

Prepared in cooperation with the JOHNSON COUNTY STORMWATER MANAGEMENT PROGRAM

Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

Scientific Investigations Report 2008–5014

U.S. Department of the Interior U.S. Geological Survey

Front cover. Blue River at Kenneth Road, June 2007 (photograph taken by Ryan Smith, U.S. Geological Survey, Lawrence Kansas).

Back cover. (Top) Blue River at Kenneth Road, May 2007 (photograph taken by Teresa Rasmussen, U.S. Geological Survey, Lawrence, Kansas); (Bottom) Indian Creek at State Line Road, March 2004 (photograph taken by Jeff Barnard, U.S. Geological Survey, Lawrence, Kansas).

Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

By Teresa J. Rasmussen, Casey J. Lee, and Andrew C. Ziegler

Prepared in cooperation with the Johnson County Stormwater Management Program

Scientific Investigations Report 2008–5014

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Rasmussen, T.J., Lee, C.J., and Ziegler, A.C., 2008, Estimation of constituent concentrations, loads, and yields in streams of Johnson County, northeast Kansas, using continuous water-quality monitoring and regression models, October 2002 through December 2006: U.S. Geological Survey Scientific Investigations Report 2008–5014, 103 p.

Contents

Abstract	1
Introduction	2
Purpose and Scope	2
Description of Study Area	5
Previous Studies	6
Methods	7
Data Collection and Analysis	7
Regression Models	9
Estimation of Constituent Concentrations, Densities, Loads, and Yields	17
Duration Curves	17
Results of Continuous In-Stream Measurements	17
Streamflow	17
Specific Conductance	18
рН	19
Water Temperature	21
Turbidity	21
Dissolved Oxygen	21
Variability in Streamflow and Water-Quality Measurements	24
Relation Between Streamflow and Turbidity	24
Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields	26
Regression Models	26
Regression-Estimated Constituents	39
Suspended Sediment and Total Suspended Solids	39
Dissolved Solids, Chloride, and Other Major lons	60
Fecal-Indicator Bacteria	70
Results of Selected Discrete-Sample Analysis	74
Nutrients	74
Pesticides	78
Watershed Characteristics Affecting Water Quality in Johnson County Streams	81
Summary and Conclusions	91
References Cited	94
Appendix	99

Figures

1.	Maps showing location of monitoring sites, watershed boundaries, and land use,
	Johnson Gounty, northeast Runsus
2.	Photographs of Kill Creek at 95th Street, one of five continuous water-quality
	monitoring sites in Johnson County, Kansas, and monitor used to measure continu-
	ous, in-stream specific conductance, pH, water temperature, turbidity, and dissolved
	oxygen7

3–11. Graphs showing:

3.	Comparison between suspended-sediment concentrations in samples collected using manual flow-weighted sampling methods and automated samplers at five monitoring sites in Johnson County, Kansas, 2003–06
4.	Duration curves for measured streamflow at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006
5.	Duration curves for measured specific conductance at five monitoring sites in John- son County, Kansas, March 2004 through December 200620
6.	Duration curves for measured pH at five monitoring sites in Johnson County, Kansas, March 2004 through December 200620
7.	Duration curves for measured water temperature at five monitoring sites in Johnson County, Kansas, March 2004 through December 200622
8.	Duration curves for measured turbidity at five monitoring sites in Johnson County, Kansas, March 2004 through December 200622
9.	Duration curves for <i>(A)</i> measured dissolved oxygen at five monitoring sites in Johnson County, Kansas, for March 2004 through December 2006 and <i>(B)</i> seasonal dissolved oxygen at the Indian Creek monitoring site for January 2005 through December 2006
10.	Variability in <i>(A)</i> streamflow, pH, water temperature, and dissolved oxygen and <i>(B)</i> specific conductance and turbidity at the Indian Creek monitoring site in Johnson County, Kansas, August 200525
11.	Comparison of continuously measured streamflow and turbidity at the Cedar Creek monitoring site, Johnson County, Kansas, January 2005 through December 200626
12.	Diagram showing common streamflow and suspended-sediment hysteresis patterns, types, and sediment-source explanations27
13–34.	Graphs showing:
13.	Examples of hysteresis patterns in streamflow and turbidity data from selected moni- toring sites in Johnson County, Kansas, 2004–0528
14.	Comparison of explanatory and response variables for selected water-quality constitu- ent regression models for (A) suspended-sediment concentration, (B) chloride, and (C) Escherichia coli bacteria
15.	Duration curves for estimated suspended-sediment concentration at five water-quality monitoring sites in Johnson County, Kansas, March 2004–December 200651
16.	Estimated annual loads and yields for suspended sediment, chloride, and <i>Escherichia coli</i> bacteria at five water-quality monitoring sites in Johnson County, Kansas, 2005–06
17.	Duration curves for estimated suspended-sediment load at five water-quality monitor- ing sites in Johnson County, Kansas, January 2005–December 200660
18.	Cumulative estimated suspended-sediment loads and frequency of exceedance at five water-quality monitoring sites in Johnson County, Kansas, January 2005– December 2006
19.	Streamflow and cumulative suspended-sediment load at five water-quality monitoring sites in Johnson County, Kansas, 2005–0667
20.	Estimated suspended-sediment load during June 2005 at the Blue River monitoring site, Johnson County, Kansas69
21.	Duration curves for estimated chloride concentration at five water-quality monitoring sites in Johnson County, Kansas, March 2004–December 200671

22.	Frequency and probability of exceeding chloride criteria at the Indian Creek monitor ing site, Johnson County, Kansas, January 2005–December 2006	- 71
23.	Cumulative estimated chloride loads and frequency of exceedance at five water- quality monitoring sites in Johnson County, Kansas, 2005–06	72
24.	Seasonal chloride concentration duration curves at the Indian Creek monitoring site Johnson County, Kansas, January 2005–December 2006	, 72
25.	Elevated chloride concentrations during snowmelt as a result of road-salt applica- tion at five water-quality monitoring sites in Johnson County, Kansas, January– February 2005	73
26.	Duration curves for estimated <i>Escherichia coli</i> bacteria at five water-quality monitor ing sites in Johnson County, Kansas, March 2004–December 2006	 74
27.	Seasonal duration curves for estimated <i>Escherichia coli</i> bacteria density at the (<i>A</i>) Indian Creek and (<i>B</i>) Cedar Creek water-quality monitoring sites, January 2005–December 2006	75
28.	Probability of exceeding <i>Escherichia coli</i> bacteria criteria at the <i>(A)</i> Blue River and <i>(B)</i> Indian Creek water-quality monitoring sites in Johnson County, Kansas, January 2005–December 2006	76
29.	Cumulative estimated <i>Escherichia coli</i> bacteria loads and frequency of exceedance at five water-quality monitoring sites in Johnson County, Kansas, January 2005– December 2006	77
30.	Total annual estimated fecal coliform bacteria loads and loads originating from wastewater-treatment-facility discharges to Blue River and Indian Creek, Johnson County, Kansas, 2005–06	77
31.	Concentrations of (A) total nitrogen and (B) nitrates as nitrogen in relation to stream flow at five water-quality monitoring sites in Johnson County, Kansas, October 2002–January 2006	- 80
32.	Concentrations of total phosphorus in relation to streamflow at five water-quality monitoring sites in Johnson County, Kansas, October 2002–January 2006	81
33.	Annual estimated total nitrogen and total phosphorus loads originating from waste- water-treatment-facility discharges to Blue River and Indian Creek, Johnson County, Kansas, 2005–06	, 82
34.	Constituent yields and impervious surface area at five water-quality monitoring sites Johnson County, Kansas, 2005–06	; in 90

Tables

1.	Continuous in-stream monitoring sites, contributing drainage areas, estimates of urbar and nonurban land-use percentages, and estimated number of septic systems per square mile of drainage area in Johnson County, northeast Kansas
2.	Watersheds containing stream segments with 303(d) listings and total maximum daily loads (TMDLs) completed or being developed, Johnson County, northeast Kansas, 2006
3.	Water-quality constituents, units of measurement, laboratory reporting levels, and results of replicate stream sample and blank sample analysis for five water- quality monitoring sites in Johnson County, northeast Kansas, October 2002– December 2006

4.	Summary of continuous in-stream measured data and frequency of exceedance per- centiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen at five water-quality monitoring sites in Johnson County, northeast Kansas, 2003–06
5.	Mean daily streamflow, annual streamflow volume, and annual streamflow yield at five water-quality monitoring sites in Johnson County, northeast Kansas, 2004–06
6.	Average annual precipitation in five watersheds of Johnson County, northeast Kansas, 2003–06
7.	Relation between hourly streamflow and turbidity measurements at five water-quality monitoring sites in Johnson County, northeast Kansas, 2005–0626
8.	Regression models and summary statistics for estimating concentrations and densi- ties of selected constituents in water at five water-quality monitoring sites in Johnson County, northeast Kansas, October 2002–January 2006
9.	Regression models and statistics for estimating concentrations of selected constituents using suspended-sediment concentration (SSC) in discrete samples from five water-quality monitoring sites in Johnson County, Kansas, October 2002–January 2006
10.	Regression-estimated concentrations for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005– December 2006
11.	Estimated concentrations, loads, and yields for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, 2005–0652
12.	Regression-estimated loads for selected water-quality constituents at five water- quality monitoring sites in Johnson County, northeast Kansas, January 2005– December 2006
13.	Percentage of annual suspended-sediment load that occurred during the single largest storm runoff for 2005 at five water-quality monitoring sites in Johnson County, northeast Kansas
14.	Results of analysis of nutrients in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002–January 2006
15.	Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002–January 2006

Multiply	Ву	To obtain
acre-foot (acre-ft)	1,233	cubic meter (m ³)
acre-foot per square mile per year [(acre-ft/mi ²)/yr]	476.1	cubic meter per square kilometer per year [(m ³ /km ²)/yr]
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
gallon (gal)	3.785	liter (L)
inch (in.)	2.54	centimeter (cm)
microgram per liter (µg/L)	1.0	parts per billion (ppb)
micron (µm)	0.00003937	inch (in.)
mile (m)	1.609	kilometer (km)
milligram per liter (mg/L)	1.0	parts per million (ppm)
milliliter (mL)	0.0338	ounce, fluid (oz)
million gallons per day (Mgal/d)	0.04381	cubic meter per second (m ³ /s)
pound (lb)	453.6	gram (g)
pound per acre (lb/acre)	1.121	kilogram per hectare (kg/ha)
square mile (mi ²)	2.590	square kilometer (km ²)
ton	0.9072	megagram (Mg)
ton per day (ton/d)	0.0105	kilogram per second (kg/s)
ton per square mile per year [(ton/mi ²)/yr]	0.3503	tonne per square kilometer per year [(t/km ²)/yr]

Conversion Factors, Abbreviations, and Datum

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32.

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8.

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25°C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (μ g/L).

Densities of fecal-indicator bacteria are given in colonies per 100 milliliters of water (col/100 mL).

Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

By Teresa J. Rasmussen, Casey J. Lee, and Andrew C. Ziegler

Abstract

Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regressionbased concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecalindicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics.

Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended-sediment concentration was nearly always largest at the Mill Creek site. The Mill Creek watershed is undergoing rapid development that likely contributed to larger sustained sediment concentrations. During most of the time, the smallest sediment concentrations occurred at the Indian Creek site, the most urban of the monitored sites, likely because most of the streamflow originates from wastewatertreatment facilities located just upstream from the monitoring site. However, estimated annual suspended-sediment load and yield were largest annually at the Indian Creek site because of substantial contributions during storm runoff. At least 90 percent of the total annual sediment load in 2005–06 at all five monitoring sites occurred in less than 2 percent of the time, generally associated with large storm runoff. About 50 percent of the 2005 sediment load at the Blue River site occurred during a single 3-day storm, the equivalent of less than 1 percent of the time. Suspended-sediment concentration is statistically related to other water-quality constituents, and these relations have potential implications for implementation of best management practices because, if sediment concentrations are decreased, concentrations of sediment-associated constituents such as suspended solids, some nutrients, and bacteria will also likely decrease. Chloride concentrations were largest at the Indian and Mill Creek sites, the two most urban stream sites which also are most affected by roadsalt runoff and wastewater-treatment-facility discharges. Two chloride runoff occurrences in January-February 2005 accounted for 19 percent of the total chloride load in Indian Creek in 2005. Escherichia coli density at the Indian Creek site was nearly always largest of the five sites with a median density more than double that of any other site and 15 times the density at the Blue River site which is primarily nonurban. More than 97 percent of the fecal coliform bacteria load at the Indian Creek site and near the Blue River site originated from nonpoint sources in 2005 and 2006. In Johnson County, generally as impervious surface area increased, so did total annual yield for sediment, chloride, and indicator bacteria in 2005 and 2006. Total nitrogen discharged from the two Indian Creek wastewater-treatment facilities accounted for at least two-thirds of estimated total nitrogen load at the downstream Indian Creek monitoring site in 2005 and 2006. Total phosphorus load from the Indian Creek wastewater-treatment facilities was at least 90 percent of the total phosphorus load at the downstream monitoring site in 2005 and 2006. On the Blue River about 40 percent of the total nitrogen load in 2005 and 70 percent of the total nitrogen load in 2006, when stormwater runoff was less, originated from wastewater-treatment discharge. One-fourth (in 2005) to one-half (in 2006) of the

downstream total phosphorus load in the Blue River originated from WWTF discharges.

The results presented in this report may be used to better understand fluctuations of concentration and load during changing seasons and flow conditions and to assess waterquality conditions relative to total maximum daily load goals, National Pollutant Discharge Elimination System requirements, and water-quality standards. The information also will be useful for evaluating loading characteristics, such as range and variability, and for determining effectiveness of best management practices. The continuous streamflow data and estimated concentrations, densities, and loads are available at *http://ks.water.usgs.gov/Kansas/rtqw/*.

Introduction

Johnson County is one of the most rapidly developing counties in Kansas, with a population increase of about 90 percent in the last 25 years, from 270,269 in 1980 (University of Kansas, 2006) to an estimated 516,731 in 2006 (U.S. Census Bureau, 2007). Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value.

Urbanization generally affects streams by altering hydrology, geomorphology, chemistry, and biology (Paul and Meyer, 2001). Increases in impervious surface area from urbanization result in increased surface runoff, larger flood streamflows (Dunne and Leopold, 1978), and floods that peak more rapidly (Hirsch and others, 1990) but are shorter in duration (Seaburn, 1969). Changes in channel depth and width occur in response to changes in streamflow and sediment supply (Dunne and Leopold, 1978). Stream-water chemistry is affected by increases in most water-quality constituents including nutrients such as ammonium and nitrate, major ions, suspended solids, metals, and hydrocarbons (Porcella and Sorenson, 1980; U.S. Geological Survey, 1999), which can be attributed to nonpoint-source runoff, wastewater-treatment-facility discharges (Paul and Meyer, 2001), and other sources. Biological communities are affected by changes in habitat and stream hydrology and chemistry.

Effective implementation of total maximum daily loads (TMDLs) and the National Pollutant Discharge Elimination System (NPDES) program requires quantification and documentation of water-quality conditions and changes. Constituent concentrations and load information can be used to identify degraded stream segments, to evaluate compliance with water-quality standards, and to compare water-quality conditions over space and time. Required by the Federal Clean Water Act and established by States, TMDLs define the maximum quantity of a contaminant that a water body can receive and still meet water-quality criteria (Kansas Department of Health and Environment, 2004a). The U.S. Environmental Protection Agency's (USEPA) NPDES Phase II Stormwater Program is designed to reduce effects of urban stormwater runoff on stream-water quality. Water-quality criteria for constituents discussed in this report are listed in Appendix 1.

Five watersheds in Johnson County (Blue River, Cedar Creek, Indian Creek, Kill Creek, and Mill Creek, fig. 1, table 1) contain stream segments that have been included by the Kansas Department of Health and Environment (KDHE) on the section 303(d) list (Kansas Department of Health and Environment, 2006a) for water-quality impairments (table 2). Kansas water-quality criteria for *Escherichia coli (E. coli)* bacteria require stream sites to be classified and regulated according to designated use and accessibility (Appendix 1). Segments of the Blue River and Cedar, Kill, and Mill Creeks have been designated as primary contact recreation Class B, defined as being open to and accessible by the public with landowner permission. Designated uses for Indian Creek have not been determined by the State (Kansas Department of Health and Environment, 2005).

The NPDES program, which affects most municipalities in Johnson County, requires that best management practices (BMPs) be established to reduce runoff effects to urban streams (U.S. Environmental Protection Agency, 2005). In the early 1990s, Johnson County adopted a 1/10-cent sales tax to fund stormwater projects and created the Stormwater Management Advisory Council (SMAC). SMAC, composed of representatives from each of the county's 20 cities, is an advisory group that makes recommendations to the county regarding the stormwater management program (Johnson County Stormwater Management Program, 2007).

In 2002, the U.S. Geological Survey (USGS), in cooperation with the Johnson County Stormwater Management Program and the financial oversight of SMAC, began an investigation to characterize the water-quality conditions of Johnson County streams. Initial study efforts described the effects of nonpoint and selected point contaminant sources on stream-water quality and the relation of contaminant sources to land use using analytical results from stream-water and streambed-sediment samples (Lee and others, 2005). A subsequent phase of the study characterized biological conditions of Johnson County streams (Poulton and others, 2007). The most recent part of the study investigated constituent concentrations, densities, loads, and yields using continuous in-stream sensor measurements.

Purpose and Scope

The purpose of this report is to describe methods and summarize results for providing continuous estimates of water-quality constituent concentrations, densities, loads, and yields in five Johnson County watersheds using continuous in-stream sensor measurements and regression models. Differences in water quality are described relative to watershed characteristics including hydrologic conditions, contributing drainage area, land use, point and nonpoint sources, and human activity. Specific conductance, pH, water temperature,

Figure 1. Location of monitoring sites, watershed boundaries, and land use, Johnson County, northeast Kansas.

Table 1. Continuous in-stream monitoring sites, contributing drainage areas, estimates of urban and nonurban land-use percentages, and estimated number of septic systems per square mile of drainage area in Johnson County, northeast Kansas.

S	
mile	
are	
squi	
п ² ,	
3; n	
200	
п.,	
nmu	
con	
ten	
writ	
'n	
yste	
S S	
niq	
Mag	
on]	
nati	
forn	
[In	
atec	
mo	
Aut	
nty	
Cou	
u co	
hns	
l Jo	
ron	
ta f	

						Percei	ntage land	use					Estimated
Continuous monitoring site (fig. 1)	Station number	Contribut- ing drain- age area (mi ²)	Resi- dential	Commer- cial	Indus- trial	Rights-of- way	Parks	Surface water	Unde- veloped ¹ (nonurban)	No data ²	Urban³	Percentage impervious surface	number of septic systems per square mile of drainage area
Blue River at Kenneth Road	06893100	65.7	15.1	2.5	1.0	0.6	1.6	2.2	69.3	T.T	23.0	3.0	36.5
Cedar Creek near DeSoto	06892495	58.5	12.4	4.9	3.8	2.5	2.8	2.3	64.5	6.8	28.7	3.9	16.6
Indian Creek at State Line Road	06893390	63.1	68.1	8.9	с.	1.9	2.2	9.	6.4	11.6	82.0	23.5	5.7
Kill Creek at 95th Street	06892360	48.6	6.4	6.	1.3	8.	.5	1.9	61.7	26.5	11.8	2.9	14.8
Mill Creek at Johnson Drive	06892513	58.8	26.7	11.1	2.8	3.4	3.4	1.9	37.8	12.9	49.3	12.2	24.4
¹ "Undeveloped" land use includes :	agricultural and	l vacant land.											

²"No data" land use includes untaxed land uses (such as government property and public roads).

³⁴Urban" land use includes residential, commercial, industrial, rights-of-way, parks, and surface water.

Table 2. Watersheds containing stream segments with 303(d) listings and total maximum daily loads (TMDLs) completed or being developed, Johnson County, northeast Kansas, 2006.

[Data from Kansas Department of Health and Environment, 2006a; X, Section 303(d) listing and total maximum daily load developed; --, no total maximum daily load]

				303(d)	listing and T	VIDLs			
Watershed (fig. 1)	Biology	Dissolved oxygen	Chloride	Chlordane ¹	Fecal coliform bacteria	Mercury	Nitrates	Nutrients/ biological oxygen demand	Sediment impact on aquatic life ³
Blue River		\mathbf{X}^2		Х	Х	X ^{1,2}		Х	
Cedar Creek					Х		Х		
Indian Creek					Х		\mathbf{X}^2		
Kill Creek				Х	Х				
Mill Creek	Х		Х		Х			Х	Х

¹Impairment identified by fish-tissue analysis.

²TMDLs scheduled to be developed in 2006-08.

³Impairment identified by biological monitoring.

turbidity, and dissolved oxygen were monitored continuously in the five watersheds between October 2002 and December 2006. The continuous information was used in conjunction with discrete water samples collected from October 2002 through January 2006 to develop regression models for estimating selected constituent concentrations, loads, and yields. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids, major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads and yields were calculated using concentration estimates and streamflow. Relations between streamflow and turbidity are described to help infer sources of sediment in streams. In addition, results of discrete samples analyzed for pesticides are presented.

The results presented in this report may be used to better understand concentration and load fluctuations during changing seasonal and streamflow conditions and to assess waterquality conditions relative to TMDLs, NPDES requirements, and water-quality standards. With long-term operation, the information could be useful for evaluating loading characteristics such as range and variability of selected water-quality constituents, for describing the relation of loading characteristics to land use and basin characteristics, and for evaluating the effectiveness of implemented BMPs.

Description of Study Area

Johnson County, Kansas consists of 477 mi² of surface area located in the western part of the Kansas City metropolitan area (U.S. Census Bureau, 2007). The five largest watersheds in Johnson County (fig. 1) comprise 73 percent of the total land area in the county and are the focus of this report. Designated uses for streams within the county include support of aquatic life, contact recreation, drinking-water supply, food procurement, ground-water recharge, irrigation, industrial use, and livestock watering (Kansas Department of Health and Environment, 2006a).

Physiographic regions of Johnson County include the Osage Cuestas in the central and southern parts of the county and the Dissected Till Plains along the northern part of the county (fig. 1) (Schoewe, 1949). The county is underlain by sedimentary rock characterized by alternating layers of limestone and shale and smaller amounts of fine-grained sandstone. Soils consist primarily of loess, glacial deposits, and residual from the weathering of bedrock (Plinsky and others, 1975). Johnson County streams that flow north into the Kansas River such as Kill, Cedar, and Mill Creeks have steeper gradients than those flowing east such as Indian Creek and the Blue River (O'Connor, 1971).

The climate of Johnson County is classified as humid continental, characterized by variable weather patterns and large temperature ranges (Ritter, 2006). The mean annual temperature of the study area is about 55°F, with a mean monthly range from 28°F in January to 78°F in July (National Oceanic and Atmospheric Administration, 1966–98). Mean annual precipitation (1961–90) is about 40 in., with 68 percent of the rain occurring during the growing season from April through September (National Oceanic and Atmospheric Administration, 1966–98).

Population increases in Johnson County have resulted in increased urban and suburban land uses. From 1990 to 2004, land parcels dedicated to residential and commercial land use in Johnson County have increased more than 45 percent (K. Skridulis, Johnson County Appraiser's Office, written commun., 2004). Figure 1 shows urban and nonurban land use for Johnson County in 2003 (S. Porter, Automated Information Mapping System, written commun., 2003). The northeastern part of the county including the Brush Creek, Dykes Branch, Indian Creek, Rock Creek, Tomahawk Creek, and Turkey Creek watersheds contain most of the urban development with more than 75 percent of the watershed areas devoted to residential, commercial, industrial, and rights-of-way land uses. More than 18 percent of these watersheds are overlain by impervious surface. New urban developments primarily are focused in the Blue River and Mill Creek watersheds (Mid-America Regional Council, 2002).

Ten municipal wastewater-treatment facilities (WWTFs) are located within the monitored watersheds, seven of which have a design discharge capacity of more than 1 million gallons per day (Mgal/d) (fig. 1). The largest wastewater discharges occur in the Indian Creek watershed where two WWTFs with a combined design flow capacity of 22 Mgal/d discharge upstream from the monitoring site. The major WWTF in the Blue River watershed, which has a design flow capacity of 10.5 Mgal/d, discharges downstream from the monitoring site. The remaining three WWTFs in the monitored Cedar, Kill, and Mill Creek watersheds have design flow capacities ranging from 2.5 to 3.2 Mgal/d. Generally, WWTF effluent can affect water quality and biological communities of receiving streams by increasing oxygen-demanding substances such as organic matter and ammonia, which then reduce oxygen available to aquatic life and release excessive amounts of nutrients (such as carbon, nitrogen, and phosphorus), pathogens, and organic chemicals, altering stream-water temperature (U.S. Environmental Protection Agency, 2004b).

Previous Studies

Although a comprehensive study of Johnson County streams had not been conducted prior to 2002 when the current investigation began, studies of several streams and lakes within individual watersheds have been conducted. A study of Indian and Rock Creeks in 1981-82 (Mid-America Regional Council and F.X. Browne and Associates, Inc., 1983) found that commercial and industrial areas had increased nitrogen and metal concentrations, suspended-sediment concentrations were much larger during stormflow and likely originated from exposed soils and steep channel slopes, and some contaminants including phosphorus, manganese, and iron were associated with suspended sediment. A study of Lake Olathe in the Cedar Creek watershed (Mau and others, 2004) found nutrient yields consistent with mixed agricultural watersheds and atrazine concentrations that occasionally exceeded KDHE chronic aquatic-life criterion of 3.0 µg/L during spring and summer. A study of Big Bull and Little Bull Creeks found that during base flow the largest total nitrogen and phosphorus concentrations occurred downstream from wastewater discharges (Putnam, 1997).

Studies also have characterized water quality in the Blue River Basin in Kansas and Missouri. Indian Creek flows into the Blue River downstream from Johnson County and is, therefore, considered part of the Blue River Basin. Blevins (1986) recorded larger stormwater runoff per unit area for urban sites than for nonurban sites and smaller concentrations of suspended sediment, nutrients, and metals in concrete channels. During 1998–2000, the nearly continuous discharge of treated wastewater effluent was found to be a primary source of nutrients, wastewater compounds, and pharmaceutical compounds in the Blue River and Indian Creek (Wilkison and others, 2002). The same study found that overflow of combined storm and sanitary sewers triggered by stormflow contributed untreated wastewater into Brush Creek which feeds into the Blue River. In a followup study of the Blue River Basin, Indian Creek was found to contribute about 60 percent of total nitrogen and phosphorus loads to the Blue River in Missouri (Wilkison and others, 2005, 2006). In addition, bacteria in streams originated primarily from nonpoint sources during storm runoff (Wilkison and others, 2006).

Lee and others (2005) used water- and sediment-quality analysis from samples collected in multiple Johnson County watersheds from October 2002 through June 2004 to describe the effects of point and nonpoint contaminant sources on Johnson County streams. The study found that during baseflow conditions, discharge from wastewater-treatment facilities (WWTFs) comprised greater than 50 percent of total streamflow at the farthest downstream sampling sites in six of seven basins. Also during base-flow conditions, nutrients, organic wastewater-indicator compounds, and pharmaceutical compounds generally were found in the largest concentrations at sites at, or immediately downstream from, WWTF discharges. Nutrients, silver, and many wastewater-indicator and pharmaceutical compounds had the largest concentrations in streambed-sediment samples collected immediately downstream from WWTFs. Generally, sites upstream from WWTFs had significantly larger fecal-indicator bacteria densities than sites downstream during base-flow conditions, indicating WWTFs were not a major source of bacteria during base flow. The largest suspended-sediment concentrations and indicator-bacteria densities occurred during storm runoff. In addition, stormflow samples had the largest nutrient concentrations with the exception of samples collected immediately downstream from WWTFs. Trace elements, chlordane, total dichloro-diphenyltrichloroethane (DDT), polyaromatic hydrocarbons (PAHs), and some wastewater-indicator compounds had the largest concentrations in streambed sediment from watersheds with predominantly urban land use.

A recent biological assessment of Johnson County streams found that as urbanization increased, biological condition generally decreased, and stream conditions at the most urbanized sites were nonsupportive of aquatic life on the basis of State criteria (Poulton and others, 2007). In addition, upstream sites on the Blue River and Cedar and Kill Creeks were minimally affected by human disturbance, and Johnson County sites on Indian, Tomahawk, and Turkey Creeks and Missouri sites in downstream reaches of the Blue River and Brush Creek were most affected by human disturbance (Poulton and others, 2007).

Methods

Data Collection and Analysis

Continuous water-quality monitors (fig. 2) and streamflow-gaging stations were installed on five streams in Johnson County (fig. 1, table 1). Monitoring sites were located as far downstream as possible in the largest watersheds in the county and represented urban, urbanizing, and nonurban land uses.

(A) Kill Creek at 95th Street

(B) Continuous water-quality monitor

Figure 2. (*A*) Kill Creek at 95th Street (station 06892360), one of five continuous water-quality monitoring sites in Johnson County, Kansas. The water-quality monitor is placed beneath the water surface next to the streambank. (*B*) Monitor used to measure continuous, in-stream specific conductance, pH, water temperature, turbidity, and dissolved oxygen. A fluorescence sensor is pictured, but fluorescence was not monitored continuously during this study.

Streamflow was measured using methods presented in Buchanan and Somers (1969) and Oberg and others (2005). Each site was equipped with a water-quality monitor that provided continuous (every 5 or 15 minutes) in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen (DO). Hourly values (values measured at 1:00 am, 2:00 am, 3:00 am, and so forth) were used for data analysis and interpretation in this report. These data are available in real time on USGS Web pages (http://ks.water.usgs. gov/Kansas/rtqw/ and http://waterdata.usgs.gov/ks/nwis/). Monitor maintenance and data reporting followed standard procedures described in Wagner and others (2000, 2006). Two of the sites, Cedar Creek near DeSoto (station 06892495, fig. 1) and Mill Creek at Johnson Drive (station 06892513), were installed in October 2002, and three sites, Blue River at Kenneth Road (station 06893100), Indian Creek at State Line Road (station 06893390), and Kill Creek at 95th Street (station 06892360), were installed in March 2004. Results are presented for all sites through December 2006.

Continuous in-stream sensor data were compared to average cross-section data at the monitor location to verify that the continuous data were representative of conditions across the width of the stream. A total of 126 cross-section measurements were made with an independent water-quality monitor during various hydrologic conditions at the five monitoring sites. Each measurement consisted of about 10 readings within the cross-section. Relative percentage differences (RPDs) were calculated between the cross-section median for each constituent (specific conductance, pH, water temperature, turbidity, and DO) and the concurrent continuous-monitor reading. Median values were used because the mean was affected by extreme readings that occurred most often on the far right or left streambank where zero or low-velocity water was present (and therefore were not representative of flow conditions).

Monitor placement did not result in a consistent bias for any constituents measured at any of the water-quality cross sections. The median value of all 126 RPDs (which compared cross-section median to continuous-monitor reading) was less than 1 percent for each constituent at each station. Several continuous-monitor readings had more than a 10-percent difference between cross-section median values. Six turbidity values were more than 10-percent different from cross-section medians. All of these differences occurred at sites in which the monitor was installed on the right or left streambank rather than near the center of flow. The largest RPD for turbidity was 38 percent and occurred at the Kill Creek site. One specific conductance value was more than 10 percent different (45 percent at Indian Creek), likely because of highway drainage pipes contributing road-salt affected runoff near the right bank where the monitor is located.

The quality of the continuous monitoring data during the study period generally was good according to guidelines described by Wagner and others (2006). Quality of in-stream sensor data was determined primarily by evaluating sensor readings during routine calibration verification procedures. Each monitor was serviced a minimum of 15 times annually

8 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

for routine cleaning and calibration purposes. If the majority of the cleaning and calibration measurements were less than 10 percent different from the expected (cleaned and calibrated) value, the data quality was considered good. If the measurements differed by 10-15 percent, the data quality was considered fair. If the measurements differed by 15–30 percent, the data quality was considered poor. Data that differed by more than 30 percent were deleted from the dataset. Specific conductance, pH, and water temperature datasets were nearly always good. Turbidity data usually were good but occasionally fair. DO datasets were usually fair. The final data for all sensors were corrected to ensure accuracy as described by Wagner and others (2006). Annual datasets for in-stream sensor measurements were 90-100 percent complete except for DO at the Indian Creek site in 2006, which was 85 percent complete. More DO data were missing from the final dataset during 2006 because fouling of the sensor was more common during that time period, resulting in removal of more measurements that did not meet verification criteria described in the guidelines.

In addition to continuous monitoring, discrete water samples were manually collected from each site according to either the equal depth integrated (EDI) method or the equal width integrated (EWI) method described by Wilde and others (1999) or using automated samplers. Sample collection also followed methods described by Edwards and Glysson (1999) for collecting representative samples to be analyzed

for suspended sediment and other water-quality constituents. Samples to be analyzed for dissolved constituents were filtered using 0.45 micron filters, and samples to be analyzed for total constituents were not filtered. Sample collection began when monitors were installed and continued through December 2006. At each site, 18 to 28 samples were collected between October 1, 2002 and January 31, 2006 during various runoff conditions. About 90 percent of these samples were collected following width- and depth-integrated sampling methods, and the rest were collected using automated samplers. EDI and EWI sample collection, which results in integrated samples that are representative of the entire width and depth of the stream cross section, were generally the preferred sampling methods in this study. However, automated samplers also were used because storm runoff in small, urban basins often results in rapidly rising and falling streamflow peaks that can be difficult to capture with manual samples.

Because of the potential differences associated with sampling methods, 17 automated samples were collected as near in time as possible with integrated suspended-sediment samples to evaluate variability between the sampling methods (fig. 3). Results indicated that sediment samples collected using automated samplers differed from samples collected using integrated methods by an average of 28 percent (fig. 3). Differences occurred because automated samplers collect samples from a single point rather than a complete depth-integrated cross section and because varying pumping speed and stream

Figure 3. Comparison between suspended-sediment concentrations in samples collected using manual flow-weighted sampling methods and automated samplers at five monitoring sites in Johnson County, Kansas, 2003–06.

velocity prevent the automated samplers from collecting isokinetic (equal flow) samples as is done with EDI and EWI methods. Other factors contributing to the difference include rapidly changing streamflow and sediment conditions (for example, an automated sample is collected from a fixed point usually within 15 minutes, and an EDI or EWI sample may require as much as an hour to collect) and lack of adequate lift from pumps to carry large amounts of suspended sediment from stream to samplers.

Samples were analyzed for nutrients, indicator bacteria, sediment, and other constituents. Data qualified by the analyzing laboratory as "estimated" (for example, bacteria in the "nonideal" count range as defined by the analytical method protocol) were treated the same as unqualified data. These discrete samples, including all samples regardless of collection method (EDI, EWI, automated sampler), were collected throughout the range of streamflow and sensor conditions recorded at each site. The discrete samples that were collected represented about 95 percent of the range in flow conditions for the site and represented rising, falling, peak, and base streamflow conditions.

Discrete quality-control samples, including blank and replicate samples, were collected and analyzed to assess variability among samples resulting from collection, processing, shipping, and laboratory procedures conducted at different sampling times (Wilde and others, 1999). Equipment blank samples were collected to measure a combination of the potential contamination from the equipment used in sample collection and environmental conditions in the laboratory. Rinse blank samples were collected to measure the effectiveness of equipment cleaning protocols and replicate samples were collected to evaluate laboratory and subsample bias and precision.

Water samples were analyzed at several laboratories. Major ions and nutrients were analyzed at the Johnson County Environmental Laboratory in Johnson County, Kansas, according to standard methods (American Public Health Association and others, 1995). Selected dissolved pesticides and replicate samples for major ions and nutrients were analyzed by the USGS National Water-Quality Laboratory (NWQL) in Denver, Colorado, according to methods presented in Fishman and Friedman (1989), Faires (1993), Fishman (1993), and Zaugg and others (1995). Suspended-sediment samples were analyzed by the USGS Sediment Laboratory in Iowa City, Iowa, according to methods presented in Guy (1969). Analysis of indicator bacteria (E. coli, fecal coliform, and enterococci) was done at the USGS laboratory in Lawrence, Kansas. The bacteria samples were processed within 6 hours of collection using membrane filtration methods described by Wilde and Radtke (1998). Although both USGS and Johnson County laboratories analyzed all three types of fecal indicator bacteria for most samples, results from USGS were used as the primary data source. Values reported by a laboratory as estimated occurred when data quantification deviated in any way from standard procedures. Tables containing additional constituents analyzed and laboratory reporting levels are provided in Lee and others (2005).

Results of blank and replicate sample analysis are included in table 3. The median RPD between replicate pairs was less than 10 percent for all constituents except some nutrient species and indicator bacterias. Analysis for most of the replicate samples involved analysis of the same sample set by the two different laboratories. For acid neutralizing capacity, dissolved solids, E. coli bacteria, and enterococci bacteria, comparison information applies to different laboratory methods used by the USGS and Johnson County laboratories. Both laboratories analyzed sulfate, silica, ammonia, and manganese for most samples because of method differences. resulting in more replicate pairs for these constituents than the other constituents except indicator bacteria (table 3). Pesticide compounds were not detected in blank samples. RPDs for pesticides when detectable concentrations were reported were less than 20 percent. Generally for all constituents, but especially for the nutrient species, larger RPDs occurred when values were near the reporting level. In addition, variability in indicator bacteria data may be caused by rapidly changing conditions during storm runoff making it difficult to collect samples with comparable bacteria densities.

Regression Models

Ordinary least squares (OLS) regression analysis was used to develop relations between the continuous sensor measurements, streamflow, time, and discretely sampled constituent concentrations (Helsel and Hirsch, 2002; Christensen and others, 2000). Discrete sample data used in regression analysis included EDI, EWI, and automated samples collected from October 2002 through January 2006. Site-specific regression models were developed using an overall modelbuilding approach (Helsel and Hirsch, 2002) that included plotting each possible explanatory (independent) variable against the response (dependent) variable and visually and statistically examining the residual plots for patterns. For each response variable, all continuously measured variables (streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen) were tested for significance. In addition, seasonal patterns in data were tested for significance by using sine and cosine terms as possible explanatory variables (Helsel and Hirsch, 2002). Explanatory and response variables (except time) were log transformed if necessary to normalize datasets to satisfy statistical assumptions, prior to developing the linear relation. Many data transformations and all possible regression equations were evaluated. Generally, if there were several acceptable models (F-test p-value less than 0.05), the one with the smallest prediction error sum of squares (PRESS) statistic was selected. The PRESS statistic is a measure of goodness of fit of a regression model (Helsel and Hirsch, 2002). Explanatory variables were included in a model only if there was a physical basis for their inclusion.

For statistical analysis, when concentrations were reported as less than the laboratory reporting level, they were assumed to be one-half the reporting level. Uncertainties

10 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

Table 3. Water-quality constituents, units of measurement, laboratory reporting levels, and results of replicate stream sample and blank sample analysis for five water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through December 2006.

[RPD, relative percentage difference; mg/L, milligrams per liter; <, less than; μ g/L, micrograms per liter; col/100 mL, colonies per 100 milliliters of water; --, not detected]

	Units of	Laboratory	Replicate : meti compariso	sample or hod on results	Blank sa	ample results
Constituent	measure- ment	reporting level	Number of replicate pairs	Median RPD ¹	Number of blank samples	Concentration range in blank samples
Acid neutralizing capacity	mg/L	5	25	3.0	0	
Dissolved solids	mg/L	10	18	8.4	1	<10
Calcium, dissolved	mg/L	.02	19	9.6	3	0.08 - 0.1
Magnesium, dissolved	mg/L	.008	19	3.8	3	0.02-<0.1
Sodium, dissolved	mg/L	.20	18	4.6	3	< 0.1 - 0.6
Potassium, dissolved	mg/L	.16	18	4.7	3	<0.16-<1.0
Sulfate, dissolved	mg/L	.18	83	6.7	5	<0.18-<5
Chloride, dissolved	mg/L	.20	18	4.8	3	< 0.2 - < 10
Silica, dissolved	mg/L	.20	84	9.5	4	< 0.1 - 1.68
Nitrogen nitrite, dissolved	mg/L	.002	18	50	3	<0.01 - <0.02
Nitrogen nitrite plus nitrate, dissolved	mg/L	.06	18	8.1	3	<0.05 - <0.06
Nitrogen, ammonia dissolved	mg/L	.02	87	30	4	< 0.02 - < 0.04
Nitrogen, ammonia plus organic, dissolved	mg/L	.10	19	24	3	< 0.1 - < 0.2
Nitrogen, ammonia plus organic, total	mg/L	.10	19	25	3	< 0.1 - < 0.2
Phosphorus, total	mg/L	.04	19	12	3	<0.01 - <0.04
Phosphorus, dissolved	mg/L	.04	19	8.6	3	<0.01 - <0.04
Phosphorus orthophosphate	mg/L	.006	18	6.0	3	< 0.01 - < 0.02
Manganese, dissolved	μg/L	.2	82	31	4	0.11-<10
Escherichia coli (E. coli) bacteria	col/100 mL	1	86	28	91	$1 - 10(7)^2$
Fecal coliform bacteria	col/100 mL	1	76	47	121	1 – 10 (8) ²
Enterococci bacteria	col/100 mL	1	85	145	67	$1 - 13 (9)^2$

 $RPD = \left[|A - B| / \left(\frac{A + B}{2} \right) \right] \times 100$, where A and B are concentrations in each replicate pair.

² Numbers indicate range in number of bacteria colonies. Number in parentheses () indicates number of blank samples with bacteria colonies.

associated with each model were evaluated on the basis of diagnostic statistics (R², coefficient of determination; RMSE, root mean square error), patterns in residual plots, and the range and distribution of discrete (EDI, EWI, and automated) samples and continuous data.

Uncertainty for each estimate from regression models was calculated using 90-percent prediction intervals (Helsel and Hirsch, 2002). Probabilities of exceeding water-quality standards, recommended criteria, or guidelines of the State of Kansas and USEPA also were calculated (Rasmussen and Ziegler, 2003; Francy and Darner, 2006). Regression methods used in this study are described in greater detail in Cohn and others (1989), Hirsch and others (1993), Helsel and Hirsch (2002), and Rasmussen and Ziegler (2003). Duration (frequency of exceedance) curves were constructed to display and help characterize the frequency, duration, and magnitude of water-quality variability. When OLS regression is used to generate estimates for which probability statements are made, such as with duration curves and probability of exceeding criteria, values at the upper end likely are underestimated and values at the lower end may be overestimated (Helsel and Hirsch, 2002). The continuous concentration and load

[ft ³ /s, cubic >, greater th	feet per second; μS/i ian]	cm, microsien	nens per cent	imeter at 25 de	grees Cels.	ius; °C, degr	cees Celsius;	FNU, form	azin nephel	ometric units	; mg/L, milli	grams per lit	er;, no data	ı available; E,	estimated;
			Percent-					Measur	ement at i	ndicated fre	duency of e	exceedance	0		
Calen mon	ıdar year and ıitoring site	Number of values	age of hourly values missing	Sample standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	Median 50 per- centile	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maxi- mum
						ŝ	treamflow	(ft³/s)							
	2003														
6893100	Blue River	ł	ł	ł	1	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892495	Cedar Creek ¹	8,681	0.9	71.7	1.31	1.42	1.73	1.93	2.97	4.93	11.6	28.1	38.9	110	2,950
6893390	Indian Creek	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892360	Kill Creek	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892495	Mill Creek	8,760	0	168	1.64	1.91	2.82	3.51	4.59	7.34	15.3	32.4	60.1	431	6,020
	2004														
6893100	Blue River ²	7,344	0	772	1.72	2.33	3.87	5.88	12.5	23.1	48.1	116	243	1,061	19,200
6892495	Cedar Creek	8,656	1.5	275	2.40	4.15	4.93	6.61	11.0	18.7	31.2	58.6	101	461	6,140
6893390	Indian Creek ²	7,300	9.	497	13.6	18.7	22.8	25.3	28.1	37.4	63.0	139	301	1,461	11,600
6892360	Kill Creek ²	7,344	0	198	.88	1.19	1.91	2.45	4.79	9.61	18.0	47.9	114	516	4,690
6892495	Mill Creek	8,784	0	298	4.35	6.62	8.13	9.72	13.2	19.0	30.9	66.5	143	651	9,700
	2005														
6893100	Blue River	8,760	0	336	.36	.43	.76	1.50	6.36	12.2	37.0	108	246	941	9,840
6892495	Cedar Creek	8,649	1.3	205	2.75	3.25	5.69	7.14	9.55	15.5	34.7	77.8	174	952	4,390
6893390	Indian Creek	8,711	9.	389	12.7	16.3	19.3	20.5	24.0	31.0	60.0	129	306	1,355	10,500
6892360	Kill Creek	8,760	0	230	.81	.88	1.59	3.18	5.66	9.24	21.4	65.4	142	800	5,820
6892495	Mill Creek	8,760	0	293	4.35	5.66	8.13	9.35	12.2	19.0	36.9	96.4	255	989	8,290
	2006														
6893100	Blue River	8,760	0	123	.02	90.	.45	.70	1.85	5.77	10.8	24.7	47.7	184	3,880
6892495	Cedar Creek	8,710	9.	78.6	2.51	3.07	3.50	3.74	4.79	7.59	12.7	22.2	46.4	211	1,860
6893390	Indian Creek	8,760	0	363	11.2	14.4	17.3	18.3	21.6	25.3	37.4	88.0	188	811	10,700
6892360	Kill Creek	8,717	.5	48.0	.19	.35	.55	.68	1.05	3.82	6.28	13.6	27.2	0.06	1,660
6892495	Mill Creek	8,760	0	106	2.52	2.98	3.91	5.10	6.97	10.1	16.4	36.9	73.4	360	3,450

Table 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen

Methods 11

Table 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen at five water-quality monitoring sites in Johnson County, northeast Kansas, 2003–06.—Continued [ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; FNU, formazin nephelometric units; mg/L, milligrams per liter; --, no data available; E, estimated; Maximum ł .560 2,250,370 ,5104,540 1,000 2,970 ,240 4,340Ł ł 2,270 3,170 712 729 747 752 735 832 centile 99 per-,430 1,600 ,300 1,370 3,060 1,059 2,909 2,139 ł ł 2,553 1,720 ł 722 916 697 726 698 769 731 centile 95 per-1,4001,090 l,100 1,880 1,420 ,320 ł 2,168 1,380 1,340 ÷ ł 676 652 844 713 929 691 645 675 Measurement at indicated frequency of exceedance 90 per-centile ,260 1,320 ,248 ,040 1,370 ,460 1,120 ł 1,230 ÷ ł 636 829 904 672 947 646 661 627 704 centile 75 per-1,110 1,110 1,130 1,030 1,020 1,030 ł ł ł 590 837 959 617 624 787 640 965 675 861 654 Median centile 50 perł ł ł 916 810 908 965 613 563 752 877 584 905 589 743 933 603 894 625 866 25 per-centile ł ł ł 782 680 666 735 516 822 542 818 538 511 527 730 657 736 567 727 672 Specific conductance (µS/cm) centile 10 perł ł ł 699 544 435 585 554 435 460 635 555 521 576 624 492 573 551 460 491 centile 5 perł ł ł 583 474 379 459 384 500 500 397 519 453 476 541 482 405 489 436 521 centile 1 perł ł ł 382 433 349 290 316 368 340 295 368 358 379 121 266 363 315 374 371 Minimum ł ł 226 204 149 202 205 52 92 222 242 62 195 229 245 156 64 159 143 deviation standard Sample 81.4 84.9 88.6 84.7 86.0 76.6 ł 1 ł 26 401 229 294 163 197 504 111 397 260 318 missing Percentage of values hourly 13.3 9. 4 1.21.2÷. ł ł ÷ 0 0 0 0 С 0 0 0 0 0 0 Number of values 8,760 7,599 8,760 7,300 8,784 7,344 7,344 8,760 8,656 8,723 8,760 8,654 8,760 8,760 8,760 8,784 8,691 ł ł ł Indian Creek² Cedar Creek¹ Indian Creek Indian Creek Indian Creek Cedar Creek Cedar Creek Cedar Creek Blue River² Kill Creek² Blue River Blue River Mill Creek Mill Creek Mill Creek Blue River Kill Creek Kill Creek Kill Creek Mill Creek **Calendar year and** monitoring site 2006 2004 2005 2003 >, greater than] 6892495 6893390 6893390 6893390 6893100 6892360 6892360 6892495 6893100 6892360 6892495 6893100 6892495 6893390 6892360 6892495 6892495 6892495 6893100 6892495

[ftt ³ /s, cubic f >, greater tha	feet per second; μS/c an]	cm, microsien	nens per centi	imeter at 25 de	grees Celsi	ius; °C, degr	ees Celsius;	FNU, form	azin nephelo	ometric units;	mg/L, milli	grams per lit	er;, no data	available; E, e	stimated;
			Percent-					Measur	ement at ir	Idicated free	duency of 6	exceedance	C)		
Calenc moni	dar year and itoring site	Number of values	age of hourly values missing	Sample standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	Median 50 per- centile	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maxi- mum
						Hd	l (standard	units)							
	2003														
6893100	Blue River	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892495	Cedar Creek ¹	7,597	13.3	0.301	7.6	7.6	7.7	7.8	7.9	8.1	8.3	8.6	8.7	8.9	9.1
6893390	Indian Creek	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892360	Kill Creek	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł
6892495	Mill Creek	8,760	0	.234	7.4	7.6	<i>T.T</i>	7.8	7.9	8	8.2	8.4	8.5	8.7	9.1
	2004														
6893100	Blue River ²	7,299	9.	.166	7.6	<i>T.T</i>	7.7	7.8	7.9	8.0	8.1	8.2	8.3	8.3	8.5
6892495	Cedar Creek	8,784	0	.228	7.4	T.T	7.8	7.8	7.9	8.0	8.2	8.4	8.5	8.7	8.9
6893390	Indian Creek ²	7,344	0	.230	7.3	7.4	7.5	7.5	7.6	7.8	7.9	8.0	8.2	8.6	8.8
6892360	Kill Creek ²	7,344	0	.152	7.5	7.6	7.7	Τ.Τ	7.8	7.9	8.0	8.1	8.2	8.2	8.4
6892495	Mill Creek	8,784	0	.219	7.4	7.5	7.6	T.T	7.8	8.0	8.1	8.3	8.3	8.5	8.7
	2005														
6893100	Blue River	8,601	1.8	.218	7.3	7.4	7.5	7.6	7.8	8.0	8.1	8.2	8.2	8.3	8.5
6892495	Cedar Creek	8,658	1.2	.258	7.2	7.4	7.6	T.T	7.9	8.0	8.2	8.4	8.5	8.6	8.8
6893390	Indian Creek	8656	1.2	.271	7.1	7.2	7.3	7.4	7.5	T.T	7.8	8	8.3	8.6	9.1
6892360	Kill Creek	8,760	0	.165	7.5	7.6	7.6	T.T	7.8	7.9	8.0	8.1	8.2	8.2	8.3
6892495	Mill Creek	8,760	0	.218	7.4	7.5	7.6	Τ.Τ	7.8	8.0	8.1	8.3	8.4	8.5	8.7
	2006														
6893100	Blue River	8,165	6.8	.318	7.4	7.5	7.6	7.6	7.7	7.9	8.2	8.4	8.5	8.8	8.9
6892495	Cedar Creek	8,760	0	.286	7.3	7.4	7.5	7.6	7.7	7.8	8.0	8.3	8.4	8.7	9.0
6893390	Indian Creek	8,760	0	.272	6.9	7.0	7.1	7.2	7.3	7.5	<i>T.T</i>	7.9	8.0	8.3	8.7
6892360	Kill Creek	8,691	8.	.232	7.3	7.4	7.6	<i>T.T</i>	7.8	8.0	8.2	8.3	8.3	8.5	8.7
6892495	Mill Creek	8,760	0	.308	7.3	7.4	7.5	7.6	7.7	7.9	8.2	8.4	8.5	8.6	8.8

Table 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen

Methods 13

Table 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen at five water-quality monitoring sites in Johnson County, northeast Kansas, 2003–06.—Continued

31.8 31.8 29.6 32.6 29.9 30.9 30.5 32.5 30.5 32.4 33.0 32.9 32.6 32.7 [ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; FNU, formazin nephelometric units; mg/L, milligrams per liter; --, no data available; E, estimated; 32.4 31.1 32.1 Maximum ł ÷ ł 30.6 30.6 28.5 29.8 28.7 28.2 28.7 29.4 29.5 30.8 30.3 30.5 99 per-centile 28.3 29.4 30.4 30.7 29.1 ł ł ł 95 per-centile 28.8 28.9 25.8 26.3 26.2 26.2 27.4 27.6 27.6 28.0 28.5 27.4 28.4 28.4 26.1 28.1 28.1 ł ł ł Measurement at indicated frequency of exceedance centile 90 per-27.6 27.6 24.2 24.5 24.9 24.7 26.0 26.2 26.2 27.0 26.9 26.6 24.7 26.1 26.4 27.2 27.1 ł ł ÷ 75 percentile 22.6 22.9 23.6 23.5 22.0 22.2 22.8 23.4 23.2 23.8 23.5 22.3 22.4 23.2 23.3 23.1 24.1 ł ł ł Median 50 per-centile 17.3 15.2 18.9 15.6 15.015.0ł ł 18.0 15.016.3 14.9 14.8 15.8 17.5 15.4 15.2 14.7 15.3 25 percentile 8.6 2.8 1.3 6.9 6.5 6.5 6.4 9.3 4.3 11.2 7.0 6.9 ł ł 6.4 6.8 6.4 6.2 9.1 centile 10 per-Water temperature (°C) 4.9 1.93.5 6.9 3.7 2.4 6.5 0.1 6.2 6 2.0 2.4 3.3 3.4 ÷ Ł ł 8.4 2.1 centile 5 per-6.6 3.0 2.6 1.6 2.9 4 $\dot{\omega}$ 5.5 2.5 ł ł ł 0 ∟. 3.7 ŝ Г. 2.4 2.2 centile 1 per-3.5 2.0 2.8 0.1 ∟. Ś 4 ci - $\dot{\omega}$ $\tilde{\omega}$ \$ ∟. 1.36 Ł ł ł 0 Minimum 1.30 -4. vi vi 0 ci ł ł -1.1 Ξ. 7 7 0 0 0 0 deviation Sample standard 8.72 8.98 8.96 8.02 9.08 90.06 8.97 7.66 8.57 9.37 6.34 8.93 9.00 7.22 7.01 8.61 9.01 ł ł Ł age of hourly values missing Percent 13.3 ∟. 9 4 ×. ł ł ł 0 0 0 0 0 0 0 0 0 0 0 of values Number 7,599 8,760 7,344 7,344 8,760 8,706 8,760 8,760 8,760 8,760 7,296 8,784 8,723 8,760 8,691 8,760 8,784 ł ł ł Indian Creek² Cedar Creek¹ Indian Creek Indian Creek Indian Creek Cedar Creek Cedar Creek Cedar Creek Blue River² Kill Creek² Blue River Mill Creek Blue River Blue River Mill Creek Mill Creek Mill Creek Kill Creek Kill Creek Kill Creek Calendar year and monitoring site 2004 2005 2006 2003 >, greater than] 6893390 6892495 6893100 6892495 6892495 6893100 6892495 6892495 6893100 6892495 6892360 6893100 6892495 6893390 6892360 6892360 6893390 6892360 6893390

3.7

2.5

0

6892495

a and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen	northeast Kansas, 2003–06.—Continued
e 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow	e water-quality monitoring sites in Johnson County, northeast Kansas, 2003–06.—Continued

[ft³s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; FNU, formazin nephelometric units; mg/L, milligrams per liter; --, no data available; E, estimated; >, greater than]

0												-			
			Percent-	•				Measure	ment at in	alcated tre(luency or e	xceedance			
Calenc moni	lar year and toring site	Number of values	age of hourly values missing	Sample standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	Median 50 per- centile	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maxi- mum
						Ĩ	urbidity (FN	۱U)							
	2003														
6893100	Blue River	ł	ł	1	ł	1	ł	ł	1	1	ł	ł	1	1	1
6892495	Cedar Creek ¹	7,599	13.3	68.3	Ε0	2.2	4.7	6.0	7.8	11	18	30	45	205	>2,000
6893390	Indian Creek	ł	ł	1	ł	1	ł	1	1	1	ł	ł	ł	1	1
6892360	Kill Creek	ł	ł	1	ł	1	ł	1	1	1	ł	ł	ł	1	1
6892495	Mill Creek	8,704	9.	109	2	Ľ.	1.1	1.7	3.8	8.6	20	46	83	436	1,900
	2004														
6893100	Blue River ²	7,199	2.0	80.1	1.2	1.7	3.2	5.8	8.6	13	25	51	92	365	1,190
6892495	Cedar Creek	8,409	4.3	49.6	E 0	Ľ.	1.0	2.0	5.8	9.8	17	26	39	130	1,960
6893390	Indian Creek ²	6,868	6.5	76.6	.3	1.1	1.7	2.0	2.9	4.6	12	42	98	410	066
6892360	Kill Creek ²	7,228	1.6	84.4	.1	2.1	4.4	5.8	9.1	14	25	46	76	364	1,200
6892495	Mill Creek	8,726	Ľ.	114	1.0	1.5	2.0	2.6	4.0	8.0	20	48	95	490	1,820
	2005														
6893100	Blue River	8,724	4.	58.0	1.0	1.7	2.8	4.2	6.7	9.6	19	45	86	290	1,170
6892495	Cedar Creek	8,654	1.2	74.6	$\mathbf{E} 0$	1.0	2.0	2.7	5.0	8.0	13	26	54	300	1,590
6893390	Indian Creek	8,723	4.	67.5	4.	Ľ.	1.1	1.6	2.9	5.3	11	39	95	360	1,120
6892360	Kill Creek	8,692	×.	59.2	Ľ.	Ľ.	1.0	1.8	5.1	8.6	14	32	68	310	1,450
6892495	Mill Creek	8,573	2.1	103	1.8	3.2	4.0	4.7	6.7	12	25	62	120	589	1,180
	2006														
6893100	Blue River	8,760	0	72.2	1.6	2.5	3.4	4.0	5.2	8.0	13	28	57	279	1,850
6892495	Cedar Creek	8,760	0	37.1	1.0	1.5	2.2	2.8	4.5	T.T	12	18	28	110	1,490
6893390	Indian Creek	8,315	5.1	58.4	9.	1.3	1.9	2.2	3.2	5.5	11	32	99	268	1,170
6892360	Kill Creek	8,526	2.7	37.1	E 0	Ľ.	1.3	2.3	5.4	10	16	25	40	76	1,230
6892495	Mill Creek	8,718	i.	60.5	.1	1.9	2.4	3.0	4.5	7.8	13	26	52	210	>2,000

Table 4. Summary of continuous in-stream measured data and frequency of exceedance percentiles for streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen at five water-quality monitoring sites in Johnson County, northeast Kansas, 2003–06.—Continued

22.9 21.016.5 24.0 15.821.8 17.8 18.821.2 17.8 15.5 18.817.9 21.417.4 [ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 degrees Celsius; °C, degrees Celsius; FNU, formazin nephelometric units; mg/L, milligrams per liter; --, no data available; E, estimated; 21.1 17.7 Maximum ł ł ł. 17.9 18.5 14.6 16.815.9 17.4 14.8 17.4 18.3 14.2 16.5 15.4 15.3 20.7 15.7 17.5 centile 16.1 99 perł ł ł centile 95 per-17.5 14.6 14.2 14.015.6 13.8 14.5 12.9 13.418.8 13.9 14.2 15.9 12.5 5.2 14.4 16.1 ł ł ÷ Measurement at indicated frequency of exceedance centile 90 per-11.6 16.6 11.6 13.2 14.0 13.8 13.3 2.3 17.5 13.7 12.4 13.7 13.5 14.4 2.4 3.1 15.1 ł ł ÷ centile 75 per-11.4 9.7 10.4 11.8 10.612.5 12.9 11.4 9.6 11.5 11.8 11.7 12.3 10.7 13.4 11.712.1 ł ł ł Median centile 50 per-8.9 ł ł 8.0 ł 9.9 9.0 9.3 9.3 9.2 9.0 7.7 8.4 10.3 8.0 8.5 9.8 7.9 7.2 8.4 25 per-centile 6.0 6.0 6.2 7.3 6.6 7.2 7.1 6.0 5.3 7.1 ł ł 8.1 7.3 7.1 8.1 7.7 7.1 ÷ 7.1 10 percentile Dissolved oxygen (mg/L) 4.9 5.8 6.6 5.4 3.6 5.9 5.5 4.6 ł ł 6.7 6.7 6.4 6.2 7.1 4.4 6.1 5.15.7 centile 5 per-4.2 6.6 5.23.7 5.2 5.8 4.8 2.8 4.4 ł 4. ł ł 6.0 6.2 6.0 5.7 4.2 5.1 4.1 centile 1 per-3.9 4.8 5.3 4.8 5.8 3.9 3.8 4.6 3.0 3.9 ł 5.33.3 2.7 2.3 1.7 3.3 ł ł 4.1 Minimum 3.5 5.0 2.8 3.0 2.0 3.2 0.9 2 ł 1.8 4.2 4.7 1.91.8 3.1 1.51.81.0ł ł deviation Sample standard 3.18 3.47 2.28 2.692.65 2.38 3.82 3.05 2.963.26 3.04 3.29 3.40 2.97 3.24 3.15 3.33 ł ÷ ł missing Percentage of values hourly 7.2 3.3 9.9 13.9 9. 6.6 10.2 11.5 8.2 2.2 1.24.9 4.8 ∟. 1.74.1 ł ł ÷ 0 Number of values 7,538 8,710 7,890 8,402 7,886 6,496 7,344 8,340 8,567 8,132 8,702 8,475 8,612 8,653 6,857 8,064 8.331 ł ł ł Cedar Creek¹ Indian Creek² Indian Creek Indian Creek Indian Creek Cedar Creek Cedar Creek Cedar Creek Blue River² Kill Creek² Blue River Blue River Mill Creek Mill Creek Mill Creek Blue River Mill Creek Kill Creek Kill Creek Kill Creek **Calendar year and** monitoring site 2004 2005 2006 2003 >, greater than] 6892495 6893390 6893100 6893390 6892360 6893390 6892360 6892495 6893100 6892360 6892495 6893100 6892495 6893390 6892360 6892495 6892495 6892495 6893100 6892495

¹Monitoring began in February of this year at this site.

²Monitoring began March 1 of this year at this site.

16 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

estimates, probability, uncertainty, and duration curves for the five monitoring sites are available on the World Wide Web at *http://ks.water.usgs.gov/Kansas/rtqw/*.

Several factors can contribute to variability in the regression models. These factors include equipment limitations associated with obtaining accurate measurements, variability in sample collection, processing, and analysis, and unmixed or rapidly changing stream conditions.

Estimation of Constituent Concentrations, Densities, Loads, and Yields

Continuous (hourly) constituent concentrations and loads were estimated using the regression models. In this report, in-stream and estimated continuous concentration data were evaluated from March 2004 through December 2006 when all five monitoring sites were operating simultaneously. Estimated load and yield data were evaluated for 2005 and 2006, the two full calendar years when all five monitor sites were operating. Seasonal comparisons were made by grouping the data into three periods consistent with the seasonal periods used by KDHE and determined primarily by streamflow. March through July represent the spring and early summer runoff season, August through October represent variable streamflow associated with late summer and fall, and November through February represent the winter low-flow season. Additional data are available at *http://ks.water.usgs.gov/Kansas/rtqw/*.

Continuous data occasionally were missing during periods when the water-quality instruments malfunctioned, extreme weather conditions occurred, or during routine maintenance visits. Generally, after initial equipment installation, less than 2 percent of the hourly values were missing from each site annually (table 4). Missing data were not estimated during these periods. In addition, a specified range of operation is associated with each sensor on the in-stream monitor. Conditions in the monitored streams remained within these specified ranges except for turbidity. Turbidity sensors used in the study (YSI model 6136, Yellow Springs Instruments, Yellow Springs, Ohio) were capable of measuring a range from less than 3 to about 2,000 formazin nephelometric units (FNUs), depending on the individual sensor. Turbidity conditions rarely exceeded the upper measurement limit during the study. Five hourly turbidity values were affected by sensor maximization at Mill Creek in 2003 and 19 hourly turbidity values were affected by sensor maximization at Kill Creek in 2004. When the actual turbidity was more than the maximum a sensor could measure, the sensor reported only the maximum value. That maximum sensor value was used to estimate the concentrations and loads.

For response variables that were log-transformed, retransformation of regression-estimated concentrations was necessary. Retransformation can cause bias (underestimation) in the estimated constituent loads when adding individual estimates over a period of time (Helsel and Hirsch, 2002). Therefore, a log-transformation bias correction factor, Duan's smearing estimator (Duan, 1983) was calculated and applied to the estimated hourly concentration values to correct for this underestimation.

Constituent loads and yields were estimated from continuous concentration estimates, continuous streamflow data, and respective drainage basin area. Hourly constituent loads were calculated for each constituent at each of the five monitoring sites by multiplying hourly estimated concentrations by hourly streamflow and a conversion factor. Seasonal and annual loads were calculated by summing hourly load estimates during the specified period of time. Constituent yields from the contributing drainage areas were calculated by dividing total loads by corresponding drainage areas to determine constituent concentration per square mile. Yields are important for comparing relative contributions of each basin.

Duration Curves

Duration curves are used to compare conditions among the five monitoring sites from March 2004 through December 2006 when monitors at all sites were operating simultaneously. Duration curves are cumulative distribution functions of all measurements (hourly values, in this report) within a specified period of time. The curves show the percentage of time specific conditions were equaled or exceeded, or the frequency of exceedance (Maidment, 1993). Historically, streamflow duration curves have been used in hydrologic studies to describe frequency and magnitude characteristics of streamflow (Searcy, 1959; Vogel and Fennessey, 1995). More recently, duration curves have been used to describe frequency and magnitude of continuous water-quality data (Rasmussen and Ziegler, 2003; Rasmussen and others, 2005). Although several similar formulas exist for calculating plotting position, the Weibull formula (Weibull, 1939; Helsel and Hirsch, 2002) was used in this study.

Results of Continuous In-Stream Measurements

Streamflow

Hourly streamflow ranged from less than 1 ft³/s in Kill Creek (2004, 2005, and 2006) and the Blue River (2005 and 2006) to 19,200 ft³/s in the Blue River (2004) (table 4). The largest median streamflow from March 2004 through 2006 occurred in Indian Creek (fig. 4), which is the second largest drainage basin (63.1 mi²) and the most urban of the five monitored basins (table 1). Median annual streamflow at all sites in 2006 was about one-half of the median annual streamflow in 2005, except at the Indian Creek site where the 2006 median was only about 20 percent lower than the 2005 median (table 4). At all continuous monitoring sites except

Figure 4. Duration curves for measured streamflow at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006.

the Blue River, the majority of streamflow during base-flow conditions originated from WWTF discharge (Lee and others, 2005). Base flow is defined as the sustained flow of a stream in the absence of direct runoff, usually originating from ground water seepage, springs, and/or wastewater discharges. The Blue River was not affected by WWTF discharges at the monitoring site but was affected downstream from the site. The Indian Creek site was downstream from the largest magnitude of WWTF discharge received at the five monitoring sites (Lee and others, 2005), thus accounting for its larger streamflow during base-flow conditions. Kill Creek, the smallest and least urban of the monitored basins (48.6 mi², table 1), generally had the smallest streamflow except during minimum flows when Blue River streamflow was smallest. The Blue River, with the largest drainage area (65.7 mi², table 1), had the smallest streamflow during about 10 percent of the time (fig. 4) likely because of the lack of WWTF discharge at that site to sustain low flow. In 2005, 118 acre-ft of water was withdrawn from the Blue River approximately 1 to 3 mi upstream from the monitoring site for sod farm irrigation (J. Bagley, Kansas Department of Agriculture, written commun., 2006) accounting for less than 1 percent of the total annual flow volume. Streamflow volumes and yields for the five monitoring sites from 2004–06 are provided in table 5.

Historical streamflow records (*http://waterdata.usgs.gov/ ks/nwis*) at two streamflow-gaging stations in Johnson County, each with periods of record of at least 30 years (Indian Creek at Overland Park, station 06893300, and Blue River at Stanley, station 06893080, fig. 1), indicated that the mean annual streamflow in 2005 was about 50 percent larger than the mean annual streamflow for the period of record. In 2006, streamflow at the Indian Creek station (06893300) was about 90 percent of the historic average streamflow and at the Blue River site (06893080) only about 40 percent of the historic average.

Annual differences in streamflow can be attributed to differences in precipitation. Average annual precipitation during the study period, calculated using the City of Overland Park's online flood-warning system "Stormwatch" (*http://www. stormwatch.com*) data from two to four collection sites within each watershed (depending on the number of Stormwatch sites within each watershed), indicated that annual precipitation in all watersheds was less in 2006 than in 2004 and 2005 (table 6). Average annual precipitation in 2004 and 2005 was similar to the historical mean annual precipitation of 40 in. in all five watersheds except the Blue River watershed which received 8 in. more precipitation than normal (about 48 in.) in 2004. Precipitation in 2006 was less than normal, ranging from about 28 to 34 in.

Specific Conductance

Specific conductance is a measure of water's ability to conduct an electrical current and is related to the concentration of ionized substances in water (Hem, 1992). Specific conductance is affected by soil and rock composition; size of the watershed, which affects contact with soil before runoff reaches streams; evaporation, which concentrates dissolved **Table 5.** Mean daily streamflow, annual streamflow volume, and annual streamflow yield at five water-quality monitoring sites in Johnson County, northeast Kansas, 2004–06.

[acre-ft, acre-feet; --, not available]

		2004			2005			2006	
Monitoring site (fig. 1)	Mean daily stream- flow (cubic feet per second)	Annual stream- flow volume (acre-ft)	Annual stream- flow yield [acre-ft/ mi²)/yr]	Mean daily stream- flow (cubic feet per second)	Annual stream- flow volume (acre-ft)	Annual stream- flow yield [acre-ft/ mi²)/yr]	Mean daily stream- flow (cubic feet per second)	Annual stream- flow volume (acre-ft)	Annual stream- flow yield [acre-ft/ mi²)/yr]
Blue River at Kenneth Road				66.7	48,300	735	19.2	13,900	212
Cedar Creek near DeSoto	51.2	37,100	634	56.1	40,600	694	18.5	13,400	229
Indian Creek at State Line Road				99.4	72,000	1,140	71.6	51,800	821
Kill Creek at 95th Street				48.1	34,800	717	9.5	6,880	142
Mill Creek at Johnson Drive	56.4	40,800	694	71.4	51,700	879	27	19,500	332

solids; and contaminant sources, including agricultural and urban runoff (Hem, 1966; Jordan and Stamer, 1995). In most Kansas streams, specific conductance is larger during low flow because of ground-water contributions of dissolved carbonate minerals in underlying limestone (Jordan and Stamer, 1995). Specific conductance in stream water can increase as a result of point-source discharges from WWTFs and urban runoff (Pope and Putnam, 1997).

Specific conductance at the five monitoring sites ranged from about 150 µS/cm in the Blue River and Kill and Mill Creeks to 4,540 µS/cm in Mill Creek (table 4). From March 2004 through 2006, specific conductance was nearly always largest at the Indian Creek site, followed by the Mill Creek site, the two most urban sites and the two sites with the largest WWTF contribution (fig. 5) which can lead to elevated specific conductance. All sites except Kill Creek show sharp increases in specific conductance during the 0- to 15-percent exceedance frequency (fig. 5), likely as a result of road-salt application. Specific conductance conditions in the Blue River and Kill Creek, both mainly undeveloped watersheds, were similar during the monitoring period. Cedar Creek, which also is predominantly undeveloped, had a median specific conductance about 25 percent larger than the Blue River and Kill Creek (fig. 5), possibly because of bedrock dissolution from large rock quarries in the upstream portions of the watershed. The Blue River and Kill Creek sites did not show major effects from road-salt application in 2005 (fig. 5).

pН

pH is a measure of the effective hydrogen ion concentration and is used as an index of the status of chemical and biological equilibrium reactions in water (Hem, 1992). The pH of natural water generally ranges from 6.5 to 8.5 standard units (Hem, 1992). Kansas aquatic-life-support criteria require that pH in streams measure not less than 6.5 and not more than 8.5 standard units (Kansas Department of Health and Environment, 2005).

pH ranged from 6.9 (Indian Creek in 2006) to 9.1 standard units (Cedar, Indian, and Mill Creeks) (table 4). From March 2004 through 2006, exceedances of the upper criterion of 8.5 standard units occurred at the Cedar, Indian, and Mill Creek sites less than 3 percent of the time (fig. 6). pH of streams in northeastern Kansas has been found to be slightly alkaline primarily because of the buffering capacity of the surficial soils and rocks (Jordan and Stamer, 1995). pH at the Indian Creek site remained less than pH at the other Johnson County sites most of the time, except during the 0- to 10-percent frequency-of-exceedance period when pH sharply increased and exceeded pH at the other sites (fig. 6). Urban runoff can be more acidic (Welch and Lindell, 1992), resulting in lesser values of pH at the Indian Creek site.

Table 6. Average annual precipitation in five watersheds of Johnson County, northeast Kansas, 2003–06 (data source *http://www.stormwatch.com*).

[--, not determined because collection sites were not yet operating]

Watershed	Avera	ge annual pre	cipitation, in i	nches
(fig. 1)	2003	2004	2005	2006
Blue River		48.4	37.7	34.0
Cedar Creek	29.9	42.2	41.9	28.0
Indian Creek		43.6	39.0	34.2
Kill Creek		43.4	44.2	28.1
Mill Creek	29.7	43.8	43.6	30.7

Figure 5. Duration curves for measured specific conductance at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006.

Figure 6. Duration curves for measured pH at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006.

Water Temperature

Water temperature has an important effect on the density of water, the solubility of constituents in water, specific conductance, pH, the rate of chemical reactions, and biological activity in water (Wilde and others, 2006). Kansas water-quality criteria require that discharges to streams not raise the water temperature more than 3°C or raise the temperature above 32°C (Kansas Department of Health and Environment, 2005).

Water temperature ranged from about 0°C at all sites except Indian Creek to about 32°C at all sites (table 4). All the sites demonstrated similar water temperature conditions except Indian Creek. From March 2004 through 2006, the temperature of Indian Creek, the most urban site and the site most affected by WWTF discharge, exceeded that of the other sites about 60 percent of the time (fig. 7). The largest difference in water temperature between Indian Creek and the other less urban sites occurred at low temperatures (during winter months) when the temperature at the Indian Creek site was 2.5 to 3°C warmer than the other sites (table 4). Besides being affected by warmer wastewater discharges, increased water temperature in urban streams is caused by the decrease in streamside shade from loss of riparian habitat, heating of runoff from roads and parking lots, and generally warmer temperatures formed by cities (Galli, 1991; LeBlanc and others, 1997; Paul and Meyer, 2001).

Turbidity

Turbidity is caused by suspended and dissolved matter such as clay, silt, finely divided organic matter, plankton and other microscopic organisms, organic acids, and dyes (ASTM International, 2003; Anderson, 2005). Turbidity is affected by the amount of precipitation and runoff, intensity and duration of storms, slope of the river channel, geomorphic structure of the channel, origin of the water including point and nonpoint sources, and time of travel from the point of origin to the point of measurement. Biological activity, such as algal blooms, can increase turbidity. Particulates in water provide attachment sites for nutrients, pesticides, indicator bacteria, and other potential contaminants. Also, increased turbidity reduces light penetration and photosynthesis, smothers benthic habitats, and interferes with feeding activities. Very large values of turbidity for short periods of time may be less harmful than smaller values that persist (Wetzel, 2001). USEPA level III ecoregion 40 recommended criteria for turbidity is 15.5 nephelometric turbidity units (U.S. Environmental Protection Agency, 2003b). The instrument technology used in this study to measure turbidity in formazin nephelometric units (FNUs) is appropriate for comparison to the criteria, which are expressed in nephelometric turbidity units (NTUs).

Turbidity values ranged from less than 2 FNUs at all sites annually to about 2,000 FNUs at the Cedar and Mill Creek sites (table 4). During infrequent storms at the Mill and Kill Creek monitoring sites (less than 1 percent of the time), turbidity exceeded the maximum value the sensor was capable of measuring; therefore, the absolute maximum turbidity at those sites is unknown. From March 2004 through 2006 turbidity values at the Blue River, Kill and Mill Creek sites were similar except within the 90- to 100-percent frequency range when the Kill Creek values dropped to nearly 0 (fig. 8). The Indian Creek site had the smallest turbidity most of the time (fig. 8), probably because of the high clarity of WWTF discharge, which dominates streamflow at that site most of the time (Lee and others, 2005). The largest turbidity measurements at all sites occurred during storm runoff. The USEPArecommended ecoregion criterion was exceeded 20 to 30 percent of the time (fig. 8).

Dissolved Oxygen

The dissolved oxygen (DO) concentration in surface water is related primarily to photosynthetic activity of aquatic plants, atmospheric reaeration, and water temperature (Lewis, 2006). Diffusion of oxygen across the air-water interface can be a major factor affecting DO concentrations for small, shallow streams with a high surface area to volume ratio (Huggins and Anderson, 2005). DO is an important factor in chemical reactions and the survival of aquatic organisms. Kansas aquatic-life- support criterion requires that DO concentrations are not less than 5.0 mg/L (Kansas Department of Health and Environment, 2005).

Continuous dissolved oxygen concentration ranged from about 1 mg/L at the Cedar Creek site in 2003 and the Indian and Mill Creek sites in 2006, to 24 mg/L at the Mill Creek site in 2004 (table 4). From March 2004 through December 2006, DO concentrations were less than the KDHE criterion of 5.0 mg/L less than about 10 percent of the time at all sites except Indian Creek, which was less than the criterion about 15 percent of the time (fig. 9A). Low DO at all sites generally coincided with higher water temperatures resulting in decreased oxygen solubility in water. More frequent low DO at Indian Creek likely was caused by WWTF discharges that contribute nutrients increasing growth of microorganisms that consume nutrients and reduce DO.

Low DO at all sites occurred during all three seasonal periods but most frequently at the Indian Creek site and during the August–October period (fig. 9*B*), corresponding with the lowest streamflow, warmest water temperatures, and likely high algal activity. Most DO values less than 5.0 mg/L at Blue, Cedar, and Kill also coincided with low-flow conditions during mid- to late summer. Streamflow reduced by irrigation withdrawals just upstream from the monitor may contribute to low DO values at the Blue River site during dry periods. Generally, larger DO concentrations were sustained at all sites during winter because the solubility of oxygen is greater in colder water (Hem, 1992). However, the largest DO concentrations (in excess of 20 mg/L at all sites except Blue River sometime during the monitoring period) occurred during

Figure 7. Duration curves for measured water temperature at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006.

Figure 8. Duration curves for measured turbidity at five monitoring sites in Johnson County, Kansas, March 2004 through December 2006.

(A) Measured dissolved oxygen at five monitoring sites in Johnson

Figure 9. Duration curves for (A) measured dissolved oxygen at five monitoring sites in Johnson County, Kansas from March 2004 through December 2006 and (B) seasonal dissolved oxygen at the Indian Creek monitoring site for January 2005 through December 2006.

spring and summer when algal activity is high. For example, at the Indian Creek site during 2005–06, DO generally was largest during the winter months (November–February), but the largest measurements occurred during about 10 percent of the time during the March–July period (fig. 9*B*).

Variability in Streamflow and Water-Quality Measurements

A typical example of the water-quality variability that occurred in Johnson County streams is provided in figures 10A and 10B using August 2005 data from the Indian Creek monitoring site. Distinct daily fluctuations occurred in pH, water temperature, and DO until changes in streamflow disturbed the patterns (fig. 10A). Daily variability in pH and DO is an indication of photosynthetic activity and is affected by availability of sunlight and nutrients (Wetzel, 2001). During the day, photosynthesis by aquatic plants increases the amount of oxygen dissolved in the water and decreases dissolved carbon dioxide, thus increasing pH during the daytime. Oxygen is consumed and carbon dioxide is released during respiration and decomposition, which occur throughout the day and night, resulting in lower pH and DO during the night. pH and DO fluctuations generally were more extreme at sites immediately downstream from WWTFs, like the Indian Creek site, because of increased algal activity from increased nutrient contributions from WWTFs. Increases in pH and water temperature result in an increase in the toxicity of ammonia for fish (Kansas Department of Health and Environment, 2005).

Rapid changes in specific conductance and turbidity associated with changes in streamflow occurred in Johnson County streams, as seen in data from the Indian Creek monitoring site (fig. 10B). Typically, specific conductance decreases and turbidity increases in response to storm runoff. Three different streamflow response sequences occurred in August 2005 as a result of precipitation and runoff. During runoff on August 19, 2005, turbidity increased to about 1,100 FNUs when streamflow peaked at about 1,400 ft³/s. The following day, a much larger streamflow peak of more than 6,000 ft³/s was accompanied by a much smaller turbidity peak of about 600 FNUs. A similar response occurred about a week later. This indicates that the magnitude of the streamflow peak does not necessarily determine the magnitude of the turbidity peak. In both cases, turbidity increased from less than 40 FNUs to more than 1,000 FNUs in less than 5 hours. Turbidity fluctuations are affected by the source of sediment (channel bank or bed, or overland erosion), distance from the source, rainfall intensity, and length of time since the last runoff occurrence. The two pairs of streamflow and turbidity peaks that occurred at the Indian Creek site August 19-20 (fig. 10B) likely represented runoff from the two primary watersheds upstream from the monitoring site (Indian and Tomahawk Creeks) arriving at different times.

Relation Between Streamflow and Turbidity

Correlations between continuously measured streamflow and turbidity values at each monitoring site (at the Cedar Creek site, for example, fig. 11) in 2005–06 are poor, with coefficients of determination (R²) ranging from 0.39 to 0.55 (table 7). Although the largest turbidity values occurred during stormwater runoff, peak turbidity values most often do not coincide with peak streamflow values. Turbidity peaks can either precede or follow associated streamflow peaks. Effects of these differences in turbidity during the rising and falling limbs of streamflow peaks (hysteresis) can be seen in the curved pattern (red line) within the data plotted in figure 11. Because the relation between streamflow and turbidity is complex, alternative interpretive tools are useful.

Williams (1989) and Nistor and Church (2005) describe patterns of streamflow and suspended-sediment concentration and explain sediment sources and transport characteristics on the basis of observed patterns. According to Nistor and Church (2005), the most common pattern is the clockwise hysteresis loop (Type 2, fig. 12B), which indicates depletion of available sediment before the streamflow peak occurs. Counterclockwise hysteresis (Type 4, fig. 12C) indicates delayed sediment travel time resulting from the downstream distance of the measuring station from the sediment source (Williams, 1989). Single-line curves (Type 1, fig. 12A) occur when an unlimited supply of sediment is available throughout runoff resulting in simultaneous peaks in both suspended-sediment concentration and streamflow (Williams, 1989). Variations such as figureeight patterns and multiple loops (Type 2 or 4, fig. 12D) occur because of bank collapses and tributary inflows, and these patterns also are affected by changes in precipitation and runoff rates, sediment availability, and rates and distances of travel (Williams, 1989). According to Asselman (1999), suspended sediment originating from the stream channel typically causes larger turbidity values during the rising limb of a streamflow peak (clockwise hysteresis), and sediment originating from more distant basin sources often causes larger turbidity values during the falling limb (counterclockwise hysteresis).

Streamflow and turbidity data from the monitoring sites in the study area were examined for hysteresis patterns during various runoff periods (fig. 13). Generally, large runoff resulted in clockwise hysteresis patterns (fig. 13A, for example), indicating sediment depletion during runoff (Nistor and Church, 2005) and substantial sediment contributions likely from the stream channel (Asselman, 1999). Small runoff, which occurred more frequently but resulted in smaller turbidity values compared to larger runoff, often resulted in counterclockwise hysteresis patterns (fig. 13B, for example) indicating sediment likely originated from more distant basin sources (Asselman, 1999; Nistor and Church, 2005). The Indian Creek site experienced more runoff periods showing single-line curve characteristics (fig. 13C) than any other site, indicating unlimited sediment supplies during several runoff periods that occurred that year. Characterizing turbidity changes during varying streamflow conditions leads to a

Figure 10. Variability in (*A*) streamflow, pH, water temperature, and dissolved oxygen, and (*B*) specific conductance and turbidity at the Indian Creek monitoring site in Johnson County, Kansas, August 2005.

26 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

Continuous monitoring site (fig. 1)	Station number (fig. 1)	Equation	Coefficient of determination (R ²)
Blue River at Kenneth Road	06893100	y = 2.42x - 11.2	0.39
Cedar Creek near DeSoto	06892495	y = 1.80x + 6.93	.48
Indian Creek at State Line Road	06893390	y = 4.13x + 2.64	.47
Kill Creek at 95th Street	06892360	y = 2.41x - 15.0	.50
Mill Creek at Johnson Drive	06892513	y = 1.95x - 3.47	.55

Table 7. Relation between hourly streamflow (y) and turbidity (x) measurements at five water-quality monitoring sites in Johnson County, northeast Kansas, 2005–06.

better understanding of concentration and loading properties for sediment and sediment-associated constituents like bacteria and some nutrients.

Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields

Regression models for estimating selected waterquality constituents at the five continuous monitoring sites are presented and discussed in this section, followed by regression-estimated concentrations, densities, loads, and yields. Three constituents (suspended sediment, chloride, and *E. coli* bacteria) are discussed in more detail than the others. These three particular constituents were selected for additional discussion because they represent three major categories of concern in Johnson County streams (sediment, major ions, and indicator bacteria) that have been identified as sources of water-quality impairment by KDHE (Kansas Department of Health and Environment, 2006a).

Regression Models

Regression models and summary statistics for estimating water-quality constituents in the five monitored streams in Johnson County are presented in table 8. Separate models were developed for each monitoring site. Models were included in table 8 if at least one significant (p-value less

Figure 11. Comparison of continuously measured (hourly) streamflow and turbidity at the Cedar Creek monitoring site, Johnson County, Kansas, January 2005 through December 2006.

Figure 12. Common streamflow and suspended-sediment hysteresis patterns, types, and sediment source explanations [adapted from Williams (1989) and Nistor and Church (2005)].

than 0.05) explanatory variable was found. Summaries of discrete-sample data in table 8 may not identically match summaries in other tables within this report because table 8 presents specific information for each site and constituent, and models require each discrete-sample data point (response variable) to be paired with available explanatory variable data.

Uncertainties associated with each model varied because of the number of samples collected, water-quality conditions at the time of sample collection including rapidly changing conditions, cross-section variability during sample collection, sampling and analytical error, and other factors affecting independent variables. Generally, for most constituents, models for the less urban sites (Blue River and Kill Creek) contained less variability than models for the more urban sites (Indian and Mill Creeks). This is because water quality in urban areas is more complex as a result of multiple sources and often altered pathways (Driver and Troutman, 1989).

Specific conductance and turbidity were the most common explanatory variables used in the models. Specific conductance is the primary explanatory variable for models estimating major ions because of the strong relation between specific conductance and dissolved ions. Turbidity was the primary explanatory variable for constituents associated with particulates, such as suspended-sediment concentration, unfiltered nutrient species, and fecal-indicator bacteria because these constituents attach to sediment particles. Most of the models include one of these two explanatory variables. However, some of the models also included streamflow as an explanatory variable, and several of the nutrient models included seasonal sine and cosine variables, indicative of the seasonal nature of some nutrient sources.

Figure 13. Examples of hysteresis patterns in streamflow and turbidity data from selected monitoring sites in Johnson County, northeast Kansas, 2005 (arrows indicate direction of hysteresis).

[R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, miligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); --, not applicable; <, less than]

				Bias cor-		Disc	rete sample:	6	
Monitoring site (fig. 1)	Regression model	R ²	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Suspended-se	diment cond	entration (SSC), mg/L					
Blue River at Kenneth Road	logSSC = 1.16logTBY-0.140	0.96	0.162	1.05	19	SSC 7-4,170	630	440	779
						TBY 5-1,270	278	250	312
Cedar Creek near DeSoto	$\log SSC = 1.17 \log TBY-0.116$	76.	.135	1.05	21	SSC 4–2,060	429	206	551
						TBY 5-905	203	123	249
Indian Creek at State Line Road	$\log SSC = 1.10 \log TB Y + 0.068$	96.	.205	1.10	22	SSC 2–3,530	711	299	992
						TBY 2–1,010	267	176	285
Kill Creek at 95th Street	logSSC = 1.16logTBY-0.111	96.	.121	1.03	24	SSC 7–3,690	736	288	1,020
						TBY 5-1,230	303	183	332
Mill Creek at Johnson Drive	$\log SSC = 1.02 \log TBY + 0.144$.95	.216	1.11	22	SSC 4–2,890	654	242	821
						TBY 2–1,100	353	219	379
Sites combined	logSSC = 1.12logTBY-0.020	96.	.172	1.08	107	SSC 2-4,170	285	169	314
						TBY 2–1,270	642	263	883
	Total su	spended sol	ids (TSS), n	J/br					
Blue River at Kenneth Road	logTSS = 1.14logTBY-0.179	96.	.166	1.06	18	TSS 3.0–1,560	428	315	321
						TBY 5.3–1,270	277	210	321
Cedar Creek near DeSoto	logTSS = 1.23 logTBY-0.271	96.	.167	1.08	21	TSS 3.0–1,690	391	171	526
						TBY 5.0–905	195	102	253
Indian Creek at State Line Road	$\log TSS = 1.03 \log TBY + 0.194$	96.	.179	1.07	22	TSS 5.0–2,880	546	250	802
						TBY 2.0–1,010	247	155	289
Kill Creek at 95th Street	logTSS = 1.14logTBY-0.150	.93	.246	1.11	24	TSS 3.0–3,380	627	239	887
						TBY 2.9–1,230	297	146	338
Mill Creek at Johnson Drive	logTSS = 0.985 logTBY + 0.242	.95	.228	1.13	22	TSS 4.0–2,780	661	210	822

laboratory reporting level; log, refers to log 10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius. ^(C), TBY indivity in formazin metholometric units (FNI16), -, not applicable; < loss than l [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than

	fe farmer II. and for the state of the state			Bias cor-		Disc	rrete sample	s	
Monitoring site (fig. 1)	Regression model	R2	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Acid neutralizing c	apacity (ANC):	, mg/L as ca	Ilcium carbo	onate				
Blue River at Kenneth Road	logANC = 0.846 logSC-0.0418	0.82	0.0733	1.01	19	ANC 67–270	154	160	54
						SC 172–658	430	456	153
Cedar Creek near DeSoto	logANC = 0.433 logSC+0.937	44.	.0912	1.00	22	ANC 70–224	141	136	38
						SC 246–1,300	636	599	268
Indian Creek at State Line Road	logANC = 0.360 logSC+1.03	.60	.115	1.02	24	ANC 50–205	114	120	43
						SC 211–3,710	886	498	986
Kill Creek at 95th Street	logANC = 0.497 logSC+0.901	.39	.120	1.01	25	ANC 86–270	156	140	57
						SC 160–675	389	366	161
Mill Creek at Johnson Drive	logANC = 0.413logSC+0.999	.52	.101	1.01	22	ANC 80–255	148	150	46
						SC 227–1,740	739	561	442
	Q	issolved solids	s (DS), mg/L						
Blue River at Kenneth Road	logDS = 0.778 logSC+0.390	88.	.0521	1.01	23	DS 125–400	275	265	85
						SC 172–658	432	456	155
Cedar Creek near DeSoto	logDS = 0.928logSC-0.0194	96.	.0269	1.00	26	DS 27–793	385	372	181
						SC 246–1,300	662	624	284
Indian Creek at State Line Road	logDS = 0.951logSC-0.0865	96.	.0509	1.01	28	DS 102–2,030	474	277	493
						SC 211–3,710	825	428	931
Kill Creek at 95th Street	logDS = 0.739 logSC+0.490	88.	.0523	1.01	26	DS 130–480	251	218	93
						SC 160–675	388	356	168
Mill Creek at Johnson Drive	logDS = 0.886 logSC + 0.107	.95	.0515	1.01	29	DS 190–960	439	344	213
						SC 227–1,740	735	563	422

30 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

[R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, miligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); --, not applicable; <, less than]

				Bias cor-		Disc	crete sample	S	
Monitoring site (fig. 1)	Regression model	R ²	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
		Calcium (Ca), dis	solved, mg/l						
Blue River at Kenneth Road	logCa = 1.08logSC-1.10	0.95	0.0459	1.00	19	CA 21–101	58	60	24
						SC 172–658	430	456	153
Cedar Creek near DeSoto	$\log Ca = 0.562 \log SC + 0.198$.68	.0721	1.01	22	CA 28–95	59	58	16
						SC 246–1,300	636	599	268
Indian Creek at State Line Road	logCa = 0.798 logSC-0.562	.88	.0808	1.02	22	CA 15–83	41	29	22
						SC 211–1,610	538	396	356
Kill Creek at 95th Street	logCa = 1.02logSC-0.958	.90	.0662	1.01	25	Ca 18–105	50	44	25
						SC 160–675	389	366	161
Mill Creek at Johnson Drive	logCa = 0.718logSC-0.233	.79	.0958	1.02	23	CA 28–133	65	55	31
						SC 227–1,740	716	559	434
	Ma	gnesium (Mg), o	dissolved, m	g/L					
Blue River at Kenneth Road	logMg = 1.09logSC-2.04	96.	.0423	1.00	19	Mg 2.6–11	6.8	7.0	2.8
						SC 172–658	430	456	153
Cedar Creek near DeSoto	logMg = 0.824 logSC-1.36	89.	.0527	1.01	22	Mg 3.6–15	8.8	8.4	2.9
						SC 172–658	636	599	268
Indian Creek at State Line Road	logMg = 1.05logSC-2.04	.90	.0944	1.02	22	Mg 2.0–17	7.2	4.8	5.0
						SC 211–1,610	538	393	356
Kill Creek at 95th Street	logMg = 0.997 logSC-1.77	.93	.0531	1.01	26	Mg 2.2–11.7	6.5	6.2	2.7
						SC 160–675	383	356	161
Mill Creek at Johnson Drive	logMg = 0.837- $logSC$ -1.40	.82	.100	1.03	23	Mg 3.5–18	9.6	7.4	4.9
						SC 227–1,740	716	559	434

laboratory reporting level; log, refers to log10, SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs): --, not applicable; <, less than] [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; lig/L, micrograms per liter; (), number of values in sample set that were less than

	Anna II. and the same second and	 <i>c</i>		Bias cor-		Disc	rete sample	s	
Monitoring site (fig. 1)	Regression model	R2	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	S	Sodium (Na), dis:	solved, mg/l						
Blue River at Kenneth Road	logNa = 1.22logSC-2.02	0.85	0.0961	1.02	19	Na 4.9–36	16	15	8.1
						SC 172–658	430	456	153
Cedar Creek near DeSoto	logNa = 1.60 logSC-2.84	.94	.0720	1.01	23	Na 12–152	50	42	37
						SC 246–1,300	642	618	264
Indian Creek at State Line Road	logNa = 1.34 logSC-2.02	76.	.0936	1.02	25	Na 8.2–524	98	49	149
						SC 211–3,710	864	444	972
Kill Creek at 95th Street	logNa = 1.26logSC-2.09	89.	.0876	1.02	25	Na 3.5–29	15	16	7.4
						SC 160–675	389	366	161
Mill Creek at Johnson Drive	logNa = 1.38logSC-2.21	.93	.0978	1.04	23	Na 11–206	59	43	55
						SC 227–1,740	716	559	434
	S	Sulfate (SO ₄), dis	solved, mg/l						
Blue River at Kenneth Road	logSO4 = 1.29logSC-1.92	.85	9060.	1.02	18	SO4 8.8–76	32	30	16
						SC 172–658	443	470	145
Cedar Creek near DeSoto	logSO4 = 1.27 logSC-1.69	89.	.0851	1.02	18	SO4 23–196	76	64	46
						SC 246–1,300	626	580	272
Indian Creek at State Line Road	logSO4 = 1.28logSC-1.84	.87	.1208	1.04	22	SO4 11–122	47	29	36
						SC 211–1,010	504	393	275
Kill Creek at 95th Street	logSO4 = 1.14logSC-1.45	.82	.1025	1.03	23	SO4 7.5–60	33	28	15
						SC 160–675	390	373	153
Mill Creek at Johnson Drive	logSO4 = 1.14logSC-1.42	.72	.1257	1.05	18	SO4 15–116	54	44	29
						SC 227-968	544	545	210

32 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

[R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, miligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); --, not applicable; <, less than]

				Bias cor-		Disc	crete sample:	S	
Monitoring site (fig. 1)	Regression model	R2	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Chlor	ride (CI), dis	solved, mg/l						
Blue River at Kenneth Road	logCl = 1.26logSC-1.93	0.73	0.142	1.05	19	C1 8.0–60	26	23	15
						SC 172–658	430	456	153
Cedar Creek near DeSoto	logCl = 1.76logSC-3.18	.92	.0944	1.02	22	Cl 10–270	99	51	59
						SC 246–1,300	636	599	268
Indian Creek at State Line Road	logCl = 1.53logSC-2.43	.94	.160	1.06	27	Cl 9–1,680	222	69	393
						SC 211–5,710	428	69	1,320
Kill Creek at 95th Street	$\log CI = 1.21 \log SC - 1.91$	99.	.168	1.07	25	Cl 5–50	18	16	11
						SC 160–675	389	366	161
Mill Creek at Johnson Drive	$\log Cl = 1.48 \log SC - 2.30$.92	.110	1.05	23	Cl 15–366	96	63	96
						SC 227–1,740	716	559	434
Sites combined	$\log Cl = 1.63 \log SC - 2.82$.87	.179	1.09	116	Cl 5–1,680	91	37	208
						SC 160-5,710	664	493	718
	Nitrogen r	nitrate (N0 ₃), dissolved,	mg/L					
Blue River at Kenneth Road	$\log NO3 = 0.224 \log Q - 0.812$.62	.237	1.14	20	NO3 0.23-7.83	.61	.63	.32
						Q 0.2–10,900	1,578	322	3,110
Cedar Creek near DeSoto	$\log NO3 = -0.119 \log Q + 0.500$.34	.297	1.47	21	NO3 0.25-7.83	1.68	1.12	1.65
	(Poor model)					Q 2.2–4,350	637	288	991
Indian Creek at State Line Road	logNO3 = -0.0005SC+2.06logSC-4.97	67.	.212	1.11	24	NO3 0.41–10.4	3.2	2.01	3.02
						SC 211–3,710	886	498	986
Kill Creek at 95th Street	logNO3 = 0.284 logQ - 1.02	.37	.416	1.47	25	NO3 0.04–1.97	.64	.55	.51
	(Poor model)								
Mill Creek at Johnson Drive	$\log NO3 = 0.146 \log Q + 1.47 \log SC - 4.30$.72	.205	1.1	23	NO3 0.27–9.29	1.92	1.36	2.04
						SC 227–1,740	716	559	434
						Q 4.4–2,780	634	478	821

33

laboratory reporting level; log, refers to log10, SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs): --, not applicable; <, less than] [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than

				Discourse			and among a share		
				DIdS CUL-		חואנ	rete sampres		
Monitoring site (fig. 1)	Regression model	R2	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Orthophi)) snuoydsc	JrthoP), mg	1/L					
Blue River at Kenneth Road	logOrthoP = 0.274 logTBY-1.79 sin	0.68	0.170	1.06	19	OrthoP 0.01–0.12	0.06	0.06	0.03
	(2*pi*day/365)082cos(2*pi*day/365)-1.78					TBY 3.9–1,270	263	169	318
Cedar Creek near DeSoto	logOrthoP = -0.361 logQ - 0.085	.57	.331	1.37	21	OrthoP 0.04–2.22	.39	.21	.5
						Q 2.2–4,350	637	288	166
Indian Creek at State Line Road	logOrthoP= -0.0005SC+2.30logSC-6.31	LL.	.249	1.40	25	OrthoP 0.06-2.76	.67	.38	.74
						SC 211–3,710	864	444	972
Kill Creek at 95th Street	No significant explanatory variables	ł	ł	ł	ł	OrthoP 0.02–0.73	.13	.1	.14
Mill Creek at Johnson Drive	logOrthoP = 1.47logSC-0.265sin	.61	.284	1.17	23	OrthoP 0.02-1.5	.29	.18	.34
	(2*pi*day/365)-0.019cos(2*pi*day/365)-4.83					SC 227–1,741	716	559	434
	Nitrogen, am	monia (NH	3) dissolved	d, mg/L					
Blue River at Kenneth Road	$\log NH3 = 0.194 \log TB Y-1.70$.22	.294	1.24	18(3)	NH3 <0.02-0.26	90.	.04	.06
	(Poor model)								
Cedar Creek near DeSoto	logNH3 = 0.264sin(2*pi*day/365)- 0.083cos(2*pi*day/365)-1.40 (Poor model)	.32	.262	1.00	22(7)	NH3 < 0.02–0.12	.05	.04	.03
Indian Creek at State Line Road	logNH3 = 0.256sin(2*pi*day/365)-	.54	.311	1.20	25(1)	NH3 0.04–1.27	.34	.19	.35
	0.180cos(2*pi*day/365)-0.212logQ-0.136					Q 14–9,830	1,661	872	2,505
Kill Creek at 95th Street	$\log NH3 = 0.274 \log TB Y-2.03$.41	.250	1.16	24(11)	NH3 0.01-0.17	.05	.03	.04
						TBY 2.9–1,230	289	146	338
Mill Creek at Johnson Drive	(Poor model)	1	1	1	1	NH3 <0.02-0.34	.06	.05	.07

34 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); ---, not applicable; <, less than] [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; lig/L, micrograms per liter; (), number of values in sample set that were less than

				Bias cor-		Disc	rete samples		
Monitoring site (fig. 1)	Regression model	R ²	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Nitrogen, ammoni	plus organ	nic (DON), o	lissolved, mç	//F				
Blue River at Kenneth Road	No significant explanatory variables	ł	1	1	ł	DON 0.07-2.40	0.64	0.54	0.49
Cedar Creek near DeSoto	$\log DON = 0.003 TB Y-0.3104$	0.25	0.126	1.00	22	DON 0.3-1.0	.58	.60	.19
	(Poor model)								
Indian Creek at State Line Road	logDON = 0.350 logSC-0.945	.50	.134	1.05	25	DON 0.5-2.6	1.14	1.1	.53
						SC 211–3,710	864	444	972
Kill Creek at 95th Street	$\log DON = 0.264 \log TBY + 0.0570$.43	.228	1.00	25	DON 0.2-1.3	.61	.57	.29
						TBY 2.9–1,230	293	152	332
Mill Creek at Johnson Drive	$\log DON = 0.127 \log TB Y-0.548$.50	.122	1.04	23	DON 0.2-1.0	.54	.50	.20
						TBY 2.0–1,100	339	149	378
	Nitrogen, ammo	nia plus orç	Janic (TON)	, total, mg/L					
Blue River at Kenneth Road	logTON = 0.472 logTB Y-0.862	.86	.141	1.05	18	TON 0.3–7.6	1.8	1.3	1.71
						TBY 5.3–1,270	277	210	321
Cedar Creek near DeSoto	logTON = 0.267 logTBY-0.441	.63	.155	1.06	22	TON 0.4–3.1	1.3	1.1	.79
						TBY 2.4–905	186	85	250
Indian Creek at State Line Road	logTON = 0.0006TBY+0.180	.65	.124	1.04	24	TON 0.89–8.04	2.55	1.8	1.56
						TBY 2–1,010	227	122	284
Kill Creek at 95th Street	$\log TON = 0.0010 TB Y-0.280$.74	.207	1.38	25	TON 0.3-6.2	1.73	1.1	1.53
						TBY 2.9–1,230	293	152	332
Mill Creek at Johnson Drive	logTON = 0.0006TBY+0.1331logTBY-0.392	89.	.131	1.04	23	TON 0.4–5.80	1.73	1.1	1.53
						TBY 2–1,100	339	149	378

Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields 35

laboratory reporting level; log, refers to log 10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than

Celsius (°C); TBY, turbidity, in forma	in nephelometric units (FNUs);, not applicable; <, less th	han							
				Bias cor-		Disc	crete samples		
Monitoring site (fig. 1)	Regression model	R ²	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Nitroç	gen, total (TN), mg/L						
Blue River at Kenneth Road	logTN = 0.111logQ+0.0004TBY-0.0585	0.78	0.153	1.06	18	Q 0.2–10,900	1,730	586	3,250
						TN 0.6–8.8	2.5	2.4	1.9
						TBY 3.9–1,270	268	180	327
Cedar Creek near DeSoto	No significant explanatory variables	ł	ł	ł	ł	TN 1.4–9.2	3.0	2.5	1.6
Indian Creek at State Line Road	logTN = -0.173logTBY+0.126sin(2*pi*day/	.61	.146	1.05	24	TN 2.3–13	5.6	5.4	2.9
	365) +0.0302cos(2*pi*day/365)+0.986					TBY 1.0–1,010	227	122	284
Kill Creek at 95th Street	$\log TN = 0.423 \log TB Y-0.624$.76	.178	1.08	25	TN 0.4-7.3	2.4	2.0	1.8
						TBY 2.9–1,230	293	152	332
Mill Creek at Johnson Drive	logTN = 0.0006 logTBY + 0.0483 sin(2*pi*day/	.61	.187	1.09	23	TN 0.1–11	3.7	2.7	2.5
	365)+ 0.2205cos(2*pi*day/365)+0.296					TBY 2.0–1,100	339	149	378
	Phosph	iorus, tota	I (TP), mg/L						
Blue River at Kenneth Road	TP = 0.0012TBY+0.152	.88	660.	1.00	19	TP 0.1–2.5	.52	.38	.54
						TBY 3.9–1,270	263	169	318
Cedar Creek near DeSoto	No significant explanatory variables	1	ł	1	ł	TP 0.2–2.4	69.	.59	.49
Indian Creek at State Line Road	$\log TP = -0.299 \log Q + 0.0009 TB Y + 0.586$.62	.144	1.05	23	Q 14–9,830	1431	519	2,358
						TP 0.5–3.0	1.2	1.0	.71
						TBY 1.0–1,010	229	101	290
Kill Creek at 95th Street	TP = 0.0015TBY + 0.199	.81	.222	1.00	24	TP 0.1–2.1	.60	.40	.50
						TBY 2.9–1,230	262	146	300
Mill Creek at Johnson Drive	$\log TP = 0.0008TBY+0.0222sin(2*pi*day/365)+$.70	.183	1.10	22	TP 0.2–2.4	.87	.63	.65
	0.156cos(2*pi*day/365)-0.426					TBY 2.0–1,100	341	144	386

36 Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas

[R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, miligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); --, not applicable; <, less than]

				Bias cor-		Dis	screte sample	s	
Monitoring site (fig. 1)	Regression model	R2	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Fecal coliform bac	ceria (FCB),	colonies pe	r 100 millilite	LS				
Blue River at Kenneth Road	logFCB = 1.25logTBY+0.697	0.77	0.581	1.96	20	FCB 9–26,000	6,850	2,850	8,710
						TBY3-1,270	250	139	316
Cedar Creek near DeSoto	logFCB = 1.641 logTBY-0.121	.84	.53	1.85	26	FCB 4–32,000	5,957	230	9,299
						TBY 4–905	160	48	238
Indian Creek at State Line Road	logFCB = 1.00logTBY+1.75	.67	.611	1.99	25	FCB 10–88,000	17,200	11,000	21,400
						TBY 2–1,010	237	168	279
Kill Creek at 95th Street	logFCB = 1.38logTBY+0.442	LL.	.602	2.00	27	FCB 1-43,000	8,950	5,500	11,600
						TBY 2–1,230	270	140	326
Mill Creek at Johnson Drive	logFCB = 1.36logTBY+0.422	.80	.646	2.12	25	FCB 2–39,000	9,830	1,400	13,500
	E. Coli bacteria	(ECB), colo	nies per 10	0 milliliters					
Blue River at Kenneth Road	logECB = 1.38logTBY+0.287	.74	.661	2.15	21	ECB 2–32,000	6,630	1,500	9,950
						TBY 3–1,270	240	109	311
Cedar Creek near DeSoto	logECB = 1.54logTBY-0.0563	.86	.445	1.59	23	ECB 7–21,000	4,120	1,300	5,950
						TBY 6–905	180	68	246
Indian Creek at State Line Road	logECB = 1.02logTBY+1.58	.71	.570	1.85	25	ECB 10–32,000	11,300	8,700	11,100
						TBY 2–1,010	237	168	279
Kill Creek at 95th Street	logECB = 1.29 logTBY + 0.524	67.	.533	1.76	27	ECB 2–26,000	6,190	4,300	7,360
						TBY 2–1,230	270	140	326
Mill Creek at Johnson Drive	logECB = 1.23 logTBY+0.508	.83	.526	1.74	25	ECB 2–22,000	4,990	360	7,270
						TBY 2–1,100	269	91	363
Sites combined	logECB = 1.28logTBY+0.602	.74	.624	2.67	121	ECB 2–32,000	6,630	2,400	8,730
						TBY 2–1,270	239	110	305

laboratory reporting level; log, refers to log10; SC, specific conductance, in microsiemens per centimeter at 25 degrees Celsius; Q, streamflow, in cubic feet per second (ft³/s); WT, water temperature in degrees Celsius (°C); TBY, turbidity, in formazin nephelometric units (FNUs); --, not applicable; <, less than] [R², coefficient of determination; RMSE, root mean square error; n, number of discrete samples; mg/L, milligrams per liter; µg/L, micrograms per liter; (), number of values in sample set that were less than

				Bias cor-		Dis	screte sample	es	
Monitoring site (fig. 1)	Regression model	R²	RMSE	rection factor (Duan, 1983)	=	Range of values in variable measurements	Mean	Median	Standard deviation
	Enterococci bacte	ria (ENT), c	olonies per	100 milliliter	,s				
Blue River at Kenneth Road	logENT = 1.73 logTBY+0.392	0.88	0.512	1.79	21	ENT 215–380,000	65,900	11,000	113,000
						TBY 3–1,270	240	109	311
Cedar Creek near DeSoto	logENT = 1.79 logTBY+0.170	06.	.446	1.71	25	ENT 18–110,000	22,300	3,500	31,800
						TBY 4–905	166	50	241
Indian Creek at State Line Road	logENT = 1.31logTBY+1.57	.81	.547	1.95	25	ENT 63–250,000	59,000	41,000	68,900
						TBY 2–1,010	237	168	279
Kill Creek at 95th Street	logENT = 1.44logTBY+1.07	.83	.529	1.69	27	ENT 39-440,000	57,700	31,000	92,700
						TBY 2–1,230	270	140	326
Mill Creek at Johnson Drive	logENT = 1.40logTBY+0.750	.80	.668	1.94	26	ENT 24–300,000	40,900	2,250	80,800
						TBY 2–1,100	270	100	355

Regression models shown in table 9 demonstrate the statistical relations between suspended-sediment concentration and constituents often associated with particulates. Although strong relations exist for total suspended sediment and some indicator bacteria, relations with unfiltered (total) nutrients are weaker except at the Blue River site, and to a lesser extent the Kill Creek site, where nonpoint-source agricultural runoff is the primary source of nutrients. The trapping effects of impoundments may interfere with relations between sediment and nutrients in the Cedar Creek watershed. Nutrients originating from WWTFs at the Indian Creek site may result in poor relations with sediment at that site. These statistical relations have potential implications for implementation of BMPs demonstrating that if sediment concentrations are decreased, concentrations of sediment-associated constituents such as suspended solids, some nutrients, and bacteria also may decrease.

Graphs comparing the five site-specific models for suspended sediment, chloride, and *E. coli* indicator bacteria are shown in figure 14 and discussed in the relevant sections below. The 90-percent prediction intervals shown in figure 14 were calculated using a model with data from all sites combined; most of the model estimates fall within these boundaries.

Regression-Estimated Constituents

Suspended Sediment and Total Suspended Solids

Sediment in the water can reduce light penetration, smother benthic habitats, clog gill structures in fish, reduce photosynthesis, and interfere with water-treatment equipment (Devlin and McVay, 2001). Suspended sediment, particularly sediment composed of fine material (silt and clay), gives water a muddy appearance and provides attachment sites allowing accumulation and transport of nutrients, pesticides, and indicator bacteria (Jordan and Stamer, 1995). Sediment originates primarily from geology and surface soils, channel bank erosion, and streambed sediment re-suspended during stormflow. KDHE narrative criteria for suspended sediment state that artificial sources shall not interfere with aquatic life. Artificial sources include sources that result from human activities and may be minimized by construction of control structures, modification of operating practices, or restraint of activities (Kansas Department of Health and Environment, 2005).

Urbanization affects sediment supply and transport differently during construction and post-construction phases, as summarized by Paul and Meyer (2001). During the construction phases, erosion of exposed soils leads to larger sediment loads (Leopold, 1968). This effect intensifies in more sloped watersheds and generally occurs during a few large floods (Wolman, 1967). The increase in sediment supply leads to bed aggradation, and stream depths may decrease resulting in decreased channel capacity, larger floods, and overbank sediment deposition (Wolman, 1967). The aggradation phase is followed by an erosional phase, during which channel erosion is the largest source of sediment. Increases in impervious surface area substantially increase the frequency or volume of bankfull floods leading to a general deepening (incision) and widening of the channel (Booth, 1990). After incision, channels migrate laterally and bank erosion begins (Trimble, 1997). In developed urban streams, the majority of sediment being transported originates from channel erosion rather than hillside erosion (Trimble, 1997).

Suspended-sediment concentration (SSC) and total suspended solids (TSS) are the two terms typically used to quantify concentrations of suspended solid-phase material in surface water. Although the terms are sometimes used interchangeably, the laboratory analytical methods differ and may produce considerably different results, particularly when samples contain sand-sized material (Gray and others, 2000). The SSC method is preferred for quantifying solids in natural water samples because it has been found to be more reliable than the TSS method, which was originally designed for analysis of wastewater samples (Gray and others, 2000). However, TSS is sometimes used in regulatory applications such as TMDLs and NPDES permits. For example, the Mill Creek TMDL for biological impairment (Kansas Department of Health and Environment, 2007) identifies large sediment load and particularly TSS as a cause of biological impairment. The TMDL establishes a goal of 35 percent reduction in average TSS concentrations during the biologically active season. Although regression models were developed for both SSC and TSS (table 8), more emphasis is placed on the SSC models in this report.

Regression models for SSC (table 8) were among those with the least uncertainty, as indicated by R² values equal to or larger than 0.95, RMSE values less than about 0.2, and evenly distributed residual plots (not shown). All SSC models used turbidity as the only explanatory variable. The regression lines are similar when compared between sites (fig. 14A) although the Mill Creek model has a slightly smaller slope than the other models indicating that sources of suspended sediment and turbidity might differ slightly from other sites. Different sources of sediment likely are caused by construction in urbanizing parts of the Mill Creek watershed. The models were developed using suspended-sediment concentrations in discrete samples ranging from less than 10 mg/L to greater than 2,000 mg/L at each site with a maximum of 4,170 mg/L at the Blue River site (table 8). In-stream turbidity in regression models ranged from about 5 FNUs to greater than 1,000 FNUs at all sites except Cedar which had a maximum of 905 FNUs (table 8).

Continuous estimates of suspended-sediment concentration in 2005–06 ranged from a minimum of less than 3 mg/L at all sites, to a maximum of 4,600 mg/L at the Cedar Creek site in 2005 and the Blue River site in 2006 (table 10). The other sites may have had suspended-sediment concentrations as large as Cedar Creek, but Table 9. Regression models and statistics for estimating concentrations of selected constituents using suspended-sediment concentration in discrete samples from water at five water-quality monitoring sites in Johnson County, northeast Kansas, October 2002–January 2006.

	4			Bias			Discrete sample	results		
Monitoring site (fig. 1)	Regression model	R²	RMSE	correction factor (Duan, 1983)	=	Range in response variable	Range in SSC (mg/L)	Mean	Median	Standard deviation
		Ъ.	al suspende	d solids (TSS), n	ng/L					
Blue River at Kenneth Road	logTSS = 1.01logSSC-0.102	0.98	0.1109	1.03	19	TSS 3-4,470	1	571	240	1,010
						-	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	logTSS = 1.04 logSSC-0.134	66.	.0872	1.02	20	TSS 3–1,690	-	410	183	532
						1	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	logTSS = 0.912 logSSC+0.176	66.	.0948	1.02	22	TSS 5–2,880	-	582	285	795
						-	SSC 2–3,530	711	299	992
Kill Creek at 95th Street	logTSS = 1.03 logSSC-0.175	.95	.1945	1.07	24	TSS 3–3,380	-	637	261	881
						-	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	logTSS = 0.989 logSSC+0.0221	66.	.1129	1.04	21	TSS 4–2,780	-	582	231	814
						1	SSC 4–2,890	685	251	828
Combined	logTSS = 0.989 logSSC+0.0739	.97	.1359	1.07	106	TSS 3-4,470	1	582	231	814
						-	SSC 2-4,170	645	257	887
			Total nitro	gen (TN), mg/L						
Blue River at Kenneth Road	logTN = 0.330 logSSC-0.451	.84	.0155	1.04	19	TN 0.59-8.75	-	2.45	2.12	1.84
						1	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	SSC not a significant	1	ł	ł	ł	TN 1.37–9.20	1	3.01	2.54	1.70
	explanatory variable					1	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	logTN = -0.121logSSC+0.936	.34	.0304	1.08	22	TN 2.30–12.5	1	5.22	4.24	2.69
						-	SSC 2–3,530	711	299	992
Kill Creek at 95th Street	logTN = 0.360 logSSC-0.577	.73	.0308	1.08	24	TN 0.45-7.31	-	2.48	2.02	1.75
						-	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	SSC not a significant	ł	1	1	ł	TN 0.68–10.9	1	3.74	2.74	2.61
	explanatory variable					1	SSC 4–2,890	685	251	828
Combined	logTN = 0.106logSSC+0.193	60.	.0834	1.27	106	TN 0.45–12.5	1	3.39	2.83	2.37
						ł	SSC 2-4,170	645	257	887

uality	
ater-q	
five w	
ater at	
om Wa	
ples fr	
te sam	
discre [.]	
cion in	
centrai	
nt con	
edime	
nded-s	
adsns	
s using	-
tituent	ntinue
d const).—Co
electe	y 2006
ns of s	Januai
ntratio	2002-
conce	ctober
nating	sas, Oo
or estir	ist Kan
istics f	iorthea
nd stati	unty, n
dels ar	son Co
ion mo	n John
egressi	sites i
e 9. Rí	toring
Tabl	moni

[R², coefficient of determination; RMSE, root mean square error; n, number of discrete sampes; SSC, suspended-sediment concetration; mg/L, milligrams per liter; --, not applicable; < less than]

				Bias			Discrete sample	results		
Monitoring site (fig. 1)	Regression model	R2	RMSE	correction factor (Duan, 1983)	=	Range in response variable	Range in SSC (mg/L)	Mean	Median	Standard deviation
			Total phosp	horus (TP), mg/l						
Blue River at Kenneth Road	logTP = 0.48logSSC-1.55	0.92	0.0144	1.04	19	TP 0.06–2.45	1	0.52	0.38	0.54
						-	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	SSC not a significant	1	1	ł	ł	TP 0.20–2.43	-	69.	.56	.51
	explanatory variable					1	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	SSC not a significant	ł	ł	ł	ł	TP 0.54–2.96	-	1.19	1.00	.67
	explanatory variable					-	SSC2-3,530	711	299	992
Kill Creek at 95th Street	logTP = 0.387 logSSC-1.30	.63	.0550	1.14	24	TP 0.09–2.14	-	.60	.40	.50
						1	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	logTP = 0.212logSSC-0.649	.37	.0670	1.18	21	TP 0.22–2.38	-	80.	.63	.66
						1	SSC 4–2,890	685	251	828
Combined	logTP = 0.181logSSC-0.652	.18	.108	1.36	106	TP 0.06–2.96	1	.78	.64	.62
						-	SSC 2-4,170	645	257	887
	Escheric	chia coli (E	. <i>coli)</i> bacte	ria (ECB), coloni	ies per	00 milliliters				
Blue River at Kenneth Road	logECB = 1.21 logSSC+0.393	.71	.6566	2.03	19	ECB 2-32,000	1	7,510	3,400	12,100
						1	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	logECB = 1.27 logSSC+0.199	.83	.4788	1.63	20	ECB 5–2,100	1	4,720	1,900	6,160
						1	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	logECB = 0.832 logSSC+1.76	.58	.5785	1.83	22	ECB 10–32,000	1	12,800	12,500	11,100
						-	SSC 2–3,530	711	299	992
Kill Creek at 95th Street	logECB = 0.984 logSSC+0.983	69.	.5182	1.85	24	ECB 46–26,000	-	6960	6,050	7460
						-	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	logECB = 1.22logSSC+0.334	.88	.4425	1.48	20	ECB 2–22,000	1	6,220	2,050	7,670
						ł	SSC 4–2,890	620	216	850
Combined	logECB = 1.09 logSSC+0.779	.71	.607	2.48	105	ECB 2–7,900	ł	8,940	4,200	12,500
							SSC 2-4,170	632	236	891

Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields 41

Table 9. Regression models and statistics for estimating concentrations of selected constituents using suspended-sediment concentration in discrete samples from water at five water-quality monitoring sites in Johnson County, northeast Kansas, October 2002–January 2006.—Continued

	21, 1001 IIICAII Square CI101, II, IIUIII001		ampes, 22C,	Dino - Dino		cuauon, mg/r, mungi	Discrete commended	t applicante,		
Monitoring site	Regression model	R ²	RMSE	Correction factor (Duan	1	Range in	Range in SSC			Standard
/- · · · · · · · · · · · · · · · · · · ·				1983)	-	response variable	(mg/L)	Mean	Median	deviation
	Fee	cal coliform	ı bacteria (E	CB), colonies pe	r 100 n	nilliliters				
Blue River at Kenneth Road	logFCB = 1.09logSSC+0.802	0.71	0.5995	1.99	19	FCB 9–26,000	1	7,420	4,000	8,660
						1	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	logFCB = 1.28logSSC+0.342	.79	.5549	1.86	20	FCB 14–32,000	1	7,730	3,900	9,970
						I	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	logFCB = 0.819 logSSC+1.94	99.	.6063	1.85	23	FCB 10–88,000	1	19,400	13,500	21,900
						ł	SSC 2–3,530	711	299	992
Kill Creek at 95th Street	logFCB = 1.03logSSC+0.998	69.	.5505	2.04	24	FCB 24-43,000	1	10,100	6,400	11,900
						ł	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	logFCB = 1.31logSSC+0.304	.84	.5533	1.88	21	FCB 2–39,000	:	11,700	5,100	14,000
						ł	SSC 4–2,890	624	234	828
Combined	logFCB = 1.09 logSSC+0.918	.70	.6155	2.39	106	FCB 2–88,000	ł	11,400	5,450	14,600
						1	SSC 2-4,170	633	244	887
	E	Iterococci	bacteria (EC	B), colonies per	100 mi	lliliters				
Blue River at Kenneth Road	logENT = 1.47 logSSC+0.669	.85	.5327	1.92	19	ENT 27–380,000	:	75,700	18,000	115,000
						ł	SSC 7-4,170	627	384	779
Cedar Creek near DeSoto	logENT = 1.44logSSC+0.586	.88	.4398	1.80	20	ENT 28–110,000	1	27,800	22,000	33,400
						ł	SSC 4–2,060	437	202	564
Indian Creek at State Line Road	logENT = 1.07logSSC+1.79	.76	.6157	2.29	22	ENT 63-250,000	1	67,000	43,500	69,700
						1	SSC 2–3,530	711	299	992
Kill Creek at 95th Street	logENT = 1.31logSSC+1.02	.79	.5413	1.86	24	ENT 39-440,000	1	64,900	39,000	96,100
						ł	SSC 7–3,690	736	288	1,020
Mill Creek at Johnson Drive	logENT = 1.30logSSC+0.846	.87	.4864	1.51	21	ENT 47–300,000	ł	50,700	14,000	87,400
						ł	SSC 4–2,890	624	234	828
Combined	logENT = 1.29 logSSC+0.104	.81	.5468	2.15	106	ENT 27-440,000	ł	57,400	29,500	84,900
						1	SSC 2-4,170	633	244	887

Figure 14. Comparison of explanatory (x-axis) and response (y-axis) variables for selected water-quality constituent regression models for (*A*) suspended-sediment concentration, (*B*) chloride, and (*C*) *Escherichia coli* bacteria.

Table 10. Regression-estimated concentrations for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December

ZUUD.					Concenti	ation or de	ensity at inc	licated fregu	iencv of ex	ceedance	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	Sample standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
			Suspend	ed-sedimen	t concentra	ation, in mil	lligrams pe	r liter					
2005													
Blue River at Kenneth Road	8,724	120	1.0	1.4	2.5	4.0	6.9	10	23	62	130	540	2,700
Cedar Creek near DeSoto	8,654	200	1.0	1.0	1.8	2.6	5.3	9.2	16	37	87	650	4,600
Indian Creek at State Line Road	8,723	160	1.0	1.0	1.1	1.9	4.0	7.9	18	72	190	840	3,000
Kill Creek at 95th Street	8,692	130	1.0	1.0	1.0	1.1	5.2	9.8	17	45	110	640	3,900
Mill Creek at Johnson Drive	8,573	190	2.8	3.1	4.8	6.4	9.7	19	42	110	210	1,100	2,200
2006													
Blue River at Kenneth Road	8,760	160	1.3	2.2	3.1	3.8	5.1	8.5	15	36	82	520	4,600
Cedar Creek near DeSoto	8,760	92	1.0	1.3	2.0	2.7	4.7	8.8	15	24	40	200	4,300
Indian Creek at State Line Road	8,315	140	1.0	1.7	2.6	3.1	4.6	8.4	18	59	130	610	3,100
Kill Creek at 95th Street	8,526	85	1.0	1.0	1.1	2.1	5.7	12	20	34	59	170	3,200
Mill Creek at Johnson Drive	8,718	110	1.0	3.0	3.8	4.8	7.2	13	21	44	89	370	3,900
			To	tal suspend	ed solids, ii	n milligram	s per liter						
2005													
Blue River at Kenneth Road	8,724	96	0.70	1.3	2.3	3.6	6.1	9.3	20	54	110	450	2,200
Cedar Creek near DeSoto	8,654	210	.13	.58	1.4	2.0	4.2	7.5	14	32	78	640	5,000
Indian Creek at State Line Road	8,723	130	.20	1.0	1.8	2.8	5.6	10	22	LL	190	720	2,300
Kill Creek at 95th Street	8,692	110	90.	90.	.28	1.1	4.9	9.1	16	41	76	540	3,200
Mill Creek at Johnson Drive	8,573	180	3.5	3.9	5.8	7.7	12	22	47	120	220	1,100	2,100
2006													
Blue River at Kenneth Road	8,760	130	1.2	2.0	2.8	3.4	4.6	7.5	13	31	71	430	3,700
Cedar Creek near DeSoto	8,760	96	.58	1.0	1.5	2.1	3.7	7.1	12	20	35	190	4,600
Indian Creek at State Line Road	8,315	120	1.2	2.6	3.8	4.4	6.3	11	22	64	130	540	2,400
Kill Creek at 95th Street	8,526	71	.06	.52	1.1	2.0	5.4	11	19	31	53	150	2,600
Mill Creek at Johnson Drive	8,718	110	.20	3.7	4.7	5.8	8.7	15	25	49	76	380	3,700

2006.—Continued		I Selecteu wat	er-quality (COLISTILUETIUS	al IIVE Walt	er-quanty m	omuomig si		ווו רטטוונץ, ו	IUI IIIEASI Na	allsas, Jallu	ary zuuo-u	cerinter
		Cample			Concentr	ation or de	nsity at inc	licated frequ	ce to for the second	cceedance,	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
				Dissolved :	solids, in m	illigrams pe	er liter						
2005													
Blue River at Kenneth Road	8,760	6.8	22	36	44	48	53	58	61	63	65	72	76
Cedar Creek near DeSoto	8,656	62	130	230	310	340	390	440	470	490	500	540	580
Indian Creek at State Line Road	8,723	220	140	210	310	380	490	550	600	840	1,100	1,400	1,700
Kill Creek at 95th Street	8,760	39	130	210	260	290	330	350	370	380	390	390	400
Mill Creek at Johnson Drive	8,654	140	170	240	310	360	450	530	570	710	780	950	1,200
2006													
Blue River at Kenneth Road	8,760	42	120	220	280	310	340	370	390	410	410	420	430
Cedar Creek near DeSoto	8,760	70	110	230	320	380	430	480	510	530	540	610	710
Indian Creek at State Line Road	8,760	220	130	220	320	380	490	570	650	730	820	1,600	2,400
Kill Creek at 95th Street	8,691	34	170	250	290	310	330	360	380	380	390	410	410
Mill Creek at Johnson Drive	8,760	160	170	250	310	360	410	520	600	650	760	1,200	1,600
				Calcium, dis	solved, in n	nilligrams p	oer liter						
2005													
Blue River at Kenneth Road	8,760	12	20	40	52	60	68	78	83	87	06	100	110
Cedar Creek near DeSoto	8,656	7.8	37	54	65	69	76	82	85	88	89	93	98
Indian Creek at State Line Road	8,723	19	20	28	38	45	56	62	99	87	110	140	150
Kill Creek at 95th Street	8,760	11	20	37	50	58	68	76	81	84	86	88	06
Mill Creek at Johnson Drive	8,654	16	31	42	51	57	68	79	83	66	110	130	150
2006													
Blue River at Kenneth Road	8,760	13	17	40	56	64	75	83	06	95	96	98	100
Cedar Creek near DeSoto	8,760	8.6	33	54	99	74	81	86	06	92	94	100	110
Indian Creek at State Line Road	8,760	19	18	29	39	46	56	63	71	78	86	150	210
Kill Creek at 95th Street	8,691	9.9	28	48	57	62	68	78	83	85	88	92	93
Mill Creek at Johnson Drive	8,760	19	31	42	50	57	64	LL	87	92	110	150	200

45

Table 10. Regression-estimated concentrations for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December 2006.—Continued

		Camula			Concentr	ation or de	nsity at inc	licated frequ	iency of ex	ceedance,	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
			Σ	agnesium, d	issolved, ir	n milligrams	s per liter						
2005													
Blue River at Kenneth Road	8,760	1.5	2.4	4.8	6.3	7.3	8.3	9.6	10	11	11	13	14
Cedar Creek near DeSoto	8,656	1.3	3.4	5.7	7.4	8.1	9.3	10	11	11	11	12	13
Indian Creek at State Line Road	8,723	5.5	2.7	4.2	6.4	8.0	11	12	13	19	25	35	41
Kill Creek at 95th Street	8,760	1.4	2.7	5.0	6.7	7.8	9.1	10	11	11	11	12	12
Mill Creek at Johnson Drive	8,654	2.9	4.1	5.8	7.3	8.4	10	12	13	16	17	21	26
2006													
Blue River at Kenneth Road	8,760	1.6	2.0	4.8	6.9	7.8	9.2	10	11	12	12	12	12
Cedar Creek near DeSoto	8,760	1.5	2.9	5.7	7.6	8.9	10	11	12	12	12	14	16
Indian Creek at State Line Road	8,760	5.7	2.4	4.5	6.6	8.2	11	13	15	17	19	40	61
Kill Creek at 95th Street	8,691	1.3	3.9	6.4	7.6	8.3	9.1	10	11	11	12	12	12
Mill Creek at Johnson Drive	8,760	3.5	4.1	5.8	7.1	8.3	9.5	12	14	15	17	25	35
				Sodium, dis:	solved, in n	nilligrams p	er liter						
2005													
Blue River at Kenneth Road	8,760	4.1	4.9	11	15	17	20	23	25	27	28	32	36
Cedar Creek near DeSoto	8,656	13	9.9	19	30	36	47	57	63	68	70	80	92
Indian Creek at State Line Road	8,723	09	14	24	40	54	78	93	110	170	240	360	440
Kill Creek at 95th Street	8,760	4.5	4.9	11	16	19	23	26	29	30	31	32	33
Mill Creek at Johnson Drive	8,654	32	13	23	33	41	58	76	84	120	140	190	270
2006													
Blue River at Kenneth Road	8,760	4.2	4.2	11	16	19	22	25	28	29	30	30	31
Cedar Creek near DeSoto	8,760	15	5.0	19	32	43	55	99	73	78	82	100	130
Indian Creek at State Line Road	8,760	65	11	26	43	56	78	97	120	140	160	430	730
Kill Creek at 95th Street	8,691	4.1	7.8	15	18	20	23	27	29	30	31	33	34
Mill Creek at Johnson Drive	8,760	42	13	23	32	41	51	73	92	100	130	250	440

2006.—Continued													
		- - 			Concenti	ration or de	ensity at inc	licated frequ	uency of ex	ceedance,	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
				Sulfate, dis	solved, in n	nilligrams p	oer liter						
2005													
Blue River at Kenneth Road	8,760	8.4	8.8	21	28	33	39	46	50	53	55	65	72
Cedar Creek near DeSoto	8,656	17	17	38	56	64	79	92	66	110	110	120	130
Indian Creek at State Line Road	8,723	57	15	26	43	57	81	95	110	170	230	340	420
Kill Creek at 95th Street	8,760	8.6	12	24	33	40	48	54	58	60	62	64	65
Mill Creek at Johnson Drive	8,654	31	21	34	47	56	74	92	100	130	150	200	270
2006													
Blue River at Kenneth Road	8,760	8.7	7.4	21	31	36	44	50	55	58	59	61	63
Cedar Creek near DeSoto	8,760	20	13	38	58	74	06	100	110	120	120	140	180
Indian Creek at State Line Road	8,760	61	13	28	45	58	80	66	120	140	160	410	680
Kill Creek at 95th Street	8,691	7.7	18	32	39	43	47	55	59	61	63	67	68
Mill Creek at Johnson Drive	8,760	39	21	34	45	56	67	89	110	120	150	250	390
			_	Chloride, dis	ssolved, in 1	milligrams	per liter						
2005													
Blue River at Kenneth Road	8,760	6.8	7.6	17	24	28	32	38	41	43	45	53	59
Cedar Creek near DeSoto	8,656	18	7.0	22	38	46	61	76	84	92	95	110	130
Indian Creek at State Line Road	8,723	111	16	30	54	75	120	140	160	270	400	640	820
Kill Creek at 95th Street	8,760	5.1	6.1	13	18	22	27	30	33	34	35	36	37
Mill Creek at Johnson Drive	8,654	56	18	33	50	64	92	120	140	200	230	320	490
2006													
Blue River at Kenneth Road	8,760	7.1	6.4	17	26	30	36	41	45	48	49	50	52
Cedar Creek near DeSoto	8,760	22	5.2	22	40	56	73	89	66	110	110	140	190
Indian Creek at State Line Road	8,760	127	13	32	57	LL	110	140	180	220	260	062	1,500
Kill Creek at 95th Street	8,691	4.6	9.4	17	22	24	27	31	34	35	36	38	39
Mill Creek at Johnson Drive	8,760	76	18	34	48	64	81	120	150	170	220	450	800

Table 10. Regression-estimated concentrations for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December

2006.—Continued													
					Concentra	ation or de	nsity at ind	icated frequ	uency of ex	ceedance,	, in percent		
Calendar year and monitoring site (fig. 1)	Number of values	standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
				Nitrogen, 1	total, in mill	ligrams per	r liter						
2005													
Blue River at Kenneth Road	8,760	0.23	0.83	0.84	06.0	0.97	1.1	1.2	1.4	1.6	1.7	2.0	2.6
Cedar Creek near DeSoto	Estimated va	alues not avails	able.										
Indian Creek at State Line Road	8,723	1.85	2.30	3.06	4.35	5.11	6.40	7.48	9.14	10.1	10.4	10.7	11.6
Kill Creek at 95th Street	8,692	.47	.10	.10	.17	.29	.51	.64	.78	1.1	1.5	2.9	5.6
Mill Creek at Johnson Drive	8,573	.41	1.3	1.3	1.3	1.4	1.6	2.2	3.2	3.6	3.8	4.9	13
2006													
Blue River at Kenneth Road	8,760	.19	.61	.68	.85	89.	66:	1.1	1.2	1.3	1.4	1.7	2.3
Cedar Creek near DeSoto	Estimated v:	alues not avails	able.										
Indian Creek at State Line Road	8,315	1.74	2.48	3.33	4.43	5.26	6.37	7.29	8.70	9.70	10.3	11.2	12.6
Kill Creek at 95th Street	8,526	.33	.10	.22	.29	.37	.52	.68	.83	1.0	1.2	1.8	5.2
Mill Creek at Johnson Drive	8,718	89.	1.3	1.3	1.3	1.3	1.5	2.2	3.2	3.6	3.6	3.7	23.0
			_	Phosphorus	total, in m	illigrams p	er liter						
2005													
Blue River at Kenneth Road	8,760	.07	.16	.16	.16	.16	.16	.17	.18	.21	.26	.51	1.6
Cedar Creek near DeSoto	Estimated v:	alues not avail:	able.										
Indian Creek at State Line Road	8,723	.29	.26	.47	.74	.95	1.2	1.5	1.6	1.6	1.7	1.8	1.9
Kill Creek at 95th Street	8,692	.10	.23	.23	.23	.23	.24	.25	.26	.29	.35	LL.	2.8
Mill Creek at Johnson Drive	8,573	.20	.29	.29	.30	.30	.34	.43	.55	.61	.65	1.1	3.3
2006													
Blue River at Kenneth Road	8,760	60.	.15	.16	.16	.16	.16	.16	.17	.19	.22	.49	2.4
Cedar Creek near DeSoto	Estimated va	alues not avail	able.										
Indian Creek at State Line Road	8,315	.27	.25	.55	.84	1.1	1.4	1.5	1.6	1.7	1.7	1.8	2.0
Kill Creek at 95th Street	8,526	.06	.20	.20	.20	.20	.21	.21	.22	.24	.26	.34	2.0
Mill Creek at Johnson Drive	8,718	.21	.29	.29	.29	.30	.33	.43	.54	.59	09.	.63	14

zuuo.—-Continuea		-			Concentr	ation or de	nsity at in	dicated freq	uency of ex	ceedance,	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	Sample standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
			Escher	ichia coli ba	<i>icteria,</i> in c	olonies pei	- 100 millilit	ers					
2005													
Blue River at Kenneth Road	8,724	668	1.1	2.3	4.6	8.0	15	25	64	210	510	2,700	18,000
Cedar Creek near DeSoto	8,654	4,234	1.0	1.4	4.1	6.5	17	34	73	210	650	9,100	120,000
Indian Creek at State Line Road	8,723	5,290	6.7	35	63	66	200	380	810	2,900	7,200	28,000	90,000
Kill Creek at 95th Street	8,692	2,116	3.7	3.7	5.9	13	48	94	180	510	1,400	9,600	70,000
Mill Creek at Johnson Drive	8,573	2,550	12	13	22	31	50	110	290	880	2,000	14,000	32,000
2006													
Blue River at Kenneth Road	8,760	1,040	2.1	3.9	6.0	7.5	11	19	38	110	290	2,600	34,000
Cedar Creek near DeSoto	8,760	1,894	1.4	2.6	4.7	6.9	14	32	64	120	240	2,000	110,000
Indian Creek at State Line Road	8,315	4,617	42	92	140	160	230	400	800	2,400	5,000	21,000	94,000
Kill Creek at 95th Street	8,526	1,405	0.1	3.7	8	17	52	110	210	370	069	2,200	57,000
Mill Creek at Johnson Drive	8,718	1,560	1.0	12	16	22	35	69	130	300	710	3,900	65,000
			Fecal	coliform bac	cteria, in co	lonies per	100 millilite	ers					
2005													
Blue River at Kenneth Road	8,724	2,737	9.6	19	36	60	110	170	400	1,200	2,600	12,000	69,000
Cedar Creek near DeSoto	8,654	8,797	1.0	1.4	4.4	7.2	20	43	95	300	1,000	16,000	260,000
Indian Creek at State Line Road	8,723	7,494	11	56	100	160	310	580	1,200	4,300	10,000	40,000	120,000
Kill Creek at 95th Street	8,692	3,639	1.0	1.0	1.6	8.0	51	110	210	660	1,900	15,000	130,000
Mill Creek at Johnson Drive	8,573	6,194	12	14	25	37	64	150	440	1,500	3,700	32,000	83,000
2006													
Blue River at Kenneth Road	8,760	3,961	18	31	46	56	78	130	250	640	1,600	11,000	120,000
Cedar Creek near DeSoto	8,760	3,890	1.4	2.7	5.1	7.7	17	40	83	160	340	3,200	230,000
Indian Creek at State Line Road	8,315	6,533	67	140	210	250	350	620	1,200	3,600	7,400	30,000	130,000
Kill Creek at 95th Street	8,526	2,399	1.0	3.4	8.0	18	57	130	250	470	006	3,100	100,000
Mill Creek at Johnson Drive	8,718	3,938	1.0	13	18	25	43	91	180	470	1,200	8,000	180,000

Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields 4

Table 10. Regression-estimated concentrations for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December 2006.—Continued

2													
		Comple			Concentr	ation or de	nsity at ind	licated frequ	uency of ex	cceedance,	in percent		
Calendar year and monitoring site (fig. 1)	Number of values	standard deviation	Mini- mum	1 per- centile	5 per- centile	10 per- centile	25 per- centile	50 per- centile (median)	75 per- centile	90 per- centile	95 per- centile	99 per- centile	Maximum
			Enter	ococci bact	eria, in colo	onies per 1	00 milliliter	s					
2005													
Blue River at Kenneth Road	8,724	26,440	4.4	11	26	53	120	220	720	3,200	9,800	80,000	900,000
Cedar Creek near DeSoto	8,654	45,110	1.0	2.5	8.8	15	45	100	250	870	3,200	70,000	1,400,000
Indian Creek at State Line Road	8,723	33,410	3.6	29	63	110	280	630	1,700	8,700	28,000	160,000	720,000
Kill Creek at 95th Street	8,692	19,260	1.0	1.0	5.3	29	200	440	890	2,900	8,600	77,000	710,000
Mill Creek at Johnson Drive	8,573	16,530	25	29	51	LL	140	340	1,000	3,600	9,100	85,000	230,000
2006													
Blue River at Kenneth Road	8,760	50,310	10	22	37	49	LL	160	370	1,400	4,800	75,000	2,000,000
Cedar Creek near DeSoto	8,760	19,710	2.5	5.2	10	16	38	98	220	450	066	12,000	1,200,000
Indian Creek at State Line Road	8,315	29,810	37	100	170	200	330	680	1,700	6,800	18,000	110,000	760,000
Kill Creek at 95th Street	8,526	12,810	1.0	12	29	99	220	550	1,100	2,000	4,000	14,000	560,000
Mill Creek at Johnson Drive	8,718	10,670	1.0	27	37	51	90	200	400	1,100	2,800	20,000	500,000

different maximum measurement on turbidity sensors may have prevented larger readings. The largest median concentration for any year occurred at the Mill Creek site in 2005 (19 mg/L) where the median was nearly double that of the other four sites (7.9–10 mg/L). Suspended-sediment concentration was nearly always largest at the Mill Creek site (fig. 15). The Mill Creek watershed is undergoing rapid development that likely is contributing to larger sustained sediment concentrations. About 70 percent of the time, the smallest sediment concentration occurred at the Indian Creek site (fig. 15), in part because most of the streamflow at this site originated from treated WWTF discharge just upstream (Lee and others, 2005).

Estimated annual suspended sediment loads and yields were largest at the Indian Creek site, and annual loads were smallest at the Kill Creek site (table 11, fig. 16). Most of the time between January 2005 and December 2006, the hourly sediment load was larger at the Indian and Mill Creek sites (fig. 17, table 12), which carry larger streamflow volumes. The estimated annual sediment load at all sites was larger in 2005 than in 2006 by 33 (Indian Creek) to 750 percent (Kill Creek; table 11). Annual differences can be attributed to differences in precipitation and streamflow both of which were larger in 2005 (table 6).

At least 90 percent of the total annual load in 2005–06 at all sites occurred during less than 2 percent of the time (fig. 18), generally corresponding with the largest streamflow.

The streamflow that was exceeded less than 2 percent of the time at the monitoring sites ranged from about 250 ft³/s at the Cedar and Kill Creek sites to about 1,000 ft³/s at the Indian Creek site (fig. 4). Therefore, management practices designed to control sediment during typical streamflows rather than infrequent large streamflow will have minimal effect on total annual loads. During the 3- to 4-year period of record for the five monitoring sites, streamflow has only slightly exceeded the estimated 2-year peak streamflow (Perry and others, 2004) at all sites except the Cedar and Kill Creek sites where streamflow has not exceeded the 2-year peak since monitoring began (fig. 19). Therefore, sediment load contributions when the 2-year streamflow is exceeded have not been well documented but are expected to be even larger than loads measured during this study period. Without continuous water-quality monitoring and load estimation, variations in loads corresponding with rapidly changing streamflow conditions would not be documented. Long-term monitoring makes it possible to assess both changes in streamflow and changes in sediment concentrations and loads and may make it possible to relate changes to implemented BMPs.

Individual runoff occurrences were examined for relative sediment load contributions and hysteresis patterns to improve characterization of sediment transport within each water-shed. In June 2005, a single runoff period on the Blue River that included a peak streamflow of 9,840 ft³/s (between the estimated 2-year peak streamflow of 6,570 ft³/s and the 5-year

Figure 15. Duration curves for estimated suspended-sediment concentration at five water-quality monitoring sites in Johnson County, Kansas, March 2004–December 2006.

		,		Esti-	4	Total	seasonal load	s, in tons, an	d mean daily l	oad (in parent	theses),	
			Moon	mated	Eati			in ton	s per day			Esti-
Calen	dar year and monitoring site (fig. 1)	Num- ber of values	mean daily con- centration (mg/L)	mean daily load (tons per day)	csu- mated annual load (tons)	November 1–	February 28	March	1-July 31	August 1-	-October 31	mated yield [(ton/ mi²)/yr]
				S	nspended-se	diment concen	tration					
	2005											
6893100	Blue River at Kenneth Road	8,724	36.8	84.5	30,800	5,350	(44.6)	18,900	(124)	6,530	(71.0)	469
6892495	Cedar Creek near DeSoto	8,654	36.2	75.8	27,100	4,650	(39.6)	14,300	(93.4)	8,180	(93.4)	463
6893390	Indian Creek at State Line Road	8,723	45.7	132	47,800	5,300	(44.2)	24,100	(161)	18,400	(200)	758
6892360	Kill Creek at 95th Street	8,692	34.5	67.5	24,500	3,160	(27.0)	11,500	(75.0)	9,830	(107)	504
6892513	Mill Creek at Johnson Drive	8,573	63.5	121	43,300	6,590	(57.7)	15,900	(105)	20,800	(226)	736
	2006											
6893100	Blue River at Kenneth Road	8,760	31.6	41.6	15,200	738	(6.15)	6,960	(45.5)	7,490	(81.4)	231
6892495	Cedar Creek near DeSoto	8,760	19.0	14.3	5,190	216	(1.83)	2,880	(18.8)	2,090	(22.8)	88.7
6893390	Indian Creek at State Line Road	8,315	37.5	104	35,900	948	(8.78)	19,600	(131)	15,400	(172)	569
6892360	Kill Creek at 95th Street	8,526	22.5	8.14	2,880	215	(1.90)	2,480	(16.2)	186	(2.07)	59.3
6892513	Mill Creek at Johnson Drive	8,718	30.5	29.8	10,800	969	(5.89)	4,710	(30.8)	5,400	(58.7)	184
					Total su	spended solids						
	2005											
6893100	Blue River at Kenneth Road	8,724	31.3	8.69	25,400	4,460	(37.1)	15,500	(103)	5,390	(58.6)	387
6892495	Cedar Creek near DeSoto	8,654	34.6	78.1	28,000	4,730	(40.3)	14,800	(96.6)	8,450	(96.5)	479
6893390	Indian Creek at State Line Road	8,723	43.9	111	40,200	4,810	(40.0)	20,000	(134)	15,400	(168)	637
6892360	Kill Creek at 95th Street	8,692	30.2	57.0	20,700	2,710	(23.2)	9,640	(63.0)	8,310	(90.3)	426
6892513	Mill Creek at Johnson Drive	8,573	66.5	119	42,400	6,540	(57.3)	15,600	(103)	20,300	(221)	721
	2006											
6893100	Blue River at Kenneth Road	8,760	26.7	34.2	12,500	616	(5.15)	5,760	(37.6)	6,090	(66.2)	190
6892495	Cedar Creek near DeSoto	8,760	17.1	14.5	5,260	205	(1.74)	2,920	(19.1)	2,140	(23.3)	89.9
6893390	Indian Creek at State Line Road	8,315	37.2	85.9	29,700	948	(8.77)	15,900	(107)	12,900	(144)	471
6892360	Kill Creek at 95th Street	8,526	20.1	6.86	2,430	181	(1.64)	2,090	(13.6)	159	(1.77)	50.0
6892513	Mill Creek at Johnson Drive	8,718	33.0	29.2	10,600	710	(6.01)	4,630	(30.3)	5,270	(57.3)	180

			Mean	Esti- mated	Fefi.	Total	seasonal load	s, in tons, an in tons	d mean daily lo s per day	oad (in parentl	ieses),	Esti-
Calen	dar year and monitoring site (fig. 1)	Num- ber of values	daily con- centration (mg/L)	mean daily load (tons per day)	nsu- mated annual load (tons)	November 1–	February 28	March 1	-July 31	August 1–	October 31	_ mated yield [(ton/ mi²)/yr]
					Diss	olved solids						
	2005											
6893100	Blue River at Kenneth Road	8,760	345	46.8	17,100	7,120	(59.3)	6,530	(42.7)	3,430	(37.3)	260
6892495	Cedar Creek near DeSoto	8,656	425	49.2	17,600	7,140	(6.09)	6,710	(43.9)	3,770	(43.0)	301
6893390	Indian Creek at State Line Road	8,723	583	114	41,200	18,200	(152)	13,200	(88.3)	9,820	(107)	653
6892360	Kill Creek at 95th Street	8,760	343	32.4	11,800	4,240	(35.3)	4,700	(30.7)	2,900	(31.5)	243
6892513	Mill Creek at Johnson Drive	8,654	526	70.1	25,300	10,600	(87.9)	8,650	(56.5)	6,070	(69.3)	430
	2006											
6893100	Blue River at Kenneth Road	8,760	362	14.5	5,290	1,370	(11.4)	2,900	(19.0)	1,020	(11.1)	80.5
6892495	Cedar Creek near DeSoto	8,760	463	19.8	7,170	1,890	(16.0)	3,800	(24.9)	1,480	(16.1)	123
6893390	Indian Creek at State Line Road	8,760	583	77.5	28,300	9,860	(82.2)	11,200	(73.3)	7,220	(78.5)	448
6892360	Kill Creek at 95th Street	8,691	350	8.06	2,910	640	(5.55)	2,060	(13.5)	206	(2.24)	59.9
6892513	Mill Creek at Johnson Drive	8,760	522	30.5	11,200	3,700	(30.8)	4,740	(31.0)	2,710	(29.5)	190
					Calciu	um, dissolved						
	2005											
6893100	Blue River at Kenneth Road	8,760	75.2	9.34	3,400	1,480	(12.4)	1,260	(8.26)	660	(7.18)	51.8
6892495	Cedar Creek near DeSoto	8,656	79.9	10.0	3,590	1,370	(11.7)	1,390	(60.6)	828	(9.44)	61.4
6893390	Indian Creek at State Line Road	8,723	63.9	13.0	4,690	1,910	(15.9)	1,580	(10.6)	1,200	(13.0)	74.3
6892360	Kill Creek at 95th Street	8,760	73.2	6.25	2,280	857	(7.14)	905	(5.91)	521	(5.66)	46.9
6892513	Mill Creek at Johnson Drive	8,654	77.3	10.7	3,870	1,520	(12.7)	1,370	(8.96)	980	(11.2)	65.8
	2006											
6893100	Blue River at Kenneth Road	8,760	80.7	3.00	1,100	302	(2.52)	608	(3.97)	186	(2.02)	16.7
6892495	Cedar Creek near DeSoto	8,760	84.3	3.79	1,380	344	(2.92)	733	(4.79)	300	(3.26)	23.6
6893390	Indian Creek at State Line Road	8,760	64.0	8.91	3,250	1,040	(8.69)	1,320	(8.63)	887	(9.64)	51.5
6892360	Kill Creek at 95th Street	8,691	75.2	1.67	604	138	(1.20)	424	(2.77)	41.5	(.45)	12.4
6892513	Mill Creek at Johnson Drive	8,760	76.7	4.65	1,700	527	(4.40)	727	(4.75)	442	(4.81)	28.9

			MooM	Esti- mated	Ц торі	Total s	seasonal loads	t, in tons, and in tons	l mean daily lo per day	ad (in parenthe	eses),	Esti-
Calend	lar year and monitoring site (fig. 1)	Num- ber of values	daily con- centration (mg/L)	mean daily load (tons per day)	Lsu- mated annual load (tons)	November 1–F	ebruary 28	March 1-	-July 31	August 1–C)ctober 31	mated yield [{ton/ mi²//yr]
					Magne	sium, dissolved						
	2005											
6893100	Blue River at Kenneth Road	8,760	9.21	1.14	416	181	(1.51)	154	(1.01)	80.5	(0.87)	6.32
6892495	Cedar Creek near DeSoto	8,656	9.88	1.17	420	167	(1.42)	161	(1.05)	92.0	(1.05)	7.18
6893390	Indian Creek at State Line Road	8,723	13.1	2.51	906	420	(3.50)	280	(1.87)	206	(2.24)	14.4
6892360	Kill Creek at 95th Street	8,760	9.74	.84	306	115	(56.)	121	(62.)	70.3	(.76)	6.30
6892513	Mill Creek at Johnson Drive	8,654	12.0	1.61	581	238	(1.99)	201	(1.31)	142	(1.62)	9.88
	2006											
6893100	Blue River at Kenneth Road	8,760	9.88	.37	134	37.0	(.31)	74.2	(.49)	22.6	(.25)	2.04
6892495	Cedar Creek near DeSoto	8,760	10.7	.46	168	43.5	(.37)	89.2	(.58)	35.3	(.38)	2.87
6893390	Indian Creek at State Line Road	8,760	13.1	1.69	618	226	(1.88)	241	(1.57)	151	(1.64)	9.79
6892360	Kill Creek at 95th Street	8,691	10.0	.22	80.6	18.4	(.16)	56.6	(.37)	5.55	(90.)	1.66
6892513	Mill Creek at Johnson Drive	8,760	11.9	.70	256	83.3	(69.)	109	(.71)	63.5	(69.)	4.35
					Sodiu	ım, dissolved						
	2005											
6893100	Blue River at Kenneth Road	8,760	22.5	2.68	679	434	(3.62)	359	(2.34)	186	(2.02)	14.9
6892495	Cedar Creek near DeSoto	8,656	54.4	5.50	1,970	881	(7.51)	725	(4.74)	362	(4.13)	33.7
6893390	Indian Creek at State Line Road	8,723	104	19.1	6,900	3,630	(30.3)	1,910	(12.8)	1,360	(14.8)	109
6892360	Kill Creek at 95th Street	8,760	25.2	1.99	725	282	(2.35)	287	(1.87)	156	(1.70)	14.9
6892513	Mill Creek at Johnson Drive	8,654	76.6	9.23	3,330	1,630	(13.6)	1,020	(6.67)	677	(7.73)	56.6
	2006											
6893100	Blue River at Kenneth Road	8,760	24.3	.88	320	90.6	(.75)	178	(1.17)	51.3	(.56)	4.87
6892495	Cedar Creek near DeSoto	8,760	63.1	2.47	896	258	(2.19)	470	(3.07)	168	(1.82)	15.3
6893390	Indian Creek at State Line Road	8,760	104	12.7	4,620	1,940	(16.2)	1,690	(11.1)	993	(10.8)	73.2
6892360	Kill Creek at 95th Street	8,691	26.0	.56	204	48.1	(.42)	142	(.93)	13.6	(.15)	4.20
6892513	Mill Creek at Johnson Drive	8,760	76.5	4.10	1,500	594	(4.95)	610	(3.99)	293	(3.19)	25.5

[mg/L, milligrams per liter; ton/mi²/yr, tons per square mile per year; col/100 mL, colonies per 100 milliliters; billion col/day, billion colonies per day]

			ncoM	Esti- mated	Loti.	Total :	seasonal loads	s, in tons, and in tons	d mean daily lo s per day	oad (in parenth	eses),	Esti-
Calend	lar year and monitoring site (fig. 1)	Num- ber of values	daily con- centration (mg/L)	mean daily load (tons per day)	nated annual load (tons)	November 1–1	ebruary 28-	March 1	-July 31	August 1–(October 31	mated yield [(ton/ mi²//yr]
					Sulfa	ite, dissolved						
	2005											
6893100	Blue River at Kenneth Road	8,760	44.2	5.17	1,890	845	(7.04)	688	(4.50)	356	(3.87)	28.8
6892495	Cedar Creek near DeSoto	8,656	88.1	9.48	3,390	1,450	(12.4)	1,270	(8.30)	672	(1.66)	57.9
6893390	Indian Creek at State Line Road	8,723	105	19.5	7,050	3,620	(30.1)	2,000	(13.4)	1,430	(15.6)	112
6892360	Kill Creek at 95th Street	8,760	51.7	4.24	1,550	591	(4.93)	612	(4.00)	343	(3.73)	31.9
6892513	Mill Creek at Johnson Drive	8,654	92.1	11.6	4,180	1,900	(15.9)	1,360	(8.87)	924	(10.6)	71.1
	2006											
6893100	Blue River at Kenneth Road	8,760	48.0	1.71	623	178	(1.49)	348	(2.27)	97.2	(1.06)	9.48
6892495	Cedar Creek near DeSoto	8,760	0.66	4.04	1,460	405	(3.43)	773	(5.05)	287	(3.12)	25.0
6893390	Indian Creek at State Line Road	8,760	105	13.0	4,750	1,940	(16.1)	1,760	(11.5)	1,050	(11.4)	75.3
6892360	Kill Creek at 95th Street	8,691	53.3	1.17	422	98.1	(.85)	295	(1.93)	28.6	(.31)	8.68
6892513	Mill Creek at Johnson Drive	8,760	91.6	5.11	1,860	680	(5.66)	778	(5.09)	407	(4.42)	31.6
					Chlori	ide, dissolved						
	2005											
6893100	Blue River at Kenneth Road	8,760	36.7	4.34	1,580	705	(5.88)	578	(3.78)	299	(3.25)	24.0
6892495	Cedar Creek near DeSoto	8,656	72.2	7.09	2,540	1,160	(06.6)	931	(6.08)	450	(5.13)	43.4
6893390	Indian Creek at State Line Road	8,723	162	29.1	10,500	5,960	(49.6)	2,680	(18.0)	1,870	(20.3)	166
6892360	Kill Creek at 95th Street	8,760	29.1	2.33	851	329	(2.74)	337	(2.20)	185	(2.02)	17.5
6892513	Mill Creek at Johnson Drive	8,654	125	14.8	5,340	2,690	(22.4)	1,600	(10.4)	1,050	(12.0)	90.8
	2006											
6893100	Blue River at Kenneth Road	8,760	39.8	1.43	520	148	(1.23)	290	(1.90)	82.1	(68.)	7.91
6892495	Cedar Creek near DeSoto	8,760	85.0	3.26	1,180	348	(2.95)	618	(4.04)	217	(2.36)	20.2
6893390	Indian Creek at State Line Road	8,760	161	19.1	6,970	3,180	(26.5)	2,430	(15.9)	1,360	(14.8)	110
6892360	Kill Creek at 95th Street	8,691	30.0	.65	236	55.4	(.48)	165	(1.08)	15.9	(.17)	4.86
6892513	Mill Creek at Johnson Drive	8,760	125	6.61	2,410	066	(8.25)	026	(6.34)	451	(4.90)	41.0

Regression-Estimated Constituent Concentrations, Densities, Loads, and Yields 55

			Mean	Esti- mated	Feti.	Total s	seasonal loads	; in tons, and in tons	mean daily lo per day	ad (in parenthe	ses),	Esti-
Calenc	lar year and monitoring site (fig. 1)	Num- ber of values	daily con- centration (mg/L)	mean daily load (tons per day)	mated a nnual load (tons)	November 1–F	ebruary 28	March 1-	July 31	August 1–0	October 31	_ mated yield [(ton/ mi²)/yr]
					Nit	rogen, total						
	2005											
6893100	Blue River at Kenneth Road	8,760	1.26	0.33	121	40.4	(0.34)	55.1	(0.36)	25.8	(0.28)	1.84
6892495	Cedar Creek near DeSoto	Estimated	l values not ava.	ilable								
6893390	Indian Creek at State Line Road	8,723	7.59	1.39	503	157	(1.31)	223	(1.46)	123	(1.34)	7.98
6892360	Kill Creek at 95th Street	8,692	.72	.28	101	21.8	(.19)	44.3	(.29)	35.2	(.38)	2.08
6892513	Mill Creek at Johnson Drive	8,573	2.41	69.	247	88.3	(.77)	72.5	(.48)	86.2	(.94)	4.20
	2006											
6893100	Blue River at Kenneth Road	8,760	1.12	60.	31.1	5.54	(.05)	15.5	(.10)	10.1	(.11)	.47
6892495	Cedar Creek near DeSoto	Estimated	l values not ava.	ilable.								
6893390	Indian Creek at State Line Road	8,315	7.44	1.03	358	87.90	(.73)	174	(1.14)	96	(1.04)	5.67
6892360	Kill Creek at 95th Street	8,526	.71	.04	14.0	1.82	(.02)	11.0	(.07)	1.20	(.01)	.29
6892513	Mill Creek at Johnson Drive	8,718	2.36	.24	87.1	22.6	(.19)	33.3	(.22)	31.2	(.34)	1.48
					Phos	ohorous, total						
	2005											
6893100	Blue River at Kenneth Road	8,724	.18	.08	28.5	7.11	(90.)	15.2	(.10)	6.15	(.07)	.43
6892495	Cedar Creek near DeSoto	Estimated	l values not ava	ilable.								
6893390	Indian Creek at State Line Road	8,674	1.36	.21	77.0	23.6	(.20)	30.5	(.20)	22.9	(.25)	1.22
6892360	Kill Creek at 95th Street	8,692	.23	.07	26.2	5.26	(.05)	11.5	(.08)	9.39	(.10)	.54
6892513	Mill Creek at Johnson Drive	8,573	.46	.18	62.7	17.4	(.15)	20.0	(.13)	25.3	(.28)	1.07
	2006											
6893100	Blue River at Kenneth Road	8,760	.18	.03	11.2	1.05	(.01)	5.34	(.03)	4.78	(.05)	.17
6892495	Cedar Creek near DeSoto	Estimated	l values not ava	ilable.								
6893390	Indian Creek at State Line Road	8,315	1.45	.17	59.8	15.1	(.14)	26.5	(.18)	18.2	(.20)	.95
6892360	Kill Creek at 95th Street	8,526	.22	.01	3.80	.51	(0)	3.01	(.02)	.28	(0)	.08
6892513	Mill Creek at Johnson Drive	8,718	.44	.06	23.2	3.95	(.03)	9.61	(90.)	9.62	(.10)	.39

0		J T		Esti-	i i i	Tot	al seasonal lo	ads (mean d	aily load) in b	illion colonies		
Calen	dar year and monitoring site (fig. 1)	Number of values	Mean daily concen- tration (col/100mL)	mated mean daily load (billion col/day)	col)	November 1–	February 28	March	-July 31	August 1–0	ctober 31	Esti- mated yield [(billion col/mi ² //yr)
					Escherichia u	<i>coli</i> bacteria						
	2005											
6893100	Blue River at Kenneth Road	8,724	149	4,310	1,560,000	240,000	(2,000)	1,000,000	(6,620)	322,000	(3,500)	23,700
6892495	Cedar Creek near DeSoto	8,654	466	13,100	4,690,000	758,000	(6, 470)	2,510,000	(16,400)	1,420,000	(16, 200)	80,200
6893390	Indian Creek at State Line Road	8,723	1,700	39,800	14,400,000	1,690,000	(14,100)	7,120,000	(47,700)	5,570,000	(60,500)	228,000
6892360	Kill Creek at 95th Street	8,692	461	9,720	3,540,000	422,000	(3,520)	1,670,000	(10,900)	1,450,000	(15,800)	73,000
6892513	Mill Creek at Johnson Drive	8,573	646	14,500	5,180,000	743,000	(6,510)	1,920,000	(12,700)	2,520,000	(27, 400)	88,100
	2006											
6893100	Blue River at Kenneth Road	8,760	140	2,430	889,000	35,000	(292)	408,000	(2, 670)	446,000	(4, 840)	13,500
6892495	Cedar Creek near DeSoto	8,760	166	2,260	820,000	21,800	(185)	437,000	(2,860)	361,000	(3,920)	14,000
6893390	Indian Creek at State Line Road	8,315	1,410	30,700	10,600,000	327,000	(3,030)	5,710,000	(38, 300)	4,600,000	(51,400)	168,000
6892360	Kill Creek at 95th Street	8,526	271	1,140	418,000	27,900	(229)	364,000	(2, 320)	25,600	(278)	8,680
6892513	Mill Creek at Johnson Drive	8,718	266	3,590	1,300,000	68,600	(580)	576,000	(3,770)	659,000	(7, 160)	22,100
					Fecal colifor	m bacteria						
	2005											
6893100	Blue River at Kenneth Road	8,724	737	17,900	6,490,000	1,070,000	(8,910)	4,060,000	(26,800)	1,360,000	(14,800)	98,800
6892495	Cedar Creek near DeSoto	8,654	873	26,300	9,400,000	1,510,000	(12,900)	5,030,000	(32,900)	2,860,000	(32,600)	161,000
6893390	Indian Creek at State Line Road	8,723	2,450	56,300	20,300,000	2,430,000	(20, 300)	10,100,000	(67,600)	7,810,000	(84,900)	322,000
6892360	Kill Creek at 95th Street	8,692	679	16,200	5,870,000	658,000	(5,620)	2,780,000	(18, 100)	2,430,000	(26,400)	121,000
6892513	Mill Creek at Johnson Drive	8,573	1,340	34,700	12,400,000	1,710,000	(15,000)	4,610,000	(30,500)	6,080,000	(66, 100)	211,000
	2006											
6893100	Blue River at Kenneth Road	8,760	654	9,350	3,410,000	151,000	(1,260)	1,570,000	(10, 300)	1,690,000	(18,400)	51,900
6892495	Cedar Creek near DeSoto	8,760	283	4,430	1,610,000	37,700	(319)	844,000	(5,520)	727,000	(006, 7)	27,500
6893390	Indian Creek at State Line Road	8,315	2,080	43,500	15,100,000	480,000	(4, 440)	8,060,000	(54, 100)	6,520,000	(72,900)	239,000
6892360	Kill Creek at 95th Street	8,526	373	1,950	691,000	42,200	(381)	608,000	(3, 970)	40,800	(454)	14,200
6892513	Mill Creek at Johnson Drive	8,718	512	8,700	3,170,000	146,000	(1,230)	1,410,000	(9,200)	1,610,000	(17,500)	53,900

				Esti-	Feti.	Tot	al seasonal lo	ads (mean d	aily load) in b	illion colonie	S	
Calen	dar year and monitoring site (fig. 1)	Number of values	Mean daily concen- tration (col/100mL)	mated mean daily load (billion col/day)	mated annual load (billion col)	November 1-	-February 28	March ,	-July 31	August 1–(October 31	Esti- mated yield [(billion col/mi²//yr)
					Enterococo	ci bacteria						
	2005											
6893100	Blue River at Kenneth Road	8,724	3,800	162,000	59,100,000	7,380,000	(61, 500)	40,100,000	(264,000)	11,600,000	(126,000)	900,000
6892495	Cedar Creek near DeSoto	8,654	3,960	128,000	45,800,000	7,350,000	(62,700)	24,500,000	(160,000)	14,000,000	(160,000)	783,000
6893390	Indian Creek at State Line Road	8,723	7,250	235,000	84,900,000	8,200,000	(68,300)	43,800,000	(293,000)	32,900,000	(357,000)	1,350,000
6892360	Kill Creek at 95th Street	8,692	3,320	84,600	30,700,000	3,310,000	(28, 300)	14,600,000	(95, 300)	12,800,000	(139,000)	632,000
6892513	Mill Creek at Johnson Drive	8,573	3,400	92,200	33,000,000	4,500,000	(39,400)	12,300,000	(81, 200)	16,200,000	(176,000)	561,000
	2006											
6893100	Blue River at Kenneth Road	8,760	4,450	114,000	41,500,000	1,200,000	(9,930)	18,900,000	(123,000)	21,400,000	(232,000)	632,000
6892495	Cedar Creek near DeSoto	8,760	1,150	21,100	7,640,000	150,000	(1, 270)	3,900,000	(25,500)	3,590,000	(39,000)	131,000
6893390	Indian Creek at State Line Road	8,315	5,690	191,000	66,300,000	1,220,000	(11, 300)	37,300,000	(250,000)	27,800,000	(310,000)	1,050,000
6892360	Kill Creek at 95th Street	8,526	1,740	10,200	3,620,000	210,000	(1,900)	3,200,000	(20,900)	209,000	(2, 320)	74,500
6892513	Mill Creek at Johnson Drive	8,718	1,270	23,200	8,440,000	371,000	(3, 140)	3,770,000	(24,700)	4,300,000	(46, 700)	144,000

Figure 16. Estimated annual loads and yields for suspended sediment, chloride, and *Escherichia coli* bacteria at five water-quality monitoring sites in Johnson County, Kansas, 2005–06.

Figure 17. Duration curves for estimated suspended-sediment load at five water-quality monitoring sites in Johnson County, Kansas, January 2005–December 2006.

estimated peak streamflow of 11,600 ft³/s) on the Blue River lasted about 3 days but contributed more than 50 percent of the total annual suspended-sediment load (fig. 20, table 13). Therefore, about 50 percent of the 2005 sediment load at the Blue River site occurred during less than 1 percent of the time. Similarly, a June 2005 storm runoff lasting about 4 days on Kill Creek contributed 42 percent of the annual sediment load (table 13). The associated peak streamflow was 5,820 ft³/s, which was less than the estimated 2-year streamflow of 6,470 ft³/s. Approximately 80 percent of the total annual sediment load in 2005 at the Kill Creek site occurred during four periods of runoff totaling about 10 days. A 2.4-day runoff at the Indian Creek site in June 2005 contributed about 30 percent of the total annual suspended-sediment load while reaching a peak streamflow of 10,500 ft³/s, approximately equal to the estimated 5-year peak streamflow. Five of 10 runoff periods at the Indian Creek site that exceeded 1,000 ft3/s in 2005 showed single-line (Type 1) hysteresis characteristics, indicative of unlimited sediment supplies during runoff conditions. However, large peak streamflows at the Indian Creek site did not result in turbidity conditions or sediment loads as large as those that occurred at the other sites under similar streamflow conditions.

Dissolved Solids, Chloride, and Other Major Ions

Dissolved solids in surface water primarily consist of the major ions calcium, magnesium, sodium, potassium,

bicarbonate, sulfate, and chloride. These ions originate from the decomposition of soils and rocks (Hem, 1992). In addition, dissolved solids in stream water can increase as a result of sewage, industrial effluents, agricultural runoff, urban runoff, and atmospheric deposition (Maidment, 1993; Wetzel, 2001). The relative amount of different ions in surface water varies depending on the sources. Dissolved solids are used as an indicator for suitability of water for drinking, irrigation, and industrial use (Maidment, 1993).

All of the regression models for dissolved solids and major ions included specific conductance as the only explanatory variable (table 8), which is reasonable because specific conductance is an indirect measure of the ionized substances in water. Uncertainty in the regression models for dissolved solids (which is a measure of all the major ions combined) was minimal, as indicated by high R² values ranging from 0.88 to 0.98, and low RMSE values of 0.0523 or less (table 8). The ranges of specific conductance and dissolved solids at the Blue River and Kill Creek sites were smaller than the other sites (because of the larger percentage of nonurban land use upstream from the sites) which contributed to more uncertainty in the models. Uncertainty in models for individual ions varied. R² values ranged from 0.66 for chloride at the Kill Creek site to 0.97 for sodium at the Indian Creek site. RMSE values ranged from 0.0423 for magnesium at the Blue River site to 0.168 for chloride at the Kill Creek site (table 8). A much smaller portion of dissolved solids at nonurban sites comes from chloride compared to urban sites.

Minimum 0.002 0.020 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02	1 percentile St	5 nercentile	10	25	5		•			
0.002 0.002 0.037 0.05 0.062 0.002 0.023 0.023 0.02 0.02 0.02 0.02	percentile Su	nercentile	o lituo o o o o		20	75	06	95	66	
0.002 .020 .037 .037 .005 .002 .002 .012 .012 .012	S		hercellule	percentile p	percentile	percentile	percentile	percentile	percentile	Maximum
0.002 .020 .037 .005 .005 .002 .023 .032 .012 .012		spended-sec	liment load, i	n tons per da	h.					
0.002 .020 .037 .005 .062 .062 .002 .032 .003 .012 .012										
.020 .037 .005 .062 .062 .023 .032 .032 .005 .005	0.007	0.017	0.031	0.110	0.340	1.60	13.0	70.0	1,300	45,000
.037 .005 .062 .062 .002 .002 .003 .012 .012	.028	.049	.074	.160	.350	1.20	6.10	32.0	1,100	39,000
.005 .062 .062 .002 .023 .032 .005 .012	.053	.076	.120	.290	.670	2.80	21.0	140	2,680	43,000
.062 .0002 .023 .023 .005 .012 .012	.013	.018	.030	.083	.200	.720	6.30	38.0	1,360	33,000
.0002 .023 .032 .005 .012 .012	080.	.150	.200	.390	.860	3.70	24.0	139	2,600	45,000
.0002 .023 .032 .005 .012 .012										
.023 .032 .005 .012 .012	.001	900.	.013	.035	.100	.320	2.00	8.10	220	41,000
.032 .005 .012 .002	.033	.044	.053	.081	.170	.330	1.10	3.10	74.4	13,000
.005 .012 .002	.086	.140	.180	.280	009.	1.70	14.0	64.0	870	46,000
.002	.010	.014	.016	.029	.065	.170	.610	2.40	31.0	10,000
.002	.046	.071	.093	.150	.290	.860	3.80	14.0	290	31,000
.002	•	otal suspenc	ed solids, in	tons per day						
.002										
	.006	.015	.028	866.	.303	1.36	11.3	59.2	1,090	36,700
.003	.016	.037	.057	.124	.281	.955	5.21	28.4	1,090	41,800
.011	.055	.115	.184	.406	.877	3.35	22.4	142	2,290	34,000
.001	.002	.006	.022	.078	.183	.670	5.73	33.9	1,150	26,900
.077	.110	.176	.240	.457	966.	4.10	25.4	141	2,540	42,900
.000	.001	.005	.012	.031	080.	.284	1.72	6.99	185	33,400
.014	.025	.034	.041	.064	.137	.278	.903	2.67	69.6	14,100
.041	.130	.199	.257	.386	.783	2.07	15.3	65.3	767	36,100
.001	.006	.011	.015	.027	.060	.161	.562	2.22	27.3	8,280
.004	.056	.087	.112	.180	.340	986.	4.23	15.4	300	29,100
		Dissolved	solids, in ton	s per day						
.281	.361	.674	1.27	6.59	11.6	33.6	93.8	183	581	3,640
3.00	3.73	6.58	8.28	11.2	17.8	38.3	84.6	160	718	2,230
17.9	23.9	28.6	30.9	36.2	46.8	86.2	206	380	1,270	4,000
.765	.828	1.46	3.17	5.46	9.41	20.2	53.5	110	483	2,610
5.63	6.79	10.7	12.8	16.9	26.9	54.7	127	258	864	3,310
.023	.055	.440	.687	1.74	5.86	10.9	22.8	40.9	140	1,380
1.74	2.63	4.11	4.70	6.25	10.2	15.7	27.1	51.8	198	1,550
18.0	22.4	26.3	28.7	32.8	40.1	54.5	126	236	632	3,990
.184	.332	.494	.567	.947	3.68	6.25	13.0	24.7	83.1	166
2.57	3.42	4.34	5.86	9.68	14.7	24.6	49.3	86.2	344	1,630
1.74 18.0 .18 ² 2.57	4	2.63 22.4 3.32 3.42	2.63 4.11 22.4 26.3 1 .332 .494 3.42 4.34	2.63 4.11 4.70 22.4 26.3 28.7 1 .332 .494 .567 3.42 4.34 5.86	2.63 4.11 4.70 6.25 22.4 26.3 28.7 32.8 1 .332 .494 .567 .947 3.42 4.34 5.86 9.68	2.63 4.11 4.70 6.25 10.2 22.4 26.3 28.7 32.8 40.1 1 .332 .494 .567 .947 3.68 3.42 4.34 5.86 9.68 14.7	2.63 4.11 4.70 6.25 10.2 15.7 22.4 26.3 28.7 32.8 40.1 54.5 1 .332 .494 .567 .947 3.68 6.25 3.42 4.34 5.86 9.68 14.7 24.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 12. Regression-estimated loads for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December 2006.

Continued	Minu	Comple			load or	dancity at ind	linatad fran	ancy of avr	aadanca in	narcant			
											L		
monitoring site (fig. 1)	ber of values	standard deviation	Minimum	1 percentile	5 percentile	10 percentile	25 percentile	50 percentile	75 percentile	90 percentile	95 percentile	99 percentile	Maximum
				-	Calcium, di	ssolved, in to	ons per day						
2005													
Blue River at Kenneth Road	8,760	26.5	0.057	0.075	0.143	0.270	1.47	2.56	7.38	19.8	36.7	110	571
Cedar Creek near DeSoto	8,590	28.9	.575	.720	1.24	1.56	2.10	3.32	7.36	16.1	32.0	156	560
Indian Creek at State Line Road	8,674	30.9	2.02	2.70	3.22	3.48	4.03	5.27	9.70	22.5	41.2	150	563
Kill Creek at 95th Street	8,760	19.1	.164	.178	.310	.670	1.17	2.03	4.35	11.0	21.4	86.4	426
Mill Creek at Johnson Drive	8,654	27.6	.881	1.03	1.62	1.93	2.50	3.97	7.98	18.8	40.0	138	593
2006													
Blue River at Kenneth Road	8,760	10.8	.005	.012	.101	.152	.381	1.32	2.41	5.02	8.84	28.4	258
Cedar Creek near DeSoto	8,710	13.3	.412	.573	.760	.866	1.13	1.83	2.87	5.02	9.78	40.6	307
Indian Creek at State Line Road	8,760	23.6	2.02	2.52	2.97	3.22	3.66	4.41	6.08	14.3	25.8	79.2	537
Kill Creek at 95th Street	8,648	5.99	.040	.071	.102	.118	.198	.795	1.37	2.77	5.32	17.2	179
Mill Creek at Johnson Drive	8,760	13.1	.404	.540	.670	.903	1.44	2.17	3.62	7.18	12.50	54.8	288
					Magnesium,	dissolved, in	tons per day						
2005													
Blue River at Kenneth Road	8,760	3.22	.007	600.	.017	.033	.180	.313	.903	2.42	4.47	13.5	69.1
Cedar Creek near DeSoto	8,590	3.09	.070	.088	.153	.194	.261	.412	.892	1.98	3.79	17.4	56.8
Indian Creek at State Line Road	8,674	5.44	.395	.526	.630	.678	.799	1.03	1.89	4.70	8.64	27.1	84.5
Kill Creek at 95th Street	8,760	2.58	.022	.024	.041	080.	.156	.269	579	1.47	2.87	11.7	58.0
Mill Creek at Johnson Drive	8,654	3.93	.130	.156	.244	.293	.385	.612	1.24	2.89	5.96	19.9	79.6
2006													
Blue River at Kenneth Road	8,760	1.31	.001	.002	.012	.019	.047	.161	.295	.614	1.08	3.47	31.5
Cedar Creek near DeSoto	8,710	1.52	.044	.065	.095	.109	.144	.233	.361	.630	1.21	4.70	36.6
Indian Creek at State Line Road	8,760	3.81	.397	.494	.576	.631	.723	.892	1.20	2.77	5.31	13.6	90.2
Kill Creek at 95th Street	8,648	.805	.005	600.	.014	.016	.026	.106	.182	.369	.708	2.30	24.2
Mill Creek at Johnson Drive	8,760	1.88	.060	.079	.100	.135	.221	.336	.562	1.12	1.96	8.04	38.2
					Sodium, di	ssolved, in to	ins per day						
2005													
Blue River at Kenneth Road	8,760	7.14	.016	.022	.042	670.	.443	.771	2.22	5.82	10.6	32.0	146
Cedar Creek near DeSoto	8,590	11.2	.357	.412	<i>917</i> .	1.04	1.44	2.28	4.87	10.5	18.3	64.2	158
Indian Creek at State Line Road	8,674	40.3	2.95	3.86	4.69	5.09	6.04	7.72	14.7	37.8	69.1	207	774
Kill Creek at 95th Street	8,760	5.45	.057	.061	.106	.227	.410	.706	1.50	3.63	6.89	25.9	117
Mill Creek at Johnson Drive	8,654	19.0	.674	.863	1.40	1.69	2.33	3.92	7.71	17.8	36.1	104	289
2006													
Blue River at Kenneth Road	8,760	2.98	.002	.004	.030	.046	.114	399	.729	1.50	2.31	8.41	74.3
Cedar Creek near DeSoto	8,710	6.52	.139	.249	.505	.635	.857	1.43	2.12	3.64	6.63	21.3	175
Indian Creek at State Line Road	8,760	25.8	2.97	3.63	4.22	4.72	5.43	6.87	9.43	20.5	41.8	108	729
Kill Creek at 95th Street	8,648	1.87	.014	.025	.035	.040	.067	.273	.481	.952	1.83	5.74	53.3
Mill Creek at Johnson Drive	8,760	9.32	.302	.405	.541	.710	1.30	2.09	3.52	7.44	13.0	39.8	250
		-				louciae - a loud	line of furning	y					
--------------------------------------	-----------	-----------------	-----------	------------	--------------	------------------	-----------------	------------	------------	------------	------------	------------	---------
calendar year and monitoring site	ber of	standard	Minimum	-	5	10 10	25 25	50	75 75	bercent	95	66	Maximum
(fig. 1)	values	deviation		percentile	percentile	percentile	percentile	percentile	percentile	percentile	percentile	percentile	
					Sulfate, dis	solved, in to	ns per day						
2005													
Blue River at Kenneth Road	8,760	13.4	0.032	0.043	0.082	0.155	0.877	1.53	4.36	11.4	20.4	61.7	266
Cedar Creek near DeSoto	8,590	21.4	909.	.736	1.32	1.71	2.34	3.69	7.89	17.3	31.0	121	342
Indian Creek at State Line Road	8,674	41.1	3.03	3.99	4.82	5.22	6.20	7.91	15.0	38.1	70.7	210	763
Kill Creek at 95th Street	8,760	12.2	.116	.125	.219	.472	.834	1.44	3.06	7.59	14.8	56.6	268
Mill Creek at Johnson Drive 2006	8,654	25.4	.894	1.12	1.79	2.13	2.89	4.70	9.38	21.9	43.5	136	427
Blue River at Kenneth Road	8.760	5.66	.003	.007	.059	060.	.224	167.	1.44	2.95	5.12	16.4	143
Cedar Creek near DeSoto	8,710	11.7	.284	.467	.841	966.	1.35	2.20	3.34	5.78	10.7	37.5	301
Indian Creek at State Line Road	8,760	26.8	3.06	3.78	4.38	4.86	5.56	7.01	9.57	21.2	42.5	111	737
Kill Creek at 95th Street	8,648	4.02	.028	.051	.072	.082	.138	.560	.976	1.95	3.76	12.0	117
Mill Creek at Johnson Drive	8,760	12.4	.404	.534	.705	.940	1.64	2.55	4.25	8.86	15.8	54.6	294
					Chloride, di	ssolved, in to	ins per day						
2005													
Blue River at Kenneth Road	8,760	11.3	.027	.036	.069	.129	.726	1.26	3.62	9.49	17.2	51.8	229
Cedar Creek near DeSoto	8,590	13.8	.463	.531	1.02	1.38	1.91	3.02	6.47	13.9	23.7	78.7	182
Indian Creek at State Line Road	8,674	62.8	4.10	5.58	6.89	7.57	8.98	11.5	22.6	57.2	104	309	1,310
Kill Creek at 95th Street	8,760	6.53	.065	.071	.123	.264	.472	.812	1.73	4.23	8.08	30.6	141
Mill Creek at Johnson Drive	8,654	29.9	1.05	1.33	2.19	2.70	3.75	6.35	12.4	29.2	57.2	163	476
2006													
Blue River at Kenneth Road	8,760	4.77	.002	.006	.049	.074	.186	.654	1.19	2.46	4.25	13.7	120
Cedar Creek near DeSoto	8,710	8.28	.164	.304	.651	.847	1.14	1.93	2.83	4.86	8.75	27.5	225
Indian Creek at State Line Road	8,760	38.5	4.41	5.20	6.14	6.86	8.07	10.3	14.4	30.7	61.4	175	1,140
Kill Creek at 95th Street	8,648	2.20	.016	.028	.040	.046	.078	.316	.553	1.10	2.11	69.9	63.4
Mill Creek at Johnson Drive	8,760	14.7	.470	.626	.851	1.11	2.08	3.38	5.71	12.2	21.5	60.6	411
					Nitrogen,	total, in tons	s per day						
2005													
Blue River at Kenneth Road	8,760	2.18	.001	.001	.002	.004	.020	.040	.138	.454	1.13	5.02	68.2
Cedar Creek near DeSoto	Estimated	l values not av	vailable.										
Indian Creek at State Line Road	8,674	3.69	.195	.345	.396	.429	.515	969.	1.08	2.14	3.86	13.65	103
Kill Creek at 95th Street	8,692	2.22	.001	.002	.002	.003	.007	.015	.037	.180	.540	6.17	57.3
Mill Creek at Johnson Drive	8,573	4.41	.016	.021	.031	.040	.074	.117	.258	.687	1.79	11.7	141
2006													
Blue River at Kenneth Road	8,760	.725	.0001	.0001	.001	.002	.005	.018	.035	.088	.183	.821	24.2
Cedar Creek near DeSoto	Estimated	t values not av	vailable.										
Indian Creek at State Line Road	8,315	2.97	.244	.308	.349	.371	.442	.563	.747	1.44	2.82	8.80	75.3
Kill Creek at 95th Street	8,483	.461	.0003	.001	.001	.001	.002	.005	.010	.026	.072	.406	20.5
Mill Creek at Johnson Drive	8,718	2.45	.010	.012	.016	.021	.037	.066	.120	.229	.448	2.59	159

nitoring sites in Johnson County, northeast Kansas, January 2005–December 2006.	
-quality constituents at five water-quality m	
12. Regression-estimated loads for selected water-	

Calendar year and	-mn	Sample			Load or	density at inc	dicated frequ	iency of exi	ceedance, ir	percent			
monitoring site (fig. 1)	ber of values	standard	Minimum	1 nercentile	5 nercentile	10 nercentile	25 nercentile	50 nercentile	75 nercentile	90 nercentile	95 nercentile	99 nercentile	Maximum
[Phoenhori	is total in to	ns ner dav						
2005							ila per uay						
CONZ													
Blue Kiver at Kenneth Koad Cedar Creek near DeSoto	8,724 Estimated	0.8223 d values not av	0.000156 ailable.	0.000188/	0.000327	0.00064/9	0.00281	0.00544	0.017	10/ 50.0	0061.0	1.24	21.2
Indian Creek at State I ine Road	8 674	3577	0649	<i>CLT</i> 0	0871	0007	107	121	103	777	5048	1 775	7 7 A
Kill Creek at 95th Street	8 697	2702.	000458	0005154	00034	00189	201.	00544	5010	17C: 0437	110	1.120	20.2
Mill Creak of Johnson Drive	0,572	1 123	00356	10000	18900	6100	2000:	1000	19467	-C-1	211.	3 079	2.02 7.12
MIIII Creek at Jonnson Drive 2006	د/ د,ه	L.450	00000	.00404	10000.	/0000.	C+IU.	1770.	.040	171.	1400.	0/0.0	2.10
Blue River at Kenneth Road	8,760	.4601	.0000102	.000025	.000192	.000301	.000798	.00255	.00488	.0119	.02715	.2258	21.3
Cedar Creek near DeSoto	Estimate	d values not av	'ailable.										
Indian Creek at State Line Road	8,315	.3179	.0593	.0709	.0805	.0838	.0942	.105	.143	.259	.441	1.21	7.32
Kill Creek at 95th Street	8,483	.1369	.000109	.000207	.000331	.000402	.000615	.00208	.00359	.008062	.0183	.08297	6.98
Mill Creek at Johnson Drive	8,718	1.174	.00214	.00258	.003464	.00459	.00764	.0122	.0212	.04357	.08744	.5453	78.4
				Esche	richia coli ba	cteria, in billi	on colonies	oer day					
2005													
Blue River at Kenneth Road	8,724	70,700	.029	.127	.339	.563	2.20	7.31	37.8	379	2,320	57,700	2,710,000
Cedar Creek near DeSoto	8,588	212,000	.188	.376	1.02	1.66	4.68	12.1	44.3	307	2,080	131,000	8,640,000
Indian Creek at State Line Road	8,674	394,000	11.7	24.5	44.3	64.7	137	291	1,130	7,690	49,300	818,000	12,200,000
Kill Creek at 95th Street	8,692	135,000	.170	.463	.903	2.21	7.04	16.8	66.4	630	4,200	186,000	5,440,000
Mill Creek at Johnson Drive	8,573	165,000	2.29	6.37	9.22	11.6	21.2	47.5	232	1,700	11,800	303,000	5,910,000
2006													
Blue River at Kenneth Road	8,760	51,000	.003	.015	.107	.261	.713	1.97	7.12	53.9	261	9,610	2,800,000
Cedar Creek near DeSoto	8,710	56,000	.305	.662	966.	1.27	2.24	5.80	12.8	44.8	148	6,390	2,980,000
Indian Creek at State Line Road	8,315	420,000	13.0	41.6	64.0	83.0	125	257	688	5,200	22,500	269,000	13,000,000
Kill Creek at 95th Street	8,483	51,900	.088	.512	1.21	1.83	3.65	8.74	23.2	89.4	372	6,070	2,940,000
Mill Creek at Johnson Drive	8,718	72,400	.178	1.77	2.88	3.89	6.75	13.9	47.2	238	1,010	27,300	4,510,000
				Fecal	coliform bac	teria, in billio	n colonies p	er day					
2005													
Blue River at Kenneth Road	8,724	277,000	.243	.918	2.37	4.14	15.6	49.6	238	2,170	12,300	264,000	10,300,000
Cedar Creek near DeSoto	8,588	441,000	.188	.377	1.10	1.85	5.54	15.0	56.8	435	3,170	233,000	18,400,000
Indian Creek at State Line Road	8,674	557,000	5.60	27.7	58.2	93.3	206	444	1,700	11,300	71,800	1,160,000	17,200,000
Kill Creek at 95th Street	8,692	27,800	.001	.390	.871	1.28	2.46	5.84	15.5	57.9	239	3,570	1,560,000
Mill Creek at Johnson Drive	8,573	412,000	2.48	3.69	6.90	10.6	23.8	64.9	351	2,860	22,100	699,000	15,000,000
2006													
Blue River at Kenneth Road	8,760	188,000	.020	.112	.786	1.85	5.01	14.1	47.6	319	1,440	43,900	9,920,000
Cedar Creek near DeSoto	8,710	115,000	.306	969.	1.06	1.42	2.63	7.14	16.6	59.9	206	10,400	6,390,000
Indian Creek at State Line Road	8,315	591,000	20.9	65.7	101	130	195	396	1,050	7,750	33,000	389,000	18,300,000
Kill Creek at 95th Street	8,483	47,800	.088	.356	.875	1.36	2.80	6.71	18.0	70.4	296	5,080	2,720,000
Mill Creek at Johnson Drive	8,718	191,000	.151	1.96	3.30	4.59	8.37	18.0	65.9	362	1,710	54,700	12,200,000

Continued			-			-	þ		1				
Calendar year and	Num-	Sample			Load or (lensity at inc	licated freq	uency of ex	ceedance, in	1 percent			
monitoring site	ber of	standard	Minimum	-	5	10	25	20	75	06	95	66	M
(fig. 1)	values	deviation		percentile	percentile	percentile	percentile	percentile	percentile	percentile	percentile	percentile	
				Ente	rococci bacte	eria, in billion	colonies p	er day					
2005													
Blue River at Kenneth Road	8,724 3,	,060,000	0.136	0.899	2.32	3.86	16.9	63.2	431	5,790	44,000	1,700,000	128,000,000
Cedar Creek near DeSoto	8,588 2,	,250,000	.188	.681	2.20	3.93	12.7	37.2	149	1,250	10,200	977,000	97,100,000
Indian Creek at State Line Road	8,674 2,	,600,000	1.78	14.8	37.1	66.7	183	480	2,360	21,700	187,000	4,510,000	83,800,000
Kill Creek at 95th Street	8,692 1.	,260,000	.088	.233	966.	6.04	30.3	76.9	341	3,540	27,700	1,520,000	54,700,000
Mill Creek at Johnson Drive	8,573 1,	,110,000	4.96	7.42	14.1	22	50.5	142	662	6,780	53,300	1,830,000	40,400,000
2006													
Blue River at Kenneth Road	8,760 2.	,650,000	.015	.104	.752	1.87	5.58	15.1	65.8	673	4,280	259,000	161,000,000
Cedar Creek near DeSoto	8,710	583,000	.552	1.35	2.20	3.05	5.91	17.6	42.8	164	593	36,100	34,000,000
Indian Creek at State Line Road	8,315 2.	,850,000	11.5	47.4	79.5	108	180	441	1,420	14,600	77,100	1,360,000	92,800,000
Kill Creek at 95th Street	8,483	256,000	.088	1.26	3.22	5.31	11.4	27.6	74.7	300	1,280	24,300	14,700,000
Mill Creek at Johnson Drive	8,718	524,000	.199	3.99	6.71	9.50	17.5	38.3	145	821	4,000	136,000	33,700,000

Table 12. Regression-estimated loads for selected water-quality constituents at five water-quality monitoring sites in Johnson County, northeast Kansas, January 2005–December 2006.

Figure 18. Cumulative estimated suspended-sediment loads and frequency of exceedance at five water-quality monitoring sites in Johnson County, Kansas, January 2005–December 2006.

In the category of dissolved solids and major ions, chloride was selected for additional evaluation and discussion in this report. Chloride, an ion of interest because of the aquatic-life criteria established by KDHE and USEPA, occurs naturally in various rock types. However, it generally occurs in low concentrations and is most likely to occur as an impurity (Hem, 1992). Potential sources include agricultural and industrial runoff, and WWTF discharges. In addition, chloride, in the form of sodium chloride (NaCl), calcium chloride (CaCl), and magnesium chloride (MgCl), is a major component of road de-icers (U.S. Environmental Protection Agency, 2002a). KDHE has established an acute aquatic-life criterion of 860 mg/L for chloride (Kansas Department of Health and Environment, 2005). The USEPA-recommended chronic freshwater quality criterion for chloride is 230 mg/L (U.S. Environmental Projection Agency, 2002b). In this report chloride concentrations are compared to the acute aquaticlife criterion of 860 mg/L and to the Secondary Drinking Water Regulation of 250 mg/L (U.S. Environmental Protection Agency, 2003a) which also corresponds to the Kansas chloride criterion for domestic water supply at the point of water supply diversion (Kansas Department of Health and Environment, 2005).

Like the other major ions, the regression models for chloride include specific conductance as the only explanatory variable (table 8). Uncertainty in the models is small for the most urban sites (Indian and Mill Creeks). Uncertainty associated with the chloride models for the Blue River and Kill Creek sites is larger in part because the range in chloride concentrations is smaller at these two nonurban sites (table 8). In addition, chloride generally makes up a smaller proportion of dissolved solids at nonurban sites where dissolved solids would be expected to originate from natural sources. Chloride concentrations in discrete samples ranged from 5.0 mg/L at the Kill Creek site to 1,678 mg/L at the Indian Creek site (table 8). Two discrete samples, collected in January 2004 and January 2007 at the Indian Creek site and affected by road-salt application, exceeded the KDHE criterion of 860 mg/L. Corresponding specific conductance in the discrete-sample dataset ranged from 160 μ S/cm at the Kill Creek site to 5,710 μ S/cm at the Indian Creek site.

The slopes of the chloride regression models are similar for the sites with comparable land use (fig. 14*B*). The slopes for the Blue River and Kill Creek regression models are similar, and the slopes for the Indian and Mill Creek models are similar, indicating similar chloride sources in the watersheds (predominantly agricultural sources in the first two watersheds and urban sources in the latter two watersheds). The steepest regression slope occurred in the Cedar Creek model, indicating larger chloride concentrations than at the other sites as specific conductance increased. The Cedar Creek watershed contains a larger percentage of industrial land use than the other four watersheds (table 1) which may result in varying principal sources of chloride possibly resulting in a different regression relation at this site.

Regression-estimated chloride concentrations were largest at the Indian and Mill Creek sites (fig. 21), the two most urban monitoring sites which also are affected by WWTFs.

Figure 19. Streamflow and cumulative suspended-sediment load at five water-quality monitoring sites in Johnson County, Kansas, 2005–06.

Figure 19. Streamflow and cumulative suspended-sediment load at five water-quality monitoring sites in Johnson County, Kansas, 2005–06.—Continued

Lee and others (2005) reported that during base flow, chloride concentrations in samples at or immediately downstream from WWTFs generally were the largest in each watershed. Estimated chloride concentrations ranged from about 5 mg/L at the Cedar Creek site in 2006 to 1,500 mg/L at the Indian Creek site in 2006 (table 10). The median chloride concentration at each site in 2005 was similar to that in 2006, even though the maximum chloride concentration at the Indian and Mill Creek sites in 2006 was nearly double the respective maximums in 2005. Generally, the median chloride concentration from January 2005 through December 2006 at the Indian Creek site was about four times the median at the Kill Creek site (table 10). The steep upward slopes in the duration curves for the Indian and Mill Creek sites are a result of road-salt application during winter months (fig. 21). About 10 percent of the time, the Indian and Mill Creek sites were noticeably affected by increased chloride concentrations as a result of road-salt runoff, while there were no major effects from roadsalt application at the Blue River and Kill Creek monitoring sites (fig. 21). The effect of accumulated road salt on ground water and base flow throughout the remainder of the year is unknown. Studies have shown that road salt can accumulate in soil and groundwater resulting in elevated chloride even when no salt is being applied (Kaushal and others, 2005).

At the Indian Creek site during 2005–06, there was a 50-percent probability of chloride concentration exceeding the 250-mg/L USEPA Secondary Drinking Water Regulation about 8 percent of the time, and exceeding the 860-mg/L KDHE acute aquatic-life criterion less than 1 percent of the time (fig. 22). Estimated annual chloride load at Indian Creek

Figure 20. Estimated suspended-sediment load during June 2005 at the Blue River monitoring site, Johnson County, Kansas.

in 2006 was more than twice that of Mill Creek and more than 25 times the estimated annual load at Kill Creek (table 11). About 50 percent of the total chloride load during 2005–06 occurred in less than 10 percent of the time at all five monitoring sites (fig. 23). Estimated yield characteristics were similar to load in that the Indian Creek chloride yield in 2006 was more than double that of Mill Creek, and more than 20 times that of Kill Creek (table 11).

Seasonal differences in chloride concentration and loads occur because of differences in streamflow sources and effects of road-salt application. Winter chloride concentrations (November 1-February 28) generally were larger than other seasons at all monitoring sites in part because ground water is a natural source of chloride and during the winter streamflow originates primarily from ground water with minimal dilution effects from rainfall. At urban sites, very high chloride concentrations during the winter (fig. 24) were caused by application of deicing chemicals to keep roadways clear of snow and ice. Nationwide, the most commonly used and economical deicer is sodium chloride (salt), which is effective because it lowers the freezing point of water, preventing ice and snow from bonding to the pavement and allowing easy removal by snow plows (U.S. Environmental Protection Agency, 2002a). During two winter storms in December 2005, an estimated 2,550 tons of salt, 917 tons of salt/sand mix, and 8,000 gal of calcium chloride were applied to roadways in Overland Park, Kansas, (City of Overland Park, written commun., April 2005) which includes a large part of the Indian

Creek watershed. Deicing chemicals concentrate in runoff and enter surface and ground water, potentially causing problems for aquatic environments. The Indian and Mill Creek sites were most affected by road-salt application, and the maximum concentrations were larger during 2006 (table 11) when annual precipitation and streamflow were less than normal compared to 2005. In 2005, 39 percent (Kill Creek) to 57 percent (Indian Creek) of the total annual chloride load occurred during the winter (November 1 through February 28); in 2006, 23 percent (Kill Creek) to 46 percent (Indian Creek) of the total annual load occurred during the winter (table 11).

Two apparently similar chloride runoff occurrences resulting from road-salt application can nevertheless have different effects on stream chemistry, depending on rainfall, snowmelt, and runoff. Cedar, Indian, and Mill Creeks were affected by road-salt runoff in January and February 2005 (fig. 25). During that time at Indian Creek, for example, the first chloride increase, caused primarily by warming temperatures and gradual runoff from snowmelt, resulted in a 10-day period when chloride concentrations were larger than 250 mg/L, and total chloride load during that period was 725 tons. The second chloride increase resulted in about 6 days when chloride concentration was larger than 250 mg/L, but the chloride load was nearly double the load during the first chloride increase at 1,330 tons because of the larger associated streamflow. These two periods of runoff contributed 19 percent of the total chloride load in Indian Creek in 2005.

Continuous in-stream monitoring site (fig. 1)	Dates of largest storm runoff in 2005	Peak stream- flow, in cubic feet per second	Percentage of annual suspended- sediment load
Blue River at Kenneth Road	June 3–5	9,840	52
Cedar Creek near DeSoto	June 3–6	4,390	41
Indian Creek at State Line Road	June 3–5	10,500	31
Kill Creek at 95th Street	June 3–6	5,820	42
Mill Creek at Johnson Drive	August 19–22	8,280	20

Table 13. Percentage of annual suspended-sediment load that oc-curred during the single largest storm runoff for 2005 at five water-quality monitoring sites in Johnson County, northeast Kansas.

Fecal-Indicator Bacteria

Fecal coliform, *E. coli*, and enterococci are the three most common types of bacteria used as indicators of pathogens in surface water. Indicator bacteria are used to evaluate the sanitary quality of water and its use as a public water supply and for recreational activities such as swimming, wading, boating, and fishing (American Public Health Association and others, 1995). The presence of *E. coli* indicates the possible presence of pathogens found in feces of warmblooded animals (Dufour, 1977). These indicator bacteria and pathogens may cause human diseases ranging from mild diarrhea to respiratory disease, septicemia, meningitis, and polio (Dufour, 1977).

Kansas water-quality criteria for E. coli bacteria require stream sites to be classified and regulated according to designated use and accessibility. Most segments of the Blue River and Cedar and Mill Creeks have been designated as Class C, indicating primary contact recreation not open to and accessible by the public. Most segments of Kill Creek are Class B, indicating primary contact recreation accessible by the public with landowner permission. Designated uses for Indian Creek have not been determined by the State (Kansas Department of Health and Environment, 2005). Primary contact recreational use criteria for E. coli state that for the three use classifications of water (Appendix 1), a geometric mean of five samples collected during separate 24-hour periods within a 30-day period cannot exceed 160, 262, and 427 colony-forming units per 100 mL of water from April through October each year. From November through March primary contact criteria for E. coli are 2,358 or 3,843 col/100 mL for the three use classes (Kansas Department of Health and Environment, 2005). Geometric means were not applied in this report because the data used are continuous rather than five discrete samples

collected during separate 24-hour periods within 30-day periods, as described by the criteria. A direct comparison to the actual criteria values, however, is considered meaningful when evaluating continuous data.

All regression models for indicator bacteria included turbidity as the only explanatory variable (table 8). Indicator bacteria have been shown to be closely related to sediment because bacteria attach to sediment particles and because sediment concentration is closely related to turbidity (Rasmussen and Ziegler, 2003; Rasmussen and others, 2005). R² values ranged from 0.67 for fecal coliform at the Indian Creek site to 0.90 at the Cedar Creek site for enterococci, and RMSE values ranged from 0.445 for *E. coli* at the Cedar Creek site to 0.668 for enterococci at the Mill Creek site (table 8). Some regression models for indicator bacteria are characterized by somewhat high variability in data (table 8) and in the relation between bacteria and sediment (table 9).

E. coli bacteria models for each site are shown in figure 14C. The models were developed using discrete samples ranging from less than 10 to greater than 20,000 col/100 mL at each site and turbidity values ranging from less than 10 to greater than 900 FNUs (table 8). The relation between turbidity and E. coli bacteria at the Indian Creek site is different from the other sites (fig. 14C). The slope is less and the y-intercept is larger, indicating that at small turbidity values, E. coli densities at the Indian Creek site are larger relative to the other sites. The Indian Creek site is located in the most urban watershed. Lee and others (2005) found larger indicator bacteria densities at stream sites in urban areas (upstream from WWTFs) than in nonurban areas. Urban sources, such as leaking sewage lines, pet waste, or regrowth in sediment, also may cause larger bacteria densities. In addition, the Indian Creek site is immediately downstream from a WWTF, which likely is affecting indicator bacteria densities. The small indicator bacteria densities found in the WWTF discharge may be enough to affect indicator bacteria densities at the Indian Creek monitoring site during low streamflow conditions. Lee and others (2005) found that resuspension of streambed sediment accounted for less than 1 percent of the bacteria density in stormflow samples.

E. coli density at the Indian Creek site was usually the largest of the five monitoring sites (fig. 26) with a median density more than double that of any other site, and at least 15 times the density at the Blue River site (table 10). At the Indian Creek site, the primary criterion (262 col/100 mL) was exceeded about 65 percent of the time, and the secondary criterion (2,358 col/100 mL) was exceeded about 10 percent of the time (fig. 26). The primary contact criterion was exceeded between about 8 and 25 percent of the time at the other monitoring sites. The secondary contact criterion was exceeded less than 5 percent of the time at the other sites. The Blue River and Cedar Creek sites had the smallest bacteria densities most of the time (fig. 26). In 2005-06, estimated densities at Indian Creek generally were largest during the winter, except during the 0-20 percent exceedance period (fig. 27A) compared to the other sites, which experienced the smallest concentrations

Figure 21. Duration curves for estimated chloride concentration at five water-quality monitoring sites in Johnson County, Kansas, March 2004–December 2006.

Figure 22. Frequency and probability of exceeding chloride criteria at the Indian Creek monitoring site, Johnson County, Kansas, January 2005–December 2006.

Figure 23. Cumulative estimated chloride loads and frequency of exceedance at five water-quality monitoring sites in Johnson County, Kansas, 2005–06.

Figure 24. Seasonal chloride concentration duration curves at the Indian Creek monitoring site, Johnson County, Kansas, January 2005–December 2006.

Figure 25. Elevated chloride concentrations during snowmelt as a result of road-salt application at five water-quality monitoring sites in Johnson County, Kansas, January–February 2005.

during the winter (Cedar, for example, in figure 27*B*). In 2005–06 at the Blue River site during April through October when water-quality criteria apply, there was a 50-percent probability of exceeding the primary criterion about 8 percent of the time and exceeding the secondary criterion 1 percent of the time (fig. 28*A*). At the Indian Creek site, there was a 50-percent probability of exceeding the primary criterion about 30 percent of the time and exceeding the secondary criterion 10 percent of the time (fig. 29*B*).

During 2005–06, the largest annual E. coli bacteria loads occurred at the Indian Creek site where the loads were at least double that of any other site (table 11). Also during 2005–06, more than 90 percent of the total E. coli bacteria load at the Cedar Creek site occurred in less than 1 percent of the time, generally during storm runoff, compared to the Indian Creek site where about 80 percent of the total E. coli load occurred less than 1 percent of the time (fig. 29). The largest annual bacteria yields occurred at the Indian Creek site as well (table 11). Potential urban sources of bacteria in Indian Creek include leaking sewer lines, pet waste, wildlife, WWTF discharges and bypasses, and unauthorized dumping. Total annual E. coli loads at the Cedar monitoring site, which is located in the downstream part of the watershed, in 2005 (4,690,000 billion colonies) and 2006 (820,000 billion colonies) bracketed the total annual E. coli loads in the upstream parts of the watershed reported by Mau and others (2004), in 2001 (3,900,000 billion colonies) and 2002 (1,400,000 billion colonies). Potential nonurban sources of bacteria in less urban watersheds include livestock, leaking septic systems, and wildlife waste. Permitted confined animal facilities located in the upstream part of the Blue River watershed have a combined animal count of about 1,500 animals, in the upstream part of Cedar and Kill Creeks, 250 and 950 animals, respectively, and in the downstream part of Mill Creek about 100 animals (Eileen Hack, Johnson County Stormwater Management Program, written commun., 2004).

E. coli bacteria densities at all sites increased by several orders of magnitude during storm runoff, indicating that bacteria in Johnson County streams originates primarily from nonpoint sources. This finding is consistent with results of previous studies. Lee and others (2005) reported that *E. coli* densities and loads were significantly larger (two to four orders of magnitude) in stormflow samples than base-flow samples. Wilkison and others (2006) found that bacteria densities in the Blue River Basin increased by several orders of magnitude during storms because most of the bacteria originated from nonpoint sources.

In addition, when fecal coliform bacteria load from the Blue River WWTF (calculated from data provided by D. Nolkemper, Johnson County Wastewater, written commun., September 2007), which discharges just downstream from the Blue River monitoring site, was added to the total load at the Blue River monitoring site (table 11), less than 1 percent of the total downstream Blue River fecal coliform bacteria load

Figure 26. Duration curves for estimated *Escherichia coli (E. coli)* bacteria density at five water-quality monitoring sites in Johnson County, Kansas, March 2004–December 2006.

originated from the WWTF (fig. 30). The 2005 and 2006 load calculations for fecal coliform bacteria from the two WWTFs on Indian Creek indicated that less than 3 percent of the total fecal coliform bacteria load at the Indian Creek monitoring site originated from WWTFs and more than 97 percent of the load originated from nonpoint sources (fig. 30).

Results of Selected Discrete-Sample Analysis

All samples collected during this study were analyzed for nutrients and pesticides, and an attempt was made to develop regression models for them. However, because significant explanatory variables were not found for nutrients at all sites and because of large variability in some of the existing models, discrete data, rather than continuous data, are used in this report for making comparisons between the five watersheds.

Nutrients

Nutrients, including various forms of nitrogen and phosphorus, are essential for proper plant and animal growth but in excess can lead to eutrophication, algal blooms, fish kills, low dissolved oxygen, taste and odor problems, and other disruptions in aquatic ecosystems. Runoff from both urban and nonurban sources contributes to nutrient concentrations in streams. Typical nutrient sources include municipal wastewater discharge, fertilizers, and runoff from livestock operations (Masters, 1991). In addition, natural background concentrations of total nitrogen and total phosphorus in headwater streams within the study area have been estimated to be 0.15 to 0.30 mg/L and 0.06 mg/L or greater, respectively (Smith and others, 2003). Kansas has no numerical water-quality criteria for total nitrogen or total phosphorus but has set a goal of reducing export of these nutrients from the State by 30 percent (Kansas Department of Health and Environment, 2004b). USEPA Ecoregion IX, Level III subecoregion 40 (Central Irregular Plains which includes Johnson County) recommended criteria are 0.855 mg/L total nitrogen and 0.0925 mg/L for total phosphorus (U.S. Environmental Protection Agency, 2003b).

Regression models for nutrient species were developed when significant continuous explanatory variables were found (table 8). Generally, variability in total nutrient models was minimal at the two nonurban sites (Blue River and Kill Creek) compared to the sites where nutrient sources were more diverse (Mill and Indian Creeks). No significant explanatory variables were found for total nitrogen or total phosphorus at the Cedar Creek site. Because watershed comparisons are incomplete without including all sites, discussion of estimated nutrient values in this report is limited. However, duration estimates for estimated concentrations and loads are provided in tables 10 and 12 and continuous estimated data are available on the World Wide Web at http://ks.water.usgs.gov.

Figure 27. Seasonal duration curves for estimated *Escherichia coli (E. coli)* bacteria density at the (*A*) Indian Creek and (*B*) Cedar Creek water-quality monitoring sites, January 2005–December 2006.

Figure 28. Probability of exceeding *Escherichia coli* bacteria criteria at the (*A*) Blue River and (*B*) Indian Creek water-quality monitoring sites, in Johnson County, Kansas, January 2005– December 2006. Recreation criteria from Kansas Department of Health and Environment (2005).

Figure 29. Cumulative estimated *Escherichia coli (E. coli)* bacteria loads and frequency of exceedance at five water-quality monitoring sites in Johnson County, Kansas, January 2005–December 2006.

Figure 30. Total annual estimated fecal coliform bacteria loads and loads originating from wastewatertreatment-facility (WWTF) discharges to the Blue River and Indian Creek, Johnson County, Kansas, January 2005–06 (fecal coliform bacteria loads from WWTF discharges calculated from density and discharge data provided by D. Nolkemper, Johnson County Wastewater, written commun., September 2007).

Turbidity was found to be a significant explanatory variable for total nitrogen and total phosphorus at all monitoring sites except the Cedar Creek site. The best models, as indicated by large R² values and small RMSEs, were for the Blue River and Kill Creek sites, the two least urban watersheds and the two sites with the strongest correlations between suspended-sediment concentration and total nitrogen and phosphorus (table 9). The Cedar Creek watershed contains more impoundments than the other watersheds (indicated by the larger percentage of surface water compared to the other sites, table 1), which may interfere with relations between sediment and nutrients. By trapping sediment, impoundments also can trap nutrients that attach to sediment. Variability in the Indian Creek regression models for total nitrogen and total phosphorus likely is a result of the effects of WWTFs and changing predominant sources at that site during various streamflow conditions. Discrete-sample data indicated that the median total phosphorus concentrations at the Indian Creek site during the sample-collection period (1.0 mg/L, table 14) was about 60 percent larger than median concentrations at the Cedar and Mill Creek sites (each about 0.6 mg/L) and more than double those at the Kill Creek and the Blue River sites (each about 0.4 mg/L) (table 14).

Concentrations of different nutrient species varied according to primary sources and streamflow conditions. Discrete samples collected during various streamflow conditions from October 2002 through January 2006 indicated that the largest total nitrogen concentrations occurred at the Indian Creek monitoring site during streamflows less than 200 ft³/s, with the exception of one sample from the Cedar Creek site and one sample from the Mill Creek site (fig. 31A). The largest proportion of nitrogen in those samples was nitrate (fig. 31B) indicating that WWTFs were likely a primary source of nitrogen during lower streamflow conditions. Ammonia, which can be toxic to aquatic life, occurred in the largest concentrations at the Indian Creek site during low flow. The largest total phosphorus concentrations at the Blue, Kill, and Mill Creek monitoring sites occurred during larger streamflows, whereas the largest total phosphorus concentrations at the Cedar and Indian Creek sites occurred during flow less than 200 ft3/s (fig. 32). Larger total phosphorus concentrations during lower flows indicate WWTFs were a primary source, which is consistent with findings reported by Lee and others (2005). Larger concentrations of total nutrients during storm runoff at the Blue River and Kill Creek sites indicate that nonpoint sources are predominant in those primarily agricultural watersheds. Large concentrations of total nutrients during both base flow and storm runoff at the more urban sites indicate that the streams are affected by both point and nonpoint sources of nutrients.

Estimates indicate that about 40 percent of the total nitrogen load in 2005 and 70 percent of the total nitrogen load in 2006 originated from the WWTF discharges to the Blue River just downstream from the monitoring site. Nutrient loads from WWTFs were calculated using concentration and discharge data provided by D. Nolkemper, Johnson County Wastewater, written commun., September 2007. One-fourth (in 2005) to one-half (in 2006) of the downstream total phosphorus load in the Blue River originated from WWTF discharges. Total nitrogen load discharged from the two Indian Creek WWTFs was about 65 percent of estimated total nitrogen load at the downstream Indian Creek monitoring site in 2005 and 90 percent of the estimated downstream total nitrogen load in 2006 (fig. 33). Total phosphorus load from the Indian Creek WWTFs was 90 percent of the total phosphorus load at the downstream monitoring site in 2005 and 120 percent of the downstream total phosphorus load in 2006 (fig. 33).

Nutrient loads from the WWTFs were nearly the same in 2005 and 2006. However, because less precipitation occurred in 2006, nutrient loads originating from runoff were smaller compared to 2005. At Indian Creek, the total phosphorus load from the WWTFs exceeded the downstream total phosphorus load in 2006 primarily because of additional settling of nutrients along with sediment that occurred within the distance between the WWTF discharges and the monitoring sites, with less flushing from stormwater runoff. The largest of the two WWTFs on Indian Creek will be undergoing upgrades and is scheduled to begin biological nutrient removal in 2010 (D. Nolkemper, Johnson County Wastewater, written commun., September 2007).

Pesticides

In 2001, an estimated 1,203 million lbs of conventional pesticides were sold in the United States, the majority of which were herbicides (58 percent) and insecticides (28 percent) (Kiely and others, 2004). An estimated 76 percent of the total was used for agricultural purposes, 13 percent for commercial/industrial/government purposes, and 11 percent for home and garden purposes (Kiely and others, 2004). Nationwide studies indicate that pesticides and their degradates typically (at least 94 percent of the time) are present in water from streams throughout most of the year in both agricultural and urban watersheds (Gilliom and others, 2006). The agricultural pesticides detected most frequently and in largest concentrations were the herbicides acetochlor, alachlor, atrazine, cyanazine, and metolachlor. The most common urban pesticides were the herbicides 2,4-D, diurlon, prometon, simazine, and tebuthiuron, and the insecticides carbaryl, chlorpyrifos, and diazinon. Nationwide, pesticides seldom were found in concentrations large enough to affect humans, but often in concentrations that may have effects on aquatic life and fisheating wildlife (Gilliom and others, 2006).

Regression models for providing continuous estimates of pesticides in Johnson County streams were not developed because no continuously measured explanatory variables were found to be significant. Regression models for pesticides have been developed for other predominantly agricultural stream sites (Christensen and others, 2000; Rasmussen and others, 2005), but more mixed land uses in Johnson County watersheds likely contributed to large statistical variability in the relations between variables. **Table 14.** Results of analysis of nutrients in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.

[All concentrations are given in milligrams per liter; N, nitrogen; P, phosphorus; <, less than]

					Concent	trations				
	Nitrogen, ammo- nia, as N	Nitrogen, nitrite, as N	Nitrogen, nitrate, as N	Nitrogen, ammo- nia plus dissolved organic nitrogen, as N	Nitrogen, ammonia plus total organic nitrogen, as N	Nitrogen, nitrite plus nitrate, as N	Total nitrogen	Phos- phorus, total	Phos- phorus, dis- solved	Phospho- rus, or- thophos- phate, as P
			Blu	ue River at Ke	enneth Road (fig. 1)				
Number of samples	17	20	20	20	20	20	20	20	20	20
Maximum value	.26	.04	1.13	2.40	7.60	1.15	8.75	2.45	.16	.12
Minimum value	<.04	<.02	.06	.07	.30	.08	.59	.06	<.01	<.01
Mean	.07	.02	.61	.64	1.84	.63	2.47	.51	.08	.06
Median	.04	.02	.62	.54	1.52	.64	2.19	.38	.08	.06
			С	edar Creek no	ear DeSoto (f	ig. 1)				
Number of samples	22	22	22	22	22	22	22	22	22	22
Maximum value	.12	.08	7.83	1.00	3.10	7.90	9.20	2.43	2.27	2.22
Minimum value	<.04	<.02	.24	.30	.40	.26	1.37	.20	.05	.04
Mean	.06	.03	1.65	.58	1.30	1.67	2.97	.69	.41	.38
Median	.04	.02	1.10	.60	1.10	1.12	2.54	.59	.20	.19
			India	in Creek at St	ate Line Roa	d (fig. 1)				
Number of samples	25	25	25	25	25	25	25	25	25	25
Maximum value	1.27	.31	1.40	2.60	8.04	1.70	12.50	2.96	2.91	2.76
Minimum value	<.04	<.02	.41	.50	.89	.43	2.30	.54	.07	.06
Mean	.34	.10	3.11	1.14	2.36	3.21	5.57	1.22	.71	.67
Median	.19	.08	1.93	1.10	1.80	2.12	4.79	1.01	.41	.38
			ŀ	Kill Creek at 9	5th Street (fig	g. 1)				
Number of samples	22	25	25	25	25	25	25	25	25	25
Maximum value	.17	.05	1.97	1.30	6.20	2.02	7.31	2.14	.76	.73
Minimum value	<.04	<.02	.03	.20	.30	<.05	.35	.09	.03	.02
Mean	.06	.02	.63	.61	1.74	.65	2.40	.58	.15	.13
Median	.04	.02	.55	.57	1.20	.55	1.98	.39	.12	.10
			Mi	ll Creek at Jo	hnson Drive (fig. 1)				
Number of samples	22	23	23	23	23	23	23	23	23	23
Maximum value	.34	.11	9.29	1.00	5.80	9.40	1.90	2.38	1.54	1.50
Minimum value	<.04	<.02	.26	.20	.40	.28	.68	.22	.09	.02
Mean	.07	.03	1.91	.54	1.73	1.94	3.67	.85	.32	.29
Median	.05	.02	1.35	.50	1.10	1.37	2.74	.62	.19	.18

Figure 31. Concentrations of (*A*) total nitrogen and (*B*) nitrate in relation to streamflow at five waterquality monitoring sites in Johnson County, Kansas, October 2002–January 2006.

Figure 32. Concentrations of total phosphorus in relation to streamflow at five water-quality monitoring sites in Johnson County, Kansas, October 2002–January 2006.

Discrete samples collected for the study described in this report indicated that many of the same pesticides frequently found nationwide also were most common in Johnson County streams (table 15). Atrazine (an herbicide often used in crop production) was common at all monitoring sites. Prometon (an extensively used urban herbicide) also was detected in more than 90 percent of samples at each site. Metolachlor (a common agricultural herbicide) was found in the majority of samples at all sites except Kill Creek, where it was detected in about two-thirds of the samples. Simazine (another extensively used herbicide usually associated with urban uses) was found in all samples from all five sites but was detected most frequently in samples from the Cedar Creek site. The largest concentrations of all pesticides occurred in samples collected during storm runoff, usually in the spring.

Atrazine was the most commonly detected pesticide at all five monitoring sites. However, concentrations in the more agricultural watersheds (Blue River, Cedar Creek, and Kill Creek) were largest, exceeding the KDHE aquatic-life criterion of 3.0 μ g/L in one sample from the Blue River, two samples from Cedar Creek, and three samples from Kill Creek. Each exceedance occurred during storm runoff in April, May, or June. Larger concentrations of atrazine in Indian Creek samples collected during base flow compared to stormflow indicated that a major source of atrazine in that watershed is wastewater discharge, likely originating from municipal water supply, as first proposed by Lee and others (2005). The primary sources of drinking water in Johnson County are the Kansas and Missouri Rivers, both of which drain large agricultural watersheds and are known to contain atrazine most of the year (Goolsby and Battaglin, 1993; Rasmussen and others, 2005). Treated water contained atrazine concentrations ranging from 0.2 to 0.6 μ g/L (Water-One, 2004). In addition, studies have found atmospheric transport from agricultural areas can be a notable source of atrazine in streams (Cromwell and Thurman, 2000; Hampson and others, 2000).

Watershed Characteristics Affecting Water Quality in Johnson County Streams

Hydrologic conditions, land use, contaminant sources, and human activity are the most important factors affecting water quality in Johnson County streams. Watershed characteristics, including geology, soils, and topography also affect water quality. Hydrologic conditions determine streamflow during storm runoff and affect both point and nonpoint contaminants in streams. Streamflow is the transport mechanism for delivering and moving water-quality constituents in streams. Streamflow characteristics affect constituent concentrations, rate of delivery and transport (volume and velocity), and constituent loads (volume). Precipitation, primarily the amount, frequency, and intensity of rainfall, is the fundamental factor contributing to streamflow and affecting

Figure 33. Annual estimated total nitrogen and total phosphorus loads and loads originating from wastewater-treatment facility (WWTF) discharges to the Blue River and Indian Creek, Johnson County, Kansas, 2005–06 (nutrient loads from wastewater-treatment facility discharges calculated from concentration and discharge data provided by D. Nolkemper, Johnson County Wastewater, written commun., September 2007).

transport of nonpoint contaminant sources. Because just two complete calendar years (2005 and 2006) of continuous data have been collected at all five Johnson County monitoring sites to date, and four complete calendar years (2003, 2004, 2005, 2006) of continuous data have been collected at two sites (Cedar and Mill Creeks), thorough analysis of the effects of hydrologic variability on stream-water quality depends on additional data collection and interpretation. However, data collected in 2004 and 2005 indicate that just a few large storm runoffs lasting a few days can account for more than 50 percent of constituent loads in streams, particularly for sediment, chloride from road-salt runoff, and bacteria.

Besides precipitation, the other major source of streamflow in Johnson County is wastewater effluent. WWTFs play an important role in streamflow by sustaining base flow. The Indian Creek monitoring site is less than 1.4 mi downstream from the largest quantity of WWTF discharge of the five sites monitored. Lee and others (2005) found that during base flow, the majority of streamflow at three of the continuously monitored sites (Cedar, Indian, and Kill Creeks) originated from WWTF discharges as far as 13 mi upstream, and streamflow at the Mill Creek monitoring site also may often consist primarily of WWTF discharge, but rainfall during data collection may have affected estimates. At the Cedar, Indian, Kill, and Mill Creek sites, it is likely that streamflow was affected by WWTF discharge during normal flow as well. Normal flow could be considered that flow within the 25th and 75th percentile (fig. 4; http://water.usgs.gov/waterwatch). In this study, only the Blue River site was unaffected by WWTF discharge

at the monitoring site. However, wastewater does discharge into the Blue River just downstream from the monitoring site, and therefore, water quality is expected to be different downstream from the monitoring site.

A number of factors associated with urbanization can affect water quality. Urban runoff and treated wastewater may have increased concentrations of nutrients, pesticides, metals, organic compounds, and dissolved ions (Heany and Huber, 1984; Zampella, 1994; Paul and Meyer, 2001). Lower infiltration capacity of watersheds in urban environments with greater amounts of impervious surfaces may inhibit the ability of streams to sustain base flow (Finkenbine and others, 2000; Dodds, 2002). Urbanization affects sediment supply and transport differently during the construction phase and postconstruction phase, as summarized by Paul and Meyer (2001). During the construction phase, erosion of exposed soils leads to larger sediment loads (Leopold, 1968). This effect intensifies in more sloped watersheds and generally occurs during a few large floods (Wolman, 1967). The increase in sediment supply leads to bed aggradation, and stream depths may decrease resulting in decreased channel capacity, larger floods, and overbank sediment deposition (Wolman, 1967). The aggradation phase is followed by an erosional phase, during which channel erosion is the largest source of sediment. Increases in impervious surface area substantially increase the frequency or volume of bankfull floods leading to a general deepening (incision) and widening of the channel (Booth, 1990). After incision, channels migrate laterally and bank erosion begins (Trimble, 1997). In developed urban streams, the majority of sediment being transported originates from channel erosion rather than hillside erosion (Trimble, 1997).

Impervious surfaces produce overland flow and large quantities of runoff even at moderate rainfall intensities (Arnold and Gibbons, 1996). Impervious surface area also has been found to be highly correlated with urban intensity and a good integrator of urban land-use conditions (McMahon and Cuffney, 2000), making it a useful surrogate for urban intensity.

In Johnson County, as impervious surface area increased, so did total annual yield for most water-quality constituents in 2005 and 2006. Examining suspended-sediment, chloride, and E. coli bacteria yields (fig. 34), the three monitoring sites with less than 4 percent impervious surface area (table 1) clustered together with smaller yields, and Indian Creek with 24 percent impervious surface area, had considerably larger yields. Suspended sediment may increase in urban areas because of more exposed soils at construction sites, increased streamflow velocities contributing to more streambed and bank erosion, lack of riparian habitats for protecting soils from erosion, and settling sediment from water. Urban sources of chloride (road-salt runoff, WWTF discharge, industrial runoff) contributed more than nonurban sources (geology). Urban sources of E. coli bacteria (leaky sewer lines, pet waste, wildlife, WWTF discharges and bypasses, and unauthorized dumping) also generally contributed more than nonurban sources (livestock, leaky septic systems, and wildlife).

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.

[(), laboratory reporting level; <, less than; E, estimated;, not calculated because more than half of the values were less than the detection limit
--

Monitoring site (fig. 1) and summary statistics	1-Naphthol, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.04)	2-Chloro- 2',6'-diethy- lacetanilide, water, filtered, recoverable, micrograms per liter (0.01)	2-Chloro- 4-isopropylam- ino-6-amino- s-triazine, water, filtered, recoverable, micrograms per liter (0.06)	2-Ethyl-6- methylani- line, water, filtered, recoverable, micrograms per liter (0.01)	3,4-Dichloro- aniline, water, filtered, recoverable, micrograms per liter (0.006)	4-Chloro-2- methylphe- nol, water, filtered, recoverable, micrograms per liter (0.005)	Acetochlor, water, filtered, recover- able, micrograms per liter (0.006)	Alachlor, water, filtered, recoverable, micrograms per liter (0.006)
	-		Blue River at H	Kenneth Road	. ,	. ,		
Number of samples	21	21	21	21	20	21	21	21
Number of detections	1	1	21	0	9	9	13	10
Maximum value	<.088	.018	E.122	< .010	.096	E .010	.325	.731
Minimum value	E .017	< .005	E .006	<.005	E .003	E .002	E .005	E .004
Mean value			.047				.043	
Median value			.036				.006	
			Cedar Creek	near DeSoto				
Number of samples	21	21	22	21	21	21	22	22
Number of detections	1	0	21	0	18	0	9	3
Maximum value	<.088	< .007	E .222	<.010	E .075	E .009	.401	< .008
Minimum value	E .017	< .005	< .010	<.005	< .005	E .003	< .006	< .005
Mean value			.077		.028			
Median value			.050		.029			
			Indian Creek at	State Line Road	d			
Number of samples	23	23	23	23	22	23	23	23
Number of detections	6	0	18	0	18	9	9	7
Maximum value	<.088	< .007	E .092	<.010	.146	E .017	.202	.058
Minimum value	E .006	< .005	E .002	<.005	< .005	E .004	< .006	< .005
Mean value			.022		.036			
Median value			.017		.025			
			Kill Creek at	95th Street				
Number of samples	25	25	26	25	24	25	25	25
Number of detections	3	0	26	0	4	0	11	5
Maximum value	<.088	< .007	E.281	< .010	.014	< .006	1.11	.048
Minimum value	E .003	< .005	E .010	< .005	E .003	< .005	< .006	< .005
Mean value			.063					
Median value			.030					
			Mill Creek at J	ohnson Drive				
Number of samples	21	21	22	21	21	21	22	22
Number of detections	5	0	18	0	13	9	8	7
Maximum value	<.088	< .007	E .066	<.010	.513	E .018	.147	.037
Minimum value	E .005	< .005	< .006	< .005	< .005	E .002	E .004	< .005
Mean value			.027		.054			
Median value			.022		.014			

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	alpha- HCH-d6, surrogate, schedule 2003, water, filtered, percent recovery	Atrazine, water, filtered, recoverable, micrograms per liter (0.04)	Azinphos- methyl oxygen analog, water, filtered, recoverable, micrograms per liter (0.12)	Benfluralin, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.004)	Carbaryl, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.06)	Chlorpyri- fos, water, filtered, recoverable, micrograms per liter (0.005)	Cyfluthrin, water, filtered, recoverable, micrograms per liter (0.016)	Cyper- methrin, water, filtered, recoverable, micrograms per liter (0.014)
			Blue River a	at Kenneth Road				
Number of samples	21	21	21	21	21	21	21	21
Number of detections	21	21	0	3	10	0	0	0
Maximum value	116	3.90	< .070	< .010	E .315	< .005	< .053	<.070
Minimum value	58.6	.010	< .016	E .006	E .004	< .005	< .008	< .009
Mean value	89.7	.679						
Median value	9.8	.184						
			Cedar Cree	ek near DeSoto				
Number of samples	21	22	21	22	22	22	21	21
Number of detections	21	21	0	2	10	1	0	0
Maximum value	109	4.69	< .075	< .010	E.219	< .010	< .053	< .090
Minimum value	77.5	< .035	< .016	E .006	E .008	< .005	< .008	<.009
Mean value	90.9	.767						
Median value	91.8	.244						
			Indian Creek	at State Line Ro	ad			
Number of samples	22	23	23	23	23	23	23	23
Number of detections	22	22	0	13	16	0	0	0
Maximum value	130	.376	< .070	< .020	E .286	< .018	< .053	< .060
Minimum value	73.8	E .006	< .016	E .005	E .013	< .005	< .008	< .009
Mean value	90.7	.111		.010	.066			
Median value	88.1	.062		.010	.041			
	-		Kill Creek	at 95th Street				
Number of samples	25	26	25	25	26	26	25	25
Number of detections	25	26	0	1	7	2	0	0
Maximum value	115	E 69	<.070	< .010	< 1.000	<.500	< .053	<.600
Minimum value	77.9	.021	<.016	E .006	E .003	< .005	< .008	< .009
Mean value	91.2	3.180		.010				
Median value	89.9	.104		.010				
			Mill Creek a	t Johnson Drive	9			
Number of samples	21	22	21	22	22	22	21	21
Number of detections	21	21	0	6	11	1	0	0
Maximum value	101	.240	< .070	< .020	E.120	.006	< .053	< .046
Minimum value	76.7	<.015	<.016	E .005	E .011	< .005	< .008	< .009
Mean value	89.0	.081			.043			
Median value	87.8	.053			.041			

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	DCPA, wa- ter, filtered (0.7 micron glass-bifer filter), re- coverable, micro- grams per liter	Desulfinyl fipronil, water, filtered, re- coverable, micro- grams per liter (0.012)	Desulfi- nylfipronil amide, wa- ter, filtered, recoverable, micrograms per liter (0.029)	Diazinon oxygen ana- log, water, filtered, recoverable, micrograms per liter (0.006)	Diazinon, water, filtered, recover- able, mi- crograms per liter (0.005)	Diazinon- d10, surrogate, schedule 2003, water, filtered, percent recovery	Dichlorvos, water, filtered, recover- able, mi- crograms per liter (0.013)	Dieldrin, water, filtered, recover- able, mi- crograms per liter (0.009)	Ethion monoxon, water, filtered, re- coverable, micrograms per liter (0.021)
			Blue	River at Kenne	th Road				
Number of samples	21	21	21	16	21	21	21	21	21
Number of detections	2	11	3	0	5	21	2	0	0
Maximum value	.004	< .012	< .029	< .040	.023	121	E .013	< .009	< .034
Minimum value	E .002	E .003	E .004	< .006	< .005	75.8	E .001	< .005	<.002
Mean value		.007				106			
Median value		.006				106			
			Ced	ar Creek near I	DeSoto				
Number of samples	22	22	22	16	22	21	22	22	21
Number of detections	2	16	7	0	13	21	6	0	0
Maximum value	< .003	.013	< .029	< .040	.308	195	< 1.00	< .009	< .034
Minimum value	E .002	E .002	E .005	< .006	< .005	94.0	E .003	< .005	<.002
Mean value		.007			.025	118			
Median value		.007			.006	110			
			Indian	Creek at State	Line Road				
Number of samples	23	23	23	18	23	22	23	23	23
Number of detctions	11	21	10	1	13	22	12	0	0
Maximum value	.005	.015	< .029	< .040	.131	232	E .557	< .022	< .034
Minimum value	.001	E .003	E .002	E .005	< .005	89.6	E .005	< .005	<.002
Mean value		.008			.032	124	.054		
Median value		.007			.020	116	.012		
			Kill	Creek at 95th	Street				
Number of samples	25	25	25	19	26	25	26	25	25
Number of detections	4	14	6	0	1	25	1	9	0
Maximum value	.005	< .012	< .029	< .010	<.500	135	< 1.00	.016	< .034
Minimum value	.001	.001	E .006	< .006	< .005	89.0	<.012	E .003	<.002
Mean value		.008				107			
Median value		.007				106			
			Mill C	Creek at Johnso	on Drive				
Number of samples	22	22	22	17	22	21	22	22	21
Number of detections	7	19	4	0	12	21	10	0	0
Maximum value	.005	.014	< .029	< .040	.080	127	< 1.000	< .009	< .034
Minimum value	.001	E .003	E .001	<.006	< .005	95.6	E .003	< .005	< .002
Mean value		.007			.024	109			
Median value		.006			.010	110			

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	Fenamiphos sulfone, water, filtered, recoverable, micrograms per liter (0.053)	Fenamiphos sulfoxide, water, filtered, recoverable, micrograms per liter (0.04)	Fipronil sulfide, water, filtered, recoverable, micrograms per liter (0.013)	Fipronil sul- fone, water, filtered, recoverable, micrograms per liter (0.024)	Fipronil, wa- ter, filtered, recoverable, micrograms per liter (0.02)	Fonofos, wa- ter, filtered, recoverable, micrograms per liter (0.01)	Hexazi- none, water, filtered, recoverable, micrograms per liter (0.008)	Iprodione, water, filtered, recoverable, micrograms per liter (0.01)
			Blue River	at Kenneth Roa	ad			
Number of samples	21	21	21	21	21	21	19	21
Number of detections	0	0	7	3	6	0	3	0
Maximum value	< .053	< .040	< .013	< .024	< .016	< .005	< .026	< 1.42
Minimum value	< .008	< .031	< .005	< .005	E .004	< .003	E .006	< .026
Mean value								
Median value								
			Cedar Cre	ek near DeSot	0			
Number of samples	21	21	22	22	22	22	20	21
Number of detections	0	0	10	6	18	0	0	0
Maximum value	< .053	< 1.25	< .013	<.024	E .043	< .005	< .026	< 1.42
Minimum value	< .008	< .031	E .003	< .005	E .008	< .003	< .013	< .026
Mean value					.015			
Median value					.013			
			Indian Creek	at State Line F	load			
Number of samples	23	23	23	23	23	23	22	23
Number of detections	0	0	21	13	23	0	1	1
Maximum value	< .053	<.040	.016	E .025	E .082	< .005	< .026	< 1.42
Minimum value	<.008	<.031	E .002	<.005	E .011	< .003	E .010	< .026
Mean value			.007	.015	.037			
Median value			.006	.012	.031			
			Kill Creel	k at 95th Street				
Number of samples	25	24	25	25	25	25	25	25
Number of detections	0	0	7	6	9	0	0	0
Maximum value	< .053	< 1.25	< .013	< .024	<.016	< .005	< .026	< 1.42
Minimum value	< .008	<.031	E .004	E .005	E .006	< .003	< .013	< .026
Mean value								
Median value								
			Mill Creek	at Johnson Dri	ve			
Number of samples	21	21	22	22	22	22	18	21
Number of detections	0	0	10	4	22	0	0	0
Maximum value	<.053	<.040	.015	< .024	E .030	< .005	< .026	< 1.42
Minimum value	<.008	< .031	E .004	<.005	E .006	< .003	< .013	< .026
Mean value					.014			
Median value					.013			

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	lsofenphos, water, filtered, recoverable, micrograms per liter (0.006)	Malaoxon, water, filtered, recoverable, micrograms per liter (0.02)	Mala- thion, water, filtered, recoverable, micrograms per liter (0.016)	Metal- axyl, water, filtered, recoverable, micrograms per liter (0.0069)	Methida- thion, water, filtered, recoverable, micrograms per liter (0.004)	Methyl paraoxon, water, filtered, recoverable, micrograms per liter (0.01)	Methyl para- thion, water, filtered (0.7- micron glass- fiber filter), recoverable, micrograms per liter (0.008)	Metola- chlor, water, filtered, re- coverable, micrograms per liter (0.01)
			Blue River a	at Kenneth Roa	ad		• • •	
Number of samples	21	21	21	21	21	21	21	21
Number of detections	0	0	0	1	0	0	0	20
Maximum value	<.011	< .039	< .027	< .025	< .009	< .030	<.015	1.68
Minimum value	< .003	< .008	<.027	< .005	< .006	< .019	<.006	< .006
Mean value								.242
Median value								.042
			Cedar Cree	ek near DeSoto	0			
Number of samples	21	21	22	21	21	21	22	22
Number of detections	0	0	0	5	0	0	0	22
Maximum value	< .011	< .150	<.027	E .053	< .009	< .030	<.015	.431
Minimum value	< .003	< .008	< .027	< .005	< .006	<.019	<.006	E .006
Mean value								.103
Median value								.057
			Indian Creek	at State Line R	oad			
Number of samples	23	23	23	23	23	23	23	23
Number of detections	0	0	8	0	0	0	0	21
Maximum value	< .011	< .039	<.027	< .025	< .030	< .030	<.015	.106
Minimum value	< .003	< .008	E .010	<.005	< .006	< .019	<.006	E .006
Mean value								.037
Median value								.024
			Kill Creek	at 95th Street				
Number of samples	25	25	25	25	25	25	25	26
Number of detections	0	0	0	0	0	0	0	17
Maximum value	< .011	< .039	<.027	<.010	< .020	< .030	<.015	<.500
Minimum value	< .003	< .008	<.027	< .005	< .006	< .019	<.006	E .003
Mean value								.030
Median value								.010
			Mill Creek a	t Johnson Driv	/e			
Number of samples	21	21	22	21	21	21	22	22
Number of detections	0	0	3	1	0	0	0	20
Maximum value	<.011	< .039	<.027	< .017	< .009	< .030	<.015	.069
Minimum value	<.003	< .008	E .011	< .005	< .006	< .019	<.006	.008
Mean value								.024
Median value								.022

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	Metribuzin, water, filtered, re- coverable, micrograms per liter (0.012)	Myclobuta- nil, water, filtered, re- coverable, micrograms per liter (0.01)	Pendimethalin, water, filtered (0.7-micron glass-fiber filter), recover- able, micro- grams per liter (0.012)	Phorate oxygen analog, water, filtered, recoverable, micrograms per liter (0.027)	Phorate, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.04)	Phosmet oxygen analog, water, filtered, recoverable, micrograms per liter (0.0027)	Phosmet, water, filtered, re- coverable, micrograms per liter (0.0079)	Prometon, water, filtered, recoverable, micrograms per liter (0.01)
			Blue Riv	er at Kenneth Ro	ad			
Number of samples	21	21	21	21	21	15	17	21
Number of detections	4	3	2	0	0	0	0	21
Maximum value	.059	< .033	< .022	<.105	< .055	< .055	< .008	.165
Minimum value	<.006	E .006	E .013	< .027	< .011	<.051	< .008	.008
Mean value								.027
Median value								.019
			Cedar (Creek near DeSot	0			
Number of samples	22	21	22	21	22	15	17	22
Number of detections	2	7	1	0	0	0	0	22
Maximum value	.028	< .033	< .022	<.105	< .055	< .055	< .008	.143
Minimum value	<.006	E .007	E .016	< .027	< .011	< .051	< .008	E .009
Mean value								.031
Median value								.016
			Indian Cre	ek at State Line F	Road			
Number of samples	23	23	23	23	23	19	20	23
Number of detections	0	14	12	0	0	0	0	21
Maximum value	<.028	<.270	E .074	<.105	< .055	< .055	< .008	.176
Minimum value	<.006	< .008	E .018	< .027	< .011	< .051	< .008	< .005
Mean value		.034	.033					.042
Median value		.020	.025					.031
			Kill Cr	eek at 95th Stree	t			
Number of samples	25	25	25	25	25	17	19	26
Number of detections	3	0	3	0	0	0	0	24
Maximum value	< .035	< .033	< .022	<.105	< .055	< .055	<.008	<.500
Minimum value	E .005	<.008	E .013	< .027	< .011	< .051	< .008	E .006
Mean value								.045
Median value								.017
			Mill Cree	ek at Johnson Dri	ive			
Number of samples	22	21	22	21	22	16	17	22
Number of detections	0	4	6	0	0	0	0	21
Maximum value	<.028	< .033	.073	<.105	< .055	< .055	<.008	.163
Minimum value	<.006	E .007	E .020	< .027	< .011	<.051	<.008	.011
Mean value								.044
Median value								.032

Table 15. Results of analysis of pesticides in discrete samples collected at five continuous water-quality monitoring sites in Johnson County, northeast Kansas, October 2002 through January 2006.—Continued

Monitoring site (fig. 1) and summary statistics	Prometryn, water, fil- tered, recoverable, micrograms per liter	Propyzamide, water, filtered (0.7-micron glass-fiber filter), recover- able, micro- grams per liter (0.0059)	Simazine, water, filtered, recoverable, micrograms per liter (0.006)	Tebuthiuron, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.016)	Terbufos oxygen analog sulfone, water, filtered, recoverable, micrograms per liter (0.018)	Terbuthyla- zine, water, filtered, recoverable, micrograms per liter (0.0083)	Trifluralin, water, filtered (0.7-micron glass-fiber filter), recoverable, micrograms per liter (0.006)
			Blue River at K	Cenneth Road			
Number of samples	21	21	21	21	21	21	21
Number of detections	1	0	19	0	0	0	7
Maximum value	.009	< .004	.200	< .021	< .068	< .010	< .009
Minimum value	< .005	< .004	E .004	<.016	< .045	< .008	E .002
Mean value			.034				
Median value			.009				
			Cedar Creek r	near DeSoto			
Number of samples	21	22	22	22	21	21	22
Number of detections	0	0	21	3	0	2	5
Maximum value	< .006	< .004	.742	.020	< .068	< .025	< .009
Minimum value	< .005	<.004	<.012	E.007	< .045	E .005	E .00
Mean value			.150				
Median value			.079				
			Indian Creek at S	State Line Road			
Number of samples	23	23	23	23	23	23	23
Number of detections	0	0	13	1	0	4	15
Maximum value	< .006	<.006	4.64	< .045	< .068	.026	.020
Minimum value	< .005	< .004	< .005	E .006	<.011	E .007	E .006
Mean value			.219				.011
Median value			.010				.009
			Kill Creek at	95th Street			
Number of samples	25	25	24	26	25	24	25
Number of detections	0	0	10	1	0	2	7
Maximum value	< .006	< .004	.039	< .026	< .068	< .010	.023
Minimum value	< .005	<.004	E .002	E .006	< .045	E .003	E .004
Mean value							
Median value							
			Mill Creek at J	ohnson Drive			
Number of samples	21	22	22	22	21	21	22
Number of detections	1	0	15	12	0	3	8
Maximum value	.009	< .005	.081	.066	<.068	.037	.012
Minimum value	< .005	<.004	< .005	E .012	<.045	< .008	E .003
Mean value			.018	.026			
Median value			.012	.018			

Figure 34. Constituent yields and impervious surface area at five water-quality monitoring sites in Johnson County, Kansas, 2005–06.

Most measured contaminants in Johnson County streams, including suspended sediment, indicator bacteria, some nutrients, and most pesticides, originate primarily from nonpoint sources, primarily overland flow during storm runoff. Each can be expected to increase in concentration substantially during storm runoff and decrease again some time after streamflow recedes. Although concentrations in the water column decrease following storms, contaminants can remain in the stream and accumulate in streambed sediment (Lee and others, 2005).

Atmospheric deposition may be another important nonpoint source for some water-quality constituents in Johnson County streams. Nationwide, the most common air pollutants that degrade water quality are nitrogen compounds, mercury and other metals, pesticides, and industrial emissions such as dioxins, furans, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) (U.S. Environmental Protection Agency, 2004a). In 2004, an estimated 12 lb/acre of nitrogen from nitrate and ammonium was deposited in precipitation over eastern Kansas (National Atmospheric Deposition Program, 2005).

WWTFs are a primary point source of some contaminants in Johnson County streams, and their discharges affect streams most during base flow (Lee and others, 2005). Generally, wastewater discharges affect receiving streams by introducing oxygen-demanding substances, pathogens, nutrients, and organic chemicals to the stream (U.S. Environmental Protection Agency, 2004b). Oxygen-demanding substances, such as organic matter and ammonia, consume natural supplies of dissolved oxygen in the stream, and can result in insufficient supplies to support fish and other aquatic life. Dissolved oxygen at the Indian Creek monitoring site, which is most affected by WWTFs discharge, was less than the KDHE aquatic-life criterion of 5.0 mg/L about 20 percent of the time and more than any other site (fig. 9A), indicating that WWTF discharge likely was affecting aquatic life at that site. E. coli bacteria densities were largest at the Indian Creek site compared to other sites (fig. 26). In addition, nutrients including total phosphorus were largest at that site (table 14).

Contaminants in streams that originate from WWTFs, including some nutrients and wastewater compounds (Lee and others, 2005), generally decrease during storm runoff as a result of dilution. Exceptions may occur during storms when large volumes of water exceed the WWTF's treatment capacity, resulting in temporary discharge of effluent that has not been fully treated. Although WWTFs contribute a relatively small portion of the total load of water-quality constituents, the primary concern to aquatic environments is large concentrations during base and normal flow that may extend for long periods of time.

Although urbanization falls into the general category of human activity, additional types of human activities also can affect water quality. Physical alterations (such as channelization, impoundments, irrigation), chemical alterations (such as application of fertilizers and pesticides, septic systems), and biological alterations (such as forest and agricultural management, import of exotic species) change the hydrologic cycle and water-quality characteristics of streams (Peters and Meybeck, 2000). One example of a human activity in Johnson County that is not exclusively associated with urbanization but has a notable effect on water quality is the seasonal application of pesticides. The largest concentrations of all pesticides occurred in samples collected during storm runoff, usually in the spring.

Johnson County has developed a stormwater management plan that describes implementation of BMPs to reduce adverse effects of stormwater runoff on water quality as required by the NPDES program. BMPs can improve stormwater quality by reducing or removing sediment, metals, bacteria, nutrients, organic compounds and other substances. BMPs can be nonstructural, such as maintaining native areas and flood-plain vegetation for filtering runoff, or structural, such as constructing ponds, wetlands, and infiltration devices (Mid-America Regional Council and American Public Works Association, 2003). In addition, TMDLs developed by the Kansas Department of Health and Environment describe recommended actions to address water-quality impairments. Activities recommended in Johnson County TMDLs include installing grass buffer strips, maintaining riparian areas, and reducing peak streamflows and associated sediment and nutrient loads (Kansas Department of Health and Environment, 2007), as well as upgrading nutrient treatment in wastewater facilities and repairing faulty septic systems (Kansas Department of Health and Environment, 2006b). Implementation of BMPs is expected to affect water quality of Johnson County streams over time.

Summary and Conclusions

Johnson County is one of the most rapidly developing counties in Kansas. According to the U.S. Census Bureau, population increased by about 90 percent in the last 25 years, from 270,269 in 1980 to an estimated 516,731 in 2006. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. Urbanization generally affects streams by altering hydrology, geomorphology, chemistry, and biology.

Continuous water-quality monitors and streamflowgaging stations were installed on five different streams in Johnson County, northeast Kansas, to estimate water-quality constituent concentrations, densities, loads, and yields using continuous in-stream sensor measurements and to characterize differences relative to hydrologic conditions, contributing drainage area, land use, point and nonpoint sources, and human activity. Monitoring sites were located as far downstream as possible in the largest watersheds in the county and designed to represent urban, urbanizing, and nonurban land uses. Two of the sites, Cedar Creek near DeSoto and Mill Creek at Johnson Drive, were installed in October 2002, and three sites, Blue River at Kenneth Road, Indian Creek at State Line Road, and Kill Creek at 95th Street, were installed in March 2004. All sites were operated through December 2006.

Each site was equipped with a water-quality monitor that provided continuous in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The data are available in real time on USGS Web pages (http://ks.water.usgs.gov/Kansas/rtqw/ and http://waterdata.usgs.gov/ks/nwis/). In addition to continuous monitoring, discrete water samples were collected manually from each site. Samples were analyzed for nutrients, indicator bacteria, sediment, pesticides, and other constituents. Regression analysis was used to develop relations between the continuous sensor measurements, streamflow, time, and discretely sampled constituent concentrations. Continuous (hourly) constituent concentrations were estimated using equations from the regression models. Constituent loads and yields were estimated from continuous concentration estimates, continuous streamflow data, and respective drainage-basin area. Most siteto-site comparisons were made using the period March 2004 through December 2006 when monitors were operating at all five sites simultaneously. Estimated annual loads and yields were evaluated for January 2005 through December 2006.

In-stream measurements of streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen (DO) varied with precipitation, season, time of day, and contributing sources. Hourly streamflow ranged from less than 1 ft³/s in Kill Creek (2004, 2005, and 2006) and the Blue River (2005 and 2006) to 19,200 ft³/s in the Blue River (2004). The largest median streamflow from March 2004 through 2006 occurred in Indian Creek, which is the second largest drainage basin (63.1 mi^2) and the most urban of the five monitored basins. Kill Creek, the smallest and least urban of the monitored basins (48.6 mi²), generally had the smallest streamflow except during base flows when Blue River streamflow was smallest. Annual differences in streamflow can be attributed to differences in precipitation. Average annual precipitation in 2004 and 2005 was close to the historical mean annual precipitation of 40 in. Precipitation in 2006 was less than normal, ranging from about 30 to 35 in.

Rapid changes in specific conductance and turbidity associated with changes in streamflow occurred in Johnson County streams. From March 2004 through 2006, specific conductance was nearly always largest at the Indian Creek site, followed by the Mill Creek site, the two most urban sites and the two sites with the largest WWTF contribution. Both sites showed sharp increases in specific conductance during 15 percent of the time, as a result of road-salt application. Turbidity ranged from less than 2 FNUs at all sites annually to about 2,000 FNUs at the Cedar and Mill Creek sites. Mill Creek is in the most rapidly developing of the monitored watersheds, which may result in increased sediment runoff in the basin contributing to elevated turbidity. The Indian Creek site had the smallest turbidity most of the time because of the high clarity of WWTF discharge. Most of the time, pH and DO remained lower and water temperature higher at the Indian Creek site compared to the other Johnson County monitoring sites because of WWTF discharges. From March 2004 through December 2006, DO concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time.

Continuous data for three water-quality constituents (suspended sediment, chloride, and E. coli bacteria) were evaluated thoroughly in this report. These particular constituents were selected for additional discussion because they represent three major categories of concern in Johnson County streams (sediment, major ions, and bacteria) that have been identified as sources of water-quality impairment by KDHE. Regression models for nutrients, a fourth category of concern in Johnson County, generally had more variability than models for suspended sediment, chloride, and E. coli bacteria because of the larger variability in sources, fate, and transport in streams. Generally for most constituents, models for the less urban sites (Blue River and Kill Creek) contained less variability than models for the more urban sites (Indian and Mill Creeks). This is because water quality in urban areas is more complex because of multiple sources and often altered pathways. Sediment is statistically related to other water-quality constituents, and these relations have potential implications for implementation of best management practices (BMPs) in that if sediment concentrations decrease, concentrations of sediment-associated constituents such as suspended solids, some nutrients, and bacteria also will decrease.

Estimated concentrations of suspended sediment in 2005-06 ranged from a minimum of less than 3 mg/L at all five monitoring sites to a maximum of 4,600 mg/L at the Cedar Creek site in 2005 and the Blue River site in 2006. From March 2004 through December 2006, suspendedsediment concentration was nearly always largest at the Mill Creek site. The Mill Creek watershed is undergoing rapid development that likely is contributing to larger sustained sediment concentrations. About 70 percent of the time, the smallest sediment concentration occurred at the Indian Creek site, likely because most of the streamflow originated from treated WWTF discharge just upstream from the monitoring site. Estimated annual suspended-sediment loads and yields were largest annually at the Indian Creek site and annual loads were smallest at the Kill Creek site. At least 90 percent of the total annual load in 2005-06 at all five sites occurred during less than 2 percent of the time, generally associated with large storm runoff. The streamflow that was exceeded less than 2 percent of the time at the monitoring sites ranged from about 250 ft³/s at the Cedar and Kill Creek sites to about 1,000 ft³/s at the Indian Creek site. About 50 percent of the 2005 sediment load at the Blue River site occurred during a 3-day storm, the equivalent of less than 1 percent of the time. The implication is that management practices designed to control sediment during small streamflows will have minimal effect on annual loads. During the 3- to 4-year period of record for the five monitoring sites, streamflow has only slightly exceeded the

estimated 2-year peak streamflow at all sites except the Cedar and Kill Creek sites where streamflow has not exceeded the 2-year peak since monitoring began. Therefore, sediment load contributions when the 2-year streamflow is exceeded have not been well documented but are expected to be substantial.

Chloride concentrations from March 2004 through December 2006 were largest at the Indian and Mill Creek sites, the two most urban monitoring sites which also are most affected by road-salt runoff and WWTF discharges. Estimated chloride concentrations ranged from about 5 mg/L at the Cedar Creek site in 2006 to 1,500 mg/L at the Indian Creek site in 2006. About 10 percent of the time, the Indian and Mill Creek sites were noticeably affected by increased chloride concentrations as a result of road-salt runoff, while the Blue River and Kill Creek sites experienced no major effects from road-salt application. At the Indian Creek site during 2005-06, there was a 50-percent probability of chloride concentration exceeding the 250-mg/L USEPA Secondary Drinking-Water Regulation about 8 percent of the time, and exceeding the 860mg/L KDHE acute aquatic-life criterion less than 1 percent of the time. The effect of accumulated road salt on ground water and base flow throughout the remainder of the year is unknown. About 50 percent of the total chloride load during 2005–06 occurred in less than 10 percent of the time at all five monitoring sites. Two chloride runoff occurrences in January-February 2005 accounted for 19 percent of the total chloride load in Indian Creek in 2005.

From March 2004 through December 2006, E. coli density at the Indian Creek site was nearly always largest with a median density more than double that of any other monitoring site, and at least 15 times the density at the Blue River site. The KDHE primary contact criterion for recreation (262 col/100 mL) was exceeded about 65 percent of the time at the Indian Creek site, and the secondary criterion (2,358 col/100 mL) was exceeded about 10 percent of the time. At the other monitoring sites, the primary contact criterion was exceeded between about 8 and 25 percent of the time, and the secondary contact criterion was exceeded less than 5 percent of the time. The Blue River and Cedar Creek sites had the smallest bacteria densities most of the time. During 2005–06, more than 90 percent of the total E. coli bacteria load at the Cedar Creek site occurred in less than 1 percent of the time, generally associated with storm runoff, compared to the Indian Creek site where about 80 percent of the total E. coli load occurred during less than 1 percent of the time. The largest annual bacteria yields occurred at the Indian Creek site as well. Potential urban sources of bacteria in Indian Creek include leaky sewer lines, pet waste, wildlife, WWTF discharges and bypasses, and unauthorized dumping. Potential nonurban sources of bacteria in less urban watersheds include livestock, leaky septic systems, and wildlife. Fecal coliform loads originating from two WWTFs on Indian Creek contributed less than 3 percent of the downstream estimated fecal coliform bacteria load at the Indian Creek monitoring site. When fecal coliform bacteria load from the Blue River WWTF, which discharges just downstream from

the Blue River monitoring site, was added to the total load at the Blue River monitoring site, less than 1 percent of the total downstream Blue River fecal coliform bacteria load originated from the WWTF. More than 97 percent of the fecal coliform bacteria load in Indian Creek and the Blue River originated from nonpoint sources.

Although nutrients originated from both point and nonpoint sources, the largest total nitrogen concentrations in discrete samples generally occurred at the Indian Creek monitoring site during streamflows less than 200 ft³/s and were primarily in the form of nitrate, indicating that WWTFs were likely the primary source. Total nitrogen discharged from the two Indian Creek WWTFs accounted for about 65 percent of estimated total nitrogen load at the downstream Indian Creek monitoring site in 2005 and 90 percent of the downstream estimated total nitrogen load in 2006 when stormwater runoff was less. Total phosphorus load from the Indian Creek WWTFs was at least 90 percent of the total phosphorus load at the downstream monitoring site in 2005 and 2006. Larger concentrations of nutrients in stormwater at nonurban sites, including the Blue River and Cedar and Kill Creek sites, indicated the nonpoint sources are predominant. However, downstream from the Blue River monitoring site where the WWTF discharges to the river, about 40 percent of the total nitrogen load in 2005 and 70 percent of the total nitrogen load in 2006 originated from the WWTF. One-fourth (in 2005) to one-half (in 2006) of the downstream total phosphorus load in the Blue River originated from WWTF discharges.

Regression models for providing continuous estimates of pesticides in Johnson County streams were not developed because no continuously measured explanatory variables were found to be significant. Mixed land uses and complex sources and pathways in Johnson County watersheds likely contributed to large statistical variability in the relations between variables. Discrete-sample analysis indicated that many of the same pesticides frequently found nationwide also were most common in Johnson County streams. Atrazine (an herbicide often used in crop production) and its degradates were common at all monitoring sites. Prometon (an extensively used urban herbicide) also was detected in the majority of samples at each site. Metolachlor (a common agricultural herbicide) was found in the majority of samples at all sites except Kill Creek, where it was detected in about one-half of the samples. Simazine (another extensively used herbicide usually associated with urban uses) was found in samples from all five sites but was detected most frequently and generally in the largest concentrations in samples from the Cedar Creek site. The largest concentrations of all pesticides occurred in samples collected during storm runoff, usually in the spring.

Water-quality conditions at the five monitoring sites generally depended on hydrologic conditions, land use, percentage of urbanization, and relative contributions from point and nonpoint constituent sources. Precipitation, primarily the amount, frequency, and intensity of rainfall, is the fundamental factor contributing to streamflow and affecting transport of nonpoint contaminants. WWTF discharge is the primary source of streamflow during base flow. In Johnson County, generally as impervious surface area increased, so did total annual yield for many water-quality constituents in 2005 and 2006. Most contaminants in Johnson County streams, including suspended sediment, indicator bacteria, some nutrients, and most pesticides, originate primarily from nonpoint sources, primarily overland flow during storm runoff.

Continuous in-stream water-quality monitoring of Johnson County streams provided the foundation for a comprehensive evaluation of variability and chemical-loading characteristics for water-quality constituents including suspended sediment, selected major ions, indicator bacteria, and some nutrient species. The results presented in this report may be used to better understand constituent concentration and load fluctuations, range, and variability during changing seasonal and flow conditions and to assess water-quality conditions relative to TMDLs, NPDES requirements, and water-quality standards. The baseline information also will be useful for evaluating future changes in land use and effectiveness of implemented BMPs.

References Cited

- American Public Health Association, American Water Works Association, and Water Environment Association, 1995, Standard methods for the examination of water and wastewater (18th ed): Washington, D.C., American Public Health Association, 905 p.
- Anderson, C.W., 2005, Turbidity, *in* National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. 6.7, p. 1–59.
- Arnold, C.A, and Gibbons, J.C., 1996, Impervious surface coverage—the emergence of a key environmental indicator: Journal of the American Planning Association, v. 22, no. 2, p. 243–257.
- Asselman, N.E.M., 1999, Suspended sediment dynamics in a large basin—the Rhine River: Hydrologic Processes, v. 13, p. 1437–1450.
- Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A8, 65 p.
- ASTM International, 2003, D1889-00 standard test method for turbidity of water, *in* ASTM International, Annual book of ASTM standards, water and environmental technology: West Conshohocken, Pennsylvania, American Society for Testing and Materials, v. 11.01, 6 p.

- Blevins, D.W., 1986, Quality of stormwater runoff in the Blue River basin, Missouri and Kansas, July–October 1981 and April–July 1982: U.S. Geological Survey Water-Resources Investigations Report 84–4226, 131 p.
- Booth, D.B., 1990, Stream channel incision following drainage-basin urbanization: Water Resources Bulletin, v. 26, p. 407–17.
- Christensen, V.G., Jian, X., and Ziegler, A.C., 2000, Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields, in the Little Arkansas River, south-central Kansas, 1995–99: U.S. Geological Survey Water-Resources Investigations Report 00–4126, 36 p.
- Cohn, T.A., DeLong, L.L., Gilroy, E.J., Hirsch, R.M., and Wells, D., 1989, Estimating constituent loads: Water Resources Research, v. 25, no. 5, p. 937–942.
- Cromwell, A.E., and Thurman, E.M., 2000, Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine areas at Isle Royale National Park: Environmental Science and Technology, v. 34, p. 3079–3085.
- Devlin, D.L., and McVay, K.A., 2001, Suspended solids—a water quality concern for Kansas: Kansas State University Agricultural Experiment Station and Cooperative Extension Service, TMDL Fact Sheet No. 6, 2 p.
- Dodds, W.K., 2002, Freshwater ecology: San Diego, Academic Press, p. 69–111.
- Driver, N.E., and Troutman, B.M., 1989, Regression models for estimating urban storm runoff quality and quantity in the United States: Journal of Hydrology, v. 109, no. 3/4, p. 221–236.
- Duan, N., 1983, Smearing estimate—a nonparametric retransformation method: Journal of the American Statistical Association, v. 78, p. 605–610.
- Dufour, A.P., 1977, *Escherichia coli*—fecal coliform, *in* Hoadley, A.W., and Dutka, B.J., eds., Bacterial indicator/health hazards associated with water, 1977: American Society for Testing and Materials, ASTM STP 635, p. 48–58.
- Dunne, T., and Leopold, L.B., 1978, Water in environmental planning: San Francisco, Freeman and Company, 818 p.
- Edwards, K.E., and Glysson, G.D., 1999, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 89 p.

Faires, L.M., 1993, Methods of analysis by the U.S. Geological Survey National Water-Quality Laboratory—determination of metals in water by inductively coupled plasmamass spectrometry: U.S. Geological Survey Open-File Report 92–634, 28 p.

Finkenbine, J.K., Atwater, J.W., and Mavinic, D.S., 2000, Stream health after urbanization: Journal of the American Water Resources Association, v. 36, p. 1149–1160.

Fishman, M.J., ed., 1993, Methods of analysis by the U.S. Geological Survey National Water-Quality Laboratory– determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93–125, 217 p.

Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p.

Francy, D.S., and Darner, R.A., 2006, Procedures for developing models to predict exceedances of recreational waterquality standards at coastal beaches: U.S. Geological Survey Techniques and Methods 6–B5, 34 p.

Galli, F.J., 1991, Thermal impacts associated with urbanization and stormwater management best management practices: Washington, D.C., Metropolitan Washington Council of Governments, p. 123–141.

Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N., Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.P., and Wolock, D.M., 2006, The quality of our Nation's waters—pesticides in the Nation's streams and ground water, 1992–2001: U.S. Geological Survey Circular 1291, 172 p.

Goolsby, D.A., and Battaglin, W.A., 1993, Occurrence, distribution and transport of agricultural chemicals in surface waters of the Midwestern United States, *in* Goolsby, D.A., Boyer, L.L., and Mallard, G.E., eds., Selected papers on agricultural chemicals in water resources of the Midcontinental United States: U.S. Geological Survey Open-File Report 93–418, p. 1–25.

Gray, J.R., Glysson, G.D., Turcios, L.M., and Schwarz, G.E., 2000, Comparability of suspended-sediment concentration and total suspended solids data: U.S. Geological Survey Water-Resources Investigations Report 00–4191, 14 p.

Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 58 p.

Hampson, P.S., Treece, M.W., Jr., Johnson, G.C., Ahlstedt, S.A., and Connell, J.F., 2000, Water quality in the upper Tennessee River Basin, North Carolina, Virginia, and Georgia, 1994–98: U.S. Geological Survey Circular 1205, 32 p. Heaney, J.P., and Huber, W.C., 1984, Nationwide assessment of urban runoff on receiving water quality: Water Resources Bulletin, v. 20, p. 35–42.

Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources—hydrologic analysis and interpretation: Techniques of Water-Resources Investigations of the U.S. Geological Survey, chap. A3, book 4, 510 p.

Hem, J.D., 1966, Chemical controls of irrigation drainage water composition: American Water Resources Conference, 2d, Chicago 1966, Proceedings, p. 64–77.

Hem, J.D., 1992, Study and interpretation of chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Hirsch, R.M., Helsel D.R., Cohn, T.A., and Gilroy, E.J., 1993, Statistical analysis of hydrologic data, *in* Maidment, D.R., ed., Handbook of hydrology: New York, McGraw-Hill, Inc., p. 17.1–17.55.

Hirsch, R.M., Walker, J.F., Day, J.C., and Kallio, R., 1990, The influence of man on hydrologic systems, *in* Riggs, H.C., and Wolman, M.G., eds., Surface water hydrology—the geology of America, volume O–1: Boulder, Colorado, Geological Society of America, pp. 329–359.

Huggins, D.G., and Anderson, J., 2005, Dissolved oxygen fluctuation regimes in streams of the western corn belt plains ecoregion: Kansas Biological Survey Report No. 130, 56 p.

Johnson County Stormwater Management Program, 2007, Stormwater Management Advisory Council, Information available on Web, accessed October 30, 2007, at http://stormwater.jocogov.org/AboutSMP/smac.shtml

Jordan, P.R., and Stamer, J.K., eds., 1995, Surface-water-quality assessment of the lower Kansas River Basin, Kansas and Nebraska, analysis of data through 1986: U.S. Geological Survey Water-Supply Paper 2352–B, 161 p.

Kansas Department of Health and Environment, 2004a, Basics of TMDLs: Information available on Web, accessed July 30, 2004, at *http://www.kdhe.state.ks.us/tmdl/ basic.htm*

Kansas Department of Health and Environment, 2004b, Surface Water Nutrient Reduction Plan, December 2004: Information available on Web, accessed February 9, 2005, at http://www.kdhe.state.ks.us/water/download/ ks_nutrient_reduction_plan_12_29_final.pdf

Kansas Department of Health and Environment, 2005, Kansas Administrative Regulations (KAR), Title 28, Article 16, Surface water quality standards 2005: Topeka, Kansas, Secretary of State, multiple pagination.

Kansas Department of Health and Environment, 2006a, Kansas section 303(d) list of impaired surface waters: Information available on Web, accessed April 2007 at *http://www.kdheks.gov/tmdl/methodology.htm*

Kansas Department of Health and Environment, 2006b, Kansas-Lower Republican Basin total maximum daily load, waterbody—Cedar Creek watershed, water quality impairment—nitrate: Information available on Web, accessed May 2007 at http://www.kdheks.gov/tmdl/2006/ new_cedar_creek_nitrate_tmdl.pdf

Kansas Department of Health and Environment, 2007, Kansas-Lower Republican Basin total maximum daily load, waterbody—Mill Creek watershed, water quality impairment biology: Information available on Web, accessed May 2007 at *http://www.kdheks.gov/tmdl/2006/ new_mill_creek_bio_tmdl.pdf*

Kaushal, S.S., Groffman, P.M., Likens, G.E., Belt, K.T., Stack, W.P., Kelly, W.K., Band, L.E., and Fisher, G.T., 2005, Increased salinization of fresh water in the northeastern United States: Proceedings of National Academy of Sciences, v. 102, p. 13517–13520.

Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticides industry sales and usage, 2000 and 2001 market estimates: Information available on Web, accessed January 24, 2005, at http://www.epa.gov/oppbead1/pestsales/01pestsales/ market_estimates2001.pdf

LeBlanc, R.T., Brown, R.D., and Fitzgibbon, J.E., 1997, Modeling the effects of land use change on water temperature in unregulated urban streams: Journal of Environmental Monitoring, v. 49, p. 445–469.

Lee, C.J., Mau, D.P., and Rasmussen, T.J., 2005, Effects of point and nonpoint sources on water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004: U.S. Geological Survey Scientific Investigations Report 2005–5144, 104 p.

Leopold, L.B., 1968, Hydrology for urban land planning—a guidebook on the hydrologic effects of urban land use: U.S. Geological Survey Circular 554, 18 p.

Lewis, M.E., 2006, Dissolved oxygen: U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A6, section 6.2, accessed February 2007 from http://pubs.water.usgs.gov/twri9A6

Maidment, 1993, Handbook of hydrology: New York, McGraw-Hill, Inc., variously paged.

Masters, G.M., 1991, Introduction to environmental engineering and science: Englewood Cliffs, New Jersey, Prentice Hall, p. 110–111. Mau, D.P., Ziegler, A.C., Porter, S.D., and Pope, L.M., 2004, Surface-water-quality conditions and relation to taste-andodor occurrences in the Lake Olathe watershed, northeast Kansas, 2000–02: U.S. Geological Survey Scientific Investigations Report 2004–5047, 95 p.

McMahon, G., and Cuffney, T.F., 2000, Quantifying urban intensity in drainage basins for assessing stream ecological condition: Journal of the American Water Resources Association, v. 36, no. 6, p. 1247–1261.

Mid-America Regional Council, 2002, Long-range forecast for the Kansas City metropolitan area, 2002: Information available on Web, accessed December 17, 2004, at http://www.metrodataline.org/Forecasts/ 2002%20Long%20Range%20Forecasts.xls

Mid-America Regional Council and American Public Works Association, 2003, Manual of best management practices for stormwater quality: Information available on Web, accessed May 24, 2007, *at http://www.marc.org/ Environmental/Water/pdfs/bmp_manual/*

Mid-America Regional Council and F.X. Browne and Associates, Inc., 1983, Nationwide Urban Runoff Program–Kansas City area project–executive and technical summaries: Kansas City, Missouri, Mid-America Regional Council, 16 p.

National Atmospheric Deposition Program, 2005, National atmospheric deposition program 2004 annual summary: NADP Data Report 2005–01, 16 p.

National Oceanic and Atmospheric Administration, 1966–98, Climatological data annual summary–east-central Kansas: Asheville, North Carolina, National Weather Service Climatic Data Center, published monthly.

Nistor, C.J., and Church, M., 2005, Suspended sediment transport regime in a debris-flow gully on Vancouver Island, British Columbia: Hydrological Processes, v. 19, p. 861–885.

Oberg, K.A., Morlock, S.E., and Caldwell, W.S., 2005, Quality-assurance plan for discharge measurements using Acoustic Doppler Current Profilers: U.S. Geological Survey Scientific Investigations Report 2005–5183, 35 p.

O'Connor, H.G., 1971, Johnson County geohydrology: Kansas Geological Survey, information available on Web, accessed June 25, 2007, at http://www.kgs.ku.edu/General/Geology/ Johnson/index.html

Paul, M.J., and Meyer, J.L., 2001, Streams in the urban landscape: Annual Review of Ecological Systems, v. 32, p. 333–65.

Perry, C.A., Wolock, D.M., and Artman, J.A., 2004, Estimates of flow duration, mean flow, and peak-discharge frequency values for Kansas stream locations: U.S. Geological Survey Scientific Investigations Report 2004–5033, 219 p. Peters, N.E., and Meybeck, M., 2000, Water quality degradation effects on freshwater availability—impacts of human activities: International Water Resources Association, Water International, v. 25, no. 2, p. 185–193.

Plinsky, R.O., Zimmerman, J.L., Dickey, H.P., Jorgensen, G.N., Fenwick, R.W., and Roth, W.E., 1975, Soil survey of Johnson County, Kansas: U.S. Department of Agriculture, Soil Conservation Service, 93 p.

Pope, L.M., and Putnam, J.E., 1997, Effects of urbanization on water quality in the Kansas River, Shunganunga Creek Basin and Soldier Creek, Topeka, Kansas, October 1993 through September 1995: U.S. Geological Survey Water-Resources Investigations Report 97–4045, 84 p.

Porcella, D.B., and Sorensen, D.L., 1980, Characteristics of non-point source urban runoff and its effects on stream ecosystems: Washington, D.C., U.S. Environmental Protection Agency, EPA-600/3-80-032, 99 p.

Poulton, B.P., Rasmussen, T.J., and Lee, C.J., 2007, Assessment of biological conditions at selected stream sites in Johnson County, Kansas, and Cass and Jackson Counties, Missouri, 2003 and 2004: U.S. Geological Survey Scientific Investigations Report 2007–5108, 68 p.

Putnam, J.E., 1997, Occurrence of phosphorus, other nutrients, and triazine herbicides in water from the Hillsdale Lake Basin, northeast Kansas, May 1994 through May 1995:
U.S. Geological Survey Water-Resources Investigations Report 97–4019, 66 p.

Radtke, D.B., Davis, J.V., and Wilde, F.D., 2005, Specific electrical conductance: U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A6, section 6.3, accessed October 2007 at *http://pubs.water.usgs.gov/twri9A9/*

Rasmussen, P.P., and Ziegler, A.C., 2003, Comparison and continuous estimates of fecal coliform and *Escherichia coli* bacteria in selected Kansas streams, May 1999 through April 2002: U.S. Geological Survey Water-Resources Investigations Report 03–4056, 80 p.

Rasmussen, T.J., Ziegler, A.C., and Rasmussen, P.P., 2005, Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003: U.S. Geological Survey Scientific Investigations Report 2005–5165, 117 p.

Ritter, M.E., 2006, The physical environment: an introduction to physical geography: Information found on the Web, accessed July 31, 2007 at http://www.uwsp.edu/geo/faculty/ ritter/geog101/ textbook/

Schoewe, W.H., 1949, The geography of Kansas: Transactions of the Kansas Academy of Science, v. 52, no. 3, p. 261–333.

Seaburn, G.E., 1969, Effects of urban development on direct runoff to East Meadow Brook, Nassau County, New York: U.S. Geological Survey Professional Paper 627–B, 14 p.

Searcy, J.K., 1959, Flow duration curves, manual of hydrology, part 2, low flow techniques: U.S. Geological Survey Water Supply Paper 1542–A, 33 p.

Smith, R.A., Alexander, R.B., and Schwartz, G.E., 2003, Natural background concentrations of nutrients in streams and rivers of the conterminous United States: Environmental Science and Technology, v. 37, no. 14, p. 3039–3047.

Trimble, S.J., 1997, Contribution of stream channel erosion to sediment yield from an urbanizing watershed: Science, v. 278, p. 1442–1444.

University of Kansas, 2006, Kansas statistical abstract 2005 (40th ed.), Lawrence, Kansas, Institute for Policy and Social Research, available on Web accessed June 18, 2007 at http://www.ipsr.ku.edu/ksdata/ksah/.

U.S. Census Bureau, 2007, State and county quickfacts: Information available on Web accessed June 18, 2007, at *http://quickfacts.census.gov/qfd/states/20000.html*.

U.S. Environmental Protection Agency, 2002a, Source Water Protection Practices Bulletin—Managing highway deicing to prevent contamination of drinking water: Washington, D.C., EPA 816–F–02–019, 7 p.

U.S. Environmental Protection Agency, 2002b, List of drinking water contaminants & MCLs, July 2002: Washington, D.C., EPA–816–F–02–013, information available on Web, accessed July 12, 2004, at *http://www.epa.gov/safewater/ mcl.html*

U.S. Environmental Protection Agency, 2003a, National drinking-water standards, June 2003: Washington D.C., Report EPA–816–F–03–016, information available on Web, accessed July 12, 2004, at *http://www.epa.gov/safewater/mcl.html*

U.S. Environmental Protection Agency, 2003b, Ecoregional nutrient criteria: Information available on Web, accessed July 9, 2003, at *http://www.epa.gov/waterscience/criteria/ nutrient/ecoregions/*

U.S. Environmental Protection Agency, 2004a, Which atmospheric deposition pollutants pose the greatest problems for water quality?: Information available on Web, accessed November 4, 2004, at *http://www.epa.gov/owow/oceans/ airdep/air2.htm*

U.S. Environmental Protection Agency, 2004b, Primer for municipal wastewater treatment systems: Washington, D.C., EPA-832-R-04-001, 29 p.

U.S. Environmental Protection Agency, 2005, National Pollutant Discharge Elimination System (NPDES): Information available on Web, accessed February 2006 at *http://cfpub. epa.gov/npdes/*

U.S. Environmental Protection Agency, 2007, Introduction to the clean water act: Information available on the Web, accessed September 2007 at *http://www.epa.gov/watertrain/cwal*

U.S. Geological Survey, 1999, The quality of our Nation's waters—nutrients and pesticides: U.S. Geological Survey Circular 1225, 82 p.

Vogel, R.M., and Fennessey, N.M., 1995, Flow duration curves II—a review of applications in water resources planning: Water Resources Bulletin, v. 31, no. 6, p. 1029–1039.

Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors: station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods 1–D3, 96 p.

Wagner, R.J., Mattraw, H.C., Ritz, G.F., and Smith, B.A., 2000, Guidelines and standard procedures for continuous water-quality monitors—site selection, field operations, calibration, record computation, and reporting: U.S. Geological Survey Water-Resources Investigations Report 00–4252, 53 p.

Water One, 2004, Water District No. 1 of Johnson County drinking water quality report 2004: Information available on Web, accessed October 2004 at http://www.waterone.org/ Adobe%20Files/2004%20Water%20Quality%20Report_1. pdf

Weibull, W., 1939, The phenomenon of rupture in solids, ingenious Vetenskaps: Stockholm, Akademien Handlingo, v. 153, p. 17.

Welch, E.B., and Lindell, T., 1992, Ecological effects of wastewater, applied limnology and pollutant effects: London and New York, Cambridge University Press, 425 p.

Wetzel, R.G., 2001, Limnology of lake and river ecosystems: New York, Academic Press, 1006 p.

Wilde, F.D., and Radtke, D.B., eds., 1998, Field measurements, *in* National field manual for the collection of waterquality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6, p. 3–20. Wilde, F.D., Radtke, D.B., Gibs, J., and Iwatsubo, R.T., eds., 1999, Collection of water samples, *in* National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, various pagination.

Wilde, F.D., Eurybiades, B., and Radtke, D.B., 2006, pH: U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A6, section 6.4, accessed February 2007 from *pubs://pubs.water.usgs.gov/twri9A6*

Wilkison, D.H., Armstrong, D.J., and Blevins, D.W., 2002, Effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas, July 1998–October 2000: U.S. Geological Survey Water Resources Investigations Report 02–4107, 162 p.

Wilkison, D.H., Armstrong, D.J., Brown, R.E., Poulton, B.C., Cahill, J.D., and Zaugg, S.D., 2005, Water-quality and biologic data for the Blue River Basin, Kansas City Metropolitan area, Missouri and Kansas, October 2000 to October 2004: U.S. Geological Survey Data Series 127, 158 p.

Wilkison, D.H., Armstrong, D.J., Norman, R.D, Poulton, B.C., Furlong, E.T., and Zaugg, S.D., 2006, Water-quality in the Blue River Basin, Kansas City metropolitan area, Missouri and Kansas, July 1998 to October 2004: U.S. Geological Survey Scientific Investigations Report 2006–5147, 170 p.

Williams, G.P., 1989, Sediment concentration versus water discharge during single hydrologic events in rivers: Journal of Hydrology, v. 11, p. 89–106.

Wolman, M.G., 1967, A cycle of sedimentation and erosion in urban river channels: Geography Annual, v. 49a, p. 385–95.

Zampella, R.A., 1994, Characterization of surface water quality along a watershed disturbance gradient, Water Resources Bulletin, v. 30, p. 1605–611.

Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water-Quality Laboratory-determination of pesticides in water by C-18 solid phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring: U.S. Geological Survey Open-File Report 95–181, 60 p.
Appendix

Kansas
northeast
County,
Johnson
.⊑
ream conditions
) evaluate st
used to
and criteria
descriptions, a
constituents,
Vater-quality
~
Appendix '

[mg/L, milligrams per liter or parts per million; col/100 mL, colonies per 100 milliliters of water; mg/L, micrograms per liter or parts per billion; FNU, formazine nephelometric units; SDWR1, Secondary Drinking-Water Regulation (nonenforceable); MCL2, Maximum Contaminant Level (enforceable); C, Celsius; F, Fahrenheit;]

Constituent	Description	Criteria or guidelines	Criteria or guideline source
	Directly measured water	quality constituents	
Specific conductance (SC)	A measure of the capacity of water to conduct an electrical current; a function of the types and quantities of dissolved substances in water (Radtke and others, 2005). As concentrations of dissolved ions increase, specific conductance of the water increases.	None	Useful indicator for dissolved substances in water.
РН	A measure of the effective hydrogen-ion concentration or activ- ity (Wilde and others, 2005); measure of the acidity (pH less than 7) or alkalinity (pH greater than 7) of a solution; a pH of 7 is neutral.	Not less than 6.5 and not more than 8.5 standard units	Aquatic-life-support use criteria (Kansas Department of Health and Environment, 2005).
Water temperature (WT)	Has an important effect on the density of water, the solubil- ity of constituents in water, pH, specific conductance, the rate of chemical reactions, and biological activity in water (Wilde, 2006).	Narrative criteria	A discharge from an artificial source shall not elevate the tem- perature above 32 degrees C (90 degrees F) and not raise the temperature more than 3 degrees C above natural conditions. Useful to determine chemical treatment of drinking water (Kansas Department of Health and Environment, 2005).
Turbidity (FNU)	Reduced clarity of water generally caused by suspended par- ticles; measured by quantifying the amount of light scattered by particles in the water (Anderson, 2005).	15.5 FNU	Recommended nutrient criteria for streams in Ecoregion IX, Subecoregion 40 (U.S. Environmental Protection Agen- cy, 2003b).
Dissolved oxygen (DO)	Oxygen dissolved in surface water is related primarily to atmo- spheric reaeration and photosynthetic activity of aquatic plants (Lewis, 2006). It is a significant factor in chemical reactions in water and the survival of aquatic organisms.	Not less than 5.0 mg/L	Aquatic-life-support use criteria (Kansas Department of Health and Environment, 2005).
	Laboratory-analyzed and regression-e	stimated water-quality co	nstituents
Suspended-sediment concentration (SSC)	Particles of rock, sand, soil, and organic material in suspen- sion in the water column. Suspended sediment, particularly sediment composed of fine material like silt and clay, gives water a muddy appearance and provides attachment sites for accumulation and transport of nutrients, bacteria, and other contaminants.	Narrative criteria	Suspended solids added by artificial sources shall not interfere with aquatic life (Kansas Department of Health and Environment, 2005).
Total suspended solids (TSS)	Different from suspended sediment in the way that the sample is collected and analyzed.	Narrative criteria	Suspended solids added by artificial sources shall not interfere with aquatic life (Kansas Department of Health and Environment, 2005).
Dissolved solids (DS)	Amount of minerals, such as salt, that are dissolved in water; amount of dissolved solids is an indicator of salinity or hard- ness (Hem, 1992).	500 mg/L	SDWR for finished drinking water (U.S. Environmental Protection Agency, 2003a).

[mg/L, milligrams per liter Drinking-Water Regulation	or parts per million; col/100 mL, colonies per 100 milliliters of water; mg/L, n (nonenforceable); MCL2, Maximum Contaminant Level (enforceable); C, Ce	micrograms per liter or par- lsius; F, Fahrenheit;]	s per billion; FNU, formazine nephelometric units; SDWR1, Secondary
Constituent	Description	Criteria or guidelines	Criteria or guideline source
	Laboratory-analyzed and regression-estimate	ed water-quality constit	JentsContinued
Alkalinity (Alk)	The capacity for solutes in the water to react with and neutralize acid (Hem, 1992). Natural sources of alkalinity are limestone and decomposition of organic matter. Alkalinity is important in determining a stream's ability to neutralize acidic pollution from rainfall or wastewater.	None	No numeric criteria.
Bicarbonate (HCO ₃)	Bicarbonate is one of the solutes in the water that buffers the pH of natural waters to react with and neutralize acid. Sources of bicarbonate are limestone and decomposition of organic matter. Bicarbonate is important in determining a stream's ability to neutralize acidic pollution from rainfall or wastewater (Hem, 1992).	None	No numeric criteria.
Hardness (CaCO ₃)	The hardness of water is commonly expressed in an equivalent quantity of calcium carbonate that represents the majors cat- ions found in water including calcium, sodium, potassium, and magnesium. Sources of hardness are from all different rock types (Hem, 1992).	None	No numeric criteria.
Calcium (Ca)	A cation present in nearly all natural waters, although con- centrations vary; present in nearly all rocks and soils and frequently is the dominant cation in natural waters. Common source of calcium in water is from dissolution of limestone (Hem, 1992).	None	No numeric criteria.
Sodium (Na)	A cation present in nearly all natural waters, although concentrations vary; present in nearly all rocks and soils. Common sources of sodium in water are dissolution of clay and feldsparminerals (Hem, 1992).	20 mg/L	Drinking Water Effects Level; non-enforceable advisory level for persons on low sodium diets; taste threshold of 30–60 milligrams per liter (U.S. Environmental Protection Agency, 2003a).
Chloride (Cl)	Present in nearly all natural waters, although concentrations are normally low. Can originate from natural evaporate deposits of salt and from past oil and gas brine solutions (Hem, 1992).	250 mg/L	SDWR for finished drinking water (U.S. Environmental Protection Agency, 2003a).
		860 mg/L	Acute-aquatic-life criteria (Kansas Department of Health and Environment, 2005).
Sulfate (SO ₄)	Contributes to the dissolved solids in water and can come from irrigation return flow, which increases concentrations from evapotranspiration. Sulfate originates from evaporate deposits such as gypsum and the oxidation of sulfide minerals such as pyrite (Hem, 1992).	250 mg/L	SDWR for finished drinking water (USEPA, 2003a).

Appendix 1. Water-quality constituents, descriptions, and criteria used to evaluate stream conditions in Johnson County, northeast Kansas.—Continued

Appendix 1. Water-quality constituents, descriptions, and criteria used to evaluate stream conditions in Johnson County, northeast Kansas.—Continued

[mg/L, milligrams per liter or parts per million; col/100 mL, colonies per 100 milliliters of water; mg/L, micrograms per liter or parts per billion; FNU, formazine nephelometric units; SDWR1, Secondary Drinking-Water Regulation (nonenforceable); MCL2, Maximum Contaminant Level (enforceable); C, Celsius; F, Fahrenheit;]

Constituent	Description	Criteria or guidelines	Criteria or guideline source
	Laboratory-analyzed and regression-estimate	ed water-quality constit	uentsContinued
Sulfate (SO ₄)		1,000 mg/L	Livestock watering criteria (Kansas Department of Health and Environment, 2005).
Fluoride (F)	Present in nearly all natural waters, although concentrations are normally less than 1 mg/L (Hem, 1992). Typically is present in mineral grains in rocks. Fluoride is added to many drinking- water supplies to assist in making teeth harder.	4.0 mg/L	MCL for fluoride in finished drinking water (USEPA, 2003a).
		1.0 mg/L	Irrigation criterion (Kansas Department of Health and Environ- ment, 2005).
		2.0 mg/L	Livestock watering criteria and domestic water supply (Kansas Department of Health and Environment, 2005).
Total nitrogen (TN)	A nutrient necessary for growth and reproduction. Large inputs to the aquatic environment can cause excessive algal growth. When algal blooms die, concentrations of dissolved oxygen are depleted, which can stress aquatic organisms and may cause taste-and-odor problems in water supplies.	0.855 mg/L as nitrogen	Recommended nutrient criteria for streams in Ecoregion IX, Subecoregion 40 (U.S. Environmental Protection Agency, 2003b).
Total organic nitrogen (TON)	The component of total nitrogen that is organic; usually originates from soils, plant and animal materials, and untreated wastewater.	0.625 mg/L as nitrogen	Recommended nutrient criteria for streams in Ecoregion IX, Subecoregion 40 (U.S. Environmental Protection Agency, 2003b).
Total phosphorus (TP)	A nutrient necessary for growth and reproduction. Large inputs to the aquatic environment can cause excessive algal growth. When algal blooms die, concentrations of dissolved oxygen are depleted, which can stress aquatic organisms and may cause taste-and-odor problems in water supplies.	0.0925 mg/L as phosphorus	Recommended nutrient criteria for streams in Ecoregion IX, Subecoregion 40 (U.S. Environmental Protection Agency, 2003b).
Escherichia coli bacteria (ECB)	Presence in surface water indicates fecal contamination by warmblooded mammals and possibly indicates the presence of other organisms that could cause disease.	160 col/100 mL	Primary contact (swimming in swim beach) recreation criterion from April to October for a geometric mean of at least five samples in 30-day period (Kansas Department of Health and Environment, 2005).
		262 col/100 mL	Primary contact (swimming in public water or public access) recreation criterion from April to October for a geometric mean of at least five samples in 30-day period (Kansas De- partment of Health and Environment, 2005).
		427 col/100 mL	Primary contact (swimming in private water, no access) recre- ation criterion from April to October for a geometric mean of at least five samples in 30-day period (Kansas Department of

Health and Environment, 2005).

	DWU
	5.
	ini
	tric
	ame
	held
p	nen
nue	ine
onti	maz
ပ	for
as	Ē
ans	Ē
stΚ	lior
lea	r hi
ort	s ne
Υ, n	art
unt	or 1
C C	iter
ISOL	ner]
ohr	1 sm
ل ni	orai
SUC	icro
ditic	E C
SODI	ησ/Ι
E C	ц.,
trea	wate
te s	j.
alua	ters
eva	1111
d to	0 m
nse(r 10
ria ı	a nei
rite	nie
nd c	olo
, ar	Ţ
ons	n ()
ript	1/10
esc	50.0
s, d	llior
lent	mi
stitt	Del
000	arts
ity	Or 1
lual	iter
er-ç	ler
Vat	150
.	oral
dix	nilli
ent	T. n
App	mo/
	_

/R1, Secondary [mg/L, milligrams per liter or parts per million; col/100 mL, colonies per 100 milliliters of water; mg/L, micrograms per liter or parts per Drinking-Water Regulation (nonenforceable); MCL2, Maximum Contaminant Level (enforceable); C, Celsius; F, Fahrenheit;]

0			
Constituent	Description	Criteria or guidelines	Criteria or guideline source
	Laboratory-analyzed and regression-estimat	ted water-quality constit	uentsContinued
<i>Escherichia coli</i> bacteria (ECB)		2,358 col/100 mL	Primary contact (swimming in swim beach, public water or public access) recreation criterion from November to March for a geometric mean of at least five samples in 30-day pe- riod (Kansas Department of Health and Environment, 2005).
		3,843 col/100 mL	Primary contact (swimming in private water, no access) recreation criterion from November to March for a geomet- ric mean of at least five samples in 30-day period (Kansas Department of Health and Environment, 2005).
		2,358 col/100 mL	Secondary contact (wading in public water or public access) recreation criterion at any time during the year for a single sample (Kansas Department of Health and Environment, 2005).
		3,843 col/100 mL	Secondary contact (wading in private water, no access) recreation criterion at any time during the year for a single sample (Kansas Department of Health and Environment, 2005).
Atrazine (Atr)	Triazine herbicides, such as atrazine, are commonly applied to crops (corn and sorghum) to control the growth of weeds. Typically are applied to fields during the growing season, and high concentrations in surface water result from rainfall and runoff.	3 µg/L	MCL for atrazine in finished drinking water as an annual average and Kansas Department of Health and Environment chronic aquatic life criteria for atrazine (U.S. Environmental Protection Agency, 2003a; Kansas Department of Health and Environment, 2005).
		170 mg/L	Acute-aquatic-life criterion (Kansas Department of Health and Environment, 2005).
¹ SDWRs are nonenforces	the guidelines for drinking water recommended by the U.S. Environmental F	Protection Agency and the S	states for aesthetic effects, such as taste and odor (U.S. Environmental

² MCLs are the maximum permissible levels of a contaminant in drinking water and is enforceable by the U.S. Environmental Protection Agency and the States (U.S. Environmental Protection Agency, 2002b). The criteria level is assigned at a level where there is a known adverse effect on humans consuming water exceeding the criterion value. Protection Agency, 2002b).

Publishing support provided by: Rolla Publishing Service Center

For more information concerning this publication, contact: Director, USGS Kansas Water Science Center 4821 Quail Crest Place Lawrence, KS 66049 (785) 842–9909

Or visit the Kansas Water Science Center Web site at: http://ks.water.usgs.gov

