,000										

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Grazed Forestland - Continued

Potential RMS Effects Summary for Private Grazed Forestlands								
Cost Items and Programs	Costs	O&M Costs						
Non Farm Bill Programs (5 percent of total)	\$ 1,396,200	\$ 75,900						
Potential Farm Bill Programs (95 percent of total)	\$ 26,528,100	\$ 1,442,100						
Operator O&M and Management Cost		\$ 1,518,000						
Annual Management Incentives (3 yrs - Incentive Payments)	\$ 2,213,200							
Operator Investment	\$ 13,553,700							
Federal Costs Costshare	\$ 12,157,400							
Total RMS Costs	\$ 27,924,300	\$ 1,518,000						
Estimated Level of Particpation		75%						
Total Acres in RMS System		27,300						
Anticipated Cost at Estimated Level of Participation		\$ 20,943,200						
Improves forest productivity, health and ecological sustainability	/							
Reduces forest fuel loading and fire danger								
Reduces forest disease and insect mortality risk								
Total Annual Forage Production Benefits								
Improves infiltration and storage of water in soil profile								
Improves upland wildlife habitat for elk, deer, antelope and other species								
Improves water quality by reducing erosion and sediment delivery to streams								

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Headquarters

Confined Animal Feed Operations (CAFO - 700 Head Dairies or 1,000 Head Feeder Cattle) and Animal Feed Operations (AFO 200-700 Head of Dairy or 300 to 1,000 Head Feeder Cattle) are variable in complexity depending on size, number of cows and location of the waste storage facility. Note that an AFO can be designated as a CAFO regardless of number of animals if it is found to be a significant polluter.

Kinds and amounts of component practices required for proper operation are site specific, but typically include the following: Anaerobic Digester (366), Composting Facility (317), Access Road (560), Corral Dust Management (785), Dikes (356), Diversions (362), Fence (382), Heavy Use Area Protection (561), Irrigation Water Conveyance (430EE) (430DD), Pipeline (516), Pond (378), Pond Sealing or Lining (521), Pump Plant (533), Roof Runoff Structure (558), Separator, Structure for Water Control (587), Underground Outlet (620), Underground Outlet (620), Waste Treatment Lagoon (359), Watering Facility (614), Well Decommissioning (355), Windbreak/Shelterbelt Establishment (380), Dry Stack Areas and Ramps. Management practices commonly used include: Critical Area Planting (342), Filter Strip (393), Manure Transfer (634), Nutrient Management (590), Pest Management (595) and Waste Utilization (633).

Current Conditions		Total
CAFOs		
AFOs		208
Current Farm Bill participation	15%	
Total CAFOs and AFOs		208

Numbers of Dairies and Feedlots needing treatment were estimated based on input from Idaho Department of Agriculture and the local NRCS Field Offices.

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Headquarters –Continued

Projected Treatment Needs for Headquarters:													
	Qu	antity	Cos	sts	Effects		Implementation						
Practices	Unit	Quantity	Additional Investment Cost	Annual O&M and Mngt. Cost	Water Conservation	Water Storage	Habitat	WQ	EQIP	WHIP	WRP	CREP	Other
Dairy	No.				+3	+2	+3	+3					
Structural/Management Practices													
Waste Storage Facility (313) CAFO	No.	-	-	-					Χ				Х
Waste Storage Facility (313) AFO	No.	-	-	-					Χ				Х
Feed Lot	No.	124			+3	+1	+3	+3					
Structural/Management Practices													
Waste Storage Facility (313) CAFO	No.	-	-	-					Χ				Х
Waste Storage Facility (313) AFO	No.	124	5,580,000	111,600					Χ				Х

8 Digit Hydrologic Unit Profile

September 2008

Conservation Activities for Headquarters –Continued

RMS Cost Summary for Headquarters								
Cost Items and Programs	Costs	O&M Costs						
Non Farm Bill Programs	\$ 279,000	\$ 5,600						
Potential Farm Bill Programs	\$5,301,000	\$106,000						
Operator O&M and Management Cost		\$111,600						
Annual Management Incentives (3 yrs - Incentive Payments)	\$ 558,000							
Operator Investment		\$2,650,500						
Federal Costshare		\$2,371,500						
Total RMS Costs	\$ 5,580,000							
Estimated Level of Participation		35%						
Total CAFO/AFO in RMS System	43							
Anticipated Cost at Estimated Level of Participation	\$ 1,953,000							
Reduces impact to ground and surface water quality								
90% participation reflects Local, State and Federal regulations								