U.S. Fish \& Wildife Service

# Mourning Dove, White-winged Dove, and Band-tailed Pigeon 2008 Population Status 



## Cover photograph: Mourning Dove on Tree Limb by Larry Ditto

## Suggested citations:

Dolton, D.D., K. Parker, and R.D. Rau. 2008. Mourning dove population status, 2008. Pages 1-21 in Mourning dove, white-winged dove, and band-tailed pigeon population status, 2008. U.S. Fish and Wildlife Service, Laurel, Maryland. USA.

Rabe, M. J. 2008. White-winged dove status in Arizona, 2008. Pages 23-32 in Mourning dove, whitewinged dove, and band-tailed pigeon population status, 2008. U.S. Fish and Wildlife Service, Laurel, Maryland. USA.

Sanders, T.A. 2008. Band-tailed pigeon population status, 2008. Pages 33-43 in Mourning dove, whitewinged dove, and band-tailed pigeon population status, 2008. U.S. Fish and Wildlife Service, Laurel, Maryland. USA.

All Division of Migratory Bird Management reports are available on our home page at: http://www.fws.gov/migratorybirds/reports/reports.html

# MOURNING DOVE POPULATION STATUS, 2008 

DAVID D. DOLTON, U.S. Fish and Wildlife Service, Division of Migratory Bird Management, PO Box 25486 DFC, Denver, CO 80225-0486<br>KERI PARKER, U.S. Fish and Wildlife Service, Division of Migratory Bird Management, Patuxent Wildlife Research Center, 11510 American Holly Dr., Laurel, MD 20708-4002<br>REBECCA D. RAU, U.S. Fish and Wildlife Service, Division of Migratory Bird Management, Patuxent Wildlife Research Center, 11510 American Holly Dr., Laurel, MD 20708-4002


#### Abstract

This report includes Mourning Dove Call-count Survey information gathered over the last 43 years within the conterminous United States. Between 2007 and 2008, the average number of doves heard per route decreased significantly in the Eastern and Central Management Units, but did not change significantly in the Western Unit. Over the most recent 10 years, no significant trend was indicated for doves heard in either the Eastern or Western Management Units while the Central Unit showed a significant decline. Over the 43-year period, all 3 units exhibited significant declines. In contrast, for doves seen over the 10-year period, no significant trends were found for any of the three Management Units. Over 43 years, no trend was found for doves seen in the Eastern and Central Units while a significant decline was indicated for the Western Unit.


The mourning dove (Zenaida macroura) is a migratory bird, thus, authority and responsibility for its management is vested in the Secretary of the Interior. This responsibility is conferred by the Migratory Bird Treaty Act of 1918 which, as amended, implements migratory bird treaties between the United States and other countries. Mourning doves are included in the treaties with Great Britain (for Canada) and Mexico (U.S. Department of the Interior 1988). These treaties recognize sport hunting as a legitimate use of a renewable migratory bird resource. The annual harvest is estimated to be between 5 and $10 \%$ of the population (Otis et al. 2008a). As one of the most abundant species in both urban and rural areas of North America, it is familiar to millions of people. Maintenance of mourning dove populations in a healthy, productive state is a primary management goal. To this end, management of doves in the United States includes assessment of population status, regulation of harvest, and habitat management. Call-count surveys are conducted annually in the 48 conterminous states by state, federal, local, and tribal biologists to monitor mourning dove populations. The resulting information on status and trends is used by wildlife administrators in setting annual hunting regulations. A history of dove hunting regulations is provided in Appendix A.

The primary purpose of this report is to facilitate the prompt distribution of timely information. Results are preliminary and may change with the inclusion of additional data.

## DISTRIBUTION AND ABUNDANCE

Mourning doves breed from the southern portions of Canada throughout the United States into Mexico, Bermuda, the Bahamas and Greater Antilles, and scattered locations in Central America (Fig. 1). While mourning doves winter throughout much of the breeding range, the majority winter in the southern United States, Mexico, and south through Central America to western Panama (Aldrich 1993, Mirarchi and Baskett 1994).

The mourning dove is one of the most widely distributed and abundant birds in North America (Peterjohn et al. 1994, Fig. 1). The fall population for the United States was recently estimated to be about 350 million (Otis et al. 2008b).

## POPULATION MONITORING

## Call-count Survey

The Mourning Dove Call-count Survey (CCS) was developed to provide an annual index to population size (Dolton 1993). This survey is based on work by McClure (1939) in Iowa. In the United States, the survey currently includes more than 1,000 randomly selected routes, stratified by physiographic region (Fenneman 1931, Dolton 1993).


Figure 1. Breeding and wintering ranges of the mourning dove (adapted from Mirarchi and Baskett 1994).

Call-count survey routes are located on secondary roads and have 20 listening stations spaced at 1 -mile intervals. At each stop, the number of individual doves heard calling, the number of doves seen, and the level of disturbance (noise) that impairs the observer's ability to hear doves are recorded. Observers also record the number of doves seen while driving between stops.

Counts begin one-half hour before sunrise and take about 2 hours to complete. Routes are run once between 20 May and 5 June. Surveys are not conducted when wind velocities exceed 12 miles per hour or when it is raining.

The total number of doves heard on each route is used to determine trends in populations and is used to develop an index to population size during the breeding season. Indices for doves seen are also presented in this report, but only as supplemental information for comparison with indices of doves heard. Even though both the numbers of doves heard and seen are counted during the survey, they are recorded and analyzed separately.

Within the United States, there are 3 zones that contain mourning dove populations that are largely independent of each other (Kiel 1959). These zones encompass the
principal breeding, migration, and U.S. wintering areas for each population. As suggested by Kiel (1959), these 3 areas were established as separate management units in 1960 (Kiel 1961). Since that time, management decisions have been made within the boundaries of the Eastern (EMU), Central (CMU), and Western (WMU) Management Units (Fig. 2).

The EMU was further divided into 2 groups of states for analyses. States permitting dove hunting were combined into one group and those prohibiting dove hunting into another. Wisconsin became a hunting state for the first time in 2003 while Minnesota became a hunting state in 2004. Additionally, some states were grouped to increase sample sizes. Maryland and Delaware were combined; Vermont, New Hampshire, Maine, Massachusetts, Connecticut, and Rhode Island were combined to form a New England group. Due to its small size, Rhode Island, which is a hunting state, was included in this nonhunting group of states for analysis.

## Breeding Bird Survey

The North American Breeding Bird Survey (BBS) is completed in June and is based on routes that are 24.5 miles long. Each route consists of 50 stops or point count locations at 0.5 -mile intervals. At each stop, a 3minute count is conducted whereby every bird seen within a 0.25 -mile ( 400 m ) radius or heard is recorded. Surveys start one-half hour before local sunrise and take about 5 hours to complete. Data for birds heard and seen at stops are combined for BBS analyses while those data are analyzed separately for the CCS.

There has been considerable discussion about utilizing the BBS as a measure of mourning dove abundance. Consequently, we are including 1966-2007 BBS trend information in this report to allow comparisons to those from CCS results over the same time period (Dolton et al. 2007) for consistency in intervals of years. Sauer et al. (1994) discussed the differences in the methodology of the 2 surveys. BBS data are not available in time for use in regulations development during the year of the survey. Research is currently underway to evaluate the causes of differences in estimated trends between the CCS and BBS results.


Figure 2. Mourning dove management units with 2007 hunting and nonhunting states.

## Harvest Survey

Wildlife professionals have long recognized that reliable harvest estimates are needed to monitor the impact of hunting. In past years, state harvest surveys were used to obtain rough estimates of mourning dove harvest and hunter activity in the United States. However, the results from state surveys were not directly comparable because of a lack of consistent survey methodology among states and limitations in geographic coverage.

To remedy the limitations associated with using the results of state surveys, the U.S. Fish and Wildlife Service (Service) and state wildlife agencies initiated the national, cooperative State-Federal Harvest Information Program (HIP). The HIP was established in 1992 and became fully operational on a national scale 1999. This Program is designed to enable the Service to conduct nationwide surveys that provide reliable annual estimates of the harvest of mourning doves and other migratory game bird species on state, management unit, and national levels. Under HIP, states provide the Service with the names and addresses of all licensed migratory bird hunters each year, and the Service conducts surveys to estimate the harvest and hunter activity (number of hunters, days hunted, and average bag/hunter) in each state. All states except Hawaii are participating in the program.

## METHODS

## Estimation of Population Trends

A population trend is defined as an interval-specific rate of change. For two years, the change is the ratio of the dove population in an area in one year to the population in the preceding year. For more than 2 years of data, the trend is expressed as an average annual rate of change. A trend was first estimated for each route by numerically solving a set of estimating equations (Link and Sauer 1994). Observer data were used as covariates to adjust for differences in observers' ability to hear or see doves. The reported sample sizes are the number of routes on which a given trend estimate is based. This number may be less than the actual number of routes surveyed for several reasons. The estimating equations approach requires at least 2 non-zero counts by at least one observer for a route to be used. Routes that did not meet this requirement during the interval of interest were not included in the sample size. State and management unit trends were obtained by calculating a mean of all route trends weighted by land area, within-route variance in counts, and relative abundance (mean numbers of doves counted on each route). Variances of state and management unit trends were estimated by bootstrapping route trends (Geissler and Sauer 1990).

For the CCS, the annual change, or trend, for each area in doves heard over the most recent 2 - and 10 -year intervals and for the entire 43-year period were estimated (Table 1). Additionally, trends in doves seen were
estimated over the 10 - and 43 -year periods as supplemental information for comparison (Table 2).

For purposes of this report, statistical significance was defined as $\mathrm{P}<0.05$, except for the 2 -year comparison where $\mathrm{P}<0.10$ was used because of the low power of the test. Significance levels may be unreliable for states with less than 10 routes.

For the BBS, trends were calculated for the 10 -year period (1998-2007) and over 42 years (1966-2007) and are presented in Table 3.

## Estimation of Annual Indices

Annual indices show population fluctuations about fitted trends (Sauer and Geissler 1990). The estimated indices were determined for state and management units by finding the deviation between observed counts on a route and those predicted from the area trend estimate. These residuals were averaged by year for all routes in the area of interest. To adjust for variation in sampling intensity, residuals were weighted by the land area of the physiographic regions within each state. These weighted average residuals were then added to the fitted trend for the area to produce the annual index of abundance. This method of determining indices superimposes yearly variation in counts on the long-term fitted trend. These indices should provide an accurate representation of the fitted trend for regions that are adequately sampled by survey routes. Since the indices are adjusted for observer differences and trend, the index for an area may be quite different from the actual count. In order to estimate the percent change from 2007 to 2008, a shortterm trend was calculated. The percent change estimated from this short-term trend analysis is the best estimator of annual change. Attempts to estimate short-term trends from the breeding population indices (which were derived from residuals of the long-term trends) will yield less precise results. The annual index value incorporates data from a large number of routes that are not comparable between the two years 2007 and 2008, i.e., routes not run by the same observers. Therefore, the index is much more variable than the trend estimate.

In a separate analysis, the mean number of doves heard calling per route in 2008 was calculated for each state or groups of states. In contrast to the estimated annual indices presented in Table 4 (which illustrate population changes over time based on the regression line), the


Figure 3. Mean number of mourning doves heard per route by state in the Eastern Management Unit (EMU), 2007-2008.
estimated relative abundance shown in Figures 3, 7, and 11 illustrate the average actual numbers of doves heard per route in 2007 and 2008.

## CALL-COUNT SURVEY RESULTS

## Eastern Management Unit

The Eastern Management Unit (EMU) includes 27 states comprising $30 \%$ of the land area of the contiguous United States. Dove hunting is permitted in 19 states, representing $80 \%$ of the land area of the unit (Fig. 2).

2007-2008 Population Distribution.-North Carolina had the highest count in the EMU with an average of 43 actual doves heard per route over the 2 years (Fig. 3). Florida, Pennsylvania, New Jersey, and the New England states had $<10$ per route. Indiana had an average of 20 doves heard per route, and all other states had mean counts in the range of 10-20 doves heard per route.

2007 to 2008 Population Changes.-The average number of doves heard per route in the EMU decreased significantly ( $-8.5 \%$ ) (Table 1). The average number heard also decreased significantly between years in the combined hunting states ( $-10.1 \%$ ), but did not change significantly in the combined nonhunting states (0.4\%).


Figure 4. Population indices and trends of breeding mourning doves in the Eastern Management Unit (EMU), combined EMU hunting states (HUNT), and combined non-hunting states (NONHUNT), 1966-2008. Heavy solid line = doves heard; light solid line = doves seen. Light and heavy dashed lines = predicted trends.

The 2008 population index of 16.3 doves heard per route for the EMU is slightly above the predicted count based
on the long-term estimate of 15.8 (Fig. 4, Table 4). In the hunting states, the index of 16.6 is essentially the same as the predicted estimate of 16.4 and, in the nonhunting states, the index of 14.7 is above the predicted estimate of 13.7.

The number of doves heard increased significantly in Georgia while they decreased significantly in Florida, Illinois, Ohio, Wisconsin, and in New England (Table 1). No significant changes were detected for the other states.

Population Trends: 10 and 43-year.-Over the most recent 10 years, there was no significant trend indicated in either the combined nonhunting states or the EMU as a whole (Table 1). A significant decline was detected in the combined hunting states. For the 43 -year period, a significant declining trend was found in both the combined hunting states and the unit while no trend was indicated for the combined nonhunting states. Annual indices both for doves heard and seen are shown in Figure 4. In contrast to doves heard, an analysis of doves seen over 10 years indicated no significant trend for either group of states or the unit (Table 2). Over 43 years, a significant increase was detected for the combined nonhunting states; no trend was shown for the combined hunting states or the unit.


Figure 5. Trends in number of mourning doves heard per route by state in the Eastern Management Unit (EMU), 1999-2008.

State population trends for doves heard are shown in Figure 5 (10-year interval), Figure 6 (43-year interval),
and Table 1. Over 10 years, an increase was found for New York while Florida, Tennessee, and New England showed declines. Between 1966 and 2008, no significant increases were noted while a downward trend was noted in Georgia, Indiana, Ohio, South Carolina, and Tennessee.


Figure 6. Trends in the number of mourning doves heard per route by state in the Eastern Management Unit (EMU), 1966-2008.


Figure 7. Mean number of mourning doves heard per route by state in the Central Management Unit (CMU), 2007-2008.

MEAN PER ROUTE


Figure 8. Population indices and trends of breeding mourning doves in the Central Management Unit (CMU), 1966-2008. Heavy solid line = doves heard; light solid line $=$ doves seen. Light and heavy dashed lines $=$ predicted trends.

## Central Management Unit

The Central Management Unit (CMU) consists of 14 states, containing $46 \%$ of the land area of the contiguous United States. It has the highest population index of the 3 units. Within the CMU, dove hunting is permitted in 13 states (Fig. 2).

2007-2008 Population Distribution.-North Dakota and South Dakota had the highest actual average number of doves heard per route over the 2 years ( 34 and 38 , respectively) (Fig. 7). Historically, these states often have the highest average counts in the Nation (Table 4). Montana and Wyoming were the only states with less than 10 doves per route. The remaining states had intermediate values (Fig. 7).

2007 to 2008 Population Changes.-The average number of doves heard per route in the CMU decreased significantly between the 2 years ( $-8.5 \%$ ) (Table 1). The 2008 index for the unit of 18.9 doves heard per route is less than the predicted long-term trend estimate of 20.6 (Fig. 8, Table 4). The population increased significantly in Colorado and North Dakota while it decreased significantly in Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas. No significant changes were found in any of the other states (Table 1).


Figure 9. Trends in number of mourning doves heard per route by state in the Central Management Unit (CMU), 1999-2008.

Population Trends: 10 and 43-year.-A significant decline in doves heard was indicated for the CMU over both the 10 -year and 43-year periods (Table 1). In contrast, trends in doves seen were not significant for either time period (Table 2).

State trends in doves heard over 10 years are illustrated in Fig. 9 and Table 1. Iowa and New Mexico showed an increase while Nebraska, North Dakota, and Texas had a decline during this time. Figure 10 portrays trends over 43 years. New Mexico showed a significant increase in doves heard while a significant downward trend was found in Minnesota, Nebraska, Texas, and Wyoming (Table 1).

## Western Management Unit

Seven states comprise the Western Management Unit (WMU) and represent $24 \%$ of the land area of the contiguous United States. All states within the WMU permit mourning dove hunting (Fig. 2).

2007-2008 Population Distribution.-Arizona averaged 15 actual doves heard per route (Table 1, Fig. 11). California and Idaho averaged 11 and 10 doves heard per route, respectively. The other states in the WMU averaged $<10$ birds per route.


Figure 10. Trends in mourning doves heard per route by state in the Central Management Unit (CMU), 1966-2008.


Figure 11. Mean number of mourning doves heard per route by state in the Western Management Unit (WMU), 2007-2008.

2007 to 2008 Population Changes.-The average number of doves heard per route did not change significantly between years ( $-0.1 \%$; Table 1). The 2008 population index of 8.2 doves heard per route is essentially the same as the predicted count of 8.3 based on the long-term trend estimate (Fig. 12, Table 4). No state had a significant increase in doves heard between


Figure 12. Population indices and trends of breeding mourning doves in the Western Management Unit (WMU), 1966-2008. Heavy solid line = doves heard; light solid line = doves seen. Light and heavy dashed lines = predicted trends.
years. The number of doves heard per route decreased significantly in Idaho and Washington (Table 1). No significant differences were found in other states.

Population Trends: 10 and 43-year.-WMU-wide, no significant trend in numbers of doves heard was indicated over the most recent 10 years although a significant decline was apparent over 43 years (Table 1). Analyses of doves seen gave the same pattern of results (Table 2).

Trends by state are illustrated in Figs. 13 and 14, and Table 1. Oregon showed a significant increase over 10 years while California showed a decline. Between 1966 and 2008, California, Nevada, and Utah showed significant declines. There were no significant trends in the other states.

## BREEDING BIRD SURVEY RESULTS

In general, trends indicated by the BBS tend to indicate fewer declines. The major differences occur in the EMU. This is likely due to the larger sample size of BBS survey routes and greater consistency of coverage by BBS routes in the unit (Sauer et al. 1994), although additional analyses are needed to clarify some differences in results between surveys within states. Comparisons below are from Table 3 and CCS results for doves heard (Table 1) in Dolton et al. (2007).

Decrease (NS) Decrease (P<0.05)
Decrease (NS) Decrease (P<0.05)
|}|\mathrm{ Increase (NS) Increase (P<0.05)
|}|\mathrm{ Increase (NS) Increase (P<0.05)

Figure 13. Trends in number of mourning doves heard per route by state in the Western Management Unit (WMU), 1999-2008.


Figure 14. Trends in number of mourning doves heard per route by state in the Western Management Unit (WMU), 1966-2008.

## Eastern Management Unit

For the 10-year period, 1998-07, the BBS showed a significant increase in doves heard and seen in the EMU while the CCS indicated no trend in doves heard. Over 42 years, 1966-07, the BBS showed a significant increase while the CCS showed a significant decrease.

## Central Management Unit

Over 10 years, there was a significant increase in doves heard and seen in the CMU according to BBS results. In contrast, results of doves heard via CCS indicated a significant decrease. For the 42 -year period, declines were found by both surveys.

## Western Management Unit

There was no significant trend in doves heard and seen in the WMU indicated by the BBS over the 10 and 42year time periods. Similarly, no trend was indicated over 10 years with the CCS, but a significant decline was present over 42 years.

## HARVEST SURVEY ESTIMATES

Preliminary results for doves from the HIP survey for the 2006-07 and 2007-08 hunting seasons are presented in Tables 5 and 6, respectively. The total estimated harvest for the 2007-08 season by management unit and for the U.S. are as follows: Eastern: 8,908,400 $\pm 7 \%$; Central: 9,180,200 $\pm 9 \%$; Western: 2,461,500 $\pm 7 \%$; and, U.S.: $20,550,000 \pm 5 \%$.

Additional information about HIP, survey methodology, and results can be found in annual reports located at http://www.fws.gov/migratorybirds/reports/HuntingStati stics/HuntingStatistics.htm

## ACKNOWLEDGMENTS

Personnel from state wildlife agencies and the U.S. Fish and Wildlife Service (USFWS) cooperated to collect the data presented in this report. Special thanks to state and regional Call-count Survey Coordinators including: T. Aldrich (UT DWR), R. Applegate (TN WRA), J. Austin (VT FWD), S. Baker (MS DWFP), T. Bogenschutz (IA DNR), R. Boyd (PA PGC), J. Cole (IL DWPD), B. Crose (OH DNR), M. DiBona (DE DNREC), J. Dickson (CT DEP), B. Dukes (SC DNR), L. Fendrick (OH DNR), K. Fothergill (CA DFG), V. Frawley (MI DNR), M. Frisbie (TX PWD), J. Fuller (NC WRC), J. Garris (NJ FW), E. Gorman (CO DW), H. Hands (KS DWP), J. Hansen (MT FWP), B. Harvey (MD DNR), T. Hemker (ID DFG), K. Hodges (FL FWC), C. Huxoll (SD DGFP), D. Kraege (WA DFW), J. Lusk (NE GPC), D. McGowan (GA WRD), M. McInroy (IA DNR), T. Mitchusson (NM DGF), C. Mortimore (NV DW), M. Olinde (LA DWF), M. O’Meilia (OK DWC), J. Powers (AL DCNR), M.

Rabe (AZ GFD), E. Robinson (NH FGD), R. Rothwell (WY GFD), D. Scarpitti (MA DFW), G. Sheridan (WY GFD), J. Schulz (MO DC), A. Stewart (MI DNR), N. Stricker (OH DNR), B. Swift (NY DEC), M. Szymanski (ND GFD), B. Tefft (RI DEM), B. Veverka (IN DFW), T. White (TN WRA), S. Wilson (WV DNR), and B. Bortner, H. Browers, A. Daisey, D. Davis, J. Dubovsky, C. Dwyer, T. Edwards, K. Frizzell, R. Ford, D. Haukos, D. James, S. Kelly, M. Mills, B. Strader, D. Viker, J. West, R. Wilson (USFWS). K. Magruder (USFWS) provided invaluable assistance with data entry and management. R. Maruthalingam (USFWS) assisted in maintaining the website for the Call-count Survey. J. R. Sauer (BRD) analyzed the data and provided statistical support. K. Richkus, H. Spriggs, S. Williams, and K. Wilkins (USFWS) provided the HIP data and explanation. K. Fleming, P. Garrettson, M. Koneff, and F. Rivera (USFWS) reviewed a draft of this report. Portions of this report were copied in whole or in part from previous dove status reports.

## LITERATURE CITED

Aldrich, J.W. 1993. Classification and distribution. Pages 47-54 in T.S. Baskett, M.W. Sayre, R.E. Tomlinson, and R.E. Mirarchi, Editors. Ecology and management of the mourning dove. Stackpole Books, Harrisburg, Pennsylvania, USA.
Dolton, D.D. 1993. The call-count survey: historic development and current procedures. Pages 233-252 in T.S. Baskett, M.W. Sayre, R.E. Tomlinson, and R.E. Mirarchi, editors. Ecology and management of the mourning dove. Stackpole Books, Harrisburg, Pennsylvania, USA.
Dolton, D.D., R.D. Rau, and K. Parker. 2007 Mourning dove breeding population status, 2007 U.S. Fish and Wildlife Service, Laurel, Maryland, USA.
Fenneman, N.M. 1931. Physiography of western United States. McGraw Hill Book Co., New York. 534 pp.
Geissler, P.H. and J.R. Sauer. 1990. Topics in route regression analysis. Pages $54-57$ in J.R. Sauer and S. Droege, editors. Survey designs and statistical methods for the estimation of avian population trends. U.S. Fish and Wildlife Service, Biological Report 90(1).
Kiel, W.H. 1959. Mourning dove management units, a progress report. U.S. Fish and Wildlife Service, Special Scientific Report--Wildlife 42.
Kiel, W.H. 1961. The mourning dove program for the future. Transactions of the North American Wildlife and Natural Resources Conference 26:418-435.

Link, W.A. and J.R. Sauer. 1994. Estimating equations estimates of trends. Bird Populations 2:23-32.
McClure, H.E. 1939. Cooing activity and censusing of the mourning dove. Journal of Wildlife Management 3:323-328.
Mirarchi, R.E. and T.S. Baskett. 1994. Mourning dove (Zenaida macroura). In A. Poole and F. Gill, editors, The birds of North America, No. 117. The Academy of Natural Sciences, Philadelphia and The American Ornithologists' Union, Washington, D.C., USA.
Otis, D. L., J. H. Schulz, and D. P. Scott. 2008a. Mourning dove (Zenaida macroura) harvest and population parameters derived from a national banding study. U.S. Department of Interior, Fish and Wildlife Service, Biological Technical Publication FWS/BTP-R3010-2008, Washington, D.C., USA/

Otis, D. L., J. H. Schulz, D. A. Miller, R. Mirarchi, and T. Baskett. 2008b. Mourning dove (Zenaida macroura). In The Birds of North America, No. 117. (A. Poole and F. Gill, editors.). Philadelphia: The Academy of Natural Sciences; Washington, D.C., USA.

Peterjohn, B.G., J.R. Sauer and W.A. Link. 1994. The 1992 and 1993 summary of the North American breeding bird survey. Bird Populations 2:46-61.
Sauer, J.R. and P.H. Geissler. 1990. Annual indices from route regression analyses. Pages 58-62 in J.R. Sauer and S. Droege, eds. Survey designs and statistical methods for the estimation of avian population trends. U.S. Fish and Wildlife Service, Biological Report. 90(1).
Sauer, J.R., D.D. Dolton, and S. Droege. 1994.Mourning dove population trend estimates from Call-count and North American Breeding Bird Surveys. Journal of Wildlife Management. 58(3):506-515.
U.S. Department of the Interior. 1988. Final Supplemental Environmental Impact Statement: Issuance of annual regulations permitting the sport hunting of migratory birds. U.S. Fish and Wildlife Service. Washington, D.C., USA.

Table 1. Trends (\% change ${ }^{\text {a }}$ per year as determined by linear regression) in number of mourning doves heard along Call-count Survey routes, 1966-2008.

|  | 2007-2008 ${ }^{\text {b }}$ |  |  |  |  | 10 year (1999-2008) |  |  |  |  | 43 year (1966-2008) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% Change ${ }^{\text {c }}$ |  | 90\% | Cl | N | \% Change ${ }^{\text {c }}$ |  | 90\% Cl |  | N | \% Change ${ }^{\text {c }}$ |  | 90\% CI |  |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AL | 26 | 3.0 |  |  | -12.7 | 18.8 | 31 | -1.5 |  | -3.7 |  | 0.8 | 45 | -0.8 | * | -1.6 | 0.0 |
| DE/MD | 13 | -3.0 |  | -29.5 | 23.5 | 15 | 1.7 |  | -1.4 | 4.9 | 20 | -0.9 |  | -2.5 | 0.7 |
| FL | 12 | -21.6 | * | -43.7 | 0.6 | 24 | -4.7 | *** | -8.1 | -1.2 | 29 | -0.7 |  | -1.6 | 0.3 |
| GA | 20 | 37.5 | ** | 8.2 | 66.7 | 23 | 0.3 |  | -3.0 | 3.5 | 31 | -1.0 | ** | -1.8 | -0.2 |
| IL | 13 | -26.1 | *** | -35.6 | -16.6 | 20 | -0.6 |  | -3.6 | 2.4 | 22 | 0.2 |  | -1.2 | 1.6 |
| IN | 14 | -7.4 |  | -16.5 | 1.6 | 15 | 0.5 |  | -4.0 | 5.0 | 18 | -1.2 | ** | -2.4 | -0.1 |
| KY | 18 | -14.6 |  | -34.5 | 5.4 | 20 | -0.7 |  | -2.2 | 0.7 | 26 | -0.5 |  | -1.7 | 0.8 |
| LA | 16 | -10.2 |  | -35.0 | 14.6 | 19 | -0.4 |  | -3.4 | 2.7 | 23 | 1.1 | * | -0.2 | 2.4 |
| MS | 17 | -11.7 |  | -41.5 | 18.1 | 22 | -2.3 | * | -4.8 | 0.3 | 31 | -1.8 | * | -3.7 | 0.0 |
| NC | 20 | 1.3 |  | -11.7 | 14.2 | 21 | 0.8 |  | -1.2 | 2.8 | 24 | 0.2 |  | -0.7 | 1.2 |
| OH | 33 | -9.5 | * | -20.5 | 1.5 | 36 | 0.4 |  | -1.8 | 2.7 | 57 | -1.1 | *** | -1.8 | -0.3 |
| PA | 10 | -8.9 |  | -29.8 | 11.9 | 19 | 1.4 |  | -1.5 | 4.3 | 19 | 1.0 |  | -0.7 | 2.6 |
| SC | 15 | -6.1 |  | -23.3 | 11.0 | 21 | -3.1 | * | -6.3 | 0.1 | 27 | -1.2 | ** | -2.2 | -0.2 |
| TN | 16 | 3.2 |  | -14.6 | 20.9 | 25 | -4.0 | *** | -6.2 | -1.8 | 35 | -1.7 | *** | -2.9 | -0.5 |
| VA | 23 | -18.2 |  | -40.9 | 4.4 | 33 | -0.6 |  | -3.9 | 2.7 | 33 | -1.6 |  | -3.6 | 0.4 |
| WI | 17 | -20.4 | *** | -35.8 | -5.0 | 22 | 1.3 |  | -0.7 | 3.3 | 23 | 0.9 |  | -0.5 | 2.4 |
| WV | 10 | 4.7 |  | -24.1 | 33.4 | 11 | 2.9 | * | -0.1 | 5.8 | 12 | 1.6 |  | -0.5 | 3.6 |
| Subunit | 293 | -10.1 | *** | -15.2 | -5.0 | 377 | -0.9 | ** | -1.6 | -0.1 | 475 | -0.6 | *** | -1.0 | -0.2 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MI | 12 | 6.1 |  | -11.5 | 23.7 | 19 | 2.9 |  | -1.3 | 7.1 | 23 | 1.1 |  | -0.7 | 2.9 |
| N.England ${ }^{\text {d }}$ | 24 | -18.7 | ** | -34.2 | -3.2 | 42 | -2.9 | ** | -5.6 | -0.2 | 76 | 0.9 | * | 0.0 | 1.8 |
| NJ | 11 | 19.4 |  | -48.3 | 87.2 | 11 | -1.9 |  | -5.3 | 1.5 | 20 | -2.2 |  | -5.1 | 0.8 |
| NY | 10 | -0.3 |  | -27.4 | 26.8 | 17 | 2.8 | *** | 0.8 | 4.8 | 22 | 2.3 | * | -0.4 | 4.9 |
| Subunit | 57 | 0.4 |  | -12.3 | 13.1 | 89 | 1.5 |  | -1.3 | 4.3 | 141 | 1.1 | * | 0.0 | 2.3 |
| Unit | 350 | -8.5 | *** | -13.3 | -3.7 | 466 | -0.5 |  | -1.3 | 0.4 | 616 | -0.4 | ** | -0.8 | 0 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AR | 13 | -6.8 |  | -29.2 | 15.7 | 19 | 0.3 |  | -2.8 | 3.4 | 21 | -0.8 |  | -2.0 | 0.5 |
| CO | 9 | 18.0 | * | -0.3 | 36.3 | 16 | -2.7 |  | -6.4 | 1.0 | 21 | -0.7 |  | -1.7 | 0.3 |
| IA | 13 | -11.5 |  | -27.3 | 4.3 | 17 | 3.5 | ** | 0.7 | 6.2 | 19 | 0.2 |  | -0.7 | 1.2 |
| KS | 16 | -16.6 | ** | -31.2 | -2.0 | 28 | 0.0 |  | -3.0 | 3.0 | 36 | 0.0 |  | -0.9 | 0.9 |
| MN | 8 | -6.9 |  | -33.0 | 19.1 | 13 | -1.2 |  | -7.4 | 5.0 | 13 | -1.9 | ** | -3.7 | -0.2 |
| MO | 14 | -27.4 | *** | -35.3 | -19.5 | 20 | 0.4 |  | -1.4 | 2.3 | 28 | -1.8 | * | -3.7 | 0.1 |
| MT | 10 | 2.9 |  | -12.9 | 18.8 | 19 | -1.4 |  | -8.5 | 5.8 | 29 | -1.7 | * | -3.6 | 0.2 |
| NE | 15 | -16.7 | * | -33.5 | 0.1 | 24 | -3.3 | *** | -4.9 | -1.6 | 28 | -1.1 | *** | -1.9 | -0.3 |
| NM | 20 | -34.6 | *** | -41.9 | -27.3 | 28 | 4.9 | ** | 0.3 | 9.4 | 31 | 1.4 | ** | 0.2 | 2.6 |
| ND | 25 | 23.7 | * | -0.8 | 48.2 | 27 | -3.0 | *** | -4.3 | -1.6 | 30 | -0.7 |  | -1.9 | 0.5 |
| OK | 14 | -34.1 | *** | -51.7 | -16.5 | 16 | -1.5 |  | -5.6 | 2.5 | 25 | 0.5 |  | -3.3 | 4.2 |
| SD | 17 | 20.7 |  | -7.9 | 49.4 | 21 | 1.9 |  | -2.4 | 6.2 | 30 | -0.5 |  | -2.0 | 1.0 |
| TX | 104 | -14.7 | *** | -23.2 | -6.1 | 140 | -5.6 | *** | -7.0 | -4.2 | 213 | -1.1 | *** | -1.9 | -0.3 |
| WY | 11 | 26.9 |  | -23.5 | 77.4 | 18 | -4.4 | * | -9.6 | 0.8 | 25 | -2.4 | ** | -4.7 | -0.1 |
| Unit | 289 | -8.5 | *** | -14.0 | -3.0 | 406 | -3.2 | *** | -4.0 | -2.3 | 549 | -0.8 | *** | -1.2 | -0.4 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AZ | 30 | 22.1 |  | -20.3 | 64.5 | 53 | 1.2 |  | -2.2 | 4.5 | 71 | -0.8 | * | -1.6 | 0.0 |
| CA | 43 | -2.4 |  | -12.1 | 7.4 | 61 | -3.3 | *** | -5.1 | -1.5 | 84 | -2.5 | *** | -3.6 | -1.3 |
| ID | 11 | -13.9 | ** | -25.7 | -2.2 | 22 | 3.7 |  | -4.8 | 12.2 | 28 | -0.7 |  | -2.0 | 0.6 |
| NV | 7 | -19.2 |  | -71.5 | 33.1 | 20 | -1.5 |  | -8.2 | 5.2 | 33 | -3.3 | *** | -5.4 | -1.3 |
| OR ${ }^{\text {e }}$ | 6 | 10.3 |  | -64.3 | 84.9 | 19 | 6.2 | ** | 0.2 | 12.2 | 25 | -1.5 | * | -3.1 | 0.1 |
| UT | 11 | -19.3 |  | -71.6 | 32.9 | 16 | 0.8 |  | -6.0 | 7.5 | 20 | -3.9 | *** | -6.7 | -1.0 |
| WA | 13 | -26.6 | * | -53.9 | 0.7 | 23 | 1.8 |  | -2.6 | 6.2 | 28 | -2.0 | * | -4.2 | 0.2 |
| Unit | 121 | -0.1 |  | -17.0 | 16.7 | 214 | -0.7 |  | -2.5 | 1.1 | 289 | -1.8 | *** | -2.4 | -1.2 |

[^0]Table 2. Trends (\% change ${ }^{a}$ per year as determined by linear regression) in number of mourning doves seen along Call-count Survey routes, 1966-2008.

|  | 10 year (1999-2008) |  |  |  |  | 43 year (1966-2008) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% Change ${ }^{\text {b }}$ |  | 90\% CI |  | N | \% Change ${ }^{\text {b }}$ |  | 90\% CI |  |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |
| AL | 31 | -3.5 | ** | -6.8 | -0.2 | 45 | -1.4 | ** | -2.6 | -0.2 |
| DE/MD | 15 | -1.0 |  | -3.2 | 1.3 | 20 | 0.5 |  | -0.8 | 1.8 |
| FL | 25 | -1.6 |  | -7.4 | 4.1 | 29 | 3.3 | *** | 1.9 | 4.6 |
| GA | 23 | 0.7 |  | -5.3 | 6.7 | 31 | 0.5 |  | -1.0 | 1.9 |
| IL | 20 | 3.0 | *** | 0.9 | 5.0 | 22 | -0.7 |  | -2.6 | 1.1 |
| IN | 15 | -0.3 |  | -7.8 | 7.3 | 18 | -1.6 |  | -5.1 | 1.8 |
| KY | 20 | -2.2 |  | -5.7 | 1.3 | 24 | 1.3 |  | -0.4 | 2.9 |
| LA | 18 | -0.4 |  | -3.1 | 2.2 | 23 | 2.1 | *** | 1.2 | 3.0 |
| MS | 22 | -0.2 |  | -2.9 | 2.5 | 31 | -1.2 |  | -3.4 | 1.1 |
| NC | 21 | 3.0 | ** | 0.2 | 5.8 | 24 | -0.1 |  | -1.3 | 1.1 |
| OH | 36 | -2.3 |  | -5.3 | 0.8 | 57 | 0.6 |  | -1.0 | 2.2 |
| PA | 19 | -5.2 | ** | -10.3 | -0.1 | 19 | 0.8 |  | -1.1 | 2.7 |
| SC | 21 | -1.3 |  | -6.0 | 3.5 | 27 | 1.2 | ** | 0.0 | 2.4 |
| TN | 25 | -1.3 |  | -4.3 | 1.8 | 35 | -0.8 |  | -2.0 | 0.4 |
| VA | 33 | 0.5 |  | -6.3 | 7.4 | 33 | 0.0 |  | -2.7 | 2.7 |
| WI | 21 | 5.0 | ** | 0.9 | 9.1 | 23 | 3.1 | *** | 1.9 | 4.4 |
| WV | 11 | -4.7 | ** | -9.2 | -0.1 | 12 | 3.2 | *** | 1.4 | 5.0 |
| Subunit | 376 | -0.7 |  | -1.8 | 0.4 | 473 | 0.1 |  | -0.6 | 0.8 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |
| MI | 19 | 1.2 |  | -1.5 | 4.0 | 23 | 2.2 | *** | 0.7 | 3.6 |
| N.England ${ }^{\text {c }}$ | 40 | -1.4 |  | -5.4 | 2.5 | 73 | 1.7 | * | -0.3 | 3.6 |
| NJ | 11 | 2.0 |  | -4.7 | 8.6 | 20 | -0.6 |  | -2.8 | 1.6 |
| NY | 17 | -2.1 |  | -8.9 | 4.7 | 22 | 2.9 | * | -0.4 | 6.2 |
| Subunit | 87 | 0.5 |  | -1.6 | 2.7 | 138 | 2.1 | *** | 1.0 | 3.2 |
| Unit | 463 | -0.5 |  | -1.6 | 0.5 | 611 | 0.3 |  | -0.3 | 1.0 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |
| AR | 19 | 0.7 |  | -3.0 | 4.5 | 21 | -1.1 | ** | -2.1 | -0.1 |
| CO | 16 | -4.0 |  | -9.6 | 1.6 | 20 | -0.5 |  | -2.1 | 1.2 |
| IA | 17 | 3.6 | * | -0.7 | 7.8 | 19 | 0.5 |  | -1.0 | 2.1 |
| KS | 28 | 2.3 | * | -0.2 | 4.7 | 36 | -0.3 |  | -1.2 | 0.6 |
| MN | 13 | -2.5 |  | -7.5 | 2.6 | 14 | -1.1 |  | -3.2 | 1.0 |
| MO | 20 | 0.5 |  | -2.2 | 3.3 | 28 | -2.9 | *** | -4.9 | -0.9 |
| MT | 21 | 4.1 |  | -6.1 | 14.3 | 29 | 1.6 | * | -0.2 | 3.4 |
| NE | 24 | -0.6 |  | -3.7 | 2.6 | 28 | -0.6 |  | -2.4 | 1.1 |
| NM | 27 | 10.9 | *** | 7.5 | 14.4 | 31 | 0.9 |  | -2.1 | 4.0 |
| ND | 27 | -4.7 | *** | -7.0 | -2.5 | 30 | -0.3 |  | -1.4 | 0.9 |
| OK | 16 | 1.2 |  | -2.4 | 4.9 | 25 | 0.4 |  | -0.9 | 1.7 |
| SD | 21 | 0.9 |  | -4.1 | 5.8 | 30 | -1.0 |  | -2.5 | 0.6 |
| TX | 140 | -1.3 |  | -3.3 | 0.6 | 213 | 0.7 | * | -0.1 | 1.4 |
| WY | 15 | -2.5 |  | -9.1 | 4.1 | 23 | -3.2 | * | -6.7 | 0.3 |
| Unit | 404 | -0.5 |  | -1.9 | 0.8 | 547 | 0.0 |  | -0.5 | 0.6 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| AZ | 50 | -5.0 | ** | -8.9 | -1.0 | 72 | -3.9 | *** | -6.0 | -1.8 |
| CA | 57 | -3.4 | *** | -5.5 | -1.3 | 83 | -2.4 | *** | -3.6 | -1.3 |
| ID | 21 | 9.3 | ** | 1.7 | 16.9 | 28 | -2.2 |  | -5.3 | 0.9 |
| NV | 19 | 3.9 |  | -8.4 | 16.2 | 33 | -1.5 |  | -5.0 | 2.0 |
| OR | 19 | -3.9 |  | -13.8 | 5.9 | 23 | -4.5 | *** | -7.4 | -1.6 |
| UT | 15 | -8.1 |  | -17.8 | 1.7 | 20 | -5.4 | ** | -9.9 | -0.9 |
| WA | 23 | 0.4 |  | -5.9 | 6.6 | 25 | 0.9 |  | -1.9 | 3.6 |
| Unit | 204 | -2.2 | * | -4.7 | 0.3 | 284 | -2.9 | *** | -3.9 | -1.9 |

[^1]Table 3. Trends (\% change ${ }^{\text {a }}$ per year as determined by linear regression) in number of mourning doves heard and seen along Breeding Bird Survey routes, 1966-2007.

|  | 10 year (1998-07) |  |  |  |  | 42 year (1966-07) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% Change ${ }^{\text {b }}$ |  | 90\% CI |  | N | \% Change ${ }^{\text {b }}$ |  | 90\%CI |  |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |
| AL | 92 | -1.6 | ** | -2.7 | -0.5 | 102 | -1.4 | *** | -2.0 | -0.8 |
| DE/MD | 67 | -1.4 | *** | -2.3 | -0.5 | 79 | 0.2 |  | -0.3 | 0.7 |
| FL | 74 | -2.1 | ** | -3.8 | -0.4 | 87 | 1.4 | *** | 0.7 | 2.1 |
| GA | 69 | -1.7 | * | -3.2 | -0.1 | 82 | -1.6 | *** | -2.4 | -0.7 |
| IL | 101 | 6.3 | *** | 4.8 | 7.8 | 102 | 1.3 | *** | 0.6 | 2.0 |
| IN | 56 | 3.0 | *** | 1.9 | 4.2 | 61 | 0.3 |  | -0.2 | 0.8 |
| KY | 39 | 1.0 |  | -0.3 | 2.4 | 55 | 0.4 |  | -0.3 | 1.1 |
| LA | 52 | 2.7 | *** | 1.1 | 4.3 | 72 | 2.4 | *** | 1.2 | 3.6 |
| MS | 25 | 0.4 |  | -1.8 | 2.5 | 35 | -1.7 | *** | -2.6 | -0.9 |
| NC | 74 | 2.1 | *** | 0.8 | 3.4 | 87 | 0.3 |  | -0.5 | 1.0 |
| OH | 59 | 0.8 |  | -0.3 | 1.9 | 78 | 0.7 | ** | 0.2 | 1.3 |
| PA | 100 | -0.5 |  | -1.4 | 0.4 | 122 | 1.7 | *** | 1.1 | 2.3 |
| SC | 31 | 3.0 |  | 0.0 | 6.1 | 39 | -0.1 |  | -0.9 | 0.8 |
| TN | 41 | -0.1 |  | -1.8 | 1.6 | 47 | -0.7 |  | -1.4 | 0.1 |
| VA | 48 | -0.6 |  | -1.8 | 0.6 | 55 | -0.7 | ** | -1.3 | -0.2 |
| WI | 93 | 3.5 | *** | 2.7 | 4.2 | 96 | 1.7 | *** | 1.0 | 2.3 |
| WV | 48 | 1.8 |  | -0.1 | 3.7 | 56 | 5.0 | *** | 4.2 | 5.8 |
| Subunit | 1069 | 1.4 | *** | 0.9 | 1.8 | 1255 | 0.3 |  | 0.0 | 0.5 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |
| MI | 60 | 2.2 | *** | 1.2 | 3.1 | 84 | 0.8 | ** | 0.2 | 1.4 |
| N.England ${ }^{\text {c }}$ | 127 | -2.3 | *** | -3.3 | -1.2 | 155 | 2.5 | *** | 1.9 | 3.2 |
| NJ | 26 | -1.0 |  | -3.5 | 1.5 | 37 | 0.2 |  | -0.9 | 1.4 |
| NY | 94 | -0.7 |  | -1.8 | 0.4 | 118 | 2.5 | *** | 2.1 | 2.8 |
| Subunit | 307 | -0.2 |  | -0.8 | 0.4 | 394 | 1.7 | *** | 1.3 | 2.1 |
| Unit | 1376 | 1.1 | *** | 0.7 | 1.5 | 1649 | 0.5 | *** | 0.2 | 0.7 |


| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AR | 31 | 1.9 | * | 0.1 | 3.6 | 35 | 1.1 |  | -0.2 | 2.4 |
| CO | 120 | 2.8 | ** | 0.5 | 5.1 | 133 | 1.1 | * | 0.1 | 2.1 |
| IA | 33 | 4.7 | *** | 2.0 | 7.5 | 39 | -0.3 |  | -1.3 | 0.7 |
| KS | 61 | 3.6 | ** | 1.0 | 6.3 | 62 | 0.2 |  | -0.6 | 0.9 |
| MN | 60 | 0.3 |  | -2.3 | 2.9 | 71 | -1.0 | * | -1.8 | -0.1 |
| MO | 52 | 1.7 | * | 0.0 | 3.3 | 66 | -1.4 | *** | -2.2 | -0.6 |
| MT | 45 | -0.6 |  | -2.7 | 1.6 | 53 | -0.8 | * | -1.6 | 0.0 |
| NE | 45 | 3.5 | ** | 0.8 | 6.2 | 49 | -0.3 |  | -1.0 | 0.4 |
| NM | 62 | 3.3 | * | 0.4 | 6.1 | 74 | 0.5 |  | -0.8 | 1.9 |
| ND | 42 | -0.8 |  | -3.5 | 1.9 | 47 | 0.4 |  | -0.3 | 1.1 |
| OK | 53 | 1.1 |  | -0.5 | 2.7 | 60 | -1.2 | *** | -1.8 | -0.6 |
| SD | 42 | 0.6 |  | -1.6 | 2.9 | 51 | 0.4 |  | -0.3 | 1.2 |
| TX | 179 | -0.6 |  | -1.8 | 0.6 | 209 | -1.3 | *** | -1.8 | -0.8 |
| WY | 73 | 2.0 | * | 0.1 | 4.0 | 107 | 0.7 |  | -1.0 | 2.4 |
| Unit | 898 | 1.5 | *** | 0.8 | 2.2 | 1056 | -0.4 | ** | -0.6 | -0.1 |


| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AZ | 56 | 1.0 |  | -3.1 | 5.2 | 78 | 0.4 |  | -2.6 | 3.5 |
| CA | 162 | 1.9 | ** | 0.7 | 3.2 | 225 | -1.0 | * | -1.8 | -0.2 |
| ID | 40 | 4.3 | ** | 1.3 | 7.4 | 43 | -0.2 |  | -1.1 | 0.8 |
| NV | 25 | 0.4 |  | -2.4 | 3.2 | 37 | 1.7 | * | 0.1 | 3.3 |
| OR | 76 | 0.7 |  | -2.2 | 3.6 | 101 | -2.0 | *** | -3.2 | -0.8 |
| UT | 86 | 3.9 | * | 0.6 | 7.3 | 94 | -1.6 | *** | -2.3 | -0.8 |
| WA | 58 | 1.5 |  | -0.7 | 3.7 | 66 | 0.4 |  | -0.5 | 1.4 |
| Unit | 503 | 1.7 | * | 0.2 | 3.2 | 644 | -0.6 |  | -1.4 | 0.1 |

[^2]Table 4. Breeding population indices ${ }^{a}$ based on mourning doves heard along Call-count routes, 19662008.

| Management unit/state | Year |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |
| AL | 26.7 | 23.8 | 21.5 | 21.8 | 22.0 | 18.1 | 25.9 | 22.6 | 17.1 | 21.8 |
| DE/MD | 14.8 | 18.3 | 12.8 | 13.7 | 16.9 | 14.6 | 15.9 | 15.8 | 17.0 | 12.2 |
| FL | 13.8 | 13.1 | 11.2 | 11.8 | 15.0 | 12.5 | 12.8 | 13.0 | 15.2 | 15.6 |
| GA | 29.9 | 28.0 | 24.0 | 25.7 | 32.5 | 25.6 | 24.4 | 26.8 | 27.7 | 30.1 |
| IL | 22.0 | 18.9 | 22.5 | 19.5 | 22.5 | 20.5 | 21.1 | 20.7 | 17.5 | 24.2 |
| IN | 36.4 | 33.5 | 33.0 | 32.0 | 31.0 | 41.9 | 36.8 | 32.9 | 31.5 | 33.2 |
| KY | 24.2 | 22.0 | 21.4 | 22.4 | 26.9 | 24.1 | 20.3 | 24.1 | 27.9 | 19.7 |
| LA | 10.2 | 10.4 | 9.7 | 11.3 | 7.0 | 10.2 | 11.2 | 8.8 | 10.3 | 10.7 |
| MS | 40.0 | 34.4 | 29.1 | 26.8 | 29.7 | 30.2 | 33.7 | 30.2 | 24.2 | 25.6 |
| NC | 33.4 | 27.0 | 28.6 | 41.0 | 47.3 | 27.6 | 22.4 | 42.6 | 24.4 | 13.8 |
| OH | 24.7 | 23.3 | 21.0 | 23.9 | 23.7 | 24.5 | 25.6 | 20.3 | 24.7 | 37.8 |
| PA | 8.7 | 9.3 | 8.6 | 8.2 | 5.4 | 6.2 | 8.7 | 5.7 | 8.4 | 5.8 |
| SC | 33.8 | 36.9 | 37.5 | 36.2 | 34.0 | 29.8 | 26.4 | 30.1 | 28.1 | 27.8 |
| TN | 33.8 | 24.6 | 25.3 | 24.9 | 33.8 | 23.9 | 30.1 | 22.9 | 24.3 | 23.2 |
| VA | 24.3 | 20.5 | 23.2 | 20.6 | 26.2 | 21.3 | 12.7 | 15.0 | 20.6 | 23.0 |
| WI | 10.0 | 12.9 | 12.9 | 9.9 | 10.8 | 15.6 | 16.3 | 10.9 | 11.5 | 14.6 |
| WV | 6.5 | 5.5 | 5.6 | 6.0 | 5.6 | 5.1 | 6.7 | 3.9 | 4.2 | 2.4 |
| Subunit | 22.5 | 21.1 | 20.2 | 20.2 | 21.0 | 20.1 | 20.7 | 19.1 | 19.4 | 19.6 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |
| MI | 12.5 | 13.7 | 8.9 | 9.2 | 7.4 | 14.7 | 15.6 | 12.7 | 10.8 | 12.2 |
| N. England ${ }^{\text {b }}$ | 6.5 | 7.0 | 6.3 | 5.4 | 6.3 | 6.6 | 7.3 | 8.5 | 5.3 | 5.0 |
| NJ | 20.8 | 17.8 | 22.0 | 20.2 | 27.3 | 25.6 | 26.9 | 23.8 | 23.2 | 16.6 |
| NY | 5.9 | 6.0 | 5.7 | 5.6 | 7.0 | 8.2 | 6.5 | 6.7 | 7.0 | 12.6 |
| Subunit | 9.0 | 9.4 | 7.6 | 7.4 | 7.5 | 10.6 | 10.7 | 10.1 | 8.5 | 10.5 |
| Unit | 19.9 | 19.0 | 17.7 | 17.6 | 18.2 | 18.5 | 19.0 | 17.5 | 17.3 | 18.0 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |
| AR | 22.0 | 22.9 | 22.0 | 21.2 | 22.9 | 23.0 | 21.5 | 24.2 | 22.3 | 21.5 |
| CO | 23.3 | 22.9 | 21.0 | 28.6 | 28.6 | 20.8 | 26.5 | 16.4 | 26.2 | 19.2 |
| IA | 31.6 | 28.5 | 30.9 | 27.8 | 20.2 | 24.8 | 33.3 | 31.4 | 25.1 | 23.3 |
| KS | 47.2 | 48.6 | 50.4 | 51.1 | 47.1 | 47.9 | 53.6 | 47.6 | 47.3 | 45.3 |
| MN | 33.0 | 26.4 | 28.3 | 20.9 | 16.5 | 23.7 | 27.3 | 20.6 | 28.7 | 31.2 |
| MO | 37.0 | 35.0 | 44.1 | 26.8 | 37.0 | 31.1 | 42.3 | 31.9 | 27.3 | 32.3 |
| MT | 28.0 | 26.0 | 20.4 | 22.6 | 18.1 | 25.7 | 20.5 | 14.7 | 17.2 | 23.4 |
| NE | 47.8 | 41.9 | 53.3 | 52.1 | 50.3 | 47.6 | 45.6 | 43.6 | 45.2 | 42.5 |
| NM | 12.9 | 9.5 | 13.3 | 10.2 | 10.1 | 9.5 | 11.0 | 7.9 | 9.8 | 12.2 |
| ND | 43.7 | 41.6 | 56.9 | 47.2 | 41.7 | 42.6 | 44.1 | 48.0 | 46.0 | 33.3 |
| OK | 17.9 | 22.1 | 26.1 | 26.4 | 19.9 | 15.6 | 25.8 | 24.3 | 25.7 | 23.3 |
| SD | 52.5 | 32.9 | 45.0 | 38.3 | 45.7 | 40.4 | 40.2 | 42.4 | 50.8 | 43.0 |
| TX | 30.0 | 24.8 | 24.2 | 21.7 | 23.6 | 22.4 | 29.8 | 23.5 | 24.5 | 22.0 |
| WY | 19.6 | 20.5 | 10.9 | 17.8 | 17.2 | 9.8 | 13.6 | 13.6 | 19.5 | 17.3 |
| Unit | 31.1 | 28.0 | 28.8 | 27.4 | 26.5 | 25.9 | 29.5 | 24.6 | 27.5 | 26.9 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| AZ | 28.0 | 28.3 | 25.3 | 30.1 | 30.2 | 20.4 | 23.0 | 27.8 | 24.2 | 26.6 |
| CA | 29.0 | 27.4 | 25.3 | 25.0 | 24.3 | 18.2 | 22.2 | 21.3 | 23.0 | 19.4 |
| ID | 12.4 | 12.7 | 12.0 | 13.0 | 12.1 | 9.9 | 9.5 | 12.1 | 10.6 | 7.4 |
| NV | 9.6 | 9.0 | 21.3 | 15.3 | 11.0 | 6.7 | 9.1 | 6.4 | 8.6 | 5.7 |
| OR | 14.4 | 9.6 | 11.4 | 10.4 | 7.9 | 7.0 | 6.8 | 6.8 | 12.1 | 9.3 |
| UT | 24.8 | 37.9 | 19.1 | 18.0 | 21.0 | 29.3 | 17.0 | 14.7 | 16.7 | 17.9 |
| WA | 11.9 | 17.5 | 16.3 | 13.1 | 13.3 | 15.7 | 11.2 | 10.3 | 13.0 | 14.2 |
| Unit | 19.0 | 19.2 | 19.9 | 18.9 | 17.4 | 14.5 | 14.6 | 14.3 | 16.2 | 14.1 |

[^3]Table 4. Continued.

| Management unit/state | Year |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |
| AL | 21.0 | 23.1 | 25.3 | 24.3 | 24.3 | 23.2 | 23.6 | 23.6 | 19.8 | 25.2 |
| DE/MD | 15.1 | 13.8 | 14.8 | 14.4 | 13.7 | 13.2 | 13.9 | 9.8 | 11.3 | 12.4 |
| FL | 14.4 | 15.8 | 12.3 | 13.3 | 10.6 | 9.4 | 11.0 | 12.8 | 8.7 | 11.1 |
| GA | 23.7 | 24.7 | 27.1 | 23.7 | 24.0 | 26.6 | 28.6 | 25.6 | 20.8 | 26.6 |
| IL | 23.7 | 25.3 | 19.4 | 16.9 | 17.3 | 19.4 | 23.6 | 24.3 | 19.7 | 16.9 |
| IN | 33.6 | 37.6 | 20.4 | 21.7 | 27.5 | 31.8 | 22.6 | 19.5 | 21.2 | 18.7 |
| KY | 24.6 | 23.1 | 24.7 | 16.9 | 16.5 | 28.0 | 24.0 | 13.4 | 21.5 | 22.4 |
| LA | 10.8 | 8.9 | 10.4 | 8.9 | 12.4 | 10.6 | 13.3 | 12.2 | 11.7 | 10.5 |
| MS | 26.0 | 26.8 | 30.2 | 25.8 | 24.5 | 24.5 | 30.9 | 25.9 | 19.1 | 25.2 |
| NC | 16.8 | 45.4 | 24.3 | 28.8 | 27.9 | 27.5 | 23.1 | 27.3 | 30.7 | 21.4 |
| OH | 27.5 | 26.3 | 13.9 | 13.6 | 16.2 | 19.7 | 18.7 | 19.9 | 18.6 | 17.4 |
| PA | 5.9 | 4.8 | 5.9 | 6.5 | 7.8 | 9.3 | 8.9 | 8.8 | 8.0 | 8.9 |
| SC | 27.4 | 23.3 | 30.8 | 26.1 | 32.8 | 31.9 | 32.9 | 31.3 | 28.4 | 28.5 |
| TN | 22.9 | 25.1 | 30.9 | 21.2 | 23.0 | 19.4 | 26.0 | 20.1 | 17.2 | 22.1 |
| VA | 22.3 | 29.7 | 22.0 | 19.4 | 18.9 | 16.4 | 18.1 | 18.0 | 17.6 | 16.6 |
| WI | 14.7 | 19.4 | 7.8 | 11.5 | 14.9 | 20.1 | 11.3 | 13.2 | 10.4 | 10.8 |
| WV | 6.0 | 5.7 | 6.5 | 7.3 | 8.4 | 6.8 | 6.5 | 6.2 | 5.4 | 6.7 |
| Subunit | 19.8 | 21.3 | 18.4 | 17.5 | 18.8 | 19.7 | 19.7 | 18.6 | 16.7 | 17.7 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |
| MI | 12.4 | 10.7 | 12.4 | 7.3 | 13.5 | 15.5 | 11.3 | 10.1 | 10.9 | 12.1 |
| N. England ${ }^{\text {b }}$ | 4.7 | 8.7 | 7.3 | 6.0 | 7.5 | 9.1 | 7.4 | 7.9 | 6.7 | 7.4 |
| NJ | 20.9 | 22.9 | 18.1 | 19.3 | 18.0 | 14.6 | 17.0 | 20.2 | 12.7 | 12.8 |
| NY | 7.4 | 7.5 | 9.1 | 6.1 | 11.1 | 9.3 | 10.1 | 9.4 | 9.4 | 8.5 |
| Subunit | 8.9 | 9.7 | 10.3 | 7.1 | 11.2 | 11.9 | 10.2 | 9.8 | 9.4 | 9.8 |
| Unit | 17.7 | 19.0 | 17.0 | 15.3 | 17.5 | 18.4 | 17.9 | 17.0 | 15.4 | 16.2 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |
| AR | 26.1 | 21.2 | 15.0 | 12.2 | 20.2 | 22.1 | 25.7 | 19.3 | 13.7 | 13.6 |
| CO | 27.2 | 25.2 | 27.9 | 23.2 | 26.9 | 30.4 | 29.5 | 16.3 | 20.4 | 24.3 |
| IA | 28.7 | 22.3 | 25.1 | 21.4 | 28.9 | 32.0 | 23.1 | 16.4 | 24.1 | 26.6 |
| KS | 49.8 | 47.3 | 37.1 | 54.1 | 59.1 | 56.5 | 53.8 | 60.7 | 48.0 | 62.3 |
| MN | 27.0 | 31.1 | 29.9 | 30.4 | 32.7 | 28.9 | 25.4 | 22.1 | 18.7 | 20.3 |
| MO | 28.8 | 33.4 | 21.4 | 20.4 | 32.1 | 27.2 | 23.9 | 23.2 | 22.3 | 21.3 |
| MT | 17.0 | 20.8 | 20.0 | 20.0 | 18.3 | 17.1 | 21.9 | 17.7 | 13.4 | 18.5 |
| NE | 47.9 | 48.4 | 39.7 | 42.4 | 53.9 | 51.1 | 49.8 | 45.3 | 43.1 | 44.4 |
| NM | 12.1 | 10.8 | 11.0 | 7.5 | 12.3 | 12.2 | 9.6 | 13.1 | 14.2 | 12.3 |
| ND | 53.4 | 44.0 | 46.4 | 43.2 | 48.8 | 48.9 | 45.7 | 43.6 | 33.9 | 44.2 |
| OK | 24.6 | 31.9 | 24.5 | 24.1 | 25.1 | 25.0 | 26.2 | 26.8 | 20.3 | 19.8 |
| SD | 46.1 | 40.5 | 43.8 | 42.9 | 43.1 | 38.8 | 46.3 | 40.0 | 44.6 | 41.9 |
| TX | 21.4 | 20.4 | 21.2 | 26.1 | 24.8 | 22.3 | 21.4 | 19.8 | 19.3 | 19.9 |
| WY | 16.1 | 10.2 | 16.7 | 13.2 | 11.8 | 13.1 | 16.9 | 11.5 | 10.5 | 12.3 |
| Unit | 27.6 | 26.3 | 25.8 | 25.3 | 28.4 | 27.6 | 27.5 | 24.3 | 22.7 | 24.7 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |
| AZ | 27.5 | 24.7 | 24.8 | 24.3 | 21.8 | 24.6 | 28.1 | 21.9 | 27.0 | 21.8 |
| CA | 23.2 | 17.8 | 16.0 | 12.4 | 21.0 | 17.4 | 21.6 | 13.3 | 18.5 | 13.1 |
| ID | 13.7 | 16.7 | 9.4 | 9.1 | 9.9 | 10.9 | 11.3 | 9.1 | 10.7 | 10.0 |
| NV | 9.3 | 9.6 | 5.6 | 8.4 | 12.2 | 8.9 | 5.1 | 4.6 | 4.5 | 5.8 |
| OR | 9.7 | 11.0 | 5.9 | 6.2 | 9.3 | 8.0 | 7.8 | 6.0 | 7.7 | 8.4 |
| UT | 20.4 | 24.0 | 10.6 | 12.9 | 15.5 | 20.6 | 11.0 | 12.4 | 13.8 | 9.1 |
| WA | 13.7 | 14.9 | 9.7 | 13.6 | 9.4 | 11.3 | 10.5 | 8.9 | 7.8 | 9.8 |
| Unit | 17.7 | 17.6 | 11.9 | 12.6 | 15.7 | 15.3 | 14.0 | 11.1 | 13.1 | 11.8 |

[^4]${ }^{5}$ New England consists of CT, ME, MA, NH, RI, and VT.

Table 4. Continued.

| Management unit/state | Year |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |  |
| AL | 22.8 | 20.3 | 22.3 | 19.1 | 17.9 | 16.5 | 19.1 | 20.8 | 21.4 | 22.5 | 17.3 |
| DE/MD | 14.9 | 13.1 | 12.2 | 17.2 | 8.4 | 12.9 | 16.6 | 11.2 | 13.8 | 12.5 | 11.7 |
| FL | 13.0 | 11.7 | 13.9 | 12.4 | 11.3 | 12.2 | 12.4 | 10.9 | 10.3 | 12.0 | 11.2 |
| GA | 23.8 | 24.8 | 25.0 | 25.3 | 26.1 | 21.7 | 30.6 | 18.9 | 21.9 | 26.2 | 22.0 |
| IL | 23.4 | 22.8 | 25.9 | 25.3 | 24.8 | 25.1 | 25.9 | 22.5 | 25.1 | 25.8 | 20.3 |
| IN | 24.8 | 25.0 | 30.1 | 25.5 | 27.8 | 28.1 | 24.8 | 26.2 | 31.1 | 25.2 | 21.6 |
| KY | 20.1 | 24.7 | 19.8 | 27.1 | 22.6 | 21.5 | 17.1 | 21.9 | 21.2 | 20.7 | 17.5 |
| LA | 9.6 | 13.6 | 10.1 | 15.7 | 11.1 | 11.3 | 14.9 | 11.6 | 12.7 | 14.5 | 11.9 |
| MS | 24.8 | 22.0 | 26.0 | 24.4 | 20.4 | 17.1 | 22.2 | 24.3 | 20.4 | 18.7 | 17.2 |
| NC | 30.0 | 29.2 | 27.0 | 31.7 | 28.9 | 24.5 | 23.9 | 24.8 | 25.0 | 27.3 | 27.7 |
| OH | 17.0 | 18.6 | 21.2 | 20.0 | 18.4 | 19.6 | 20.3 | 17.2 | 19.1 | 17.4 | 14.1 |
| PA | 9.4 | 10.7 | 7.2 | 9.2 | 9.3 | 9.4 | 10.4 | 11.5 | 10.8 | 10.4 | 10.1 |
| SC | 24.4 | 35.3 | 27.9 | 26.8 | 29.1 | 23.4 | 23.0 | 26.9 | 24.0 | 19.2 | 23.9 |
| TN | 16.7 | 20.5 | 20.1 | 18.1 | 15.9 | 19.2 | 18.7 | 16.4 | 20.2 | 18.5 | 16.2 |
| VA | 13.5 | 14.5 | 15.8 | 15.4 | 13.1 | 13.9 | 12.3 | 13.9 | 13.7 | 14.8 | 11.9 |
| WI | 11.6 | 7.7 | 18.2 | 18.2 | 14.5 | 13.1 | 20.0 | 19.5 | 15.9 | 13.5 | 12.3 |
| WV | 6.3 | 6.6 | 7.6 | 8.1 | 10.7 | 9.2 | 7.4 | 8.7 | 9.6 | 9.9 | 4.9 |
| Subunit | 17.9 | 18.3 | 19.5 | 20.1 | 18.3 | 17.7 | 19.2 | 18.3 | 18.6 | 18.6 | 16.1 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |  |
| MI | 15.5 | 12.7 | 15.3 | 19.4 | 14.8 | 12.0 | 14.1 | 13.0 | 12.4 | 13.9 | 14.3 |
| N. England ${ }^{\text {b }}$ | 7.9 | 7.5 | 7.0 | 7.3 | 8.1 | 8.9 | 9.4 | 9.8 | 8.9 | 11.1 | 7.7 |
| NJ | 15.1 | 13.8 | 13.4 | 16.4 | 12.7 | 15.5 | 10.0 | 16.0 | 13.9 | 10.4 | 13.5 |
| NY | 7.2 | 9.7 | 7.8 | 12.1 | 10.7 | 13.4 | 11.5 | 10.1 | 10.3 | 11.6 | 11.0 |
| Subunit | 10.5 | 10.4 | 10.3 | 13.1 | 11.5 | 11.8 | 12.0 | 11.6 | 11.1 | 12.5 | 11.3 |
| Unit | 16.5 | 16.8 | 17.6 | 18.9 | 17.1 | 16.7 | 17.9 | 17.1 | 17.2 | 17.5 | 15.2 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |  |
| AR | 14.7 | 13.8 | 15.2 | 21.4 | 16.6 | 15.0 | 18.1 | 16.7 | 19.9 | 18.4 | 18.7 |
| CO | 23.3 | 24.9 | 27.1 | 30.4 | 27.4 | 18.2 | 13.9 | 13.3 | 23.7 | 19.9 | 14.8 |
| IA | 24.1 | 23.1 | 31.2 | 28.6 | 32.6 | 24.4 | 32.3 | 24.0 | 25.1 | 26.5 | 34.6 |
| KS | 42.8 | 46.5 | 54.0 | 48.6 | 42.5 | 59.3 | 57.9 | 39.2 | 52.5 | 62.8 | 33.0 |
| MN | 18.5 | 23.6 | 24.0 | 19.0 | 15.6 | 19.2 | 22.3 | 16.1 | 19.9 | 20.0 | 18.8 |
| MO | 22.1 | 24.9 | 25.0 | 24.7 | 20.1 | 21.9 | 23.2 | 22.5 | 27.2 | 23.8 | 23.3 |
| MT | 19.3 | 18.6 | 15.3 | 19.7 | 20.9 | 14.1 | 14.7 | 11.0 | 10.0 | 12.9 | 13.1 |
| NE | 37.0 | 36.5 | 36.4 | 40.4 | 40.2 | 41.0 | 38.5 | 40.5 | 37.6 | 41.4 | 34.4 |
| NM | 14.8 | 17.9 | 13.5 | 15.1 | 16.7 | 15.6 | 10.2 | 11.5 | 14.4 | 13.0 | 11.4 |
| ND | 40.1 | 45.6 | 42.8 | 44.2 | 42.6 | 47.0 | 49.9 | 43.1 | 37.2 | 39.0 | 40.6 |
| OK | 22.4 | 24.9 | 21.9 | 16.8 | 22.1 | 22.4 | 25.5 | 22.0 | 28.8 | 21.8 | 23.2 |
| SD | 38.9 | 34.1 | 40.5 | 43.6 | 45.3 | 48.0 | 38.6 | 34.8 | 37.8 | 38.8 | 39.9 |
| TX | 21.2 | 20.9 | 21.3 | 16.3 | 17.2 | 23.8 | 21.7 | 19.8 | 21.8 | 16.3 | 13.9 |
| WY | 15.2 | 12.3 | 7.6 | 9.5 | 9.6 | 10.2 | 10.7 | 7.9 | 10.6 | 7.9 | 9.4 |
| Unit | 24.9 | 25.6 | 24.5 | 24.4 | 24.3 | 24.7 | 23.6 | 20.6 | 23.9 | 22.3 | 20.5 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |
| AZ | 25.9 | 17.4 | 19.5 | 24.3 | 18.6 | 23.7 | 25.4 | 26.5 | 23.5 | 22.0 | 13.0 |
| CA | 15.1 | 11.6 | 15.5 | 11.4 | 11.5 | 11.2 | 12.2 | 14.6 | 12.1 | 11.5 | 12.1 |
| ID | 7.1 | 7.4 | 10.1 | 10.0 | 11.1 | 10.4 | 9.4 | 8.7 | 8.5 | 7.9 | 7.6 |
| NV | 3.8 | 4.4 | 6.1 | 5.2 | 3.7 | 4.9 | 4.1 | 3.5 | 3.1 | 5.3 | 4.8 |
| OR | 6.9 | 6.3 | 7.8 | 6.4 | 7.2 | 4.5 | 7.3 | 6.0 | 7.1 | 6.0 | 5.6 |
| UT | 12.6 | 11.0 | 11.3 | 11.8 | 10.1 | 9.2 | 11.7 | 9.8 | 10.2 | 6.6 | 7.5 |
| WA | 11.7 | 9.3 | 9.4 | 8.1 | 8.5 | 10.7 | 9.4 | 8.2 | 8.4 | 9.4 | 6.2 |
| Unit | 11.6 | 10.1 | 12.4 | 11.3 | 10.4 | 10.6 | 11.4 | 10.9 | 10.5 | 10.3 | 9.2 |

[^5]${ }^{\mathrm{b}}$ New England consists of CT, ME, MA, NH, RI, and VT.

Table 4. Continued.

| Management unit/state | Year |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| EASTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |  |
| Hunt |  |  |  |  |  |  |  |  |  |  |  |  |
| AL | 16.3 | 18.2 | 17.5 | 18.7 | 17.7 | 20.7 | 15.9 | 18.1 | 18.1 | 18.5 | 17.8 | 19.0 |
| DE/MD | 9.8 | 13.5 | 9.6 | 9.2 | 9.2 | 7.8 | 12.5 | 12.9 | 11.9 | 11.5 | 14.5 | 10.1 |
| FL | 10.3 | 12.7 | 13.2 | 12.8 | 9.1 | 10.0 | 10.6 | 10.2 | 11.2 | 11.8 | 9.9 | 10.8 |
| GA | 18.9 | 18.1 | 18.4 | 16.2 | 22.5 | 12.3 | 19.6 | 18.5 | 20.2 | 18.8 | 16.4 | 21.6 |
| IL | 20.8 | 20.8 | 19.2 | 25.0 | 21.0 | 22.3 | 24.7 | 20.3 | 23.3 | 25.8 | 25.9 | 17.6 |
| IN | 21.4 | 21.6 | 22.5 | 24.5 | 21.7 | 19.5 | 19.4 | 21.5 | 24.7 | 19.3 | 23.1 | 20.3 |
| KY | 16.3 | 21.0 | 21.6 | 22.7 | 19.0 | 22.0 | 20.6 | 17.7 | 17.2 | 18.9 | 23.9 | 20.5 |
| LA | 12.0 | 13.5 | 14.2 | 17.0 | 18.2 | 14.4 | 16.8 | 13.7 | 16.5 | 11.7 | 18.5 | 13.1 |
| MS | 16.6 | 17.1 | 20.7 | 18.0 | 17.1 | 14.0 | 15.9 | 12.2 | 13.7 | 15.3 | 17.3 | 14.7 |
| NC | 30.6 | 30.0 | 30.7 | 36.5 | 40.5 | 34.3 | 33.1 | 28.6 | 27.2 | 32.6 | 30.8 | 34.0 |
| OH | 14.0 | 16.4 | 17.1 | 18.2 | 14.9 | 17.0 | 16.5 | 15.3 | 15.0 | 15.3 | 17.6 | 14.2 |
| PA | 9.4 | 10.9 | 9.2 | 11.6 | 10.5 | 10.4 | 9.4 | 9.7 | 9.7 | 11.7 | 11.2 | 10.8 |
| SC | 22.9 | 25.8 | 24.5 | 23.8 | 23.8 | 22.1 | 23.1 | 22.4 | 20.8 | 19.2 | 23.7 | 21.0 |
| TN | 17.2 | 16.2 | 16.6 | 18.6 | 14.5 | 15.6 | 15.2 | 14.1 | 13.8 | 13.7 | 12.5 | 14.3 |
| VA | 15.1 | 14.1 | 14.4 | 15.6 | 12.0 | 14.1 | 10.7 | 12.1 | 13.4 | 12.7 | 14.2 | 13.5 |
| WI | 12.7 | 10.2 | 19.8 | 17.4 | 16.9 | 14.3 | 19.5 | 20.6 | 21.0 | 18.0 | 20.1 | 15.6 |
| WV | 10.3 | 8.6 | 10.0 | 9.5 | 6.5 | 9.3 | 5.6 | 10.3 | 9.3 | 11.0 | 12.4 | 12.2 |
| Subunit | 16.2 | 17.0 | 18.0 | 18.8 | 17.1 | 16.3 | 16.9 | 16.4 | 17.1 | 16.9 | 18.0 | 16.6 |
| Nonhunt |  |  |  |  |  |  |  |  |  |  |  |  |
| MI | 13.9 | 16.0 | 16.1 | 17.9 | 15.6 | 15.3 | 16.7 | 13.4 | 16.9 | 16.9 | 16.7 | 24.2 |
| N. England ${ }^{\text {b }}$ | 7.7 | 8.4 | 9.7 | 10.3 | 8.5 | 11.4 | 9.0 | 8.9 | 7.7 | 8.7 | 9.4 | 8.1 |
| NJ | 7.1 | 11.7 | 9.7 | 12.3 | 6.5 | 10.5 | 8.8 | 8.9 | 8.0 | 9.7 | 8.8 | 11.9 |
| NY | 11.8 | 10.3 | 13.8 | 15.7 | 13.2 | 13.0 | 13.6 | 13.1 | 15.3 | 16.0 | 17.1 | 13.2 |
| Subunit | 11.1 | 11.8 | 13.3 | 14.9 | 12.3 | 13.6 | 13.1 | 11.9 | 12.8 | 13.6 | 14.1 | 14.7 |
| Unit | 15.3 | 16.0 | 17.1 | 18.1 | 16.2 | 15.9 | 16.2 | 15.5 | 16.2 | 16.2 | 17.2 | 16.3 |
| CENTRAL UNIT |  |  |  |  |  |  |  |  |  |  |  |  |
| AR | 18.6 | 19.5 | 17.6 | 17.2 | 16.8 | 12.8 | 17.5 | 14.4 | 14.7 | 15.5 | 16.3 | 19.0 |
| CO | 20.2 | 21.2 | 23.0 | 23.1 | 14.8 | 18.1 | 17.0 | 22.8 | 16.6 | 26.5 | 19.1 | 14.7 |
| IA | 28.1 | 31.0 | 26.8 | 24.0 | 23.4 | 24.7 | 32.2 | 30.6 | 28.8 | 35.3 | 34.6 | 30.6 |
| KS | 59.1 | 55.0 | 68.0 | 51.1 | 31.3 | 44.5 | 52.6 | 44.1 | 55.8 | 59.2 | 50.2 | 43.4 |
| MN | 19.9 | 18.6 | 16.7 | 17.2 | 13.9 | 19.1 | 10.0 | 10.9 | 13.0 | 11.8 | 16.8 | 11.5 |
| MO | 23.0 | 20.7 | 19.1 | 19.8 | 16.8 | 18.8 | 20.7 | 17.7 | 17.7 | 22.6 | 18.6 | 15.1 |
| MT | 12.0 | 14.3 | 13.2 | 15.1 | 10.8 | 13.1 | 12.7 | 12.8 | 11.6 | 12.1 | 11.7 | 11.8 |
| NE | 31.6 | 40.2 | 36.6 | 36.7 | 31.1 | 29.3 | 39.7 | 32.6 | 34.0 | 31.9 | 30.7 | 29.9 |
| NM | 15.5 | 13.1 | 15.4 | 17.5 | 18.2 | 12.3 | 17.9 | 14.9 | 16.2 | 16.4 | 19.9 | 15.7 |
| ND | 35.9 | 32.7 | 44.2 | 43.5 | 34.7 | 29.1 | 43.7 | 27.8 | 47.4 | 37.3 | 30.3 | 40.0 |
| OK | 22.3 | 32.3 | 29.2 | 24.9 | 25.8 | 24.6 | 32.1 | 34.1 | 32.1 | 25.6 | 29.2 | 19.8 |
| SD | 34.0 | 36.3 | 38.2 | 41.0 | 36.6 | 38.7 | 37.7 | 36.8 | 33.6 | 39.3 | 36.7 | 37.9 |
| TX | 20.8 | 21.2 | 20.8 | 18.1 | 18.6 | 18.4 | 19.0 | 15.5 | 19.0 | 15.0 | 13.9 | 12.9 |
| WY | 9.1 | 10.0 | 7.6 | 10.9 | 6.7 | 9.0 | 7.1 | 7.5 | 6.0 | 6.6 | 6.6 | 7.6 |
| Unit | 23.1 | 24.0 | 23.8 | 23.8 | 19.9 | 20.9 | 22.2 | 20.4 | 21.3 | 21.4 | 20.7 | 18.9 |
| WESTERN UNIT |  |  |  |  |  |  |  |  |  |  |  |  |
| AZ | 19.8 | 22.8 | 24.8 | 25.5 | 19.2 | 19.1 | 16.9 | 20.1 | 23.3 | 23.9 | 16.6 | 17.9 |
| CA | 10.6 | 11.1 | 11.4 | 10.6 | 9.8 | 12.6 | 11.6 | 12.2 | 8.8 | 8.2 | 8.4 | 8.3 |
| ID | 10.9 | 6.3 | 8.8 | 8.4 | 7.0 | 11.0 | 7.9 | 10.0 | 8.0 | 10.7 | 12.1 | 7.9 |
| NV | 4.4 | 3.8 | 4.7 | 3.7 | 3.3 | 3.6 | 3.5 | 3.5 | 2.7 | 6.6 | 2.3 | 2.6 |
| OR | 5.7 | 4.3 | 4.4 | 7.4 | 5.0 | 6.4 | 6.7 | 5.9 | 5.2 | 5.6 | 8.4 | 6.7 |
| UT | 9.3 | 5.3 | 8.5 | 12.9 | 5.7 | 8.1 | 6.5 | 7.6 | 5.0 | 8.5 | 5.1 | 5.1 |
| WA | 7.7 | 5.3 | 7.2 | 8.2 | 7.8 | 8.1 | 8.6 | 7.0 | 8.7 | 8.2 | 7.3 | 6.0 |
| Unit | 10.4 | 8.6 | 10.2 | 11.1 | 8.6 | 10.6 | 9.6 | 10.2 | 8.6 | 10.8 | 8.8 | 8.2 |

[^6]Table 5. Preliminary estimates of the number of hunters, days hunted, and total bag from Harvest Information Program surveys for the 2006-07 season.

| Management Unit | Hunters |  | Days hunted |  | Birds bagged |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN |  |  |  |  |  |  |
| AL | 56,300 | $\pm 17$ \% ${ }^{1}$ | 141,800 | $\pm 17$ \% | 1,015,300 | $\pm 20$ \% |
| DE | 2,400 | $\pm 19$ \% | 7,000 | $\pm 24$ \% | 39,400 | $\pm 20$ \% |
| FL | 15,900 | $\pm 19$ \% | 53,600 | $\pm 21$ \% | 298,800 | $\pm 24$ \% |
| GA | 38,600 | $\pm 14$ \% | 120,200 | $\pm 20$ \% | 851,500 | $\pm 22$ \% |
| IL | 40,500 | $\pm 10$ \% | 129,200 | $\pm 15$ \% | 948,700 | $\pm 13$ \% |
| IN | 13,200 | $\pm 18$ \% | 40,200 | $\pm 22$ \% | 190,500 | $\pm 23$ \% |
| KY | 20,700 | $\pm 19$ \% | 64,000 | $\pm 28$ \% | 491,300 | $\pm 24$ \% |
| LA | 22,700 | $\pm 19$ \% | 65,800 | $\pm 24$ \% | 373,700 | $\pm 23$ \% |
| MD | 9,300 | $\pm 19$ \% | 29,500 | $\pm 25$ \% | 162,700 | $\pm 28$ \% |
| MS | 23,000 | $\pm 15$ \% | 60,100 | $\pm 18$ \% | 492,800 | $\pm 21$ \% |
| NC | 40,400 | $\pm 14$ \% | 125,500 | $\pm 16$ \% | 861,500 | $\pm 19$ \% |
| OH | 14,300 | $\pm 19$ \% | 70,000 | $\pm 26$ \% | 284,400 | $\pm 20$ \% |
| PA | 31,600 | $\pm 18$ \% | 113,700 | $\pm 21$ \% | 372,200 | $\pm 23$ \% |
| RI | 100 | $\pm 108 \%$ | 600 | $\pm 155$ \% | 500 | $\pm 123$ \% |
| SC | 36,200 | $\pm 13$ \% | 118,500 | $\pm 15$ \% | 696,200 | $\pm 13$ \% |
| TN | 37,800 | $\pm 17$ \% | 101,000 | $\pm 24$ \% | 656,100 | $\pm 26$ \% |
| VA | 20,400 | $\pm 12$ \% | 52,500 | $\pm 12$ \% | 304,200 | $\pm 14$ \% |
| WI | 11,200 | $\pm 26$ \% | 40,100 | $\pm 29$ \% | 100,900 | $\pm 38$ \% |
| WV | 1,100 | $\pm 21$ \% | 2,700 | $\pm 24$ \% | 14,600 | $\pm 24$ \% |
| Unit | 435,700² |  | 1,336,000 | $\pm 5$ \% | 8,155,400 | $\pm 6$ \% |
| CENTRAL |  |  |  |  |  |  |
| AR | 31,300 | $\pm 16$ \% | 77,500 | $\pm 18$ \% | 621,500 | $\pm 20$ \% |
| CO | 19,800 | $\pm 11$ \% | 45,700 | $\pm 13$ \% | 270,300 | $\pm 19$ \% |
| KS | 35,400 | $\pm 8$ \% | 116,400 | $\pm 11$ \% | 711,800 | $\pm 12$ \% |
| MN | 8,000 | $\pm 33$ \% | 24,200 | $\pm 39$ \% | 50,000 | $\pm 46$ \% |
| MO | 44,700 | $\pm 7$ \% | 129,800 | $\pm 12$ \% | 709,500 | $\pm 15$ \% |
| MT | 1,800 | $\pm 36$ \% | 3,900 | $\pm 38$ \% | 14,800 | $\pm 33$ \% |
| NE | 15,000 | $\pm 12$ \% | 43,000 | $\pm 12$ \% | 249,700 | $\pm 12$ \% |
| NM | 7,100 | $\pm 20$ \% | 33,900 | $\pm 28$ \% | 226,900 | $\pm 33$ \% |
| ND | 4,000 | $\pm 23$ \% | 10,800 | $\pm 24$ \% | 56,400 | $\pm 25$ \% |
| OK | 36,100 | $\pm 9$ \% | 108,300 | $\pm 17$ \% | 704,400 | $\pm 24$ \% |
| SD | 6,400 | $\pm 16$ \% | 19,600 | $\pm 17$ \% | 103,300 | $\pm 18$ \% |
| TX | 258,900 | $\pm 10$ \% | 986,200 | $\pm 14$ \% | 5,138,700 | $\pm 14$ \% |
| WY | 2,300 | $\pm 29$ \% | 6,500 | $\pm 36$ \% | 29,500 | $\pm 37$ \% |
| Unit | 470,800² |  | 1,605,900 | $\pm 9$ \% | 8,887,000 | $\pm 9$ \% |
| WESTERN |  |  |  |  |  |  |
| AZ | 37,300 | $\pm 9$ \% | 130,100 | $\pm 21$ \% | 750,700 | $\pm 14$ \% |
| CA | 63,300 | $\pm 8$ \% | 215,900 | $\pm 18$ \% | 1,020,400 | $\pm 12$ \% |
| ID | 10,100 | $\pm 16$ \% | 26,900 | $\pm 22$ \% | 98,100 | $\pm 22$ \% |
| NV | 4,100 | $\pm 21$ \% | 9,400 | $\pm 25$ \% | 38,900 | $\pm 27$ \% |
| OR | 7,700 | $\pm 24$ \% | 21,600 | $\pm 32$ \% | 84,300 | $\pm 37$ \% |
| UT | 11,900 | $\pm 11$ \% | 28,900 | $\pm 16$ \% | 77,600 | $\pm 20$ \% |
| WA | 10,500 | $\pm 12$ \% | 26,000 | $\pm 12$ \% | 132,900 | $\pm 14$ \% |
| Unit | 144,900 ${ }^{2}$ |  | 458,800 | $\pm 10$ \% | 2,202,900 | $\pm 8$ \% |
| U.S. | 1,051,400 ${ }^{2}$ |  | 3,400,700 | $\pm 5 \%$ | 19,245,300 | $\pm 5$ \% |

[^7]Table 6. Preliminary estimates of the number of hunters, days hunted, and total bag from Harvest Information Program surveys for the 2007-08 season.

| Management Unit | Hunters |  | Days hunted |  | Birds bagged |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN |  |  |  |  |  |  |
| AL | 48,500 | $\pm 8 \%{ }^{1}$ | 127,500 | $\pm 12$ \% | 829,300 | $\pm 11$ \% |
| DE | 2,600 | $\pm 20$ \% | 8,100 | $\pm 20$ \% | 50,900 | $\pm 22$ \% |
| FL | 21,600 | $\pm 18$ \% | 66,000 | $\pm 24$ \% | 372,600 | $\pm 24$ \% |
| GA | 37,900 | $\pm 16$ \% | 145,600 | $\pm 26$ \% | 1,107,500 | $\pm 32$ \% |
| IL | 41,400 | $\pm 10$ \% | 137,200 | $\pm 15$ \% | 912,300 | $\pm 16$ \% |
| IN | 15,000 | $\pm 26$ \% | 46,000 | $\pm 23$ \% | 258,400 | $\pm 17$ \% |
| KY | 10,600 | $\pm 38$ \% | 34,100 | $\pm 48$ \% | 278,100 | $\pm 41$ \% |
| LA | 24,600 | $\pm 23$ \% | 63,700 | $\pm 25$ \% | 412,900 | $\pm 29$ \% |
| MD | 11,800 | $\pm 20$ \% | 36,600 | $\pm 24$ \% | 212,900 | $\pm 26$ \% |
| MS | 30,100 | $\pm 12$ \% | 82,000 | $\pm 18$ \% | 612,000 | $\pm 21$ \% |
| NC | 50,900 | $\pm 16$ \% | 144,800 | $\pm 22$ \% | 854,000 | $\pm 24$ \% |
| OH | 17,500 | $\pm 21$ \% | 60,600 | $\pm 33$ \% | 307,700 | $\pm 35$ \% |
| PA | 37,500 | $\pm 17$ \% | 159,000 | $\pm 20$ \% | 509,100 | $\pm 27$ \% |
| RI | 300 | $\pm 66$ \% | 1,100 | $\pm 71$ \% | 2,000 | $\pm 55$ \% |
| SC | 43,400 | $\pm 12$ \% | 139,400 | $\pm 16$ \% | 865,900 | $\pm 18$ \% |
| TN | 33,000 | $\pm 19$ \% | 85,500 | $\pm 24$ \% | 682,700 | $\pm 32$ \% |
| VA | 26,500 | $\pm 11$ \% | 78,600 | $\pm 18$ \% | 418,100 | $\pm 21$ \% |
| WI | 13,600 | $\pm 24$ \% | 61,600 | $\pm 29$ \% | 202,000 | $\pm 38$ \% |
| WV | 1,800 | $\pm 16$ \% | 4,300 | $\pm 29$ \% | 20,200 | $\pm 32$ \% |
| Unit | 468,600² |  | 1,481,700 | $\pm 6$ \% | 8,908,400 | $\pm 7$ \% |
| CENTRAL |  |  |  |  |  |  |
| AR | 37,000 | $\pm 16$ \% | 115,900 | $\pm 23$ \% | 791,700 | $\pm 24$ \% |
| CO | 21,800 | $\pm 11$ \% | 57,800 | $\pm 14$ \% | 315,000 | $\pm 14$ \% |
| KS | 36,300 | $\pm 8 \%$ | 119,100 | $\pm 11$ \% | 725,100 | $\pm 13$ \% |
| MN | 7,700 | $\pm 35$ \% | 27,600 | $\pm 49$ \% | 67,400 | $\pm 52$ \% |
| MO | 42,600 | $\pm 8$ \% | 124,400 | $\pm 13$ \% | 603,300 | $\pm 15$ \% |
| MT | 1,700 | $\pm 31$ \% | 4,000 | $\pm 34$ \% | 20,900 | $\pm 43$ \% |
| NE | 17,000 | $\pm 12$ \% | 55,300 | $\pm 16$ \% | 319,600 | $\pm 18$ \% |
| NM | 8,600 | $\pm 18$ \% | 40,100 | $\pm 33$ \% | 198,700 | $\pm 25$ \% |
| ND | 3,200 | $\pm 27$ \% | 9,900 | $\pm 26$ \% | 48,700 | $\pm 27$ \% |
| OK | 24,600 | $\pm 14$ \% | 73,100 | $\pm 19$ \% | 480,000 | $\pm 24$ \% |
| SD | 6,000 | $\pm 20$ \% | 18,200 | $\pm 25$ \% | 104,000 | $\pm 30 \%$ |
| TX | 275,200 | $\pm 10$ \% | 1,149,600 | $\pm 13$ \% | 5,463,300 | $\pm 14$ \% |
| WY | 4,000 | $\pm 20$ \% | 8,800 | $\pm 24$ \% | 42,600 | $\pm 27$ \% |
| Unit | 485,700² |  | 1,803,900 | $\pm 9 \%$ | 9,180,200 | $\pm 9$ \% |
| WESTERN |  |  |  |  |  |  |
| AZ | 39,500 | $\pm 8$ \% | 125,500 | $\pm 10$ \% | 792,800 | $\pm 11$ \% |
| CA | 63,800 | $\pm 6 \%$ | 201,100 | $\pm 10$ \% | 1,162,100 | $\pm 11$ \% |
| ID | 22,800 | $\pm 21$ \% | 68,500 | $\pm 36$ \% | 192,300 | $\pm 35$ \% |
| NV | 2,800 | $\pm 26$ \% | 9,600 | $\pm 42$ \% | 38,500 | $\pm 43$ \% |
| OR | 6,800 | $\pm 49$ \% | 27,600 | $\pm 60$ \% | 96,900 | $\pm 55$ \% |
| UT | 14,200 | $\pm 12$ \% | 36,400 | $\pm 24$ \% | 90,000 | $\pm 20$ \% |
| WA | 7,400 | $\pm 18$ \% | 18,500 | $\pm 21$ \% | 88,900 | $\pm 19$ \% |
| Unit | 157,300² |  | 487,300 | $\pm 8$ \% | 2,461,500 | $\pm 7$ \% |
| U.S. | 1,140,600 ${ }^{2}$ |  | 3,772,900 | $\pm 5$ \% | 20,550,000 | $\pm 5$ \% |

[^8]Appendix A. History of federal framework dates, season length, and daily bag limits for hunting mourning doves in the United States.

| Eastern Management Unit |  |  |  | Central Management Unit |  |  | Western Management Unit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year(s) | Outside dates ${ }^{\text {a }}$ | Maximum <br> season length | Daily bag limit | Outside dates | Maximum <br> season length | Daily bag limit | Outside dates | Maximum <br> season length | Daily bag limit |
| 1918 | Sep 1 - Dec 31 | 107 | 25 | Sep 1 - Dec 15 | 106 | 25 | Sep 1 - Dec 15 | 106 | 25 |
| 1919-22 | Sep 1-Jan 31 | 108 | 25 | Sep 1 - Dec 15 | 106 | 25 | Sep 1 - Dec 15 | 106 | 25 |
| 1923-28 | Sep 1-Jan 31 | 108 | 25 | Sep 1-Dec 31 | 106 | 25 | Sep 1-Dec 15 | 106 | 25 |
| 1929 | Sep 1-Jan 31 | 106 | 25 | Sep 1 - Dec 31 | 106 | 25 | Sep 1-Dec 15 | 106 | 25 |
| 1930 | Sep 1 - Jan 31 | 108 | 25 | Sep 1 - Dec 15 | 106 | 25 | Sep 1 - Dec 15 | 106 | 25 |
| 1931 | Sep 1-Jan 31 | 106 | 25 | Sep 1-Dec 15 | 106 | 25 | Sep 1 - Dec 15 | 106 | 25 |
| 1932-33 | Sep 1-Jan 31 | 106 | 18 | Sep 1-Dec 15 | 106 | 18 | Sep 1-Dec 15 | 106 | 18 |
| 1934 | Sep 1-Jan 31 | 106 | 18 | Sep 1-Jan 15 | 106 | 18 | Sep 1-Dec 15 | 106 | 18 |
| 1935 | Sep 1-Jan 31 | 107 | 20 | Sep 1-Jan 16 | 106 | 20 | Sep 1-Jan 05 | 107 | 20 |
| 1936 | Sep 1-Jan 31 | 77 | 20 | Sep 1-Jan 16 | 76 | 20 | Sep 1 - Nov 15 | 76 | 20 |
| $1937{ }^{\text {b }}$ | Sep 1-Jan 31 | 77 | 15 | Sep 1-Nov 15 | 76 | 15 | Sep 1-Nov 15 | 76 | 15 |
| 1938 | Sep 1-Jan 31 | 78 | 15 | Sep 1 - Nov 15 | 76 | 15 | Sep 1 - Nov 15 | 76 | 15 |
| 1939 | Sep 1-Jan 31 | 78 | 15 | Sep 1-Jan 31 | 77 | 15 | Sep 1-Nov 15 | 76 | 15 |
| 1940 | Sep 1 - Jan 31 | 77 | 12 | Sep 1-Jan 31 | 76 | 12 | Sep 1 - Nov 15 | 76 | 12 |
| 1941 | Sep 1-Jan 31 | 62 | 12 | Sep 1-Oct 27 | 42 | 12 | Sep 1 - Oct 12 | 42 | 12 |
| 1942 | Sep 1 - Oct 15 | 30 | 10 | Sep 1 - Oct 27 | 42 | 10 | Sep 1- Oct 12 | 42 | 10 |
| 1943 | Sep 1-Dec 24 | 30 | 10 | Sep 1-Dec 19 | 42 | 10 | Sep 1 - Oct 12 | 42 | 10 |
| 1944 | Sep 1-Jan 20 | 58 | 10 | Sep 1-Jan 20 | 57 | 10 | Sep 1- Oct 25 | 55 | 10 |
| 1945 | Sep 1-Jan 31 | 60 | 10 | Sep 1-Jan 31 | 60 | 10 | Sep 1 - Oct 30 | 60 | 10 |
| 1946 | Sep 1-Jan 31 | 61 | 10 | Sep 1-Jan 31 | 60 | 10 | Sep 1 - Oct 30 | 60 | 10 |
| $1947-48^{\text {c }}$ | Sep 1-Jan 31 | 60 | 10 | Sep 1 - Dec 3 | 60 | 10 | Sep 1 - Oct 30 | 60 | 10 |
| 1949 | Sep 1-Jan 15 | 30 | 10 | Sep 1 - Nov 14 | 45 | 10 | Sep 1-Oct 15 | 45 | 10 |
| 1950 | Sep 1-Jan 15 | 30 | 10 | Sep 1 - Dec 3 | 45 | 10 | Sep 1- Oct 15 | 45 | 10 |
| 1951 | Sep 1-Jan 15 | 30 | 8 | Sep 1- Dec 24 | 42 | 10 | Sep 1 - Oct 15 | 45 | 10 |
| 1952 | Sep 1-Jan 10 | 30 | 8 | Sep 1 - Nov 6 | 42 | 10 | Sep 1- Oct 12 | 42 | 10 |
| 1953 | Sep 1 - Jan 10 | 30 | 8 | Sep 1 - Nov 9 | 42 | 10 | Sep 1 - Oct 12 | 42 | 10 |
| $1954{ }^{\text {d }}$ | Sep 1-Jan 10 | 40 | 8 | Sep 1 - Nov 9 | 40 | 10 | Sep 1 - Oct 31 | 40 | 10 |
| 1955 | Sep 1-Jan 10 | 45 | 8 | Sep 1 - Nov 28 | 45 | 10 | Sep 1-Dec 31 | 45 | 10 |
| $1956{ }^{\text {e }}$ | Sep 1-Jan 10 | 55 | 8 | Sep 1-Jan 10 | 55 | 10 | Sep 1-Jan 10 | 50 | 10 |
| 1957 | Sep 1 - Jan 10 | 60 | 10 | Sep 1 - Jan 10 | 60 | 10 | Sep 1 - Jan 10 | 50 | 10 |
| 1958-59 | Sep 1-Jan 15 | 65 | 10 | Sep 1-Jan 15 | 65 | 10 | Sep 1 - Jan 15 | 50 | 10 |

Appendix A. Continued.

| Eastern Management Unit |  |  |  | Central Management Unit |  |  | Western Management Unit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year(s) | Outside dates | Maximum season length | $\begin{gathered} \text { Daily bag } \\ \text { limit } \\ \hline \end{gathered}$ | Outside dates | $\begin{gathered} \text { Maximum } \\ \text { season } \\ \text { length } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Daily bag } \\ \text { limit } \\ \hline \end{gathered}$ | Outside dates | Maximum season length | $\begin{gathered} \text { Daily bag } \\ \text { limit } \\ \hline \end{gathered}$ |
| 1960-61 ${ }^{\text {f }}$ | Sep 1 - Jan 15 | $70^{9}$ | 12 | Sep 1 - Jan 15 | 60 | 15 | Sep 1 - Jan 15 | 50 | 10 |
| 1962 | Sep 1 - Jan 15 | $70^{9}$ | 12 | Sep 1 - Jan 15 | 60 | 12 | Sep 1 - Jan 15 | 50 | 10 |
| 1963 | Sep 1 - Jan 15 | $70^{9}$ | 10 | Sep 1 - Jan 15 | 60 | 10 | Sep 1 - Jan 15 | 50 | 10 |
| 1964-67 | Sep 1 - Jan 15 | $70^{9}$ | 12 | Sep 1 - Jan 15 | 60 | 12 | Sep 1 - Jan 15 | 50 | 12 |
| 1968 | Sep 1 - Jan 15 | $70^{9}$ | 12 | Sep 1 - Jan 15 | 60 | 12 | Sep 1 - Jan 15 | 50 | 10 |
| 1969-70 | Sep 1 - Jan 15 | $70^{9}$ | $18^{\text {h }}$ | Sep 1 - Jan 15 | 60 | 10 | Sep 1 - Jan 15 | 50 | 10 |
| 1971-79 | Sep 1 - Jan 15 | $70^{9}$ | 12 | Sep 1-Jan 15 | 60 | 10 | Sep 1 - Jan 15 | 50 | 10 |
| 1980 | Sep 1 - Jan 15 | 70 | 12 | Sep 1 - Jan 25 | 60 | 10 | Sep 1 - Jan 15 | 50-70 | 10 (AZ-12) |
| 1981 | Sep 1 - Jan 15 | 70 | 12 | Sep 1 - Jan 25 | 60 days 45 days | g of 12 or bag of 15 | Sep 1 - Jan 15 | 50-70 | 10 (AZ-12) |
| 1982 | Sep 1 - Jan 15 | $\begin{aligned} & 70 \text { days - } \\ & 45 \text { days } \end{aligned}$ | g of 12 or bag of 15 | Sep 1-Jan 25 | 70 days 45 days | g of 12 or bag of 15 | Sep 1 - Jan 15 | 70 days 45 days | ag of 12 or bag of 15 |
| 1983-86 | Sep 1 - Jan 15 | $\begin{aligned} & 70 \text { days - } \\ & 60 \text { days } \end{aligned}$ | ag of 12 or bag of 15 | Sep 1 - Jan 25 | 70 days - 60 days | g of 12 or bag of 15 | Sep 1 - Jan 15 | $\begin{aligned} & 70 \text { days - } \\ & 60 \text { days } \end{aligned}$ | ag of 12 or bag of 15 |
| 1987-07 ${ }^{\text {i }}$ | Sep 1 - Jan 15 | $\begin{aligned} & 70 \text { days }-1 \\ & 60 \text { days } \end{aligned}$ | ag of 12 or bag of 15 | Sep 1 - Jan 25 | $\begin{array}{r} 70 \text { days }- \\ 60 \text { days } \end{array}$ | g of 12 or bag of 15 | Sep 1 - Jan 15 | 30-45 days | - bag of 10 |

${ }^{\text {a }}$ From 1918-47, seasons for doves and other "webless" species were selected independently and the "outside dates" were the earliest opening and latest closing dates chosen. Dates were inclusive. There were different season lengths in various states with some choosing many fewer days than others. Only bag and possession limits, and season dates were specified.
${ }^{\text {b }}$ Beginning in 1937, the bag and possession limits included white-winged doves in selected states.
${ }^{\text {c }}$ From 1948-53, states permitting dove hunting were listed by waterfowl flyway. Only bag and possession limits, and season dates were specified.
${ }^{d}$ In 1954-55, states permitting dove hunting were listed separately. Only bag and possession limits, and season dates were specified e From 1956-1959, states permitting dove hunting were listed seperately. Framework opening and closing dates for seasons (but no
maximum days for season length) were specified for the first time along with bag and possession limits.
' In 1960, states were grouped by management unit for the first time. Maximum season length was specified for the first time. ${ }^{9}$ Half days.
${ }^{h}$ More liberal limits allowed in conjunction with an Eastern Management Unit hunting regulations experiment.
Beginning in 2002, the limits included white-winged doves in all states in the Central Management Unit. Beginning in 2006, the limits included white-winged doves in all states in the Eastern Management Unit.
${ }^{\mathrm{j}}$ Depending on state and season timing.

## White-winged Doves

Traditionally, the Service has requested that Arizona and Texas provide information about white-winged dove status in their respective states since those states conduct their own surveys with no federal involvement. In past years, we have taken those reports and summarized them orally for discussions pertaining to the regulations-setting process. In order to provide more comprehensive information this year, we are including a formal report from Arizona. In the future, we expect to include a report from Texas and possibly other areas as well. Texas is transitioning to a new survey methodology that includes urban areas statewide and data have not been analyzed fully. Also, due to a loss of personnel, they were unable to provide a formal report this year.

# WHITE-WINGED DOVE STATUS IN ARIZONA, 2008 

MICHAEL J. RABE, Arizona Game and Fish Department, 5000 W. Carefree Highway, Phoenix, Arizona 85086-5000


#### Abstract

The Arizona Game and Fish Department (AGFD) has monitored white-winged dove populations by means of a call-count survey to provide an annual index to population size. It runs concurrently with the U.S. Fish and Wildlife Service's Mourning Dove Call-count Survey. The index peaked at 52.3 mean number doves heard per route in 1968, but fell precipitously in the late 1970s. The index has stabilized to around 25 doves per route in the last few years; in 2008, the mean number of doves heard per route was 26.9. AGFD also monitors harvest. Harvest during the 15-day season (September 1-15) peaked in the late 1960's at $\sim 740,000$ birds (1968 AGFD estimate) and has since stabilized at around 100,000 birds; the 2006 Harvest Information Program (HIP) estimate was 127,600 birds. In 2007, Arizona redesigned their dove harvest survey questionnaire to sample only from hunters registered under HIP. In the future, AGFD and HIP harvest estimates should be more comparable than they have been in the past.


## BACKGROUND

The white-winged dove (Zenaida asiatica) is one of 14 species of Columbidae occurring in North and Middle America north of Mexico (Aldrich 1993). Twelve subspecies of white-winged doves have been described for North, Central and South America, and the West Indies (Saunders 1968). Of these, four are known to reside and breed in the United States (Western, Z. a. mearnsi; Eastern, Z. a. asiatica; Big Bend, Z. a. grandis; and Mexican Highland, Z. a. monticola). Only the Western and Eastern races represent populations of significant size in the U.S.

In Arizona, only the Western subspecies is known to occur (Fig. 1). Distribution of the white-winged dove in Arizona is mostly restricted to lower desert areas although there are infrequent reports of birds summering as far north as Flagstaff, (2,100 m elevation). The highest populations occur in the lowland Sonoran desert areas. Large numbers of birds can be found in the urban complexes of Phoenix and Tucson. There are small populations in Casa Grande and Tucson that apparently do not migrate.

White-winged doves nest at relatively low densities throughout the Sonoran, Mohave, and Chihuahua deserts of southern and western Arizona, southern California, and southern New Mexico. However, in riparian woodlands near agricultural areas, populations have historically been present in high densities. Butler (1977) found that birds that nested in high densities in mesquite (Prosopis sp) or salt cedar (Tamarix
ramosissima) had higher nest success. Brown (1977) referred to these nesting concentrations as colonial populations, as opposed to the non-colonial populations in upland desert regions.


Figure. 1. The principal breeding, wintering, and resident area of migratory white-winged dove populations in North America, from George et al. (1994). Since George et al. (1994), white-winged doves have expanded their range into north-central New Mexico and southern Colorado. These new range expansions most likely are Mexican highland birds. The Eastern Population has expanded northward throughout most of the central United States.

Cottam and Trefethen (1968) speculated that whitewinged doves may have been relatively uncommon in Arizona prior to the advent of agriculture because of the near absence of white-winged dove remains at prehistoric ruins in Arizona and because early European explorers failed to mention the species in their journals. Although many of the early explorations in Arizona were conducted during cool winter months after white-winged doves had presumably migrated south, some expeditions occurred during the nesting season; surely the dove's presence would have been documented had the populations along the Gila River approached even current densities. Cottam and Trefethen (1968) present arguments that the Imperial Valley population represents a relatively recent range expansion, probably since 1901, as the result of flooding of the Salton Sink and subsequent development of agriculture. In contrast, Brown (1989:239) maintains that white-winged doves were common in Arizona from the beginning of settlement.

Haughey (1986) studied desert nesting white-winged doves and their relationships to saguaro cactus (Carnegiea gigantea) in the Saguaro National Monument in southern Arizona, where they are totally dependent on native food sources. Saguaros were used extensively for both nectar and fruit in Arizona. The similarity in the nesting range of white-winged doves and that of the saguaro has been cited by several authors as noted by Haughey (1986). Those areas where white-wings occur and saguaro do not, i.e., southeastern California, southwestern New Mexico, southeastern Arizona and southern Nevada, may represent recent range extensions in response to agriculture.

In recent times, white-winged dove densities have been greatest in areas near agriculture because of the abundance of food available there. Response of whitewinged doves to agricultural activities are well documented and are likely partially responsible for recent large changes in abundance in the southwestern U.S. Rapid declines in white-winged dove populations following either loss of food crops or nesting habitat have been noted in Arizona (Cunningham et al. 1977, Rea 1983) and Mexico (Tomlinson 1993).

White-winged doves typically migrate into Arizona beginning in March. Breeding usually occurs in two peaks in the summer, although the timing of their
breeding varies among years. The peak breeding times for these desert doves occur from May-June to JulyAugust (Cunningham et al., 1977). Breeding in urban areas also occurs in two peaks but may be somewhat offset in timing compared to the desert birds. By early September, most of the adult birds have already begun the migration south. The young leave the state soon after. In most years much of the harvest consists of juvenile birds.

## IMPORTANCE

White-winged doves are important pollinators of saguaro cactus in Arizona. Haughey (1986) noted that white-winged doves visited saguaro blooms more often than any other bird species. For desert-dwelling doves, $60 \%$ or more of the diet is saguaro (Haughey 1986, Wolf and Martinez del Rio 2000). Haughey (1986) suggested that the breeding cycle of these birds is timed to coincide with the saguaro bloom. Fleming et al. (1996) identified white-winged doves as the major vertebrate pollinator of saguaro.

White-winged doves are also popular with nonhunting interests. People in many areas provide feeding stations and water in backyards to attract them for observation. Bird watchers and photographers also avidly pursue white-winged doves for observation and the satisfaction of adding them to their life-lists.

## POPULATION MONITORING

The Arizona Game and Fish Department (AGFD) has conducted a spring auditory survey, similar to the Mourning Dove Call-count Survey, since 1962 (Table 1). Arizona collects data from 25-30 routes (the number varies with logistic circumstances that may prevent running some routes in some years). Typically, AGFD runs 19-22 routes in Sonoran/Mohave desert habitat, 3 routes in chaparral habitat, and 4-5 routes in Chihuahua desert habitat. The index is calculated as a simple weighted mean of the counts from the single year. For example, in 2007, 26 routes were run: 19 in Sonoran Desert, 3 in chaparral, and 4 in Chihuahua desert habitat. The Sonoran routes were weighted 0.731 (19/26), chaparral 0.115 (3/26) and the Chihuahua desert route mean was weighed as $0.154(4 / 26)$ of the total yearly mean. The numbers of routes in each habitat are representative of the total area of white-winged dove habitat in the state.

There is no attempt to monitor the population of urban doves.

The index peaked at 52.3 mean doves heard per route in 1968 and decreased significantly during the next four years to less than 40 doves per route. Indices remained fairly stable from 1985-2000. Call-counts have declined since then (Table 1, Fig. 2). Most of the recent white-winged dove decline in Arizona is likely due to loss of large nesting colonies in the 1960's and 1970's due to habitat destruction, shifts in agricultural trends, and possible over harvest. Clearing of the large mesquite forests in river bottoms for flood control and fuel wood removed the most productive nest areas. Large breeding colonies in the past were attracted to and maintained by grain fields that now grow vegetables and cotton. The more dispersed, solitary nesting white-winged populations have been less affected by these changes and have remained relatively stable in Arizona.

Two check stations are run on opening day (September 1) for the dove season in Arizona. One check station is at Milligan Road, near Picacho, Arizona. The other check station is at Robbin's Butte, a state wildlife area managed by Arizona Game and Fish located west of Buckeye, Arizona. Both areas were chosen because they were popular with dove hunters and both have been monitored since 1968 . The number of white-
winged doves examined at the two check stations varies from year to year, and numbered in the thousands in the late 1960s and early 1970s. The number of dove hunters and doves monitored has since declined due to loss of hunters and changes in the bag limit. In a typical year, 250-500 doves are sampled to estimate the percent of young in the harvest. Since 1968 to the 2007 season, mean percent young was 63.3 ( $\mathrm{SE}=1.85, \mathrm{n}=40$ ) (Table 1 ).

## HARVEST

Hunting season dates and bag limits in Arizona have changed significantly during the past 60 years (Table 2; see Cottam and Trefethen 1968:320 for Arizona regulations prior to 1956), becoming much more restrictive since 1970. Arizona has conducted random mail surveys of general license holders to obtain harvest statistics specific to white-winged doves (Table 2, and Fig. 2). These surveys are sent to general license holders at the end of the season. From 1982 to 2001, the mean number of white-winged hunters per year sampled from this survey was 430 . Results of the surveys are then multiplied by the estimated proportion of license holders that hunted doves each year.

In 2007, Arizona redefined the sampling frame for white-winged doves. Instead of surveying a random


Figure 2. Arizona white-winged dove mean doves heard per route, 1975-2008, and estimated harvest, 19752007. Harvest estimates from 2002-2007 are Harvest Information Program estimates; prior to 2002, estimates are from Arizona Game and Fish Department's small game questionnaire.
sample of state hunting license holders, the 2007 survey sampled hunters who held migratory bird stamps only. This means that the Arizona and the Harvest Information Program Survey (HIP) are now using the same sampling frame, although the two questionnaire programs make no effort to survey the same hunters. In 2007, Arizona sampled 647 whitewinged dove hunters. This new Arizona questionnaire is more likely to provide similar results as the HIP survey. In the past, Arizona estimates differed from HIP estimates, sometimes by a substantial amount. (Table 3).

White-winged dove populations in high-density nesting areas have been subjected to high hunting pressure, particularly during the 1960s when the bag limit in Arizona was 25 birds per day (Table 2). White-winged doves appear more vulnerable to over harvest than mourning doves (George 1993). A combination of high dove harvest in Arizona during the 1960s (Fig. 2), destruction of river-bottom nesting habitat, and a shift in agricultural crops (substantial shifts from cereal grains to cotton and other non-food crops) (Cunningham et al. 1977) was associated with declining harvests. In response, bag limits were reduced from 25 per day to 10 per day in 1970 . Continued harvest declines prompted further reduction in bag limits ( 6 per day) in 1980 where they remain today. In 1988, season length was reduced from 3 weeks to 2 weeks and half day shooting was implemented in 1989 (Table 1).

The white-winged dove harvest in Arizona peaked in $1968(740,000)$ and dropped to a plateau of about 400,000 for 7 or 8 years in the mid-1970s (Table 1). However, it has continued to decline. Although the specific levels of harvest estimates are likely inaccurate, the downward trend is real. The declining harvest trend can be partially attributed to hunting restrictions, but there clearly are far fewer whitewinged doves in Arizona now than there were in the 1950s and 1960s. Recent discrepancies between the call-counts and harvest trends appears to be a function of the disproportionate weight given by the call-count survey to desert nesting populations that have not experienced as much habitat loss, changes in food availability, and high hunting pressure colonial nesting doves have. Arizona white-winged dove harvest appears to have stabilized since $1 / 2$ day shooting hours were implemented in 1989 (Tables 1 and 2).

## ACKNOWLEDGMENTS

I thank AGFD Wildlife Managers who conducted surveys and collected data used in this report. Also, I am grateful to D.D. Dolton (USFWS) for helping to edit and format this report while R. D. Rau, K. Parker, and M.D. Koneff reviewed a draft and provided helpful comments.

## LITERATURE CITED

Aldrich, J.W. 1993. Classification and distribution. Pages 47-54 in T.S. Baskett, T. S., Sayre, M.W. Tomlinson, R.E. and R.E. Mirarchi, editors. Ecology and management of the mourning dove. Wildlife Management Institute, Washington, D.C., USA.

Brown, D.E. 1977. White-winged dove (Zenaida asiatica). Pages 217-274 in G. C. Sanderson, editor. Management of migratory shore and upland game birds in North America. International Association of Fish and Wildlife Agencies, Washington, D.C., USA.
Brown, D. E. 1989. Arizona game birds. The University of Arizona Press. Tucson, Arizona, USA.
Butler, W. I. 1977. A white-winged dove nesting study in three riparian communities on the lower Colorado River. M. S. Thesis, Arizona State University, Tempe, Arizona, USA.
Cottam C. and J.B. Trefethen. 1968. Whitewings: The Life History, Status, and Management of the White-winged Dove. D. van Nostrand Company Inc., Princeton, New Jersey, USA.
Cunningham, S.C., Engel-Wilson, R. W., Smith, P. M., and W. B. Ballard. 1977. Food habitat and nesting characteristics of sympatric mourning doves in Buckeye-Arlington Valley, Arizona. Arizona Game and Fish Department Technical Report 26, Phoenix, Arizona, USA.
Fleming, T. E., M. D. Tuttle, and M. A. Horner. 1996. Pollination biology and the relative importance of nocturnal and diurnal pollinators in three species of Sonoran desert columnar cacti. Southwestern Naturalist 41: 257-269.
George, R. R. 1993. White-winged dove banding analysis. Final Report. Federal Aid Project W-128-R, Job 6. Texas Parks and Wildlife Department, Austin Texas, USA.

George, R. R., R. E. Tomlinson, R. W. Engle-Wilson, G. L. Waggerman, A. G. Spratt. 1994. Whitewinged dove. Pages 29-50 in T. C. Tacha and C. E. Braun, editors. Migratory Shore and Upland Game Bird Management in North America. International Association of Fish and Wildlife Agencies, Washington, D. C., USA.
Haughey, R.A. 1986. Diet of desert nesting western white-winged doves. M.S. Thesis, Arizona State University, Tempe, Arizona, USA.
Rea, A. M. 1983. Once a river. University of Arizona Press, Tucson, Arizona, USA.
Saunders, G.B. 1968. Seven new white-winged doves from Mexico, Central America, and southwestern

United States. North American Fauna No. 65. U.S. Fish and Wildlife Service, Wash., D.C., USA.

Tomlinson, R. E. 1993. White-winged dove nesting areas in Tamaulipas, Mexico. Trip report. Office of Migratory Bird Management, US Fish and Wildlife Service, Albuquerque, New Mexico, USA.
Wolf, B. O. and Carlos Martinez del Rio. 2000. Use of saguaro fruit by white-winged doves: isotopic evidence of a tight ecological association. Oecologia 124:536-543.

Table 1. Mean number of white-winged doves heard per route, harvest from Arizona's harvest questionnaire, and percent young estimated in hunter bags from two check stations since 1962.

|  |  |  |  |
| :--- | :---: | ---: | :---: |
| Year | Mean doves <br> heard per route | Harcent young in <br> Hag |  |
| 1962 | 33.1 | 448,398 |  |
| 1963 | 40.2 | 385,249 |  |
| 1964 | 35.9 | 412,542 |  |
| 1965 | 43.2 | 549,045 |  |
| 1966 | 48.4 | 578,166 |  |
| 1967 | 51.5 | 703,157 |  |
| 1968 | 52.3 | 740,079 | 57 |
| 1969 | 41.1 | 664,053 | 69 |
| 1970 | 33.9 | 407,921 | 58 |
| 1971 | 31.3 | 390,016 | 54 |
| 1972 | 35.4 | 355,633 | 79 |
| 1973 | 36.5 | 484,095 | 67 |
| 1974 | 31.0 | 425,127 | 75 |
| 1975 | 29.0 | 502,225 | 58 |
| 1976 | 30.9 | 455,692 | 66 |
| 1977 | 32.7 | 274,998 | 74 |
| 1978 | 35.6 | 327,555 | 65 |
| 1979 | 30.8 | 288,516 | 43 |
| 1980 | 34.9 | 75,611 | 51 |
| 1981 | 32.9 | 182,535 | 65 |
| 1982 | 29.3 | 134,981 | 61 |
| 1983 | 32.9 | 137,284 | 83 |
| 1984 | 31.1 | 177,957 | 82 |
| 1985 | 37.7 | 194,508 | 41 |
| 1986 | 34.1 | 192,734 | 69 |
| 1987 | 29.9 | 112,838 | 78 |
| 1988 | 26.7 | 99,955 | 78 |
| 1989 | 30.7 | 74,944 | 73 |
| 1990 | 28.0 | 100,163 | 71 |
| 1991 | 30.6 | 107,455 | 46 |
| 1992 | 30.8 | 94,551 | 63 |
| 1993 | 32.6 | 107,393 | 51 |
| 1994 | 26.9 | 138,080 | 44 |
| 1995 | 31.2 | 106,925 | 51 |
| 1996 | 31.1 | 140,974 | 63 |
| 1997 | 31.0 | 119,446 | 56 |
| 1998 | 35.0 | 165,190 | 41 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Table 1. Continued.

| Year | Mean doves <br> heard per route | Harvest | Percent young in <br> bag |
| :---: | :---: | ---: | :---: |
| 1999 | 26.2 | 135,226 | 68 |
| 2000 | 30.9 | 123,259 | 70 |
| 2001 | 28.5 | 102,941 | 45 |
| 2002 | 24.6 | 186,532 | 61 |
| 2003 | 20.3 | 147,711 | 55 |
| 2004 | 20.3 | 86,355 | 69 |
| 2005 | 25.2 | 139,984 | 82 |
| 2006 | 25.0 | 236,126 | 60 |
| 2007 | 24.7 | 84,142 | 61 |
| 2008 | 26.9 | NA | NA |

Table 2. White-winged dove season dates, lengths, and bag possession limits since 1956 to present.

| Year | Season Dates ${ }^{1}$ | Season Length | Bag/possession Limits ${ }^{2}$ |
| :---: | :---: | :---: | :---: |
| 1956 | 9/1-10/4 \& 12/8-23 | 34 \& 16 | 12/15 |
| 1957 | 9/1-29 \& 12/7-27 | 29 \& 21 | 25/25 |
| 1958 | $9 / 1-28$ \& 12/13-1/3 | 27 \& 23 | 25/25 |
| 1960 | 9/1-25 \& 12/10-1/3 | 25 \& 25 | 25/25 |
| 1961 | 9/1-24 \& 12/9-1/3 | 24 \& 26 | 25/25 |
| 1962 | 9/1-24 \& 12/8-1/2 | 24 \& 26 | 25/25 |
| 1963 | 9/1-25 \& 12/7-31 | 25 \& 25 | 25/25 |
| 1964 | 9/1-27 \& 12/12-1/3 | 27 \& 23 | 25/25 |
| 1965 | 9/1-9/26 | 26 | 25/25 |
| 1966 | 9/1-9/26 | 25 | 25/25 |
| 1967 | 9/1-9/24 | 24 | 25/25 |
| 1968 | 9/1/24 \& 12/11-1/5 | 24 \& 26 | 25/25 |
| 1969 | 9/1-28 \& 12/21-1/11 | 28 \& 22 | 25/25 |
| 1970 | 9/1-20 \& 12/12-1/10 | 20 \& 30 | 10/10 |
| 1971 | 9/1-12 | 12 | 10/10 |
| 1972 | 9/1-12 | 12 | 10/10 |
| 1973 | 9/1-23 | 23 | 10/10 |
| 1974 | 9/1-22 | 22 | 10/10 |
| 1975 | 9/1-21 | 21 | 10/10 |
| 1976 | 9/1-20 | 20 | 10/10 |
| 1977 | 9/1-25 | 25 | 10/10 |
| 1978 | 9/1-24 | 24 | 10/10 |
| 1979 | 9/1-23 | 23 | 10/10 |
| $1980{ }^{3}$ | 9/1-28 | 28 | (5/10 North.6/12 South) |
| 1981 | 9/1-27 | 27 | 6/12 |
| 1982 | 9/1-26 | 26 | 6/12 |
| 1983 | 9/1-26 | 25 | 6/12 |
| 1984 | 9/1-23 | 23 | 6/12 |
| 1985 | 9/1-22 | 23 | 6/12 |
| 1986 | 9/1-21 | 22 | 6/12 |
| 1987 | 9/1-13 | 21 | 6/12 |
| 1988 | 9/1-11 | 13 | 6/12 |
| 1989 | 9/1/-10 | 10 | 6/12 |
| 1990 | 9/1-10 | 10 | 6/12 |
| 1991 | 9/1-10 | 10 | 6/12 |
| 1992 | 9/1-10 | 10 | 6/12 |
| 1993 | 9/1-12 | 12 | 6/12 |
| 1994 | 9/1-11 | 11 | 6/12 |

Table 2. Continued.

| Year | Season Dates $^{1}$ | Season Length | Bag/possession Limits ${ }^{2}$ |
| :--- | :---: | :---: | :---: |
| 1995 | $9 / 1-10$ | 10 | $6 / 12$ |
| 1996 | $9 / 1-10$ | 10 | $6 / 12$ |
| 1997 | $9 / 1-14$ | 14 | $6 / 12$ |
| 1998 | $9 / 1-15$ | 15 | $6 / 12$ |
| 1999 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2000 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2001 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2002 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2003 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2004 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2005 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2006 | $9 / 1-15$ | 15 | $6 / 12$ |
| 2007 | $9 / 1-15$ | 15 | $6 / 12$ |

${ }^{1}$ Federal white-winged dove frameworks have been set to coincide with those of mourning doves. The frameworks have allowed a white-winged dove season only during the first segment of a split mourning dove season from 1971 to present. From 1983-1986, all WMU states were permitted a mourning dove framework option (including white-wings in CA, AZ, and NV) of 60 days (45 in 1982) and 15/30 aggregate bag/possession.
${ }^{2}$ Between 1957 and 1979, mourning and white-winged doves had separate limits; since 1980, aggregate bag limits permitting either 10 or 12 doves, no more than 5 or 6 could be white-wings, have been in effect.
${ }^{3}$ Arizona was divided into a special white-winged dove zone and the remainder of the state in 1979. Hunting was permitted from noon to sunset during the first 3 days of the season in the special zone. In 1980, the state was divided into North and South zones, that latter having shooting hours of sunrise to noon. Since then season and bag limits have applied statewide.

Table 3. Harvest Information Program and Arizona Game and Fish Department Harvest questionnaire data from 1999 to 2007. Note the difference between the 2006 estimates and other years. In 2006, Arizona Game and Fish Department redesigned the questionnaire. The 2006 questionnaire had a $17 \%$ return rate and results are unreliable.

|  | Harvest Information Program estimates |  |  |
| :--- | :---: | :---: | :---: |
| Year | Hunters | Harvest | Hunter Days |
| 1999 | 24,900 | 122,100 | 71,200 |
| 2000 | 19,600 | 84,500 | 56,400 |
| 2001 | 21,100 | 86,500 | 62,500 |
| 2002 | 22,700 | 120,400 | 72,700 |
| 2003 | 23,000 | 112,300 | 75,500 |
| 2004 | 24,200 | 120,300 | 81,200 |
| 2005 | 21,600 | 110,100 | 65,700 |
| 2006 | 18,300 | 107,400 | 56,500 |
| 2007 | 23,200 | 127,600 | 68,700 |


| Arizona Harvest Questionnaire |  |  |  |
| :--- | :---: | :---: | :---: |
| 1999 | 26,689 | 143,129 | 89,709 |
| 2000 | 28,652 | 128,695 | 87,868 |
| 2001 | 21,180 | 102,941 | 77,462 |
| 2002 | 35,747 | 185,654 | 107,525 |
| 2003 | 26,598 | 147,711 | 86,120 |
| 2004 | 20,962 | 86,355 | 69,104 |
| 2005 | 29,057 | 139,984 | 98,477 |
| 2006 | 30,017 | 236,126 | 86,255 |
| 2007 | 13,852 | 84,142 | 46,203 |

# BAND-TAILED PIGEON POPULATION STATUS, 2008 

TODD A. SANDERS, U.S. Fish and Wildlife Service, Division of Migratory Bird Management, 911 NE 11th Avenue, Portland, OR 97232


#### Abstract

This report summarizes information on the abundance and harvest of band-tailed pigeons collected annually in the western United States and British Columbia. Annual counts of Interior band-tailed pigeons seen and heard per route have not changed ( $P=0.11$ ) since implementation of the Breeding Bird Survey (BBS) in 1966; however, they decreased ( $P<0.01$ ) over the last 10 years by a mean of $12.0 \pm 2.1 \%(\bar{x} \pm$ SE). Current (2007) estimates of harvest and hunter participation were $4,800 \pm 1,739$ birds and $12,800 \pm 2,155$ hunter days afield. Composition of harvest was $20.5 \%$ hatching year birds. For Pacific Coast band-tailed pigeons, annual BBS counts of birds seen and heard per route have decreased ( $P=0.06$ ) by a mean of $1.3 \pm 0.7 \%$ since 1966 , but they have not changed ( $P=0.66$ ) over the last 10 years. According to the Pacific Coast Mineral Site Survey, annual counts of Pacific Coast band-tailed pigeons seen per mineral site have increased ( $P=0.01$ ) since the survey was experimentally implemented in 2001 by a mean of $7.1 \pm 2.9 \%$. Current (2007) estimates of harvest and hunter participation were $12,700 \pm 2,073$ birds and $13,500 \pm$ 2,066 hunter days afield. Composition of harvest was $17.2 \%$ hatching year birds. Current estimates of the age-related vulnerability to harvest for these populations are unknown.


Maintenance of band-tailed pigeon (Patagioenas fasciata) populations in a healthy, productive state is a primary management goal. To this end, management of these birds includes assessment of population status, regulation of harvest, and habitat management. Surveys are conducted annually in the western United States and British Columbia by state, federal, and local biologists to monitor band-tailed pigeon populations. The resulting information on status and trends is used by wildlife administrators in setting annual hunting regulations.

Band-tailed pigeons are cooperatively managed among States and the U.S. Fish and Wildlife Service, and is detailed in population (Interior and Pacific Coast) specific management plans (Pacific Flyway Study Committee and Central Flyway Webless Migratory Game Bird Technical Committee 2001, Pacific Flyway Study Committee 1994).

Comprehensive material on the life history of the bandtailed pigeon may be found in Keppie and Braun (2000), Braun (1994), Jarvis and Passmore (1992), and Neff (1947).

The primary purpose of this report is to facilitate the prompt distribution of timely information. Results are preliminary and may change with the inclusion of additional data.

## DISTRIBUTION AND ABUNDANCE

Two subspecies of band-tailed pigeon occur north of Mexico, each in a disjunct geographic distribution in western North America: Pacific Coast and U.S. Interior regions (Fig. 1). The coastal race (P. f. monilis) breeds from extreme southeastern Alaska and western British Columbia south into Washington, Oregon, California, and extreme western Nevada, primarily west of the Cascade and Sierra Nevada ranges, into Baja California; and winters from central California into northern Baja California. Some in Mexico and southern California and the few wintering north of southern California may represent non-migratory population segments. The interior race (P. f. fasciata) breeds from northern Colorado and eastcentral Utah south through Arizona, New Mexico, extreme western Texas into the Sierra Madre Occidental of Mexico; and winters from northern Mexico south to at least Michoacon. Some interchange occurs between races (Schroeder and Braun 1993).

Little is known about the demographics of band-tailed pigeon populations because their habits and habitat make it impractical to locate and observe or trap an adequate sample of birds. However, in the early 1970s the total population size was approximated at 2.9-7.1 million birds in Pacific Coast region and $<250,000$ birds in the


Figure 1. Distribution of band-tailed pigeons in North America (after Braun et al. 1975).

Interior region (estimated from harvest reports and band recovery rates, Braun 1994), which demonstrates the likely sizes and disparity between the two populations.

## ECOLOGY

Band-tailed pigeons primarily inhabit coniferous forests. They are highly mobile; individuals potentially traveling long distances (up to about 32 miles) daily to feed and drink. Their diet includes buds, flowers, and fruits of deciduous trees and shrubs, especially oak, madrone, elder, cherry, cascara, huckleberry, and blackberry, but varies seasonally and with location. Early migrants are readily attracted to grain fields and fruit orchards dispersed below the forested hills where they nest, particularly before the onset of natural foods, which are preferred. Adults, especially in summer and particularly the Pacific Coast region, frequently visit natural springs and water bodies high in mineral salts where they drink and peck at the soil between long bouts of roosting in nearby trees.

Band-tailed pigeons nest primarily in conifers, occasionally in hardwoods and shrubs, within closedcanopy conifer or mixed hardwood and conifer forest
stands. Nests are loosely constructed twig platforms. Placement is highly variable ranging 6-120 feet above ground, but is generally near the bole and in dense foliage. Adults are presumably monogamous, and most clutches have one egg, however, some nesting pairs may complete up to three nesting cycles a year in mild climates offering long nesting seasons. Both parents incubate the egg and brood the squab. Nestlings are fed curdlike crop milk formed from the inside lining of the crop of both adults.

## MONITORING METHODS

## The Breeding Bird Survey

The North American Breeding Bird Survey (BBS) is an all bird survey that also provides an annual index to abundance of both Interior and Pacific Coast populations of band-tailed pigeons (Sauer et al. 2007). The survey is based on thousands of routes distributed along secondary roads across the United States and Canada. Each route is 24.5 miles in length and consists of 50 stops or count locations at 0.5 mile intervals. At each stop, a 3-minute count is conducted whereby every bird seen within a 0.25 radius or heard is recorded. Surveys start one-half hour before local sunrise and take about 5 hours to complete. Data for birds heard and seen at stops are combined for BBS analyses.

## Mineral Site Survey

The Mineral Site Survey (MSS) was developed to provide an annual index to abundance of Pacific Coast band-tailed pigeons. This survey is based on work by U.S. Geological Survey scientists who examined the effectiveness of existing survey methods in detecting long- and short-term population changes. Past monitoring efforts for the Pacific Coast population relied on the BBS, which includes all birds, and other bandtailed pigeon specific surveys in Oregon (visual counts at mineral sites in August) and Washington (audio counts along transects in June). There was no specific monitoring program in California or British Columbia. Their results suggested that short-term (3- to 5 -year) trends were most reliably estimated using mineral site surveys adopted from the Oregon protocol (Casazza et al 2005). Additional research illustrated impacts of rainfall on mineral site surveys (Overton et al. 2005).

The MSS was developed and initiated on an
experimental basis in 2001 (Casazza et al. 2003), and became operational in 2004. The survey is a coordinated effort among State and Provincial wildlife agencies in California, Oregon, Washington, and British Columbia, and the U.S. Fish and Wildlife Service. The MSS involves a visual count of band-tailed pigeons at select mineral sites ( $\mathrm{n}=$ about 60, final site selection to be determined) throughout the populations range (14 in California, 28 in Oregon, 14 in Washington, and 4 in British Columbia) during July from one-half hour before sunrise to noon. These counts provide an index of abundance. Unfortunately, a similar survey for Interior band-tailed pigeons is not possible because use of mineral sites is primarily limited to the Pacific Coast region (Sanders and Jarvis 2000).

## Harvest Information Program

In past years, a compilation of non-uniform, periodic state harvest surveys have been used to obtain rough estimates of the number of band-tailed pigeon hunters and birds killed. Thus, the data were of limited use at a population range level. Those data are no longer collected by states (with the exception of possibly New Mexico).

Wildlife professionals have long recognized that reliable harvest surveys are needed to estimate the magnitude of harvests and monitor the impact of hunting. Since 1952, the U.S. Fish and Wildlife Service (Service) has conducted a national harvest survey (Mail Questionnaire Survey), but it was based on a sampling frame that included waterfowl hunters and so harvest of nonwaterfowl species could not be estimated reliably. To remedy this problem and challenges associated with combining state surveys, the Service and state wildlife agencies initiated the national, Migratory Bird Harvest Information Program (HIP) in 1992. This Program was designed to enable the Service to conduct nationwide surveys that provide reliable annual estimates of the harvest of band-tailed pigeons and other migratory game bird species. Under HIP, states provide the Service with the names and addresses of all licensed migratory bird hunters each year, and the Service conducts surveys to estimate the harvest and hunter effort in each state. All states except Hawaii have participated in this Program since 1998. However, estimates of band-tailed pigeon harvest and hunter participation were not available until 1999.

## Parts Collection Survey

The Parts Collection Survey (PCS) is a secondary component of the national harvest survey, currently HIP, which began in 1961. PCS is the primary means by which the composition (species, age, and sex) of the annual harvest is assessed. The survey randomly selects a sample of hunters registered with HIP. These persons are sent envelopes in which to return one wing from each bird harvested. All wings received annually are examined at wing bees, one in each of the four flyways, in which the wings are categorized by species, age, and sex. Band-tailed pigeons were included in PCS in 1994.

## MONITORING RESULTS

## The Breeding Bird Survey

Results of BBS are presented in Tables 1-3. According to the BBS survey, there is little evidence $(P=0.11)$ that annual counts of Interior band-tailed pigeons seen and heard per route have changed since survey implementation in 1966 or over the last 5 years ( $P=$ 0.83 ). However, there is evidence that these counts decreased ( $P<0.01$ ) over the last 10 years by a mean of $12.0 \pm 2.1 \%(\bar{X} \pm$ SE $)$. For Pacific Coast band-tailed pigeons, there is evidence that annual counts decreased ( $P=0.06$ ) since 1966 by a mean of $1.3 \pm 0.7 \%$, but increased ( $P=0.02$ ) over the last 5 years by a mean of $9.2 \pm 3.8 \%$. There is no evidence $(P=0.66)$ that annual counts changed over the last 10 years. Caution should be used in interpreting results, particularly for the Interior region, because sample sizes (routes) and pigeon counts per route are low, variances are high, and coverage of habitat by BBS routes is poor.

## Mineral Site Survey

Results of MSS are presented in Tables 4-6. According to the MSS survey, there is evidence ( $P=0.01$ ) that annual counts of Pacific Coast band-tailed pigeons per mineral site increased since the survey was experimentally implemented in 2001 by a mean of $7.1 \pm$ $2.9 \%$. There is no evidence that these counts changed over the last 5 years ( $P=0.74$ ), or over the last 4 years ( $P=0.99$ ) when the survey was formally implemented. Caution should be used in interpreting $P$-values because they are approximate based on Wald's test. Evaluation of confidence intervals and whether or not they include 0 may be more reliable. Confidence intervals are based on
bootstrap methods and may be asymmetrical.
In comparison to results obtained from the BBS during the same 5 -year time period (2003-2007), both surveys show evidence of stable or increasing counts of Pacific Coast band-tailed pigeons. MSS indicated annual counts of birds seen per mineral site did not change ( $P=0.74$, mean $=1.3 \pm 3.8 \%$ ) while BBS indicated annual counts of birds seen and heard per route increased ( $P=0.02$ ) by a mean of $9.2 \pm 3.8 \%$. The reason for the discrepancy in the magnitude of the trend estimate between these two surveys is unknown.

## Harvest Information Program

Results of HIP are presented in Tables 7-9 for Interior band-tailed pigeons and Tables 10-12 for Pacific Coast band-tailed pigeons. According to preliminary estimates from 2007, total harvest and hunter participation for Interior band-tailed pigeons were $4,800 \pm 1,739$ birds and $12,800 \pm 2,155$ hunter days afield. Total harvest and hunter participation for Pacific Coast band-tailed pigeons were $12,700 \pm 2,073$ birds and $13,500 \pm 2,066$ hunter days afield. The season was closed in Washington from 1991 through 2001.

## Parts Collection Survey

Results of PCS are presented in Tables 13 and 14. Data from 2007 show that the composition of the Interior band-tailed pigeon harvest was comprised of $20.5 \%$ hatching year birds based on a total sample of 44 birds. Composition of the Pacific Coast band-tailed pigeon harvest was comprised of $17.2 \%$ hatching year birds based on a total sample of 443 birds. The season was closed in Washington from 1991 through 2001. Caution should be used in interpreting state specific estimates with small sample size. Also, numbers are an index to recruitment and not adjusted for differential vulnerability to harvest between age classes. Consequently, the annual composition of harvest may not be representative of the population.

There is not adequate data to evaluate current differential vulnerability rates between young and adult birds (young:adult). There is however some data for male and females combined during 1968-1976 for the Interior population and during 1962-1977 for the Pacific Coast population. Estimates are variable among years and range from $0.20 \pm 0.20$ to $5.62 \pm 5.92$ with a mean of Casazza, M. L., J. L. Yee, M. R. Miller, D. L.
$1.90 \pm 0.60$ for the Interior population and $0.55 \pm 0.24$ to $1.54 \pm 0.81$ with a mean of $1.05 \pm 0.10$ for the Pacific Coast population. Possibly young are nearly twice as likely to be harvested compared to adults in the Interior population, whereas young and adult birds alike have nearly equal probability of harvest in the Pacific Coast population. The difference in age-related vulnerability between the populations may be related to the use of mineral sites by the Pacific Coast population and associated exposure to harvest. It is unknown whether these mean age-related vulnerability estimates apply to more recent years. But if they do, then the proportion of young in the Interior population may be about half of that estimated from the Parts Collection Survey, whereas the proportion of young in the Pacific Coast population may be as estimated from the Parts Collection Survey.

## ACKNOWLEDGMENTS

Personnel of state wildlife agencies and the U.S. Fish and Wildlife Service (USFWS) cooperated in collecting the data presented in this report. Special thanks to J. Garcia (CA), B. Reishus (OR), D. Kraege (WA), and Andrea Breault (BC) for their role in coordination of the MSS and providing data. J. R. Sauer (USGS) analyzed BBS data and provided statistical support. K. Richkus (USFWS) provided the HIP and PCS data. M. Koneff (USFWS), D. Dolton (USFWS), R. Rau (USFWS), and K. Parker (USFWS) reviewed a draft of this report.

## LITERATURE CITED

Braun, C. E. 1994. Band-tailed Pigeon. Pages 60-74 in T. C. Tacha and C. E. Braun, editors. Migratory shore and upland game bird management in North America. International Association of Fish and Wildlife Agencies, Washington, D.C.
Braun, C. E., D. E. Brown, J. C. Pederson, and T. P. Zapatka. 1975. Results of the Four Corners cooperative band-tailed pigeon investigation. U.S. Fish and Wildlife Service, Resource Publication 126.

Casazza, M. L., C. T. Overton, J. L. Yee, D. L. Orthmeyer, M. R. Miller, and R. A. Schmitz. 2003. Development of a reliable population index for Pacific Coast band-tailed pigeons: final report. U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA. Unpublished report.

Orthmeyer, D. R. Yparraguirre, R. L. Jarvis, and C. T. Overton. 2005. Evaluation of current population indices for band-tailed pigeons. Wildlife Society Bulletin 33(2):606-615.
Jarvis, R. L., and M. F. Passmore. 1992. Ecology of band-tailed pigeons in Oregon. U.S. Fish and Wildlife Service, Biological Report 6.
Keppie, D. M., and C. E. Braun. 2000. Band-tailed pigeon (Columbia fasciata). In A. Poole and F. Gill, editors. The Birds of North America, No. 530. The Birds of North America, Inc., Philidelphia, PA.
Neff, J. A. 1947. Habits, food, and economic status of the band-tailed pigeon. U.S. Fish and Wildlife Service, North American Fauna Number 58.
Overton, C. T., R. A. Schmitz, and M. L. Casazza. 2005. Post-precipitation bias in band-tailed pigeon surveys conducted at mineral sites. Wildlife Society Bulletin 33(3):1047-1054.
Pacific Flyway Study Committee and Central Flyway Webless Migratory Game Bird Technical

Committee. 2001. Pacific and Central Flyways management plan for the Four Corners population of band-tailed pigeons. Pacific Flyway Council, c/o U.S. Fish and Wildlife Service, Portland, Oregon.

Pacific Flyway Study Committee. 1994. Pacific Flyway management plan for the Pacific coast population of band-tailed pigeons. Pacific Flyway Council, c/o U.S. Fish and Wildlife Service, Portland, Oregon.

Sanders, T. A., and R. L. Jarvis. 2000. Do band-tailed pigeons seek a calcium supplement at mineral sites? Condor 102:855-863.
Sauer, J. R., J. E. Hines, and J. Fallon. 2007. The North American Breeding Bird Survey, Results and Analysis 1966-2006. Version 10.13.2007. USGS Patuxent Wildlife Research Center, Laurel, MD.
Schroeder, M. A., and C. E. Braun. 1993. Movement and philopatry of band-tailed pigeons captured in Colorado. Journal of Wildlife Management 57:103112.

Table 1. Trend estimates (expressed as a mean annual percentage change in abundance over the time period) of band-tailed pigeons seen and heard along routes from the Breeding Bird Survey, 1966-2007 (42-year trend). No estimate for Utah was available.

|  |  | Trend |  |  |  | $\bar{x}$ birds |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Region | $\bar{X}$ | SE | LCI | UCI | $P$-value | per route | Routes |
| Interior | -3.2 | 1.9 | -7.0 | 0.6 | 0.11 | 0.6 | 33 |
| $\quad$ Arizona | -0.7 | 7.4 | -15.2 | 13.8 | 0.92 | 0.8 | 11 |
| Colorado | 8.7 | 7.0 | -5.0 | 22.4 | 0.24 | 0.2 | 12 |
| $\quad$ New Mexico | -9.0 | 1.6 | -12.0 | -6.0 | 0.00 | 1.1 | 9 |
| Pacific Coast | -1.3 | 0.7 | -2.7 | 0.1 | 0.06 | 2.7 | 197 |
| $\quad$ British Columbia | -3.4 | 1.2 | -5.8 | -1.1 | 0.01 | 2.2 | 28 |
| California | -0.5 | 1.3 | -3.1 | 2.1 | 0.72 | 2.7 | 107 |
| Oregon | -0.7 | 1.0 | -2.5 | 1.2 | 0.51 | 3.8 | 33 |
| $\quad$ Washington | -0.5 | 0.9 | -2.3 | 1.3 | 0.59 | 3.5 | 29 |

Table 2. Trend estimates (expressed as a mean annual percentage change in abundance over the time period) of band-tailed pigeons seen and heard along routes from the Breeding Bird Survey, 1997-2007 (10-year trend). No estimate for Utah was available.

|  | Trend |  |  |  |  | $\bar{x}$ birds |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | ---: | :---: |
| Region | $\bar{x}$ | SE | LCI | UCI | $P$-value | per route | Routes |  |
| Interior | -12.0 | 2.1 | -16.0 | -7.9 | $<0.01$ | 0.60 | 21 |  |
| $\quad$ Arizona | -8.3 | 4.6 | -17.3 | 0.7 | 0.14 | 0.71 | 6 |  |
| Colorado | -14.4 | 13.1 | -40.1 | 11.3 | 0.33 | 0.17 | 6 |  |
| $\quad$ New Mexico | -12.6 | 3.3 | -19.1 | -6.1 | 0.01 | 1.44 | 8 |  |
| Pacific Coast | 1.6 | 3.6 | -5.5 | 8.7 | 0.66 | 2.26 | 136 |  |
| $\quad$ British Columbia | 7.0 | 5.6 | -3.9 | 18.0 | 0.23 | 1.22 | 17 |  |
| California | 9.3 | 2.2 | 5.1 | 13.6 | 0.00 | 2.72 | 71 |  |
| Oregon | -0.4 | 3.1 | -6.4 | 5.7 | 0.91 | 2.92 | 25 |  |
| $\quad$ Washington | -10.2 | 9.1 | -28.0 | 7.6 | 0.27 | 4.25 | 23 |  |

Table 3. Trend estimates (expressed as a mean annual percentage change in abundance over the time period) of band-tailed pigeons seen and heard along routes from the Breeding Bird Survey, 20022007 (5-year trend). No estimate for Utah and Colorado were available.

|  | Trend |  |  |  | $\bar{x}$ birds |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Region | $\bar{x}$ | SE | LCI | UCI | $P$-value | per route | Routes |
| Interior | -2.6 | 11.5 | -25.1 | 19.8 | 0.83 | 0.44 | 11 |
| $\quad$ Arizona | -29.3 | 0.4 | -30.1 | -28.4 | 0.01 | 0.49 | 3 |
| New Mexico | 24.7 | 11.1 | 3.0 | 46.4 | 0.09 | 1.05 | 6 |
| Pacific Coast | 9.2 | 3.8 | 1.8 | 16.5 | 0.02 | 1.85 | 97 |
| British Columbia | 18.4 | 25.3 | -31.2 | 67.9 | 0.49 | 0.93 | 9 |
| California | 7.9 | 4.2 | -0.3 | 16.2 | 0.07 | 2.57 | 55 |
| Oregon | 7.6 | 5.7 | -3.6 | 18.8 | 0.20 | 2.07 | 18 |
| Washington | 9.3 | 8.8 | -8.1 | 26.6 | 0.31 | 3.07 | 15 |

Table 4. Trend estimates of band-tailed pigeons seen at mineral sites from the Mineral Site Survey, 2001-2007 (7-year trend, all data available). Trends are expressed as a mean annual percentage change in abundance over the time period, with a bootstrapped standard error and $95 \%$ lower (LCI) and upper (UCI) confidence intervals. The $P$-values are approximate based on Wald's test.

|  | Trend |  |  |  |  | $\bar{x}$ birds |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Region | $\bar{x}$ | SE | LCI | UCI | $P$-value | per site | Sites |
| Pacific Coast | 7.1 | 2.9 | 1.8 | 13.1 | 0.01 | 175.5 | 60 |
| $\quad$ British Columbia | 16.1 | 8.2 | 4.1 | 32.2 | 0.05 | 125.3 | 4 |
| California | -1.3 | 4.7 | -12.4 | 5.9 | 0.99 | 63.8 | 14 |
| Oregon | 11.6 | 4.1 | 5.9 | 22.3 | 0.01 | 241.0 | 28 |
| Washington | 2.3 | 3.5 | -5.1 | 8.5 | 0.42 | 186.2 | 14 |

Table 5. Trend estimates of band-tailed pigeons seen at mineral sites from the Mineral Site Survey, 2003-2007 (5-year trend). Trends are expressed as a mean annual percentage change in abundance over the time period, with a bootstrapped standard error and $95 \%$ lower (LCI) and upper (UCI) confidence intervals. The $P$-values are approximate based on Wald's test.

| Region | Trend |  |  |  |  | $\bar{x}$ birds per site | Sites |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | SE | LCI | UCI | $P$-value |  |  |
| Pacific Coast | 1.3 | 3.8 | -6.6 | 8.2 | 0.74 | 143.8 | 56 |
| British Columbia | 27.1 | 18.7 | 1.8 | 67.0 | 0.15 | 135.9 | 4 |
| California | 2.1 | 5.3 | -8.4 | 12.5 | 0.70 | 71.4 | 14 |
| Oregon | 4.6 | 5.0 | -4.3 | 14.9 | 0.35 | 166.5 | 24 |
| Washington | -3.7 | 4.3 | -12.0 | 3.8 | 0.99 | 194.0 | 14 |

Table 6. Trend estimates of band-tailed pigeons seen at mineral sites from the Mineral Site Survey, 2004-2007 (4-year trend, since official implementation). Trends are expressed as a mean annual percentage change in abundance over the time period, with a bootstrapped standard error and $95 \%$ lower (LCI) and upper (UCI) confidence intervals. The $P$-values are approximate based on Wald's test.

|  | Trend |  |  |  |  | $\bar{x}$ birds |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | ---: |
| Region |  | SE | LCI | UCI | $P$-value | per site | Sites |
| Pacific Coast | -2.0 | 3.3 | -44.2 | 4.3 | 0.99 | 145.4 | 56 |
| $\quad$ British Columbia | -6.6 | 20.3 | -8.1 | 32.8 | 0.99 | 156.8 | 4 |
| California | 2.7 | 5.5 | -4.1 | 13.4 | 0.62 | 79.1 | 14 |
| Oregon | 4.6 | 4.9 | -17.3 | 15.2 | 0.34 | 166.5 | 24 |
| Washington | -8.8 | 4.3 | -8.4 | -1.0 | 0.99 | 190.9 | 14 |

Table 7. Harvest estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Interior band-tailed pigeon from the Harvest Information Program, 1999-2007. The most recent year estimates are preliminary.

| Year | Arizona |  | Colorado |  | New Mexico |  | Utah |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | CI |
| 1999 | 500 | 154 | 700 | 129 | 0 | 0 | 100 | 69 | 1,300 | 94 |
| 2000 | 2,300 | 110 | 1,700 | 147 | 400 | 122 | 300 | 192 | 4,600 | 78 |
| 2001 | 400 | 118 | 600 | 94 | 600 | 126 | 300 | 169 | 2,000 | 62 |
| 2002 | 1,000 | 153 | 100 | 117 | 600 | 158 | 400 | 149 | 2,100 | 89 |
| 2003 | 1,400 | 126 | 900 | 97 | 400 | 65 | 100 | 132 | 2,900 | 70 |
| 2004 | 1,400 | 120 | 500 | 57 | 700 | 115 | 200 | 136 | 2,800 | 68 |
| 2005 | 2,200 | 105 | 100 | 113 | 300 | 106 | 100 | 193 | 2,700 | 86 |
| 2006 | 500 | 56 | 600 | 76 | 100 | 109 | 400 | 95 | 1,600 | 42 |
| 2007 | 1,000 | 101 | 900 | 102 | 2,800 | 113 | 200 | 195 | 4,800 | 71 |

Table 8. Active hunter estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Interior band-tailed pigeon from the Harvest Information Program, 1999-2007. The most recent year estimates are preliminary.

| Year | Arizona |  | Colorado |  | New Mexico |  | Utah |  | Total ${ }^{\text {a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | CI | $\bar{x}$ | CI | $\bar{x}$ | CI | $\bar{x}$ | CI | $\bar{\chi}$ | CI |
| 1999 | 700 | 105 | 100 | 113 | 100 | 121 | <50 | 46 | 900 |  |
| 2000 | 600 | 79 | 400 | 95 | 300 | 67 | <50 | 192 | 1,300 |  |
| 2001 | 500 | 65 | 500 | 61 | 500 | 53 | 200 | 97 | 1,800 |  |
| 2002 | 400 | 85 | 200 | 101 | 300 | 81 | 200 | 98 | 1,000 |  |
| 2003 | 1,500 | 61 | 400 | 71 | 400 | 67 | 300 | 81 |  |  |
| 2004 | 900 | 56 | 300 | 29 | 100 | 103 | 50 | 92 |  |  |
| 2005 | 800 | 69 | 200 | 46 | 100 | 109 | 100 | 134 |  |  |
| 2006 | 600 | 73 | 900 | 52 | 100 | 172 | 200 | 92 |  |  |
| 2007 | 2,100 | 43 | 1,400 | 45 | 800 | 47 | 300 | 86 | 4,600 |  |

[^9]Table 9. Days afield estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Interior band-tailed pigeon from the Harvest Information Program, 1999-2007. The most recent year estimates are preliminary.

| Year | Arizona |  | Colorado |  | New Mexico |  | Utah |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | CI |
| 1999 | 2,000 | 97 | 300 | 122 | 300 | 158 | 100 | 50 | 2,700 | 76 |
| 2000 | 1,600 | 83 | 2,800 | 107 | 900 | 75 | 300 | 192 | 5,600 | 60 |
| 2001 | 1,000 | 71 | 800 | 54 | 1,800 | 64 | 700 | 133 | 4,300 | 39 |
| 2002 | 1,000 | 110 | 400 | 105 | 900 | 109 | 500 | 104 | 2,800 | 58 |
| 2003 | 3,700 | 77 | 2,100 | 89 | 1,400 | 75 | 600 | 136 | 7,900 | 47 |
| 2004 | 2,300 | 80 | 700 | 35 | 300 | 92 | 100 | 72 | 3,400 | 55 |
| 2005 | 1,600 | 74 | 300 | 51 | 400 | 140 | 200 | 142 | 2,500 | 54 |
| 2006 | 1,100 | 70 | 1,700 | 63 | 300 | 163 | 200 | 87 | 3,300 | 43 |
| 2007 | 5,000 | 57 | 3,800 | 56 | 3,600 | 62 | 400 | 73 | 12,800 | 33 |

Table 10. Harvest estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Pacific Coast band-tailed pigeon from the Harvest Information Program, 1999-2007. The season was closed in Washington from 1991 through 2001, and estimates are not available until 2002. The most recent year estimates are preliminary.

| Year | California |  | Oregon |  | Washington |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | CI | $\overline{\bar{X}}$ | CI | $\bar{\chi}$ | CI | $\bar{\chi}$ | CI |
| 1999 | 19,300 | 101 | 3,800 | 42 |  |  | 23,100 | 85 |
| 2000 | 12,200 | 65 | 4,100 | 92 |  |  | 16,300 | 54 |
| 2001 | 8,300 | 49 | 5,000 | 45 |  |  | 13,200 | 35 |
| 2002 | 4,200 | 39 | 4,000 | 36 |  |  | 8,200 | 27 |
| 2003 | 8,000 | 50 | 4,900 | 33 | 1,500 | 78 | 14,400 | 31 |
| 2004 | 14,300 | 45 | 3,300 | 44 | 300 | 160 | 17,900 | 37 |
| 2005 | 11,100 | 58 | 1,400 | 34 | 1,000 | 84 | 13,500 | 48 |
| 2006 | 12,500 | 40 | 1,500 | 25 | 900 | 97 | 14,900 | 34 |
| 2007 | 9,700 | 39 | 1,400 | 74 | 1,700 | 61 | 12,700 | 32 |

Table 11. Active hunter estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Pacific Coast band-tailed pigeon from the Harvest Information Program, 1999-2007. The season was closed in Washington from 1991 through 2001, and estimates are not available until 2002. The most recent year estimates are preliminary.

| Year | California |  | Oregon |  | Washington |  | Total ${ }^{\text {a }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{\chi}$ | CI | $\bar{\chi}$ | CI | $\bar{\chi}$ | CI | $\bar{\chi}$ | CI |
| 1999 | 3,900 | 48 | 1,500 | 47 |  |  | 5,400 |  |
| 2000 | 5,600 | 37 | 1,700 | 46 |  |  | 7,300 |  |
| 2001 | 2,600 | 34 | 1,700 | 31 |  |  | 4,200 |  |
| 2002 | 2,500 | 30 | 1,300 | 25 |  |  | 3,800 |  |
| 2003 | 4,600 | 38 | 1,800 | 24 | 1,000 | 23 |  |  |
| 2004 | 4,700 | 37 | 1,500 | 36 | 500 | 64 |  |  |
| 2005 | 3,900 | 39 | 500 | 14 | 700 | 58 |  |  |
| 2006 | 6,000 | 35 | 400 | 13 | 500 | 61 |  |  |
| 2007 | 4,900 | 33 | 700 | 113 | 900 | 44 | 6,500 |  |

${ }^{\text {a }}$ Estimates in total may be biased high because the HIP sample frames are state-specific; therefore, hunters are counted multiple times if they hunt in more than one state.

Table 12. Days afield estimates (mean and $95 \%$ confidence interval $1 / 2$ width expressed as percent of the mean) for Pacific Coast band-tailed pigeon from the Harvest Information Program, 1999-2007. The season was closed in Washington from 1991 through 2001, and estimates are not available until 2002. The most recent year estimates are preliminary.

| Year | California |  | Oregon |  | Washington |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{X}$ | CI | $\bar{\chi}$ | CI | $\bar{X}$ | CI | $\bar{\chi}$ | CI |
| 1999 | 9,100 | 54 | 3,500 | 33 |  |  | 12,600 | 40 |
| 2000 | 10,000 | 41 | 3,800 | 61 |  |  | 13,800 | 34 |
| 2001 | 7,500 | 39 | 4,700 | 39 |  |  | 12,200 | 28 |
| 2002 | 4,600 | 35 | 3,400 | 28 |  |  | 7,900 | 23 |
| 2003 | 11,500 | 52 | 5,100 | 29 | 1,600 | 58 | 18,300 | 34 |
| 2004 | 9,700 | 36 | 3,400 | 35 | 800 | 83 | 13,900 | 27 |
| 2005 | 8,800 | 47 | 1,300 | 21 | 1,000 | 62 | 11,000 | 38 |
| 2006 | 13,500 | 47 | 1,200 | 20 | 700 | 68 | 15,400 | 41 |
| 2007 | 10,600 | 37 | 1,200 | 69 | 1,800 | 60 | 13,500 | 30 |

Table 13. Age structure of Interior band-tailed pigeons determined from hunter shot birds during September, 1994 to 2007. Values are percentage of hatch year birds (\%), number of hatch year birds $(\mathrm{n})$, and number of both hatch year and after hatch year birds examined $(\mathrm{N})$.

| Year | Arizona |  |  | Colorado |  |  | New Mexico |  |  | Utah |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | n | N |
| 1994 | 24.6 | 16 | 65 | 66.7 | 4 | 6 | 28.6 | 14 | 49 |  |  | 0 | 28.3 | 34 | 120 |
| 1995 | 60.0 | 6 | 10 | 28.9 | 52 | 180 | 19.0 | 12 | 63 | 54.5 | 6 | 11 | 28.8 | 76 | 264 |
| 1996 | 0.0 | 0 | 1 | 38.5 | 5 | 13 | 34.1 | 15 | 44 |  |  | 0 | 34.5 | 20 | 58 |
| 1997 | 33.3 | 7 | 21 | 31.5 | 17 | 54 | 15.5 | 13 | 84 |  |  | 0 | 23.3 | 37 | 159 |
| 1998 | 48.4 | 15 | 31 | 20.0 | 2 | 10 | 10.0 | 2 | 20 | 16.7 | 1 | 6 | 29.9 | 20 | 67 |
| 1999 | 13.0 | 3 | 23 | 33.3 | 6 | 18 | 24.1 | 7 | 29 |  |  | 0 | 22.9 | 16 | 70 |
| 2000 | 41.7 | 30 | 72 | 11.8 | 2 | 17 | 26.9 | 18 | 67 | 0.0 | 0 | 3 | 31.4 | 50 | 159 |
| 2001 | 52.9 | 9 | 17 |  |  | 0 | 23.5 | 4 | 17 | 33.3 | 1 | 3 | 37.8 | 14 | 37 |
| 2002 | 53.9 | 55 | 102 | 27.3 | 3 | 11 | 50.8 | 32 | 63 | 8.3 | 1 | 12 | 48.4 | 91 | 188 |
| 2003 |  |  | 0 |  |  | 0 | 33.3 | 1 | 3 |  |  | 0 | 33.3 | 1 | 3 |
| 2004 | 34.8 | 8 | 23 |  |  | 0 | 40.0 | 4 | 10 |  |  | 0 | 36.4 | 12 | 33 |
| 2005 | 15.4 | 2 | 13 | 66.7 | 8 | 12 | 0.0 | 0 | 3 |  |  | 0 | 35.7 | 10 | 28 |
| 2006 | 11.5 | 6 | 52 | 20.0 | 4 | 20 | 29.9 | 20 | 67 |  |  | 0 | 21.6 | 30 | 139 |
| 2007 | 20.5 | 9 | 44 |  |  |  |  |  |  |  |  |  | 20.5 | 4 | 44 |

Table 14. Age structure of Pacific Coast band-tailed pigeons determined from hunter shot birds during September through December, 1994 to 2007. Values are percentage of hatch year birds (\%), number of hatch year birds ( n ), and number of both hatch year and after hatch year birds examined ( N ). The season was closed in Washington from 1991 through 2001.

| Year | California |  |  | Oregon |  |  | Washington |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | n | N | \% | n | N | \% | , | N | \% | n | N |
| 1994 | 44.6 | 226 | 507 | 22.9 | 131 | 571 |  |  | 0 | 33.1 | 357 | 1078 |
| 1995 | 29.6 | 74 | 250 | 20.1 | 109 | 542 |  |  | 0 | 23.1 | 183 | 792 |
| 1996 | 27.9 | 68 | 244 | 15.1 | 38 | 252 |  |  | 0 | 21.4 | 106 | 496 |
| 1997 | 31.1 | 65 | 209 | 17.7 | 64 | 361 |  |  | 0 | 22.6 | 129 | 570 |
| 1998 | 32.0 | 81 | 253 | 18.4 | 45 | 244 |  |  | 0 | 25.4 | 126 | 497 |
| 1999 | 33.2 | 119 | 358 | 20.1 | 79 | 394 |  |  | 0 | 26.3 | 198 | 752 |
| 2000 | 32.1 | 69 | 215 | 17.5 | 58 | 332 |  |  | 0 | 23.2 | 127 | 547 |
| 2001 | 22.9 | 33 | 144 | 17.0 | 46 | 271 |  |  | 0 | 19.0 | 79 | 415 |
| 2002 | 31.5 | 52 | 165 | 14.1 | 33 | 234 | 3.8 | 22 | 180 | 18.5 | 107 | 579 |
| 2003 | 34.4 | 72 | 209 | 21.2 | 49 | 231 | 3.1 | 17 | 112 | 25.0 | 138 | 552 |
| 2004 | 25.2 | 33 | 131 | 19.6 | 38 | 194 | 2.6 | 9 | 27 | 22.7 | 80 | 352 |
| 2005 | 18.8 | 25 | 133 | 13.3 | 24 | 180 |  |  | 0 | 15.7 | 49 | 313 |
| 2006 | 18.1 | 47 | 260 | 19.0 | 48 | 253 | 13.6 | 6 | 44 | 18.1 | 101 | 557 |
| 2007 | 24.8 | 34 | 137 | 14.3 | 36 | 251 | 10.9 | 6 | 55 | 17.2 | 76 | 443 |

U.S. Fish and Wildlife Service

Division of Migratory Bird Management
P.O. Box 25486

Denver, CO 8-0225-0486
http://www.fws.gov
June 2008
For State Transfer Relay Service: TTY/Voice: 711


[^0]:    a Mean of route trends weighted by land area and population density. The estimated count in the next year is $(\% / 100+1)$ times the count in the current year where $\%$ is the annual change. Note: Extrapolating the estimated trend statistic (\% change per year) over time (e.g., 43 years) may exaggerate the total change over the period.
    ${ }^{\mathrm{b}}$ As stated in the Estimation of Annual Indices on page 3 of this report, the 2 -year trend is the best estimate of the change between 2007 and 2008 . This is because only data from comparable routes (those run by the same observer in both years) are used in the analysis. This change will differ from the change calculated from 2007 to 2008 using the annual indices because the index values are less precise, as they incorporate data from routes not surveyed in both years. The 2-year trend is useful in evaluating short-term change; however, the long-term trend is more relevant to management decision-making.
     of the low power of the test.
    d New England consists of CT, ME, MA, NH, RI, and VT.
    ${ }^{\mathrm{e}}$ Due to small sample sizes within OR strata, a pooled estimate amongst strata is provided for Oregon for the 2-year trend.

[^1]:    ${ }^{\text {a }}$ Mean of route trends weighted by land area and population density. The estimated count in the next year is (\%/100+1) times the count in the current year where $\%$ is the annual change. Note: Extrapolating the estimated trend statistic (\% change per year) over time (e.g., 43 years) may exaggerate the total change over the period.
     used because of the low power of the test.
    ${ }^{\text {c }}$ New England consists of CT, ME, MA, NH, RI, and VT.

[^2]:    ${ }^{2}$ Mean of route trends weighted by land area and population density. The estimated count in the next year is (\%/100+1) times the count in the current year where $\%$ is the annual change. Note: Extrapolating the estimated trend statistic (\% change per year) over time (e.g., 42 years) may exaggerate the total change over the period.
    ${ }^{\mathrm{b} *} P<0.1$; ${ }^{* * P<0.05 ; ~}{ }^{* * * P} P<0.01$. For purposes of this report, statistical significance was defined as $P<0.05$, except for the 2-year comparison where $P<0.10$ was used because of the low power of the test.
    ${ }^{\mathrm{C}}$ New England consists of CT, ME, MA, NH, RI, and VT.

[^3]:    ${ }^{2}$ Annual indices are the predicted value from the trend analysis plus the deviation from the expected value in a year.
    Large but nonsignificant changes due to small sample sizes produce exaggerated indices over the 43-year period.
    ${ }^{\text {b }}$ New England consists of CT, ME, MA, NH, RI, and VT.

[^4]:    ${ }^{\text {a }}$ Annual indices are the predicted value from the trend analysis plus the deviation from the expected value in a year.
    Large but nonsignificant changes due to small sample sizes produce exaggerated indices over the 43-year period.

[^5]:    ${ }^{\text {a }}$ Annual indices are the predicted value from the trend analysis plus the deviation from the expected value in a year.
    Large but nonsignificant changes due to small sample sizes produce exaggerated indices over the 43-year period.

[^6]:    ${ }^{2}$ Annual indices are the predicted value from the trend analysis plus the deviation from the expected value in a year.
    Large but nonsignificant changes due to small sample sizes produce exaggerated indices over the 43-year period.
    ${ }^{\text {b }}$ New England consists of CT, ME, MA, NH, RI, and VT.

[^7]:    ${ }^{1}$ This represents the $95 \%$ confidence interval expressed as percent of the point estimate.
    ${ }^{2}$ This total is slightly exaggerated because people are counted more than once if they hunted in more than one state.

[^8]:    ${ }^{1}$ This represents the $95 \%$ confidence interval expressed as percent of the point estimate.
    ${ }^{2}$ This total is slightly exaggerated because people are counted more than once if they hunted in more than one state.

[^9]:    ${ }^{\text {a }}$ Estimates in total may be biased high because the HIP sample frames are state-specific; therefore, hunters are counted multiple times if they hunt in more than one state.

