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FIGURE 1.1 — Distribution of frequerycof occurrence of mid- summerylpoxia —

based on data from Rabalais, Turner and Wiseman from the 60 to 80 staitbn
repeatedy sampled from 1985-1999
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FIGURE 1.2 — Histogram of estimated areal extent of bottom water hypoxia for mid-
summer cruises 1985-99 --- based on data from N. Rabalais, Louisiana Universities Marine
Consortium
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FIGURE 2.1 - The “Eutrophication Process” (modified from Downing et al. 1999) — Eutrophication occurs when organic ma#ies incre
an ecosystem. Eutrophication can lead to hypoxia when decaying organic matter on the bottom depletes oxygen and rapleiockadent
by stratification. The flux of organic matter to the bottom is fueled by nutrients carried by riverflow or, possibly, freltimgplat stimulate
growth of phytoplankton algae. This flux consists of dead algal cells together with fecal pellets from grazing zooplegdancathbon
from the river can also contribute to the flux of organic matter.
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FIGURE 2.2 — Long-term records of Gulf ecosystem changes - Include organic carbon profile (#1 fig 70 - 1
profile (station 10), without terrestrial/marine breakout); biogenic silica profile (#1 fig 69 - 1 profile from
E30), and glauconite and ostracod profiles (both from #1 fig 72)
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FIGURE 2.3 — Long-term records of drainage basin changes - annual amount of fertilizer
application and area artificially drained (see #5 figure 1.2 and #3 page 44 for details)
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FIGURE 2.4 — Annual loads of nitrate, organic nitrogen and annual streamflow from the
Mississippi River Basin to the Gulf of Mexico 1955-98
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FIGURE 2.5A — Annual Nitrogen Inputs to the Mississippi/Atchafalaya River Basin
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FIGURE 2.5B — Annual Nitrogen Outputs to the Mississippi/Atchafalaya River Basin
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FIGURE 2.6 — Annual Nitrogen Inputs, Outputs and Residuals (inputs minus outputs)
from Nitrogen Mass Balance for 1951-96
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FIGURE 2.7 — Flux of Nitrate from the Mississippi River Basin to
the Gulf of Mexico 1980 to August-1999



Nitrate yields,
in kg/km2/yr
2 to 100

101 to 500
501 to 1,000
1,001 to 1,500

B 1.501 t0 2,610

& USGS gaging station
21 Basin ID number

s
- o

FIGURE 2.8 -- Average annual nitrate yields (1980-96) for 42 basins within the Mississippi-
Atchafalaya River Basin
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FIGURE 3.1 -- Trends in annual shrimp yield recorded by the National Marine Fisheries Service
for Louisiana and Texas, 1979 - 1998 -- The lines include 3-year moving averages. The data are
available at www.sf.nmfs.gov/stl/commercial/landings/index.html)
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Comparative Evaluation of Fishery Ecosystems
Response to Increasing Nutrient Loading
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Figure 4.2 - Comparative evaluation of fishery response to nutrients (redrawn from Caddy,
1993) -- Each curve represents a species guild and their reaction to increasing nutrient
supplies. The figure’s top half list recent trends for systems world-wide. Vertical dashed
lines separate categories of organic production which result from different nutrient levels.
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FIGURE 5.1 - Role of forested riparian buffers in trapping nutrients before entering stream
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FIGURE 5.2 - The role of riparian wetlands in capturing nutrients during flood events



Monitor ‘ Implement
System Management

Response Strategy

RESEARCH

Data Interpretation, Model Prediction

Model Analysis and Management
and Improvement Plan Improvement

e N R R B R S B B R I B N R B R

Adaptive Management Framework

FIGURE 6.1 -- Adaptive Management Feedback Loop — connecting the following 4 steps
In a circular process:

1. Monitor System Response;

2. Data Interpretation, Model Analysis and Improvement;

3. Model Prediction and Management Plan Improvement;

4. Implement Management Strategy



