Table 1a. Dredging effects reported from research studies on the northern quahog, *Mercenaria mercenaria*. N/A indicates no data. | Habitat
Sediment | Harvest
Gear | Study Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |--|---|--|---|---|---------------------|--|---------------------------------| | Tidal river
bottom | Hydraulic
escalator
dredge | Santee River,
South Carolina | No harmful effects on biota, more live oysters found after harvest because of early spat settlement, fewer found where harvesters removed commercial sized animals | N/A | N/A | N/A | Burrell
1975a | | Subtidal
mixed
sediment | Hydraulic
escalator
dredge | Santee River,
South Carolina | Amount of spat in water column similar between harvested and unharvested areas | 0.1 M tow depth | N/A | N/A | Burrell
1975b | | Firm
sandy mud | 8 and 12-
toothed
clam
dredges | Narragansett
Bay, Rhode
Island | 1% gear-related breakage of commercial sized clams, low breakage or smothering of undersized clams, removed clams > 60 mm, decreased tube worms | Mixing of sandy-mud and clay layer more pronounced than in control area, sediment was also softer | N/A | N/A | Glude
and
Landers
1953 | | Mud and
sand | Hydraulic
escalator
dredge | Rappahannock,
James and York
rivers, Virginia | Dredging did not increase hard or
soft clam set, oysters 75-100 ft from
dredged area were unaffected,
dredging uprooted eelgrass and
removed invertebrate tubes | Dredging changed appearance, composition and texture of seafloor, created trenches 6-8 inches deep, reduced silt-clay fraction, moved buried shell to surface, effects within 75 ft of dredge | N/A | Trenches
refilled
within 1-2
months | Haven
1979 | | Assorted sediments sand, silt, clay, CaCO ₃ , | Hydraulic
escalator
harvester | South Carolina
Tidal creeks:
Back Creek,
Hamlin Creek,
Summerhouse
Creek, 2 creeks
near Isle of
Palms | After harvest polychaetes decreased, amphipods increased, diversity and abundance increased, no difference in mobile fish and invertebrates | Elevated turbidity in vicinity of harvest, plumes extended < 2 km, highest < 1 km away, several hours duration, increased CaCO ₃ and decreased clay following harvest | N/A | N/A | Maier et
al. 1998 | ## Table 1a, continued. Dredging effects reported from research studies on the hard clam, *Mercenaria mercenaria*. N/A indicates no data. | SAV beds | Clam
dredge | Chincoteague
Bay, Virginia | SAV absent from dredge circles, vegetation was dense and healthy just outside of dredge zone | Dredging disrupted sediments from rich organic sand to coarse sand and broken shell | N/A | Predicted that
recovery of
SAV will
exceed 5 yrs | Moore
and Orth
1997 | |----------------------------------|---------------------------|-------------------------------|--|---|-----|---|----------------------------| | SAV beds | Clam
dredge | Chincoteague
Bay, Virginia | 15% less vegetation than found at scar edge, low cover in scar area except at center | Increased bottom depth in scars, large holes up to 1 meter diameter and 30-40 cm deep | N/A | Rate of revegetation related to scar size, dredging intensity, and remaining vegetation; topography and sediment type may hinder rate of revegetation | Orth et
al. 1998 | | Seagrass
bed and
sand flat | Clam "kicking" and raking | Back Sound,
North Carolina | Raking and light clam kicking: seagrass declined 25% below controls; intense clam kicking: 65% decline, clam harvest had no effect on density or species composition, harvest did not boost clam recruitment | N/A | N/A | Raking/ light clam kicking: SAV recovery in 1yr, intense kicking: recovery in 2yrs, SAV remained 35% lower than control after 4-yrs | Peterson
et al.
1987 | Table 1b. Dredging effects reported from research studies on the softshell clam, Mya arenaria. N/A indicates no data. | Habitat-
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |--|----------------------------------|---|---|---|---|--|--------------------------------| | Intertidal flats | Hydraulic
escalator
dredge | Nova Scotia,
Canada | Removed 90% of small clams and 50% of market sized, 1% shell breakage | Dug to 14 in depth, high efficiency | N/A | N/A | Dickie and
MacPhail
1957 | | Mud and
sand
substrate | Hydraulic
escalator
dredge | Chesapeake
Bay,
Virginia | Dredging did not increase
hard or soft-shell clam set,
oysters 75-100 ft from
dredged area unaffected | Seafloor appearance, composition, and texture altered; removed invertebrate tubes; trenches 6-8 in. deep, reduced silt-clay fraction; moved buried shell to surface; changes occurred within 75 ft of dredge | N/A | Trenches filled within 1-2 months | Haven 1979 | | Silt-clay
intertidal
flats | Hydraulic
escalator
dredge | Harraseeket
River,
Maine | Few significant changes: Corophium volutator declined, vegetation uprooted in tracks, clams intact and unbroken, decrease in large clams, decline in polychaetes, increase in Macoma balthica | Solid clay removed from flats creating a trench filled with soft sediments, turbidity briefly increased as a plume but suspended solids returned to low levels, created trenches 30-45 cm deep and mounds of spoils | Slight changes in chemical parameters, low DO and pH indicate reduced sediment brought up by dredge into water column, was quickly oxidized | Trenches hard and well defined for 2 months, spoil heaps lasted 2-3 months, at 10 months trenches had fine, soft sediment 5-8 cm below normal flat, major species increased by 10 months | Kyte et al.
1976 | | Muddy
soil, sandy
further
toward
beach | Hydraulic
clam rake | Pottery
Bridge Flat,
St. Andrews,
Canada | Harvested 60% commercial clams, no breakage of marketable clams with short nozzle, some mortality with long nozzle | Created a track that
remained soft for a few
days and was an inch or
two lower than
undisturbed flat | N/A | N/A | MacPhail
1961a | Table 1b, continued. Dredging effects reported from research studies on the soft-shell clam, *Mya arenaria*. N/A indicates no data. | Intertidal
flats | Mechanical
escalator
dredge | Clam
Harbour,
Nova Scotia
Canada | Initial tests dredge harvested 90% of small clams, 50% of commercial sized, some mortality of seed clams by smothering and overcrowding, after dredging little to no damage to shellfish | Dug deep trenches in shallow water | Only 7-10%
were too
damaged to
rebury after 3
hours | N/A | MacPhail
1961b | |--|--|---|---|---|---|--|-----------------------------| | Fine sand | Hydraulic
clam rake | Clam
Harbour,
Nova Scotia
Canada | Damage to <5% of marketable clams and <5% of small clams remaining after harvest, sand and grit in mantle cavity of clams, shell breakage <1% | Liquefied upper soil
strata into soil-water
suspension, tracks 24
inches wide, 2.5 in deep,
poor operation can
excavate wells in
sediment | N/A | N/A | MacPhail and
Medcof 1962 | | Oyster
beds and
clams on
soft
sediment | Hydraulic
clam
dredge | Maryland |
Intensive dredging: mortality of oysters in dredge zone and 25 ft downstream, no mortality of oysters or spat 75 ft beyond dredge, few clams broken, increase in predatory fish and crabs, dredging not a hazard to tidewater resources away from oyster beds | Intensive dredging
elevated turbidity and
caused redeposition of
suspended sediment 75 ft
downstream, trenches up
to 18 in deep but more
typically 2-8 in | N/A | Trenches 4-6 days after dredging 3 inches deep, recovery variable, sediments may take months to compact, dredged areas continue to repopulate with clams | Manning
1957 | | Subtidal
assorted
sediments | Maryland
soft shell
clam
dredge | Maryland | No damage to fish or blue crabs, about 1% breakage of collected clams, reduced number of market sized clams, some breakage of fragile animals in collection baskets at end of conveyer, fish attracted to dredge track due to food availability | Sediment dislodged from
the bottom, and falls
through the conveyer or
brought to the surface | N/A | After 7 yrs of
harvesting, no
evidence of
impaired
reproduction or
replacement of
stocks | Manning
1960 | Table 1b, continued. Dredging effects reported from research studies on the soft-shell clam, *Mya arenaria*. N/A indicates no data. | Clam flat,
clean
sandy soil | Hydraulic
rake | Clam
Harbour,
Nova Scotia,
Canada | Damage to <5% of the catch
and <5% of the clams left
behind | Upper substratum is converted to a soil-fluid mixture, track width measured 33 in, track was firm after 24 hours, nozzle settings determine track width | N/A | N/A | Medcof and
MacPhail
1962 | |---------------------------------------|---|---|--|--|--|--|--------------------------------| | Intertidal
beaches,
sandy flats | Maryland
style
hydraulic
escalator
clam
dredge | Clam
Harbour,
Nova Scotia,
Canada | Clams returned after dredging settled on the surface, not buried or smothered, breakage to 7-10% of clams, 90% of small clams returned within 75-100 ft of where they entered the dredge, clams reburied quickly | Heavy "soil" settled first
in tracks, tracks 50-75 in.
wide with surfaces 4-6
inches below adjacent
levels, crumbling and
erosion of tracks with
extended widths | N/A | N/A | Medcof 1961 | | Medium
to fine
sands | Maryland
hydraulic
escalator
clam
dredge | Potomac
River,
Maryland | Small clams overcame dredging effects better, sublegal clams not significantly reduced by dredging, recruitment of young clams increased, where number of adults was reduced by dredging | No major changes to sediment structure or grain size after dredging | Organic carbon
in first inch of
substrate
redistributed and
concentrated
after dredging | Dredged bottom
soft for 1 year,
March and June
dredging showed
no difference in
clam (>35 mm)
densities after 4
months, August
dredging: differed
for 8-12 months | Pfitzenmeyer
1972a, 1972b | | Sand to
sandy
mud | Hydraulic
dredge | Chester
River,
Tributary to
Chesapeake
Bay,
Maryland | Increased turbidity and light attenuation from dredging decreased light penetration impacting SAV, SAV tolerated reduced light for a day or two of clamming beyond that negative impacts | Plumes: significantly
higher turbidity/light
attenuation than
background, decreased
sediment compaction
due to sediment type and
water depth, plume
dissipation linked to
grain size | N/A | Plumes dissipated
exponentially,
rapidly at first as
coarse particles
settle, slowly for
fine sediments,
plumes in shallow
water slower
decay | Ruffin 1995 | Table 1c. Dredging effects reported from research studies on harvest fishery of deepwater North and Mid-Atlantic clam species. N/A indicates no data. | Species | Habitat
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |--|--------------------------------------|--|---|--|---|---------------------|---|------------------------------------| | Arctic surfclam, Mactromeris polynyma | Medium
grained
sandy
bank | Two
hydraulic
clam
dredges,
4 m wide,
12 tons | Banquereau,
Scotian
Shelf,
southeast
Atlantic
Canada | Density of large burrows reduced by 90% due to mortality of clams, polychaete tubes reduced, removal of empty shell from benthos | Sediment
smoothing,
dredge created 20
cm deep, 4 m
wide curvilinear
furrows, margins
degraded by
slumping,
sediment transport
and bioturbation | N/A | Lasting effects on sediment structure, no recovery of large burrows at 3 yrs, dredge tracks persist for 3 yrs, increase in polychaete tubes at 2 yrs, at 3 yrs 100% increase over predredge numbers | Gilkinson
et al. 2003 | | Cyrtodaria
siliqua,
Arctica
islandica,
M. polynyma,
Serripes
groenlandicus | Medium
grained
sandy
seabed | Two hydraulic clam dredges 4 m wide, 12 tons | Banquereau,
Scotian
Shelf
Eastern
Canada | 40% decrease in macrofaunal abundance in furrows, damage to some clams, reduced biomass of target species, colonizing on-going for 2 years | Cutting depth to 20 cm | N/A | Marked increase in polychaete and amphipod abundance at 1 yr, opportunistic species increased by >100%, taxonomic distinctness declined, no recovery of target species at 2 yrs | Gilkinson
et al. 2005 | | Arctic surfclam, M. polynyma | Sand with
some
rocks | New
England
hydraulic
dredge | Gulf of St.
Lawrence,
Canada | Damage to <10% of surf clams, 50% of razor clams and a small number of other mollusks, 2/3 of clams remained on bottom, no long or short term harm to resident benthic species | Depth of impact
15 to 30 cm,
sediment
suspended for up
to 30 minutes,
sediments in
tracks less
compacted than
adjacent areas | N/A | N/A | Lambert
and
Goudreau
1996 | Table 1c, continued. Dredging effects reported from research studies on harvest fishery of deepwater North and Mid-Atlantic clam species. N/A indicates no data. | Ocean
quahog,
Arctica
islandica | Very fine
to medium
sand,
recently
fished and
abandoned
bed,
currently
fished and
unfished
control | Hydraulic
dredge | Continental
shelf off
coastal New
Jersey | Abundance and species composition of benthic macroinvertebrates was not altered by dredging | Dredged areas had
small shell
fragments and
gravel on the sand
surface caused by
resorting of sand
by water jetting | N/A | | MacKenzie
1982 | |---|--|--------------------------------------|---|---|---|-----|--|----------------------| | Atlantic
surfclam,
Spisula
solidissima | Fine,
medium,
and silty
sands | 1.2 m
Hydraulic
clam
dredge | Offshore of
Rockaway
Beach,
southwest
Long Island
New York | Predators more abundant
in dredge track, densities
back to normal after 24-
hrs except moon snails
increased, mortality was
30% when dredge
efficiency was high | Initial dredge track
conspicuous with
smooth track
shoulder, angled
walls and a flat
floor | N/A | Dredge tracks
deteriorated rapidly
and after 24 hrs
became shallow
depressions | Meyer et
al. 1981 | Table 1d. Dredging effects reported from research studies on assorted clam species in Florida. N/A indicates no data. | Target Species | Habitat
Sediment | Harvest Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author |
--|--------------------------------------|---|---|--|---|---------------------|---|-----------------------| | Southern Quahog, Mercenaria campechiensis, Southern surfclam, Spisula raveneli, Sunray Venus clam, Macrocallista nimbosa | Variable
sediment
and seagrass | Maryland
hydraulic
escalator clam
dredge | Tampa and
Boca Ciega
Bays, Cedar
Keys, Tarpon
Springs,
Florida | No recolonization of seagrass turtlegrass Thalassia testudinum and Syringodium filiforme, no increase in clam set, no differences in fauna between dredged and control | Water jets penetrated to 18 inches, uprooted vegetation, tracks visible from 1-86 days, some areas soft for >500 days, decrease in silt/clay after dredging | N/A | Some regrowth of alga Caulerpa prolifera at 86 days post dredging, trenches in sand filled in immediately, decrease in silt/clay resolved within a year | Godcharles
1971 | | Sunray Venus clam, M. nimbosa | Sandy
substrate | Commercial
hydraulic
Nantucket
clam dredge | northwest
coast Florida | Dredging damaged
beds of turtle grass,
excessive hydraulic
pressure forced
organisms under
cutting blade
damaging them | Dredge filled
rapidly with mud
disturbing surface
layers | N/A | N/A | Jolley 1972 | | Sunray Venus clam,
M. nimbosa | Loose quartz sand | Nantucket
hydraulic
dredge | Bell Shoal,
St. Joseph
Bay, Florida | Numbers of fish increased after passage of the dredge, some shell breakage, overall operation of dredge was not harmful to marine environment, by-catch included other commercial clam species | Substrate was churned up to free clams | N/A | N/A | Stokes et
al. 1968 | Table 1e. Dredging effects reported from research studies on the Manila clam, *Ruditapes philippinarum*. N/A indicates no data. | Habitat
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemical Effects | Time to Recovery | Author | |---|--|--|---|--|---|---|-----------------------| | Firm coarse substrate with rocks | Hydraulic
escalator
dredge | British
Columbia | Decline in harvest size
clams, some mortality of
legal and sublegal clams | Trenches 0.5 m deep, 2 m wide at 2-4 months, deep holes, mounds of side cast material 30 cm deep, empty shells | N/A | No significant clam recovery 16 months postharvest | Adkins et al. 1983 | | Soft
bottom,
clay | Rusca (iron cage) and rotating drum (iron) teeth rotate and wash clams from drum to conveyer | Venice
Lagoon,
Italy | Disturbance of benthic community, bottom sediments became azoic, decrease in abundance of benthic organisms | Resuspension of top
sediment layer, brought
deep anoxic layer near the
bottom, harvest gear
extends 10 cm deep,
changes to sediment
compaction | Depletion of
oxidized sediment
layer, effects on
redox conditions
Likely to affect
nitrogen and
phosphorus
cycling | N/A | Badino et al. 2004 | | Sand silt
clay | Simulated sediment dredging | Sacca di
Goro, Italy | Not measured with regard to simulated dredging | Resuspension of surface sediment, cultivated sediments more reduced than control | Rapid depletion of
oxygen in water
overlying
sediments | N/A | Bartoli et al. 2001 | | Intertidal sandflats, Lanice conchilega beds | Tractor-
towed sifter | Chausey
archipelago
Normandy
France | Decreased densities of worm <i>L. conchilega</i> and abundance and diversity of macrofauna | Sifted top 10 cm of substrate | N/A | N/A | Godet et al.
2009 | | Mud flat
with clay,
fine sand
and silt | Suction
dredge | Southeast
England | Reduction in density of individuals, number of species and diversity | Removed larger sand
fractions down to the
underlying clay substrate,
sediment resuspended by
dredge, exposing clay | N/A | No difference in infaunal communities in dredge and control areas by 7 months, sediment structure restored by sedimentation | Kaiser et
al. 1996 | Table 1e, continued. Dredging effects reported from research studies on the Manila clam, *Ruditapes philippinarum*. N/A indicates no data. | Silty-sand | Hydraulic
dredge | Venice
Lagoon
near port of
Malamocco
Italy | Nonselective reduction
in species abundance,
both those captured and
those resuspended in the
sediment plume and
transported by currents | Produced deep 20 cm
furrows affecting texture
of the bottom | N/A | After 60 days, non-
opportunistic species
assume opportunistic
behavior during initial
recolonization in dredge
areas | Pranovi et
al. 1998 | |--|--|--|--|--|--|---|---------------------------------------| | Lagoon | Mechanical
rusca (iron
cage)
dredge | Venice
Lagoon,
Italy | Enhanced clam growth,
negative effects on some
benthic invertebrates and
detritivorous fish,
positive effects on
macrophytal grazers,
reduced macroalgae | Resuspended sediments
provide a food source for
clams, especially
juveniles, decreased light
transmittance and water
transparency | Removal of
bioturbators
affects sediment
biogeochemistry
since harvesting is
a strong mixing
force | N/A | Pranovi et al. 2003 | | Transition
from silt/
silt-clay
(15 years
ago) to
sand or
silty-sand | Hydraulic
dredging | Central
Venetian
Lagoon,
Italy | Significant changes in total abundance and biomass, no Zostera colonization and diffusion, scavengers increased | Furrow 8- 10 cm deep, no immediate changes in sieve fractions, long term effects on sieve fractions from loss/redistribution of fine sediments | N/A | Furrows visible for 2
months, differences in
biological community
for 60 days, long term
changes in particle size
and sediment texture | Pranovi
and
Giovanardi
1994 | | Muddy
sand | Suction
harvesting | River Exe,
Devon,
United
Kingdom | Invertebrate abundance
and species diversity
reduced by >90% | Increased sediment load
in water, 10 cm deep
trench | Suspended
particles settled
downstream,
dispersed to
background levels
40 m from dredge | Rapid recovery of invertebrates (spring recruitment) within 8 months of harvest, trenches refilled in 3-4 months | Spencer
1997 | | Muddy
sand | Suction
dredge | River Exe,
Devon,
United
Kingdom | Immediate 80% reduction in infaunal species abundance | Created 10 cm deep
trenches which took 2-3
months to refill | N/A | Sediment structure and invertebrate infaunal community recovered by 12 months | Spencer et
al. 1996,
1997, 1998 | Table 1f. Dredging effects reported from research studies on clam species from Portugal. N/A indicates no data. | Target species | Habitat
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |---|---|--|--|---|---|---------------------|---|-----------------------| | Spisula. solida, Donax trunculus, Venus striatula, Pharus legumen, Enis siliqua | Soft-
bottom | Portuguese
dragged,
toothed
iron clam
dredge | Algarve
coast,
South
Portugal | Decrease in abundance
of meiofauna and
macrofauna, target
and
fragile taxa
predators increased | Dredge penetrated
up to 50 cm
depth,
sediment
redistribution | N/A | N/A | Alves et al. 2003 | | S. solida D. trunculus, V. striatula, P. legumen, E. siliqua | Sand | Dragged
iron
bivalve
dredges | Algarve
coast, south
Portugal | Macrofaunal
distribution, diversity,
evenness, number of
taxa and abundance
varied across dredge
track | A sand buffer
formed in front of
the dredge mouth
pushing sediment
sideways | N/A | N/A | Chícharo et al. 2002a | | S. solida | Sandy
sediment
grain sizes
0.5 and
0.355 mm | Dragged
iron
bivalve
dredges | Algarve
coast,
south
Portugal | Increased number of exposed clams, predators increased 6-9 min after dredging: Ophiura texturata, Pomatochistus spp., Diogenes pugilator, Nassarius reticulatus | N/A | N/A | N/A | Chícharo et al. 2002b | | S. solida | Simulated
sand
dredge
tracks | Laboratory
simulated
bivalve
dredge | Algarve
coast,
south
Portugal | Sublethal effects on
clams: decreased
RNA/DNA and N/P
lipid ratio, decline in
condition | N/A | N/A | Clam condition
improved after
spawning season | Chícharo et al. 2003 | Table 1f, continued. Dredging effects reported from research studies on clam species from Portugal. N/A indicates no data. | S. solida,
D.
trunculus | Coarse
sand and
gravel | Towed clam dredge | Algarve,
southern
Portugal | Impacts greater at 18 m depth: macrobenthic organisms showed reduced abundance, number of taxa, and diversity, decrease in meiofauna abundance number of taxa | Sediment
morphology and
texture affected,
dredge track
measured 30 cm
wide and 10 cm
deep | N/A | Faster biological recovery at 6 versus 18 m, meiofauna recovered by 35 days, tracks at 6 m gone after 24 hrs but still visible at 18 m for 13 days, at 6 m grain size was similar to control by 17 days, at 18 m 1 day after dredging, slight increase in grain size, by 13 days dredged similar to | Constantino et al. 2009 | |---|-------------------------------------|--|--|---|--|---|---|-------------------------| | S. solida,
D.
trunculus,
E. siliqua,
P. legumen | Shallow
sandy | Mechanical
metal
bivalve
dredge | Vilamoura
and
Armona,
Algarve
coast,
Portugal | N/A | Formation of a furrow exposing underlying sand with a spoil ridge on either side of the depression | Porewater
nitrates,
ammonium,
organic nitrogen,
phosphate and
silicate
decreased post-
dredging and
increased in near
bottom water | control Reestablishment of the seabed was reached within a short time at both stations | Falcão et al.
2003 | | Chamelea
gallina,
D.
trunculus,
S. solida,
Tellina
tenuis | Sand and
sandy-
mud
bottom | Portuguese
clam
dredge | Lagos in
South
Portugal | Low damage and
mortality of
macrobenthic animals
in dredge path,
scavengers attracted in
high densities, but
dissipated rapidly | Suspended sediment settled rapidly in sand and mud, tracks deeper and more persistent in sandy mud, tracks eroded via wave action and currents | N/A | Undamaged or
slightly damaged
shellfish reburied
immediately after
escaping the
dredge | Gaspar et al. 2003 | Table 1g. Dredging effects reported from research studies on the Striped Venus clam Chamelea gallina. N/A indicates no data. | Habitat
Sediment | Harvest Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |-------------------------------|--|--|--|--|---------------------|--|-----------------------| | Two sites:
sand vs.
mud | Hydraulic
dredge using
high and low
water pressure | North
Adriatic
Sea | High pressure treated clams had lower
adenylate energy charge than low
pressure, high pressure treated clams
burrowed less | Grain size
influenced speed
and operation of
dredge, impacts
were greater on
mud bottom | N/A | Juvenile clams
returned to water after
dredging reburrow
slowly and are subject
to predation | Da Ros et
al. 2003 | | N/A | Dredging with
high pressure
water jets with
sieve sorting
versus low
pressure water
jets | Lido coast,
Lagoon of
Venice,
Adriatic
Sea | At high pressure clam filtration rates decreased , respiration rates increased, lower scope for growth, hematocrit and phagocytic index decreased, reduced acid phosphotase and increased β -glucuronidase activity | N/A | N/A | N/A | Marin et al. 2003 | | Fine sand | 2.4 -3 m wide,
0.6 - 0.8 ton
hydraulic
dredge | Adriatic
Sea, Italy | No effects to macrobenthic community (polychates, crustaceans, detritivores and suspensivores), mollusks and bivalve <i>Abra alba</i> were affected, short term pulse impact on scavengers and predators | N/A | N/A | N/A | Morello et al. 2005 | | Fine sand | Hydraulic clam
dredge | Adriatic
Sea, Italy | Depth strata and fishing intensity affected dredge impact, moderate disturbance to benthic community and significant difference in species number and evenness between fishing intensity at 4-6 m, reduction in evenness at high intensity, increased species number with decreasing intensity | N/A | N/A | Recovery of benthic community within 6 m | Morello et al. 2006 | Table 1g, continued. Dredging effects reported from research studies on the Striped Venus clam *Chamelea gallina*. N/A indicates no data. | Jesolo;
fine sand,
Lido;
medium
grain
sand | Hydraulic
dredge, high
and low
pressure without
sorting, high
pressure with
sorting | Jesolo and
Lido,
Northern
Adriatic
Sea, Italy | Water pressure and sorting increased shell damage, the larger the clam the more damage it sustained, some clams survived damage | N/A | N/A | N/A | Moschino
et al.
2002,
2003 | |---|---|---|--|-----|-----|-----|-------------------------------------| | Jesolo;
fine sand,
Lido;
medium
grain
sand | Hydraulic
dredge, high
and low
pressure without
sorting, high
pressure with
sorting | Jesolo and
Lido,
Northern
Adriatic
Sea, Italy | High water pressure and mechanized sorting decreased clearance rates, scope for growth, and survival in air, season may increase affects | N/A | N/A | N/A | Moschino et al. 2008 | | N/A | Experimental
hydraulic
dredge with
vibrating
bottom grid | Adriatic Sea
North of
port of
Giulianova,
Italy | As compared to standard gear: larger
number of damaged shells, better size
selectivity and escape of undersized
clams and discarded fauna, reduced
by-catch, enhanced quality of
commercial product | N/A | N/A | N/A | Rambaldi
et al. 2001 | Table 1h. Dredging effects reported from research studies on the razor clam, *Ensis* sp. N/A indicates no data. | Habitat
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemica
l Effects | Recovery | Author | |--------------------------|--|--|--|---|----------------------|---|-----------------------------| | Clam bed | Hydraulic
dredge | Gormanston,
Irish Sea | Reduced dominant and target species, increased infaunal community diversity, increase in scavengers and predators, <i>Lanice conchilega</i> tube worm eliminated, <i>E.
siliqua</i> replaced by suspension feeder <i>Lutraria lutraria</i> | Dredging to 30 cm deep, increase in larger grain sizes and sorting coefficients, high content of broken shell | N/A | Initial increase in
diversity, followed by
a downward trend | Fahy and
Carroll
2007 | | Clean
sandy
bottom | Two
dredges,
varying
tooth
lengths | Lagos,
south
Portugal | 10-15% by-catch damage to clams reduced by increased tooth length and decreased tow duration, injury inversely proportional to catch efficiency | Physical impact of dredge of short duration | N/A | Dredge tracks erased within 24 hrs | Gaspar et
al. 1998 | | Sand | Hydraulic
suction
dredging | Loch
Gairloch,
Ross-shire,
Scotland | Reduction in target species, increased scavengers, reduced number of macrofaunal species and individuals after 1 day | Physical disturbance,
trenches and holes, area
affected 20-30% | N/A | Trenches and holes
resolved within 40
days, macrofauna
recovered by 40 days | Hall et al.
1990 | | Maerl | Hydraulic
blade
dredge | Clyde Sea,
Scotland | Kelp coated with mud,
both seaweed and sessile biota
buried with silt, fragile
organisms damaged, increase in
predators post-dredging | Changed from sandy gravel to gravelly sand, suspended sediment reduced visibility, dredge track formed, snowplough effect, altered sediment to 9 cm | N/A | Sediment settled within 1 hour, track partially eroded within 1 month, depth and width reduced by wave action | Hauton et
al. 2003a | | Sand | Hydraulic
blade
dredge | Clyde Sea,
Scotland | Survival of 60-70% of dislodged fauna mostly urchin <i>Echinocardium cordatum</i> , 20-100% of target clams damaged | Tracks of fluidized sand beds | N/A | Reburial of 80-90 % of clams within 30 min, a few still unable to rebury after 3 hrs | Hauton et al. 2003b | Table 1h, continued. Dredging effects reported from research studies on the razor clam, *Ensis* sp. N/A indicates no data. | Coarse
sand and
shell | Hydraulic
dredge | Clyde Sea,
Scotland | Some damage of larger versus clams | Dredged area 45 cm
swath, 80 cm disturbed,
surface width of dredge
track was 1.01 m | N/A | N/A | Hauton et al. 2007 | |--|-----------------------|---|--|--|-----|---|---------------------------------------| | sand | Hydraulic
dredge | Clyde Sea,
Scotland | N/A | Suspended fine sediment into water column, resettled in dredge track, sediment reduced from moderately to poorly sorted, dredge left 13.9 cm tracks of fluidized sand, eliminated stratification, sediments vertically homogenous to 20 cm | N/A | After 100 days, wave action and bioturbation reduced tracks to 2.9 cm depth, tracks now shallow furrows, width increased from 100-115 cm | Hauton and
Paterson
2003 | | Fine sand
and open
broken
shell | Suction
dredging | Orphir Bay
and Bay of
Ireland,
Orkney
Islands,
United
Kingdom | Lower density and smaller
mean length of clams from
dredged area, breaks in shell
margin, sand grains embedded
in deep clefts in the shell matrix | N/A | N/A | Some clams showed
slow initiation of
escape digging and
increased
vulnerability to
predator attack | Robinson
and
Richardson
1998 | | Sand | Water jet
dredging | Outer
Hebrides-
Western Isles,
United
Kingdom | Initial removal of infauna, damage to 10-28%, scavengers attracted to tracks, immediate reduction in number of species, individuals, and biomass, no change in diversity, reduced polychaetes, increase in amphipods, damage to large bivalve by-catch | Immediate physical effects apparent, visible dredge tracks up to 2 m wide, fluidized sediment, reduction in % silt immediately after dredging, elevated turbidity | N/A | Dredge tracks refilled
after 5 days, and were
no longer visible at
11 weeks, sediment
remained fluidized,
% silt returned to
normal at 5 days | Tuck et al.
2000 | Table 1i. Dredging effects reported from research studies on Pacific Northwest clam species. N/A indicates no data. | Target Species | Habitat
Sediment | Harvest
Gear | Study
Location | Biological Effects | Physical Effects | Chemical
Effects | Recovery | Author | |---|---|--|--|--|--|---|--|---------------------------------| | Saxidomus
gigantea,
Leukoma
staminea,
R.
philippinarum | Firm coarse
substrate
with rocks | Hydraulic
escalator
harvester | British
Columbia | Decline in harvest
size clams,
mortality of legal
and sublegal clams | Trenches 0.5 m
deep, 2 m wide at
2-4 months, deep
holes, mounds of
side cast material
30 cm deep,
empty shells | N/A | No
significant
clam
recovery 16
months
postharvest | Adkins et al. 1983 | | S. gigantea,
P. stamina,
Tresus capax,
Tresus nuttallii | Sand, gravel
and shell
substrate | Hydraulic
escalator
harvester | Agate
Passage,
Puget
Sound,
Washington | Reduced abundance
of attached kelp,
little effect on
number of benthic
species, reduced
number of
individuals and
weight of organisms | Changes in
substrate
distribution, shell
left on substrate
surface, no effects
on percentage of
fine substrate | Chemical measurements in harvested areas were reduced or unchanged versus control likely due to reduced biomass | Most species
recovered to
control levels
within 2 yrs | Goodwin
and
Shaul
1978 | | S. gigantea,
P. staminea | Sand, gravel
and shell,
some
eelgrass
beds (which
dredge
avoided) | Hanks
hydraulic
escalator
harvester | Puget
Sound,
Washington | Smothering of some adult clams | Visible tracks and
furrows, decrease
in sediment
compactness,
transient sandbar,
loosening,
emulsification and
loss of vertical
stratification | N/A | Beach
recovered in
1.5 yrs, tracks
no longer
visible, good
clam set | Goodwin
and
Shaul
1980 | Table 2. Dredging effects reported from research studies on the Eastern oyster *Crassostrea virginica*. N/A indicates no data. | Habitat
Sediment | Harvest
Gear | Study
Location | Biological impacts | Physical Impacts | Chemical impacts | Recovery | Author | |---|-----------------------------------|--|--|--|---|---|---| | Intertidal | Mechanical
oyster
harvester | South
Carolina | No detectable damage to
oyster shell matrix, 5%
of harvested oysters
were damaged | N/A | N/A | N/A | Collier and
McLaughlin
1983
(abstract) | | Oyster
bottom | Hydraulic
escalator
dredge | Patuxent
River,
Maryland | Minor effect of heavy particles on oysters within 15 ft of dredging, infauna not significantly reduced in dredge and impact areas, no affect on juvenile clams, 100% mortality and burial of oysters in dredged area, disruption of epibenthic community | Substrate surface color was lighter than on undisturbed bottom, troughs and ridges in dredged area, suspension of sediment high compared to background, no significant change in particulate fraction in impact area | No toxic
substances
detected
after
dredging | Reestablishment of infauna in dredged area rapid, 3 days after dredge no alteration of bottom, no accumulation of displaced substrate, no burial of oysters or cultch | Drobeck and
Johnson 1982 | | High and
low
intertidal
oyster reefs | Mechanical
oyster
harvester | Beaufort
County,
South
Carolina | Oyster biomass declined in high and low intertidal, species density correlated with oyster biomass, reduced faunal
density in high intertidal with target species number and frequency unaffected by harvest, diversity and evenness in harvested high intertidal > than control | Some areas appeared
undisturbed, others had
tracks and deep
depressions | N/A | Oyster biomass
in high intertidal
remained low,
oyster spat were
attracted after
harvest | Klemanowicz
1985,
Manzi et al.
1985 | Table 3. Dredging effects reported from research studies on the blue mussel, Mytilus edulis. N/A indicates no data. | Intertidal
sublittoral | Dutch and
Baird
dredges | Menai Straits,
North Wales | Shell damage to 13% of mussels from rotary sorting and 1.6% damaged by dredging, up to 5% of small mussels destroyed by dredge and sorting induced shell fractures | N/A | N/A | Mussels with light
damage were still alive 72
hours after sorting | Dare 1974 | |--|---|--|--|---|-----|---|--------------------------| | Two sites, sand and mud | 2-3 m width single commercial dredge and otter trawls | Lower
Narragansett
Bay and
Rhode Island
Sound,
Rhode Island | N/A | Scars from dredging
and trawling are
short lived in sand
and shoal waters and
longer lasting in
deep water and mud | N/A | Bottom scars in shallow
sand substrate resolved in
1 to 4 days, 60 days in
deep mud substrate | DeAlteris
et al. 1999 | | Mussel
beds with
bare mud
flats | Dutch
mussel
dredge,
1.8 m wide,
250 kg | Danish Sound,
Limfjorden,
Denmark | Reduced density of polychaetes, reduced species number, increase in shrimp <i>Crangon crangon</i> | Dredging formed 2-
5 cm deep furrows,
no change to
sediment texture or
organic content | N/A | Reduced species number in dredge area lasted 40 days, increase in species number outside dredge area for 7 days | Dolmer et al. 2001 | | Mud, silt
and clay | Commercial
mussel
dredge | Maquoit Bay,
Maine | Dragging disturbed 10% of
eelgrass in study area,
removing plant materials
above and below ground | Dragging did not
affect physical
characteristics of the
sediment | N/A | After 1yr eelgrass shoot density, height and total biomass reduced, reduced biomass persisted for >7 yrs, pattern and rate of recovery proportional to drag intensity | Neckles et al. 2005 | Table 4. Dredging effects reported from research studies on the cockle Cerastoderma edule. N/A indicates no data. | Habitat
Sediment | Harvest Gear | Study
Location | Biological Impacts | Physical Impacts | Chemical
Impacts | Recovery | Author | |--|--|--|--|--|---|---|-----------------------------| | Two sites,
mud and
sand,
intertidal | Tractor towed cockle harvester | Burry Inlet,
Wales | Loss of common
invertebrates, decreased
species richness at both
sites, dominance declined
in sand area, community
in clean sand recovered
more quickly than mud | Physical disruption to
the complex layered
structure of the
sediment | Anoxic
layer was
brought
to the
surface
and
dispersed | Modest recovery occurred in sand, in mud <i>Pygospio elegans</i> and <i>Hydrobia ulvae</i> (gastropods) remained depleted for 100 days, Nephtys <i>hombergi</i> (polychaete), <i>Scoloplos armiger</i> and <i>Bathyporeia pilosa</i> (amphipod) for 50 days | Ferns et al. 2000 | | Silty
sediments,
coarser
toward
center of
bay | Hydraulic
suction dredge
and tractor
dredge | Auchencairn
Bay,
Dumfriesshire
Scotland | High mortality of nontarget benthic fauna, considerable survival in suction dredged areas, reduced abundance of individuals and species | Dredge tracks did not persist | N/A | Faunal structure in suction dredged plots recovered by 56 days | Hall and
Harding
1997 | | Intertidal
flats | Suction dredge | Dutch
Wadden Sea | Densities of <i>M. balthica</i> lower in dredged areas, reduction in density of non-target species | Sediment removed and disturbed by dredging, less suitable for settlement by <i>Macoma balthica</i> and <i>Mytilus edulis</i> | N/A | Densities of nontarget
fauna lower in dredged
areas up to 1 yr later | Hiddink
2003 | | Sandy
intertidal
flats | Suction dredge | Griend, Dutch
Wadden Sea | Significant negative effect
of dredging on settlement
of cockles, declines in
bivalve stocks linked to
reduced settlement | Dredging increased sediment grain size while silt was lost | N/A | Initial sediment
characteristics
returned,, long lasting
(8 yr decline) negative
effects on bivalve
recruitment | Piersma et al. 2001 |