Proposed Rule: Approval and Promulgation of Air Quality Implementation Plans; State of Nevada; Regional Haze State and Federal Implementation Plans

Technical Support Document (TSD) Docket Number: EPA-R09-OAR-2011-0130

Prepared and Reviewed by: Scott Bohning, Eugene Chen, Steve Frey, Ann Lyons, Colleen McKaughan, Thomas Webb

April 2, 2012

1. Relationship of this TSD to our Proposal

In a letter dated November 18, 2009, Nevada Division of Environmental Protection (NDEP) submitted the "Nevada Regional Haze State Implementation Plan" (Nevada RH SIP) to U.S. Environmental Protection Agency (EPA), Region 9. This SIP addressed regional haze program requirements for the first planning period through July 31, 2018. On June 22, 2011 (76 FR 36450), we proposed approval of the Nevada RH SIP. On December 13, 2011 we finalized approval of all elements of the Nevada RH SIP with the exception of the NOx BART determination for the Reid Gardner Generating Station.¹ As a result of certain comments received during the public comment period for the proposed approval, we took no action on this element of the RH SIP in order to perform additional analysis and supplement the administrative record. The results of our analysis support NDEP 's selection of control technology (ROFA with Rotamix). As a result, we are proposing to approve certain remaining elements of the RH SIP as listed in Table 1 below. In addition, there are certain SIP elements that we are not approving. For those elements, we are also proposing a Federal Implementation Plan (FIP).

Unit	Plan Element	SIP	Approved?	FIP
1	Emission Limit (lb/MMBtu) ¹	0.20	Y	
T	Averaging Period	12-month rolling	N	30-day rolling
	Emission Limit (lb/MMBtu) ¹	0.20	Y	
2	Averaging Period	12-month rolling	Ν	30-day rolling
3	Emission Limit (lb/MMBtu) ¹	0.28	Ν	0.20
	Averaging Period	12-month rolling	Ν	30-day rolling

 Table 1. Approved Elements of RH SIP

 Averaging Period
 12-month rolling
 N
 30-day rolling

 ¹ Although the emission limits are listed separately for each unit, compliance with the emission limits is determined based on a unit-wide average (heat input weighted)

This document provides technical information to support the proposed approval, and discuss the basis for our proposed disapproval and FIP. It provides additional information regarding the technical aspects of our proposed disapproval which we regard as too detailed for inclusion in the Federal Register notice. Specifically, this document contains our analysis of the two factors of the BART analysis that we consider most crucial to this approval, costs of

¹ 77 FR 17334

compliance and degree of visibility improvement. It also contains our rationale for disapproving the elements listed in Table 1, and the corresponding FIP element. The remaining sections of this TSD are numbered as follows:

Section 2 – Background on Regional Haze and BART Requirements Section 3 – Reid Gardner NOx BART Determination Section 4 – Costs of Compliance Section 5 – Degree of Visibility Improvement Section 6 – FIP elements

Please note that in this document, we often use language such as "we find" or other similar phrases that on the surface suggest a final determination has been made. However, the information presented in this TSD should be considered part of our proposal and subject to change based on comments and other additional information we may receive during the public comment period for this proposal.

2. Background on Regional Haze and BART Requirements

Our June 22, 2011 proposed approval of the Nevada RH SIP contains a general discussion of regional haze and EPA's Regional Haze Rule (RHR), including BART requirements (76 FR at 36451-36455). The RHR provides the following six factors that a BART determination must take into account (40 CFR 51.308(e)(1)(ii)(A)):

- the available technology to control emissions and the technical feasibility of each technology;
- the cost of compliance for the technically feasible control technologies;
- the energy and non-air quality impacts of the control technologies;
- any existing air pollution control technologies at the source;
- the remaining useful life of the source; and
- the degree of visibility improvement which may reasonably be anticipated to result from the various control technologies.

All but the first of these factors are also expressly required to be taken into account under Section 169A(g)(2) of the Clean Air Act (CAA), 42 U.S.C. § 7491(g)(2). Although we list six factors, the first factor is not always explicitly stated and the remaining factors are frequently referred to as the "five-factor analysis" for the RHR BART determination.

3. Reid Gardner NOx BART Determination

A. NDEP's Analysis

RGGS consists of four coal-fired boilers, three of which are BART-eligible units with generating capacity of 100 megawatts (MW) each. A fourth unit (250 MW) is not BART-eligible. The units are wall-fired pulverized coal boilers that consume primarily bituminous coal, but currently also burn some Wyoming sub-bituminous coal. Nevada Energy, the owner of RGGS, performed a BART analysis for the three BART-eligible RGGS units and submitted the results of its analysis to NDEP and recommended new LoNOx burners and 0.39 lb/MMbtu as

BART .² NDEP reviewed but disagreed with Nevada Energy's analysis and NDEP determined that, for each unit, rotating overfire air (ROFA) with Rotamix (a technology that combines a conventional selective non-catalytic reduction [SNCR] system with a proprietary injection system for air and reagent) was BART for NOx.³ NDEP eliminated the next most effective control technologies, which consist of selective catalytic reduction (SCR)-based options, on the grounds that "the \$/ton of NO_x removed increased significantly . . . without correspondingly significant improvements in visibility."⁴

B. EPA's Analysis

Based upon comments received during the public comment period for our June 22, 2011 proposal, we conducted additional review of the five-factor analysis performed by NDEP. During the course of this review, we identified several aspects of NDEP's analysis that we considered either inconsistent with our regulations under 51.308(e) or unsupported by the record. As a result, we performed our own analysis in order to revise these inconsistencies and supplement the record with additional visibility modeling. Costs of compliance and degree of visibility improvement were the two statutory factors most crucial to our analysis, and are discussed at length in the remainder of this document.

In our analysis of costs of compliance, we find that control options more stringent than ROFA with Rotamix, such as SCR with LNB and OFA, are cost effective on an average and incremental basis. Our analysis of visibility improvement indicates small incremental visibility improvement between ROFA with Rotamix and more stringent control options, such as SCR control options. As a result, we agree that NDEP reasonably determined that the costs of further control are not warranted based on the low incremental visibility improvement.

4. Costs of Compliance

The BART guidelines state that "[i]n order to improve consistency, cost estimates should be based on the *OAQPS Control Cost Manual* [now called the *EPA Air Pollution Control Cost Manual*], where possible." The *EPA Air Pollution Control Cost Manual* (Sixth Edition, January 2002)⁵ provides guidance and methodologies for estimating the cost and economic feasibility of a project, with a nominal accuracy of \pm 30%. The costs that are incorporated into estimates of capital and annual costs by the *Control Cost Manual* (CCM) are outlined in Section 1, Chapter 2⁶, which states that total capital costs may include equipment costs, freight, sales tax, and installation costs. For existing facilities, retrofit costs should also be considered, and may include auxiliary equipment, handling and erection, piping, insulation, painting, site preparation, off-site facilities, engineering, and lost production revenue. Finally, annual costs are estimated from costs of raw materials, maintenance labor and materials, utilities, waste treatment and disposal, replacement materials, overhead, property taxes, insurance, and administrative charges.

A. NDEP's Analysis

² Nevada Energy BART Analysis Reports, completed October 3, 2008. Available in Docket Item No. EPA-R09-OAR-2011-0130-0007.

³ Revised NDEP Reid Gardner BART Determination Review, available as Docket Item No. EPA-R09-OAR-2011-0130-0005.

 $[\]frac{4}{6}$ Id. at page 6.

⁵ http://epa.gov/ttn/catc/products.html#cccinfo

⁶ Section 1: Introduction, Chapter 2: Cost Estimation: Concepts and Methodology, EPA/452/B-02-001, (01/2002)

In evaluating this factor, NDEP developed cost effectiveness values for each NOx control technology on an average and incremental basis. A summary of these values for Reid Gardner Units 1 through 3, as included in the RH SIP, are summarized in Table 2 below.

	Control	Emission	Emission	Annualized	Average Cost	Incremental Cost					
Control Option	Efficiency ¹	Rate ¹	Reduction ¹	Costs ¹	Effectiveness ¹	Effectiveness ¹					
	(%)	(lb/ MMBtu)	(ton/yr)	(\$MM)	(\$/ton)	(\$/ton)					
	Reid Gardner Unit 1										
LNB + OFA	21.3%	0.36	483	\$0.55	\$1,143	\$1,143					
LNB + OFA + SNCR	40.9%	0.27	927	\$1.13	\$1,222	\$1,308					
ROFA + Rotamix	57.7%	0.2	1308	\$1.45	\$1,109	\$833					
SCR + LNB + OFA	81.6%	0.085	1850	\$4.75	\$2,566	\$6,085					
$SCR + ROFA^3$	81.6%	0.085	1850	\$5.39	\$2,916	\$7,280					
		•	Reid Gardner	Unit 2		•					
LNB + OFA	23.7%	0.355	580	\$0.55	\$952	\$952					
LNB + OFA + SNCR	42.7%	0.267	1044	\$1.16	\$1,106	\$1,299					
ROFA + Rotamix	59.0%	0.19	1443	\$1.50	\$1,038	\$860					
SCR + LNB + OFA	82.2%	0.083	2010	\$4.80	\$2,386	\$5,813					
$SCR + ROFA^3$	82.2%	0.083	2010	\$5.47	\$2,721	\$7,001					
			Reid Gardner	Unit 3							
LNB + OFA	6.5%	0.42	147	\$0.55	\$3,742	\$3,742					
LNB + OFA + SNCR	29.9%	0.316	678	\$1.08	\$1,596	\$1,000					
ROFA + Rotamix	38.0%	0.278	869	\$1.38	\$1,588	\$1,560					
SCR + LNB + OFA	78.2%	0.098	1774	\$4.72	\$2,660	\$3,688					
$SCR + ROFA^2$	78.2%	0.098	1774	\$5.40	\$3,045	\$4,444					

Table 2. NDEP Control Cost Effectiveness Summary

¹ As summarized in Table 1, NDEP Reid Gardner BART Determination, October 22, 2009. Available as Docket Item No. EPA-R09-OAR-2011-0130-0005.

² Incremental cost effectiveness based on ROFA + Rotamix as previous control technology

The annualized costs listed in Table 2 are based on total capital installation costs and certain annual operating costs provided to NDEP by Nevada Energy on October 22, 2008, and were included in the SIP without modification. These cost calculations provided line item summaries of capital costs and annual operating costs, but did not provide further supporting information such as detailed equipment lists, vendor quotes, or the design basis for line item costs.

In its RH SIP, NDEP indicated that it based its NOx BART determination of ROFA with Rotamix primarily on the costs of compliance. NDEP judged the costs of ROFA with Rotamix

as affordable based on an average cost effectiveness of approximately \$1100-1600/ton. NDEP eliminated more stringent control options, such as the SCR-based options, on the grounds that "the \$/ton of NOx removed increased significantly . . . without correspondingly significant improvements in visibility." Per NDEP estimates, the incremental cost effectiveness of SCR with LNB and OFA is approximately \$3600-6100/ton. NDEP determined that this additional cost per year for SCR technologies did not appear cost effective compared to the additional NO_x reduction for each unit

B. EPA's Analysis

In reviewing the Nevada RH SIP, and as a result of several public comments we received, we identified several aspects of NDEP's approach to this factor with which we disagree, and for which we have performed additional analysis.

We received several public comments alleging that NDEP/Nevada Energy's cost calculations were unsupported by the record or lacked sufficient detail for critical review. We agree with these comments, and on December 22, 2011 sent a letter to NDEP in which we requested clarification on several items, among which was information that would provide additional detail and justification for control cost estimates.⁷ In response, NDEP provided certain documents, including a set of cost estimates updated in 2011. These updated cost estimates consist of updates to specific line items in order to reflect higher material costs, but did not include any supporting information such as detailed equipment lists, vendor quotes, or the design basis for line item costs. ⁸

We also received several public comments alleging that NDEP/Nevada Energy's cost calculations were overestimated and based on methodology inconsistent with EPA's Control Cost Manual. In our analysis, we have excluded those costs that are not included in the CCM and adjusted the value of specific variables (e.g., interest rate) to conform to values allowed by the CCM. In particular, the NDEP/Nevada Energy cost estimates included "owner's costs", "surcharge", and "authorization for funds used during construction (AFUDC)." These cost items are not allowed by the CCM, and in certain cases are redundant with "project contingency" costs, which are already included. While the CCM does provide flexibility in including some contingencies (such as degree of retrofit difficulty), neither Nevada Energy nor NDEP has provided documentation to justify the need to include contingency costs beyond standard allowances provided by the CCM. AFUDC is specifically set to zero in the CCM for SCR installations. In addition, we have also revised the interest rate used in calculating the capital recovery factor for annualizing these capital costs. Nevada Energy's debt service calculations used an interest rate of 8.5% over the lifetime of the project. In our analysis, we have used a 7% interest rate as provided in CCM example calculations.

The public comments we received on the issue of cost calculations also identified other aspects of NDEP/Nevada Energy's cost estimates that were alleged to be unjustified or overestimated. Examples include a failure to account for multiple unit discount and overestimated reagent costs. Although we agree that the record does not support the positions

⁷ Email dated December 22, 2011 from Colleen McKaughan (EPA) to Mike Elges (NDEP).

⁸ As provided via email dated February 14, 2012 from Rob Bamford (NDEP) to Eugene Chen (EPA)

that NDEP has taken on these cost items, at this time we decline to exclude or refine these items in our revised cost calculations.

Exclusion of costs not included in the CCM results in a decrease of 25-33% in the average and incremental cost effectiveness of the control technology options. Detailed cost calculations, in which we revise the original (as included in the RH SIP) and updated (as provided by NDEP February 14, 2012) cost calculations for each NOx control technology, is included in Appendix A. Summarized in Table 3 below is a comparison of the updated NDEP/Nevada Energy cost calculations (as provided on February 14, 2012) and our revised cost calculations for the SCR with LNB and OFA control technology option.

Unit No.	Ave Effecti	erage Cost veness (\$/ton)	Incremental Cost Effectiveness (\$/ton)			
	NDEP	EPA Revised	NDEP	EPA Revised		
Unit 1	\$2,827	\$2,110	\$6,370	\$4,534		
Unit 2	\$2,627	\$1,967	\$6,080	\$4,330		
Unit 3	\$2,932	\$2,183	\$3,856	\$2,756		

Table 3. Cost Effectiveness Comparison – SCR with LNB and OFA

Based on our revised cost estimates for the higher, updated cost estimates provided February 14, 2012, we consider these average and incremental cost effectiveness values for SCR with LNB and OFA to be cost effective.

5. Degree of Visibility Improvement Which May Reasonably be Anticipated to Result from the Use of Such Technology

The BART Guidelines describe 1 deciview (dv)⁹ as the threshold for an impact that "causes" visibility impairment, and 0.5 dv as a threshold for an impact that "contributes" to visibility impairment (70 FR 39118, 39120-39121). The "cause and contribute" threshold is used for the purposes of determining if a BART-eligible source is exempt from BART requirements, or must proceed with a five-factor BART determination. In the context of performing a BART determination and evaluating the degree of visibility improvement, the BART Guidelines indicate that use of a comparison threshold is also an appropriate way of evaluating visibility improvement (70 FR 39129-30), but do not provide a single "bright line" threshold. Consistent with EPA's BART Guidelines (40 CFR Part 51, Appendix Y, Section III.A.1), we note that Nevada uses the 0.5 dv threshold when considering if a BART-eligible source contributes to visibility impairment.¹⁰ Although use of this 0.5 dv threshold is required only in the context of determining whether a source is subject to BART, it can also function as a useful benchmark for comparing the incremental visibility improvement from the use of the control technologies considered as part of the five-factor analysis.

⁹ The deciview scale represents a standardized index that expresses changes in visibility, similar in manner to how the decibel scale is an index that expresses relative changes in sound levels. For a more full description, please refer to 62 FR 41145.

¹⁰ Per the Nevada RH SIP, page 5-5. Available in Docket Item EPA-R09-OAR-2011-0130-0003

A. NDEP's Analysis

As part of their BART analysis, Nevada Energy performed visibility modeling in order to evaluate the visibility improvement attributable to each of the NOx control technologies that it considered. Results of the visibility modeling performed by Nevada Energy in their submittal to NDEP are summarized in Table 4 below.

Control Option	V (fi	isibility Im com WRAF	Visibility Improvement (Incremental, from Control)		
	RGGS1	RGGS2 (dv)	RGGS3	Total (dv)	Total (dy)
LNB + OFA	0.440	0.479	0.407	1.33	
LNB + OFA + SNCR	0.521	0.560	0.485	1.57	0.24
ROFA + Rotamix	0.592	0.630	0.514	1.74	0.17
SCR + LNB + OFA	0.698	0.735	0.652	2.09	0.35
$SCR + ROFA^{13}$	0.698	0.735	0.652	2.09	0.35

Based upon these results, the installation of SCR with LNB and OFA would result in an incremental visibility improvement at Grand Canyon National Park of 0.35 deciviews (dv). This visibility improvement is based upon the NOx emission rates estimated by Nevada Energy in their BART analysis for each control technology option, and is relative to visibility impacts based on emissions used by the Western Regional Air Partnership (WRAP). In preparing the RH SIP, however, NDEP developed its own set of NOx emission estimates for the various control technology options. The differences between Nevada Energy's estimates and the emission estimates that form the basis of the Nevada RH SIP are summarized in Table 5 below.

¹¹ Visibility improvement listed here are for the Class I area with the highest impact, Grand Canyon National Park. They represent the change in the 98th percentile impacts from three modeled years. The "total" is the simple total of the impacts from the three individual units, which Nevada Energy modeled separately.

¹² From Table 5-4 of NVE BART Analysis Reports, Reid_Gardner_1_10-03-08.pdf, Reid_Gardner_2_10-03-08.pdf, Reid_Gardner_3_10-03-08.pdf. Available in Docket Item No. EPA-R09-OAR-2011-0130-0007. The improvements here are relative to the "WRAP baseline", impacts from emission levels used by the Western Regional Air Partnership and modeled by Nevada Energy. This is a different "baseline" than used for the cost estimates below.

¹³ Incremental visibility benefit of SCR + ROFA is based upon ROFA + Rotamix as previous control technology.

Control Option	Nevada 1	Energy	NDEP						
	Emission Factor ¹ (lb/MMBtu)	Control Efficiency ²	Emission Factor ³ (lb/MMBtu)	Control Efficiency ³					
Reid Gardner Unit 1									
Baseline (LNB + OFA)	0.38		0.462						
LNB + OFA (enhanced)	0.30	21.3%	0.360	21.3%					
LNB + OFA + SNCR	0.23	40.9%	0.270	40.9%					
ROFA + Rotamix	0.16	57.7%	0.200	57.7%					
SCR + LNB + OFA	0.07	81.6%	0.085	81.6%					
SCR + ROFA	0.07	81.6%	0.085	81.6%					
	Reid Gard	lner Unit 2							
Baseline (LNB + OFA)	0.39		0.466						
LNB + OFA (enhanced)	0.30	23.7%	0.355	23.7%					
LNB + OFA + SNCR	0.23	42.7%	0.267	42.7%					
ROFA + Rotamix	0.16	59.0%	0.190	59.0%					
SCR + LNB + OFA	0.07	82.2%	0.083	82.2%					
SCR + ROFA	0.07	82.2%	0.083	82.2%					
	Reid Gard	lner Unit 3							
Baseline (LNB + OFA)	0.32		0.451						
LNB + OFA (enhanced)	0.30	6.5%	0.420	6.5%					
LNB + OFA + SNCR	0.23	29.9%	0.316	29.9%					
ROFA + Rotamix	0.20	38.0%	0.278	38.0%					
SCR + LNB + OFA	0.07	78.2%	0.098	78.2%					
SCR + ROFA	0.07	78.2%	0.098	78.2%					

Table 5. Comparison of Nevada Energy and NDEP Control Technology Emission Estimates

¹ From each respective unit's NVE BART Analysis, Table 3-1. Available in Docket Item No. EPA-R09-OAR-2011-0130-0007

² From each respective unit's NVE BART Analysis, Table 3-2. Available in Docket Item No. EPA-R09-OAR-2011-0130-0007

³ As summarized in Table 1, NDEP Reid Gardner BART Determination, October 22, 2009. Available as Docket Item No. EPA-R09-OAR-2011-0130-0005. Baseline emission factor is not explicitly calculated by NDEP. The factor here represents the listed annual emissions divided by 'Base Heat Input'

As seen in these tables, NDEP's estimates of controlled emission rates differ from Nevada Energy's estimates. These differences are a result of NDEP's use of a different emission baseline in its calculations than Nevada Energy, which is discussed below in our discussion of existing pollution control technology. Since NDEP elected to calculate controlled emission rates by retaining the respective percent reduction values for each control technology, rather than each control technology's emission rate (lb/MMBtu), the use of a higher baseline emission rate results in higher emission estimates for each control technology option. As a result, NDEP's estimated performance for each control technology is less stringent than Nevada Energy's estimates. NDEP, however, did not perform additional modeling to determine the visibility improvement attributable to its emission estimates, and continued to rely on the visibility modeling performed by Nevada Energy.

As noted in the discussion of cost of compliance, part of NDEP's basis for not determining a control technology more stringent that ROFA with Rotamix as NOx BART was that the incremental costs of more stringent control options were not justified relative to their corresponding increases in visibility benefit. However, without updated visibility modeling that indicates the visibility improvement attributable to NDEP's emission estimates, we do not consider NDEP to have properly considered the appropriate magnitude of incremental visibility improvement in reaching its determination. As discussed in our analysis below, we have performed our own visibility modeling in order to determine these visibility impacts.

B. EPA's Analysis

Under the BART Guidelines, the degree of visibility improvement from controls is one of the five factors to consider in making a BART determination for a facility. Of particular interest was the visibility benefit from the installation of Selective Catalytic Reduction (SCR), as compared to benefits from other, less expensive control technologies. As described in the following sections, we performed our own CALPUFF air quality modeling of the Reid Gardner Generating Station (RGGS) to assess the effect of NOx controls on visibility at nearby Class I areas as an aid in the review of NDEP's BART determination for RGGS.

- 1. Modeling Synopsis
- 2. Background on CALPUFF and visibility calculations
- 3. The old and the revised IMPROVE equations
- 4. Modeling Methodology
- 5. Stack Parameters and Source Emissions
- 6. Modeling Results
- 7. Comparison to other modeling

The modeling was performed using the current regulatory version of the CALPUFF modeling system, and generally followed procedures in the modeling protocol developed by the Western Regional Air Partnership ("WRAP protocol"), with some important changes for improved performance and regulatory requirements. Most of the modeled control scenarios used input emission rates from the NDEP SIP submittal, though with different chemical speciation for PM₁₀ emissions to better reflect their visibility effects. In order to focus on the impacts of alternative controls for NOx, most scenarios held SO₂ and PM₁₀ emissions rates constant at levels determined by NDEP to represent BART. Given that EPA has already approved NDEP's SO₂ and PM₁₀ BART determinations (77 FR 17334), we consider this procedure acceptable for making decisions about NOx controls in the present action.

1. Modeling Synopsis

EPA used the current regulatory version of the CALPUFF modeling system, which comprises the following source code versions:

- CALMET Version 5.8, Level: 070623
- CALPUFF Version 5.8, Level: 070623
- POSTUTIL Version 1.56. Level: 070627
- CALPOST Version 5.6394, Level: 070622
- CALPOST Version 6.221, Level 080724 (for visibility method 8)

The projection and coordinate system used was the same as used by the WRAP, and is illustrated in Figure 1 below.

- Projection: Lambert Conformal Conic (LCC)
- Projection origin (lat, long): 40°, -97°
- Standard parallels: 33°, 45°
- False easting and northing: 0 m, 0 m
- Projection ellipsoid: "NWS-84", 6370 km radius sphere

The CALMET modeling domain was identical to the WRAP Arizona domain: 288 x 225 grid cells (X & Y), each 4 km, total size 1152 x 900 km; southwest corner at LCC coordinates -1944 km, -900 km

The CALPUFF modeling domain was centered on RGGS but within the above: 157 x 156 grid cells (X & Y), each 4 km, total size 628 x 624 km; southwest corner at meteorological domain cell (20, 70)

Reid Gardner Generating Station and Nearby Class I Areas

Each Class I area located within 300 km of Reid Gardner was included in our modeling, as listed in Table 6 below. Modeling receptors for each Class I areas were downloaded from the National Park Service "Class I Receptors web site."¹⁴

abbr.	Name	min. distance from RGGS, km	number of receptors	State	Agency
brca	Bryce Canyon National Park	226	213	UT	NPS
grca	Grand Canyon National Park	85	791	AZ	NPS
jotr	Joshua Tree National Monument	292	815	CA	NPS
syca	Sycamore Canyon Wilderness Area	288	316	AZ	USFS
zion	Zion National Park	148	224	UT	NPS

Table 6. Class I Areas

CALMET was run using the 2001, 2002, and 2003 MM5 simulations used by the WRAP for the Arizona domain as the prognostic meteorological input. In particular, the Arizona domain, rather than the Nevada domain, was used because the Arizona domain included the geographic area needed to ensure a model domain that extended to at least 50 km beyond the edge of each Class I area (as seen in Figure 1, most of the relevant Class I areas are in Arizona and Utah). In addition, the Arizona domain was available for CALMET 5.8 and with upper air data, which was not the case for the Nevada domain. CALMET was run with some radius of influence changes to smooth the wind fields, and with the incorporation of upper air data. For more details regarding specific CALMET settings, please consult Section 5.B.4.

CALPUFF was run with regulatory default settings. Ozone background was the same as that developed for the WRAP Arizona domain. The ammonia background was assumed constant at 1 ppb, the default in the IWAQM Phase 2 document for arid regions. ¹⁵ A description of stack parameters and source emission rates used in the CALPUFF modeling can be found in Section 5.B.5, as well as in the spreadsheet contained in Appendix C.

CALPOST was run with visibility method (MVISBK) 6 to apply the original IMPROVE equation, as well as with method 8, mode 5 to apply the revised IMPROVE equation. For both visibility methods, both annual average and best 20%

¹⁴ http://www.nature.nps.gov/air/maps/Receptors/

¹⁵ Interagency Workgroup On Air Quality Modeling (IWAQM) Phase 2 Summary Report And Recommendations For Modeling Long Range Transport Impacts (EPA-454/R-98-019), EPA OAQPS, December 1998, http://www.epa.gov/scram001/7thconf/calpuff/phase2.pdf

of days ("B20") natural background concentrations were used. Our analysis primarily relies upon method 8 results, with best 20% backgrounds, as this is most consistent with current Federal Land Manager guidance for assessing visibility impacts at Class I areas, while also remaining consistent with the BART Guidelines. For each Class I area, we developed visibility results using four visibility postprocessing methods as listed below. A description of these methods, and of visibility calculations in general, are contained in Sections 5.B.2 and 5.B.3.

abbr.	CALPOST Method No. (MVISBK)	natural background concentrations
vm6a	6	annual average
vm6b	6	best 20% of days
vm8a	8	annual average
vm8b	8	best 20% of days

Table 7. Visibility Methods Used

There are 9 control scenarios, of which only 8 were modeled, since emissions from the SCR scenarios c14 and c15 are the same. Three years of meteorology were used for each model run, for a total of 24 CALPUFF and POSTUTIL runs. Each of these models runs required a CALPOST run for each of the 5 areas and 4 visibility methods, for a total of 480 CALPOST runs. The names used for the CALPUFF input and output files reflect these combinations. For example, the 2002 CALPUFF input file for control scenario c11 is "cf_c11_2002.inp", and the corresponding CALPOST input file for the Zion area using visibility method 8a is "ct_c11_vm8a_zion_2002.inp".

scen	scenario name	NDEP NOx case	NOx emissions	SO ₂ and PM ₁₀ emissions
c00	WRAP	WRAP baseline	WRAP	WRAP
c02	WRAP NOx	NA	WRAP	NDEP BART
c04	Baseline NOx	Baseline	Base LNB+OFA	NDEP BART
c11	Enh. LNB+OFA	1	Enhanced LNB+OFA	NDEP BART
c12	SNCR	2	SNCR+LNB+OFA	NDEP BART
c13	ROFA+Rotamix	3	ROFA+Rotamix	NDEP BART
c14	SCR+ROFA	4	SCR+ROFA	NDEP BART
c15	SCR	5	SCR+LNB+OFA	NDEP BART
c16	SCR (0.06	NA	SCR+LNB+OFA at 0.06	NDEP BART
	lb/MMBtu)		lb/MMBtu	

Table 8. Summary of Model Cases

2. Background on CALPUFF and visibility calculations

CALMET is a pre-processor that creates meteorological data suitable for input to CALPUFF. It accepts terrain, land use, and meteorological data in a number of forms, including data observations from surface and upper air meteorological stations; it can also accept 3D data fields from meteorological models such as MM5. Three years of meteorological data is standard, and is recommended in the BART Guidelines.

CALPUFF is the air quality model, and simulates ambient concentrations of pollutants by portraying source plumes as a series of puffs that can expand and be transported independently, according to the meteorological conditions each encounters. In addition to meteorology input, CALPUFF requires emission rates for the following visibility-impairing pollutants: SO2, SO4, NOx, secondary organic aerosol (SOA) or organic carbon (OC), elemental carbon (EC), and other fine particulate matter (PMF), and coarse particulate matter (PMC). Since data is not typically available for every one of the particulate matter (PM) components, some estimates must be made in order to speciate available PM data into SOA or OC, EC, PMF, and PMC. CALPUFF computes concentrations for every hour, and for every receptor location; there is a standard set of receptors for each Class I area.

POSTUTIL post-processes the concentrations from CALPUFF by apportioning the nitrate ion between its nitric acid and particulate nitrate forms; the amount in each form depends on the humidity and on the amount of sulfate and ammonia present.

Finally, CALPOST uses the IMPROVE equation to convert the various chemical species concentrations into extinction (b_{ext}), the fraction of light removed from a sight path. CALPOST then converts extinction into deciviews (dv), a visibility metric more in line with human perception of visibility impairment, and the main metric used in the Regional Haze Rule. There are several variants to the visibility impact calculation, including which version of the IMPROVE equation is used, and how background concentrations and humidity are accounted for. Extinction and deciviews are available for each day modeled, and for each receptor location.

Under the BART Guidelines, visibility impact of a source is assessed relative to natural background, that is, the impairment that would exist without any artificial pollution sources. Estimates of natural background concentrations are provided by EPA in the natural conditions guidance¹⁶ and by the Federal Land Managers in the

¹⁶ Table 2-1 of *Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule*, U.S. Environmental Protection Agency, EPA-454/B-03-005, September 2003, on web page http://www.epa.gov/ttn/oarpg/t1pgm.html, with direct link

http://www.epa.gov/ttn/oarpg/t1/memoranda/rh_envcurhr_gd.pdf

FLAG 2010 guidance.¹⁷ Visibility impairment due to a particular source is usually expressed as percent extinction change (% increase over background extinction that is caused by including the source), or delta deciviews (increase over natural background deciviews caused by including the source).

Finally, of the visibility impacts computed for every modeled data and location, for each modeled day the receptor with the highest impact is chosen; and from among the resulting daily values, the 98th percentile is used as metric of visibility impact for a given Class I area. This would be the 8th high for a 365-day year, or the 22nd high if the 1095 days of the three years of data are considered together. Most often the average of three individual years' 98th percentiles is reported, rather than the 98th percentile of all three years' data merged together. Both the average and the merged value are reported here.

3. The original and the revised IMPROVE equations

The IMPROVE equation is used to convert measured or modeled concentrations into extinction for each pollutant chemical species, and then total them, accounting for the effect of relative humidity; it also includes the Rayleigh scattering that occurs in pure air. The extinction total is then used to calculate deciviews for use in visibility progress assessments. In December 2005 the IMPROVE Steering Committee revised the IMPROVE equation after a scientific assessment of its implications for regional haze planning. In particular, when compared to nephelometer direct measurements of visibility extinction, the original IMPROVE equation over-predicts for low extinction conditions and under-predicts for high extinction. These biases have direct relevance for estimates for the best 20% and worst 20% visibility days that are used to assess progress.

Original IMPROVE equation:

 $\begin{array}{ll} b_{ext} &= 3 * f(RH) * [sulfate] \\ &+ 3 * f(RH) * [nitrate] \\ &+ 4 * [organic mass] \\ &+ 10 * [elemental carbon] \\ &+ 1 * [fine soil] \\ &+ 0.6 * [coarse mass] \\ &+ 10 \end{array}$

Each term in the equation is the extinction due to a particular measured component; bracketed quantities are concentrations of as measured at IMPROVE monitors. The

http://www.nature.nps.gov/air/Permits/flag/ Direct link:

¹⁷ Federal Land Managers' Air Quality Related Values Work Group (FLAG) Phase I Report—Revised (2010), U.S. Forest Service, National Park Service, U.S. Fish And Wildlife Service, October 2010. See

http://www.nature.nps.gov/air/Pubs/pdf/flag/FLAG_2010.pdf

organic mass is assumed to be 1.4 times the organic carbon mass that is measured by IMPROVE monitors. The 10 is for Rayleigh scattering which is due to the interaction of light with molecules of air itself with no pollutants, and is assumed to be the same for all locations, The f(RH) is a water growth factor for sulfate and nitrate, which are hygrosopic (their particles tend to attract water). Its value depends on relative humidity, ranging from 1 at low humidity to 18 at 98% humidity.

New IMPROVE equation:

$$\begin{split} b_{ext} &= 2.2 * f_s(RH) * [small sulfate] + 4.8 * f_L(RH) * [large sulfate] \\ &+ 2.4 * f_s(RH) * [small nitrate] + 5.1 * f_L(RH) * [large nitrate] \\ &+ 2.8 * [small organic mass] + 6.1 * [large organic mass] \\ &+ 10 * [elemental carbon] \\ &+ 1 * [fine soil] \\ &+ 1.7 * f_{ss}(RH) * [sea salt] \\ &+ 0.6 * [coarse mass] \\ &+ Rayleigh scattering (site-specific) \\ &+ 0.33 * [NO_2 (ppb)] \end{split}$$

Sulfate is assumed to be all "large sulfate" if total sulfate is over 20 μ g/m³, otherwise its fraction of the total is assumed to increase uniformly between 0 and 1 when the total is in the range between 0 and 20. *I.e.*, large sulfate = (total sulfate/20)*total. A similar definition applies for nitrate and for organic mass. The organic mass is assumed to be 1.8 times the organic carbon mass that is measured by IMPROVE monitors, an increase over the original 1.4. Sea salt is estimated as 1.8 * [chloride] (or chlorine if chloride not available) Finally, the f_s, f_L, f_{ss} are water growth factors for small ("S") and large ("L") fractions of sulfate and nitrate, and for sea salt ("SS"). Their values depend on relative humidity, ranging from 1 at low humidity to over 5 at 95% humidity.

The new equation has five changes: 1) greater completeness though the inclusion of sea salt, which can be important for coastal sites; 2) increased organic carbon mass estimate, based on more recent data for remote areas; 3) Rayleigh scattering using site-specific elevation and temperature, a refinement over the older network-wide constant; 4) separate estimates for small and large particles of visibility impacts and humidity-dependent particle size growth rates, which could affect estimates at the low and high ends; and 5) greater completeness though the inclusion of NO₂ (Pitchford, 2006)¹⁸.

The new equation shows broader scatter overall, but less bias in matching visibility measurements under high and low visibility conditions. That is, though it has a somewhat worse fit considering all the data, it has a better fit under visibility

¹⁸ Pitchford, Marc, 2006, "New IMPROVE algorithm for estimating light extinction approved for use", *The IMPROVE Newsletter*, Volume 14, Number 4, Air Resource Specialists, Inc.; web page: http://vista.cira.colostate.edu/improve/Publications/news_letters.htm direct link: http://vista.cira.colostate.edu/improve/Publications/News_letters.htm direct link: http://vista.cira.colostate.edu/improve/Publications/News_letters.htm

conditions most relevant to regional haze planning, the best and worst 20% of days. The looser overall fit can cause a slightly different set of days to be the ones chosen than the 20% worst, but the chemical species composition for such days is little changed (IMPROVE technical subcommittee for algorithm review, 2001, pp. 11-12), and so this makes little difference for assessing the contribution of emission sources to current conditions, and for projecting the effect of emission controls. The split between small and large particles was the main factor in reducing the biases.

The organic carbon (OC) measured by the IMPROVE network does not include all organic matter (OM); based on 1970's urban data, a scaling factor of 1.4 is embedded in the original equation to account for the full mass. Based on recent data more relevant to relatively remote Class I areas, the revised IMPROVE equation embeds an OM/OC factor of 1.8. In practice, for the worst days the biggest effect of switching to the revised IMPROVE equation is this increased organic carbon mass, since the worst days are dominated by organic carbon from fires, rather than the sulfates and nitrates that come more from anthropogenic sources.

4. Modeling Methodology

EPA generally used the WRAP protocol¹⁹ as a starting point, with some important changes. The WRAP protocol received wide review and approval, and was the basis for BART screening and BART determination modeling by number of western states and by individual facilities. In performing visibility modeling for the Navajo Generating Station (NGS), located near Page, AZ, AECOM (formerly ENSR) used the WRAP protocol and MM5 meteorology as a starting point and improved the modeled wind fields by introducing changes to some CALMET meteorological settings.²⁰ Following review and comment by the Federal Land Managers, AECOM made additional changes in accordance with FLM recommendations, including the incorporation of upper air data. For this action, EPA used the CALMET results from that AECOM work.

The WRAP protocol received extensive scrutiny during 2005-2006 by various States, EPA Regions, and Federal Land Managers (FLMs). Some key features of the protocol are listed here. Meteorological fields were derived from the MM5 prognostic meteorological model (Mesoscale Model version 5, Penn State University and the National Center for Atmospheric Research), using a 36 km grid resolution, for the years 2001, 2002, and 2003 and with the continental United States as the modeling domain. Subdomains were extracted for use by individual states, such as Arizona and Nevada. The MM5 fields were then processed using CALMET

¹⁹ "CALMET/CALPUFF Protocol for BART Exemption Screening Analysis for Class I Areas in the Western United States", Western Regional Air Partnership (WRAP); Gail Tonnesen, Zion Wang; Ralph Morris, Abby Hoats and Yiqin Jia, August 15, 2006. Available on UCR Regional Modeling Center web site, BART CALPUFF Modeling, http://pah.cert.ucr.edu/aqm/308/bart.shtml Direct link:

http://pah.cert.ucr.edu/aqm/308/bart/WRAP_RMC_BART_Protocol_Aug15_2006.pdf

²⁰ See "BART Analysis for the Navajo Generating Station Units $1 - \overline{3}$ ", ENSR Corporation, November 2007, Document No.: 05830-012-300

(meteorological pre-processor, part of the CALPUFF modeling system) as preparation for use in the CALPUFF air quality model, using a 4 km grid resolution. After much discussion, WRAP elected to blend surface meteorological station observations into the MM5 fields, instead of relying on the CALMET "no observations" ("no obs") mode. (The Federal Land Managers had wanted the blending in of upper air data as well, but this was not included in the WRAP modeling.)

The WRAP protocol specified CALMET version 6.211 and CALPUFF version 6.112, the latest versions at the time. However, since the time of the WRAP protocol, problems were discovered in CALMET version 6.2 that resulted in EPA affirming that CALMET version 5.8 and CALPUFF version 5.8 of CALPUFF, are the regulatory versions to be used.²¹

The AECOM CALMET modeling used by EPA differed from the WRAP protocol in using the regulatory version of the modeling system, and in several other ways. The CALMET settings were almost all the same; the WRAP-defined Arizona subdomain was used; all Class I Areas within 300 km of RGGS were included. However, when blending in meteorological station wind observations, AECOM used a lower radius of influence for stations (R1, R2, RMAX1). This resulted in smoother wind fields than those used for WRAP, which had some abrupt changes as one leaves the zone of influence of a given meteorological station. After initial input from the Federal Land Managers, EPA requested that certain other CALMET option settings be changed. These changes resulted in a more refined approach that is more consistent with approaches used in PSD permit application modeling. The revised modeling has more extensive use of meteorological station observations (e.g. IEXTR=-4 to extrapolate surface observations up to higher layers), and is responsive to the FLM concerns regarding adequacy of the surface-only observations used in the WRAP modeling. Various relevant CALMET option settings are listed in Table XX: Selected CALMET settings for RGGS. For meteorological input to CALPUFF, EPA used the AECOM CALMET results, per the "AECOM and EPA modeling" column of that table.

²¹ As indicated in June 29, 2007 letter from Tyler Fox (EPA) to Joe Scire (TRC). Also indicated in U.S. EPA's Support Center for Regulatory Air Models (SCRAM), CALPUFF model change bulletin, June 29, 2007. http://www.epa.gov/ttn/scram/dispersion_prefrec.htm#calpuff

Option	Description	EPA	WRAP	AECOM	Comments
		default	protocol	and EPA	
				modeling	
version	CALMET version	5.8, level	6.211, level	5.8, level	5.8 is EPA regulatory
		070623	060414	070623	version
NOOBS	No Observation Mode	0	0 or 1	0	Use both surface and upper
			implied		air observations, per FLM
		0	0	0	recommendation
ICLOUD	gridded cloud fields	0	0	0	
IWFCOD	diagnostic winds	1	1	l	
IFRADJ	Froude wind adj.	1	1	l	
IKINE	kinematic effects	0	0	0	
IOBR	O'Brien vertical wind adj.	0	0	0	
ISLOPE	slope flows	1	1	1	T 1
IEXTRP	extrapolate wind to upper	-4	1	-4	To extrapolate from surface,
101111	air	<u>^</u>		<u>^</u>	per FLM recommendation
ICALM	extrapolate calm to upper air	0	0	0	
BIAS	layer biases stc vs. UA	NZ*0	NZ*0	NZ*0	
IPROG	gridded initial prognostic	0	14	14	MM5
RMAX1	max surface radius of	NA	50	30	Gives smoother wind fields, per AECOM
RMAX2	max aloft radius of	NA	100	100	permission
10011112	influence	1111	100	100	
RMAX3	max over-water radius of	NA	100	100	
_	influence.				
RMIN	min wind radius of	0.1	0.1	0.1	
	influence.				
RMIN2	min dist sfc winds extrap	4	4	4	
TERRAD	terrain radius of in influence	NA	10	10	
R1	weight surface Step 1 vs.	NA	100	18	Gives smoother wind fields,
	obs				per AECOM
R2	weight aloft Step 1 vs. obs	NA	200	20	Gives smoother wind fields,
					per AECOM
ITPROG	3D T from obs or prognostic	0	1 or 2	1	Use surface station
			implied		temperatures, per FLM
					recommendation
TRADKM	radius of influ. for T interp.	500	500	500	
IAVET	spatial T averaging	1	0	1	Smoothing turned on
JWAT1	starting land use for T	999	51	51	(Could set to 999 to disable
	interp. over water				overwater feature & avoid a
					CALMET bug; very little
					water land use here
INVATO	and in a land args from Third	000	55	55	anyway)
JWA12	ending land use for 1 interp.	999	22	55	
	over water				

Table 9. Selected CALMET settings for RGGS

CALPOST visibility method 6 (MVISBK=6) had long been the recommended approach for assessing visibility impacts in Class I areas. It implements the original IMPROVE equation, with monthly average humidity adjustment factors from the 2000 version of the FLAG document.²² It is incorporated in the regulatory version of CALPOST, version 5.6394. The revised IMPROVE equation is incorporated into a later version of CALPOST, 6.221, and is implemented as visibility method 8 (MVISBK=8), mode 5, using monthly average humidity adjustment factors from the 2010 version of the FLAG document; this has updated values for each Class I area and includes adjustment factors for small and large sulfate and nitrate, and also sea salt, to accommodate the revised IMPROVE equation.

In order to use either of these methods, natural background concentrations are needed for each species in the respective IMPROVE equation. For method 8 and the revised IMPROVE equation, these are available for each Class I area in the FLAG 2010 document, for both the annual average and for the average over the best 20% of days ("B20"). For method 6, only annual average background species concentrations are available, in Table 2-1 the 2003 EPA natural conditions guidance cited above. However that document's Appendix B also provides extinction and deciviews for the best 20% of days; the ratio of B20 extinction to annual extinction can be used to scale the annual average concentrations, yielding an estimate of the B20 concentrations, which were used for this action. Finally, the 2003 EPA guidance gives relative humidity adjustment factors f(RH) for both the IMPROVE monitor location nearest a Class I area, and an interpolation from multiple monitors for the centroid of the Class I area; the latter was used here.

5. Stack Parameters and Source Emissions

Stack Parameters

Stack parameters used in the modeling are summarized in Table 10 below and were obtained from the Nevada Energy BART Analysis Reports²³, and WRAP Regional Modeling Center files.²⁴ There were certain discrepancies in the stack coordinates from these two information sources. In our modeling, we used the data from the WRAP files, since they more closely corresponded to the coordinates for the overall facility known to EPA's Clean Air Markets Division.

²² Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Phase I Report (December 2000), U.S. Forest Service, National Park Service, U.S. Fish And Wildlife Service. See

http://www.nature.nps.gov/air/Permits/flag/; Direct link:

http://www.nature.nps.gov/air/Pubs/pdf/flag/FlagFinal.pdf

²³ "BART Analysis for Reid Gardner Station Unit 1, Prepared for NV Energy", October 2008, CH2MHill. See http://ndep.nv.gov/baqp/planmodeling/rhaze.html, file "Reid_Gardner_1_10-03-08.pdf". Similar names for Unit 2 and Unit 3 reports.

²⁴ "Summary of WRAP RMC BART Modeling for Nevada, Draft#7", April 24, 2007, WRAP Regional Modeling Center. See: "Nevada Results Summary" at http://pah.cert.ucr.edu/aqm/308/bart.shtml. Direct Link:

http://pah.cert.ucr.edu/aqm/308/bart/calpuff/summary/NV_summary_May14_2007_v8-NoSRC02_SRC07.doc; also for stack locations see "NV_BART_emis",

http://pah.cert.ucr.edu/aqm/308/bart/calpuff/emissions/nv_emis_Mar09_2007.xls

Stack Parameter	Unit 1	Unit 2	Unit 3	
SRCNAM in CALPUFF	RGGS1	RGGS2	RGGS3	
HS, Stack Height, m	60.96	75.9	82.3	
ES, Stack Elevation, m AMSL	487.68	487.68	487.68	
DS, Stack Diameter, m	4.05	4.05	3.93	
VS, Exit Velocity, m/s	15.96	15.34	21.75	
TS, Exit Temperature, K	330.37	335.93	339.26	
Heat input, MMBtu/hr	1215	1215	1237	
Location				
LCC X km	-1555.5060	-1555.5120	-1555.5210	
LCC Y km	-218.2230	-218.2522	-218.2911	
longitude	-114.63175	-114.63175	-114.63177	
latitude	36.6580507	36.6577814	36.6574208	

Table 10. Reid Gardner Generating Station Stack Parameters

A discussion of the basis for each model case's emission estimates is included in the following section, as well as a description of the various PM_{10} speciation profiles and sulfuric acid emission calculation methodologies used for each model case. Detailed emission calculations for each model case, including particulate speciation profiles and sulfuric acid emission calculations, can be found in Appendix C.

Model Scenario Emission Factor Basis

Case 00 (WRAP) consists of WRAP baseline emission rates for each of the Reid Gardner units. The results of this case were compared to similar model runs performed by Nevada Energy and by WRAP that also made use of WRAP baseline emissions.

Case 02 (WRAP NOx) consists of WRAP baseline emission rates for NOx. For PM_{10} and SO_2 , this case consists of the emission rates corresponding to the BART determinations for these units in the Nevada RH SIP (0.015 lb/MMBtu and 0.15 lb/MMBtu, respectively) as approved by EPA on December 13, 2011.²⁵ The results of this case were used primarily for informational purposes in order to determine the visibility improvement associated with PM_{10} and SO_2 BART control.

Case 04 (Baseline NOx) uses the baseline emission factor for NOx relied upon by NDEP in the RH SIP.²⁶ For PM₁₀ and SO₂, this case consists of the emission rates corresponding to the BART determinations for these units in the Nevada RH SIP. Although these BART determination emission rates do not necessarily represent historical emissions at Reid Gardner, they have been approved for inclusion into the Nevada SIP. As a result, we regard the use of these emission rates in this baseline

²⁵ 77 FR 17334

²⁶ Per Table 1, NDEP Reid Gardner BART Determination, October 22, 2009. Available as Docket Item No. EPA-R09-OAR-2011-0130-0005. Baseline emission factors are not explicitly calculated by NDEP. As illustrated in Appendix C, the baseline emission factor represents the listed annual emissions divided by "Base Heat Input."

case and in control option cases to be the most accurate approach to predicting visibility impairment attributable to Reid Gardner.

Cases 11 through 15 (Control Options 1 through 5) use the NOx emission factors for the various control technology options as indicated by NDEP in the RH SIP. For PM_{10} and SO₂, these cases consist of the emission rates use in Case 04 in order to provide a clear estimate of the visibility improvement associated with each NOx control technology.

Case 16 (Control Option 6) is an additional case that does not correspond to any of Nevada Energy's control technology options. This case uses a NOx emission factor that corresponds to an approximately 86% SCR control efficiency from the NOx emission rates of Case 04 (Baseline NOx).

PM₁₀ Speciation

 PM_{10} emissions are not directly entered into the CALPUFF model but are instead speciated into constituent species. These PM_{10} emissions were classified into the following particulate species using a combination of AP-42 emission data and Federal Land Managers' guidance:

- Coarse particulate matter (PMC)
- Fine particulate matter (PMF)
- Sulfates (SO4)
- Secondary organic aerosols (SOA)
- Elemental carbon (EC)

Case 00 (WRAP) PM_{10} emissions are based upon the WRAP PM_{10} emission rate. These emissions were speciated based upon the assumption that the WRAP PM_{10} emission rate represents total filterable PM (i.e., the result of a Method 5 test). This PM_{10} emission rate was speciated into PMC, PMF, and EC based upon AP-42 emission factors, as shown in Appendix C. The condensable PM_{10} fraction (SOA and SO4 species), which would not be represented in the WRAP PM_{10} emission rate, was calculated separately and included in the model.

The remaining cases' PM_{10} emissions are based upon the Nevada RH SIP PM_{10} BART determination of fabric filters and a 0.015 lb/MMBtu emission rate. Particulate emissions for these cases were speciated based upon the conservative assumption that the BART emission rate represents total PM_{10} (i.e., filterable plus condensable fractions). As included in Appendix C, PM_{10} emissions were speciated based upon AP-42 emission factors in a manner consistent with Federal Land Manager's guidance.

Sulfuric Acid (H₂SO₄) Emissions

For the cases modeled in our analysis, we accounted for two mechanisms of sulfur acid manufacture: (1) combustion from fuel and (2) production from use of SCR catalyst. These emissions were calculated using either AP-42 emission factor data or

the Electric Power Research Institute (EPRI) document "Estimating Total Sulfuric Acid Emissions from Stationary Power Plants."²⁷

Case 00 (WRAP) relied upon a particulate speciation profile that did not include SO4 emissions. As a result, sulfuric acid emissions from fuel combustion were calculated using the EPRI emission calculation methodology.

Cases 02, 04, and 11 through 16 relied upon particulate speciation profiles that did include SO4 emissions. Sulfuric acid emissions from fuel combustion can safely be assumed to be represented in the SO4 particulate fraction. As a result, no additional emission calculations were performed to quantify sulfuric acid from fuel combustion.

Cases 14 through 16 model the use of SCR. As a result, in addition to the sulfuric acid emissions from fuel combustion represented in the particulate speciation, an additional amount of sulfur acid manufactured from the use of SCR catalyst was calculated. The quantity of sulfuric acid was calculated using the EPRI calculation methodology for SCR.

6. Visibility Modeling Results

Visibility impacts for the Grand Canyon National Park, the Class I area where RGGS has the highest impacts, are shown in the following table, for all visibility methods used. The results are for all three units modeled together, but only unit 1 NOx emission factors are shown for reference (the other units are comparable). The full results, including all areas and modeled years, are shown in the tables later in this document. Additional results are available in Appendix E (spreadsheet ("RGGS_TSD_CALPUFF_tables.xls").

The benefit of SCR relative to the base case is only 0.38 dv (for the visibility method showing the highest impacts and benefits, "vm8b"). While this is not insignificant in the context of an overall regional haze plan, considering that visibility progress is dependent on the cumulative effect of controls for many sources, this is still not a large benefit. It does not in itself show whether SCR is warranted or not in the BART context.

The incremental benefit of SCR over ROFA+Rotamix, based on the 98th percentile impact of merged years, is only 0.09 dv (as seen in Table 14 below). Further, even the incremental benefit of SCR at a more stringent 0.06 lb/MMBtu emission rate is only 0.10 dv. This result is small enough that it tends to support NDEP's consideration of incremental visibility benefit in its BART determination, and the conclusion that SCR is not required for BART.

²⁷ "Estimating Total Sulfuric Acid Emissions from Stationary Power Plants," EPRI, Technical Update, April 2010

			average	average of 3 individual year 98th percentiles			98th percentile of me years			rged
			visibility method 6		visibility method 8		visibility method 6		visibility method 8	
		Unit 1 NOx, lb/MMbtu ¹	annl. avg bg	B20 bg	annl. avg bg	B20 bg	annl. avg bg	B20 bg	annl. avg bg	B20 bg
scen	Scenario	,	vm6a	vm6b	vm8a	vm8b	vm6a	vm6b	vm8a	vm8b
c00	WRAP for NOx, SO2, PM	0.591	0.61	0.78	0.60	0.83	0.59	0.75	0.58	0.80
c02	WRAP NOx, NDEP SO2 & PM	0.591	0.56	0.72	0.56	0.77	0.55	0.71	0.54	0.74
c04	Baseline NOx LNB+OFA	0.462	0.46	0.60	0.45	0.63	0.44	0.58	0.42	0.59
c11	Enh. LNB+OFA	0.364	0.40	0.52	0.40	0.54	0.38	0.50	0.37	0.51
c12	SNCR+LNB+OFA	0.273	0.28	0.37	0.28	0.39	0.28	0.36	0.27	0.37
c13	ROFA+Rotamix	0.195	0.24	0.31	0.24	0.33	0.22	0.29	0.22	0.31
c15	SCR+LNB+OFA	0.085	0.19	0.24	0.18	0.25	0.17	0.22	0.16	0.22
c16	SCR+LNB+OFA 0.06 lb/MMBtu	0.06	0.17	0.23	0.16	0.22	0.16	0.20	0.15	0.20

Table 11. EPA Modeling Results –Visibility Impacts at the Grand Canyon

¹ The results are for all three units modeled together, but only unit 1 NOx emission factors are shown for reference (the other units are comparable).

(isisinity improvement at the Grand Carly on (relative to sustaine)											
			average of 3 individual year 98th percentiles				98th percentile of merged years			rged	
			visibility method 6		visibility method 8			visibility method 6		visibility method 8	
		Unit 1 NOx, Ib/MMbtu ¹	annl. avg bg	B20 bg	annl. avg bg	B20 bg		annl. avg bg	B20 bg	annl. avg bg	B20 bg
scen	Scenario		vm6a	vm6b	vm8a	vm8b		vm6a	vm6b	vm8a	vm8b
c00	WRAP for NOx, SO2, PM	0.591	0.15	0.18	0.15	0.20		0.14	0.18	0.16	0.21
c02	WRAP NOx, NDEP SO2 & PM	0.591	0.10	0.13	0.11	0.15		0.10	0.13	0.11	0.16
c04	Baseline NOx LNB+OFA	0.462									
c11	Enh. LNB+OFA	0.364	-0.06	-0.08	-0.06	-0.08		-0.06	-0.08	-0.06	-0.08
c12	SNCR+LNB+OFA	0.273	-0.18	-0.23	-0.17	-0.24		-0.17	-0.22	-0.16	-0.21
c13	ROFA+Rotamix	0.195	-0.22	-0.29	-0.22	-0.30		-0.22	-0.29	-0.20	-0.28
c15	SCR+LNB+OFA	0.085	-0.27	-0.35	-0.28	-0.38		-0.28	-0.36	-0.26	-0.36
c16	SCR+LNB+OFA 0.06 lb/MMBtu	0.06	-0.29	-0.37	-0.29	-0.41		-0.29	-0.37	-0.28	-0.38

Table 12. EPA Modeling Results –Visibility Improvement at the Grand Canyon (relative to baseline)

¹ The results are for all three units modeled together, but only unit 1 NOx emission factors are shown for reference (the other units are comparable).

	l l	L / /									
		average of 3 indi perce			vidual year 98th ntiles			98th percentile of merged years			
			visibility method 6		visibility method 8			visibility method 6		visibility method 8	
		Unit 1 NOx, lb/MMbtu ¹	annl. avg bg	B20 bg	annl. avg bg	B20 bg		annl. avg bg	B20 bg	annl. avg bg	B20 bg
scen	Scenario		vm6a	vm6b	vm8a	vm8b		vm6a	vm6b	vm8a	vm8b
c13	ROFA+Rotamix	0.195									
c15	SCR+LNB+OFA	0.085	-0.05	-0.07	-0.06	-0.08		-0.05	-0.07	-0.06	-0.09
c16	SCR+LNB+OFA 0.06 lb/MMBtu	0.06	-0.07	-0.09	-0.08	-0.11		-0.06	-0.08	-0.08	-0.10

Table 13. EPA Modeling Results – Incremental Visibility Improvement at the Grand Canyon (SCR vs. ROFA/Rotamix)

¹ The results are for all three units modeled together, but only unit 1 NOx emission factors are shown for reference (the other units are comparable).

Using natural background concentrations from the best 20% of days ("B20") increases visibility impacts estimates by about 30% relative to using the annual average (going from vm6a to vm6b, or from vm8a to vm8b). This makes sense because natural visibility impairment is lower on the best days, so any given impact will be a larger percentage of the best values than of the annual average. States are free to use annual average background concentrations in assessing visibility impacts,²⁸ and NDEP did so, but even if B20 is used, the visibility benefit of SCR is relatively small.

The effect of changing to the revised IMPROVE equation varies by area and scenario, but on average decreases 98th percentile delta deciviews by about 5%.

7. Comparison to other modeling

Overview

RGGS has been modeled several times in recent years, by the WRAP Regional Modeling Center²⁹, by CH2MHill³⁰ for Nevada Energy, and by Gray Sky Solutions.³¹ The differences between their applications of the CALPUFF modeling system are summarized in Table 14 below, "CALPUFF settings differences for various model applications." The various modeling domains are illustrated in Figure 2, "Reid Gardner Generating Station CALPUFF and CALMET Modeling Domains."

²⁸ "Regional Haze Regulations and Guidelines for Best Available Retrofit Technology (BART) Determinations", Memorandum from Joseph W. Paisie, EPA OAQPS Geographic Strategies Group, to Kay Prince, EPA Region 5, July 19, 2006. Available at: http://www.epa.gov/visibility/pdfs/memo_2006_07_19.pdf

²⁹ WRAP Regional Modeling Center, "Summary of WRAP RMC BART Modeling for Nevada, Draft#7, cited above.

³⁰ CH2MHill, "BART Analysis for Reid Gardner Station Unit 1, Prepared for NV Energy", cited above

³¹ "Modeling for the Reid Gardner Generating Station: Visibility Impacts in Class I Areas", H. Andrew Gray, Gray Sky Solutions, August 2011

Compared to other modeling efforts involving RGGS, the results of our CALPUFF modeling indicate lower visibility impacts, as well as lower visibility improvement attributable to the various NOx control technologies (both from baseline and incremental). As described further below, we examined the sensitivity of visibility impacts to multiple variables in order to better understand our model results. Based on the results of our sensitivity analysis, we have identified the most important differences as 1) the use of different CALMET versions, and 2) the use of certain non-default puff control parameters by the WRAP.

Regarding CALMET versions, EPA used the regulatory version of CALMET (version 5.8), while others used post-5.8 versions. The particular non-default puff parameters used by WRAP were not addressed in the WRAP protocol. While these alternative values are not necessarily wrong for application of the model to this area, they are not further explained in the WRAP documentation, and make a substantial difference to the modeled impacts:

- MXSAM Max sampling steps for one time step: 99 (default) vs. 5 (WRAP)
- CDIV(2) divergence criteria: 0 & 0 (default) vs. .01 & .01 (WRAP)
- SL2PF Slug-to-puff transition: 10 (default) vs. 5 (WRAP)
- NSPLIT number of puffs after split 3 (default) vs. 2 (WRAP)

Figure 2. Model Domains for Various CALPUFF Modeling Efforts

Reid Gardner Generating Station CALPUFF and CALMET Modeling Domains

Processor	ltem	WRAP	Nevada Energy	Gray	EPA	
	CALMET version	6.211	6.211	6.211	5.8	
	parameters	mainly default	mainly default	mainly default	mainly default; smaller influence radii	
	MM5 inputs	2001: Alpine Geophysics; 2002: WRAP RMC; 2003: LADCO	2001 & 2002: Alpine Geophysics; 2003: LADCO	same as Nevada Energy	same as WRAP	
CALMET	upper air obs.	Not included	Not included	Not included	Included	
	domain	NV WRAP domain; includes all of NV	RGGS-centered, includes all of NV and most of California	RGGS-centered, includes all of NV and most of California	AZ WRAP domain; includes half of NV and all of AZ	
	domain size, km	792 x 1224	1112 x 1008	1112 x 1008	1152 x 900	
	proj. (origin); parallels; datum	oroj. (origin); oarallels; datum		LCC (40, 117); 33; 45; NAD83	LCC (40, 97); 33; 45; NWS-84	
	CALPUFF version	6.112	6.112	6.262	5.8	
	parameters	some puff non- defaults	defaults	defaults	defaults	
CALPUFF	domain	So. NV WRAP domain; almost all of NV	square about RGGS (CH2M coords)	square about RGGS (CH2M coords)	square about RGGS (WRAP coords)	
	domain size, km	700 x 996	624 x 684	624 x 684	628 x 624	
	max mix ht, m	4500 (orig. 3000)	4500	4500	4500	
	PM speciation Total PM as PM fine		SO4, EC, OC, PMF, PMC	SO4, EC, OC, PMF, PMC	SO4, EC, OC, PMF, PMC	
POSTUTIL	POSTUTIL version	<1.5?	1.52	1.52?	1.56	
	CALPOST version	6.1?	6.131	6.221	6.221 (also 5.6394)	
CALPOST	visibility 6 method		6	8	6 and 8	
	natural background	annual average	annual average	annual average	annual average and B20	

 Table 14. CALPUFF settings differences for various model applications

Comparison of Baseline Impacts

The EPA-modeled impacts for Grand Canyon National Park are roughly one-third of those modeled by Nevada Energy for the base case (EPA "c04"; Nevada Energy "Base/LNB+OFA"). For visibility method 6, annual average background ("vm6a"), the EPA modeled impact for the all three units for the base case is 0.46 dv (average of the three years); Nevada Energy found an impact of 0.46 dv for Unit 1 alone. Summing the Nevada Energy impact for all three units, and discounting by 8% (to account for the difference between modeling units separately vs. together, as shown in Table 15 for GRCA) gives (0.46+0.45+0.36)*92% = 1.17 dv for Nevada Energy, as compared to 0.46 dv for EPA.

A similar ratio applies to the WRAP base case (EPA "c00"; Nevada Energy "rm" or "WRAP baseline"), where EPA modeled 0.61 dv, roughly a third of the Nevada Energy modeled (0.81+0.80+0.76)*92% = 2.18 dv. The comparable result for the modeling by Gray was 2.17 dv (though this used visibility method 8 instead of 6). For comparison, the WRAP itself found 1.25 dv for all three units for the base case. The EPA results are thus roughly 50% lower than WRAP, whereas the Nevada Energy and Gray results are about 50% higher than WRAP's for the WRAP base case.

The modeling performed by Gray Sky Solutions matched the modeling by Nevada Energy in most particulars, however it did use a slightly later CALPUFF version. In addition, the SCR scenario modeled included a substantial SO₂ reduction, so the results are not directly comparable to the NOx-only reductions in the Nevada Energy and EPA modeling of SCR.

Sensitivity Analysis

There are substantial differences between the visibility impacts modeled by the WRAP, Nevada Energy, and EPA, even with (nearly) identical emission inputs. This is because of the different meteorological inputs to CALMET used, and by the different versions of CALMET and CALPUFF.

To better understand these differences, EPA conducted a series of sensitivity simulations for the 2001 meteorology year (the one with the highest impacts). The series started with EPA's WRAP base case (c00) input files, and changed various inputs to make them more like the inputs used by the WRAP. (Actually, in preparing the model input files, the WRAP's own input files were used as a starting point, except for the "c00" and "cwe" scenarios.) All runs used visibility method 6, with annual average natural background concentrations. The results are detailed in the accompanying table below, "Comparison of EPA's RGGS CALPUFF modeling and variants to WRAP BART modeling results" (also available in accompanying spreadsheet, "WRAP compare tables.xls"), but the results are summarized here.

Starting from EPA's c00 base case, a new "cwe" control case (WRAP emissions) was run that used the same NOx emissions and PM emissions and speciation that the

WRAP used, that is, total particulate matter (PM) modeled as fine particulate (PMF), rather than separated into chemical components. The results of this model run resulted in a decrease in 98th percentile delta deciview visibility impacts by only a few percent.

The next simulation was WRAP's own CALPUFF input files, including the puff parameter changes noted above. This resulted in over a 50% increase in Grand Canyon impacts, with smaller changes at the other areas (and a 2% decrease at Sycamore Canyon). Thus, the puff parameters account for a large proportion of the difference between the EPA and the WRAP results.

The CALPOST post-processor version was next changed from 5.6394 to 6.131, which was the version available around the time that the WRAP and Nevada Energy were performing modeling. Thus, the CALPOST version had no effect on the visibility impacts.

The CALPUFF model itself was then changed, from 5.8 to the 6.112 version used by the WRAP. This had essentially no effect on the visibility impacts, although they appear shifted by one day due to the convention used in later versions of stating dates in terms of their ending hour, rather than their starting hour. (So, 2001-01-01 appears as 2000-12-31 in the later CALPUFF version.) Thus, the CALPUFF version had essentially no effect on the visibility impacts.

The remaining comparison is between the WRAP modeling itself and EPA modeling using the same emissions, PM speciation, CALPUFF settings, and CALPUFF and CALPOST versions that the WRAP used, but with different meteorology and CALMET versions. In changing from the AECOM meteorology used by EPA to the meteorology used by WRAP, visibility impacts increased by some 60%. Thus, the CALMET version, incorporation of upper air data, and possibly meteorological domain account for a large proportion of the difference between the EPA and the WRAP results.

The substantial differences between EPA and WRAP results for the WRAP base case for RGGS can therefore be attributed in part to differences in CALPUFF puff parameters, and especially to differences in the version of CALMET used. Differences in model domains may also play a role. The CALMET and CALPUFF domains cover different territory and thus will have slightly different meteorology; in addition; puffs that advect out of one domain and are lost to the simulation may remain within the other domain and affect visibility estimates.

Additional Analysis of Model Results

As an additional check, EPA examined visibility, sulfate, and nitrate over the entire modeling domain, i.e. with "gridded" receptors, instead of the receptor sets within the Class I areas. It is possible that overall visibility impacts were similar between the various simulations, but they occurred at different locations; that is, a dense plume may have hit the Grand Canyon in the WRAP simulation, but missed it in the EPA

simulation because of wind direction differences. Little was discovered from the gridded simulations, but the biggest shift was seen with the change from default to WRAP non-default puff parameters (gridded results from the WRAP modeling itself were not available for comparison). Extinction and concentration isopleths for these simulations are shown in Figure 3, "Reid Gardner, 8th High at Each Gridded Receptor" and Figure 4 "Reid Gardner, 1st High at Each Gridded Receptor." For both figures, the main difference between the two simulations appears to be that the zone of higher visibility and nitrate impacts has a lobe to the northeast, suggesting stronger wind transport in that direction, and resulting in higher impact regions reaching the western end of the Grand Canyon. Because these plots are of the ranked values, e.g. the 8th high over the entire year, the plots are composites of results on many days; a much more detailed analysis would be needed to understand why the results differ between the simulations. However, the overall similarity of the impact patterns at least gives some assurance that no gross error was made in preparing the simulation inputs.

A few additional test runs showed that on average, modeling the three units separately and adding the results gave 98th percentile delta deciview impacts about 4% higher than when the units are modeled together in a single CALPUFF run. This may reflect the competition of sulfate and nitrate in the plumes for available ammonia when the units are modeled together. The results for Grand Canyon are the basis for the "8% discount" applied above to the sum of impacts from individually modeled units.

Class I Area						
	Unit 1 Unit 2		Unit 3	simple	modeled	% difference
					together	
brca	0.059	0.061	0.061	0.181	0.181	0%
grca	0.254	0.264	0.264	0.782	0.725	8%
jotr	0.233	0.229	0.229	0.691	0.663	4%
syca	0.045	0.039	0.039	0.123	0.127	-3%
zion	0.103	0.105	0.105	0.313	0.307	2%
Total				2.090	2.003	4%

 Table 15. Comparison of CALPUFF Results:

 Sum of individual unit results vs. Modeling all units together in single model run

¹ Based on 98th percentile impact using visibility method 6 and annual average natural background

Reid Gardner, 8th High at Each Gridded Receptor (628 x 624 km domain, 4 km grid cells) EPA CALPUFF parameters WRAP CALPUFF parameters

Reid Gardner, 1st High at Each Gridded Receptor (628 x 624 km domain, 4 km grid cells) EPA CALPUFF parameters WRAP CALPUFF parameters

6. Federal Implementation Plan (FIP) Elements

We are proposing to disapprove certain elements of the Nevada RH SIP and propose a corresponding FIP for these elements. The RH SIP elements we are disapproving include 1) the NOx emission limit of 0.28 lb/MMBtu for Unit 3, and 2) the rolling 12-month averaging period for monitoring NOx emissions for Units 1 through 3.

A. Unit 3 Emission Limit

We are proposing to promulgate a FIP to establish a NOx emission limit of 0.20 lb/MMBtu for Unit 3. In its RH SIP, NDEP proposed a NOx emission limit of 0.28 lb/MMBtu for Unit 3. This limit for Unit 3 (0.28 lb/MMBtu) was higher than the emission limit NDEP proposed for Units 1 or 2 (0.20 lb/MMBtu each). The higher emission limit appears to be partially attributable to the fact that the application of control technology to Unit 3 results in less stringent levels of performance relative to Units 1 and 2. As shown in Table 5 of this notice, Nevada Energy's emission estimates indicate that application of ROFA with Rotamix achieves nearly 60 percent reduction from baseline on Units 1 and 2, but only a 38 percent reduction from baseline on Units 3. These percent reduction values were used by NDEP in developing its own estimate of NOx emissions, which form the basis for the proposed NOx limits.

Nevada Energy's BART analysis for Unit 3 did not provide a unit-specific explanation for this difference in control effectiveness. In responding to comments on this issue, NDEP indicated that it deferred to Nevada Energy's operational experience in developing control efficiency data, and had no reason to question their estimates.³² The case-by-case nature of the BART determination process does provide for the consideration of site-specific and unit-specific characteristics in the BART analysis.³³ While there may be unique characteristics associated with Unit 3 that justify the lower percent reduction values used by Nevada Energy and NDEP, we do not find the information in the record on this issue to be at a sufficient level of detail to support this determination.

In the absence of what we consider sufficient justification by Nevada Energy and NDEP, we have evaluated Unit 3 control option emissions predicated upon similar levels of performance relative to Units 1 and 2. Based upon the Unit 3 baseline emissions relied upon by NDEP (described in the 'NDEP' column in Table 5), if a percent reduction similar to Units 1 and 2 were applied to Unit 3 baseline emissions, it can be expected to attain a NOx emission rate of 0.20 lb/MMBtu using the ROFA with Rotamix control option.

B. Averaging Period

In its RH SIP, NDEP proposed NOx limits with a 12-month rolling averaging period for Unit 1 through 3, which is a longer averaging period than the 30-day rolling

³² Page D-37, Appendix D and C-9, Appendix C, Nevada RH SIP. Available as attachments to EPA-R09-OAR-2011-0130-0003

³³ For example, when determining what control options are considered technically feasible at a specific unit, 70 FR 39165

average indicated by the BART Guidelines. Longer averaging periods allow operators the flexibility to "smooth out" short-term emission spikes by averaging those values with periods of lower emission rates. In responding to comments on this issue in their RH SIP, NDEP indicated that Nevada Energy expected a high degree of operational variability with the ROFA with Rotamix control option based upon previous operational experience with ROFA.³⁴

A summary of NOx emission rates from Units 1 through 3 as reported by the Clean Air Markets Division (CAMD) is included in Appendix D, and includes annual and monthly average emissions over a 2001-11 time frame. Monthly average NOx data over a 2010-11 time period indicates a certain degree of fluctuation, as well as a general downward trend in NOx emissions. NDEP has indicated that the downward trend in NOx emissions is partially due to the use of a coal fuel stream that consists of a mixture of bituminous and sub-bituminous coal. Specifically, the Utah/Colorado coal that has historically represented the entirety of the fuel stream to Units 1 through 3 has recently been supplemented with varying amounts of lower-nitrogen content Wyoming sub-bituminous coal.³⁵ Although operational flexibility can be a legitimate consideration when establishing an enforceable limit, we consider use of a rolling 12month averaging period instead of a rolling 30-day average to be inconsistent with BART Guidelines.³⁶ We believe the fluctuations of the NOx emissions from each of the units is better dealt with by averaging the emissions from the three units to determine compliance over the 30-day rolling average.

 ³⁴ Page D-60, Appendix D, Nevada RH SIP. A
 ³⁵ Email dated March 18, 2012, from Mike Elges (NDEP) to Colleen McKaughan (EPA)

³⁶ 70 FR 39172

Appendix A:

EPA Analysis of NOx Control Cost Estimates (from original RH SIP) for Reid Gardner Generating Station

See <u>www.regulations.gov</u>, docket ID number EPA-R09-OAR-2011-0130
Comparison of SCR Control Costs (Original, 2008)

Parameter			Reid Ga	rdner			
	Un	it 1	Uni	it 2	Uni	it 3	
	NDEP	Revised EPA	NDEP	Revised EPA	NDEP	Revised EPA	
Unit Output (kW)	100	,000	100,	000	100,000		
Heat Input (MMBtu/hr)	11	.32	11	32	11	32	
Boiler Type	Wall-	fired	Wall-	fired	Wall-	fired	
Ctrl technology	SCR+LN	IB+OFA	SCR+LN	B+OFA	SCR+LN	IB+OFA	
Ctrl Emission Rate (Ib/MMBtu)	0.085	0.085	0.083	0.083	0.098	0.098	
Total Capital Costs	\$35,048,000	\$26,840,000	\$35,048,000	\$26,840,000	\$35,048,000	\$26,840,000	
Total Annual Costs							
Fixed Costs	\$330,000	\$330,000	\$330,000	\$330,000	\$330,000	\$330,000	
Variable Costs	\$699,801	\$699,801	\$748,551	\$748,551	\$670,893	\$670,893	
Capital Recovery	\$3,703,556	\$2,533,506	\$3,703,556	\$2,533,506	\$3,703,556	\$2,533,506	
	20 yrs @ 8.5%	20 yrs @ 7.0%	20 yrs @ 8.5%	20 yrs @ 7%	20 yrs @ 8.5%	20 yrs @ 7%	
Total Annual Costs	\$4,733,357	\$3,563,307	\$4,782,107	\$3,612,057	\$4,704,449	\$3,534,399	
NOx Removed from baseline (tpy)	1,850	1,850	2,010	2,009	1,774	1,775	
Average Cost per ton (\$/ton)	\$2,559	\$1,926	\$2,379	\$1,798	\$2,652	\$1,991	
Incremental Cost per ton (\$/ton)	\$5 <i>,</i> 684	\$4,067	\$5,425	\$3,885	\$3,446	\$2,477	
Previous ctrl technology	ROFA+F	Rotamix	ROFA+R	lotamix	ROFA+Rotamix		

Reid Gardner NOx Control Effectiveness Summary - EPA Revised Costs

Unit No.	Annual Heat Input ¹
	(MMBtu/yr)
Unit 1	9,818,313
Unit 2	10,501,749
Unit 3	10,063,851

Unit No.	Parameter	Units	Baseline ²	LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	SCR+LNB+OFA	SCR+ROFA
Unit 1	Emission Rate	(tpy)	2,267	1,784	1,340	959	417	417
	Removed	(tpy)		483	927	1,308	1,850	1,850
	Removal Rate	(%)		21.3%	40.9%	57.7%	81.6%	81.6%
	Emission Factor	(lb/MMBtu)	0.462	0.363	0.273	0.195	0.085	0.085
	Annual Cost	(\$)		\$442,469	\$946,040	\$1,360,867	\$3,563,307	\$4,084,427
	Average Cost Effectiveness	(\$/ton)		\$916	\$1,021	\$1,040	\$1,926	\$2,208
	Incremental Cost Effectiveness	(\$/ton)			\$1,135	\$1,088	\$4,067	\$5,030
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix
Unit 2	Emission Rate	(tpy)	2,445	1,866	1,401	1,003	436	436
	Removed	(tpy)		579	1,044	1,442	2,009	2,009
	Removal Rate	(%)		23.7%	42.7%	59.0%	82.2%	82.2%
	Emission Factor	(lb/MMBtu)	0.466	0.355	0.267	0.191	0.083	0.083
	Annual Cost	(\$)		\$442,469	\$968,449	\$1,408,676	\$3,612,057	\$4,159,306
	Average Cost Effectiveness	(\$/ton)		\$764	\$928	\$977	\$1,798	\$2,070
	Incremental Cost Effectiveness	(\$/ton)			\$1,131	\$1,106	\$3,885	\$4,850
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix
Unit 3	Emission Rate	(tpy)	2,268	2,118	1,590	1,399	493	493
	Removed	(tpy)		150	678	869	1,775	1,775
	Removal Rate	(%)		7%	30%	38%	78%	78%
	Emission Factor	(lb/MMBtu)	0.451	0.421	0.316	0.278	0.098	0.098
	Annual Cost	(\$)		\$442,469	\$895,762	\$1,290,483	\$3,534,399	\$4,091,349
	Average Cost Effectiveness	(\$/ton)		\$2,958	\$1,321	\$1,485	\$1,991	\$2,305
	Incremental Cost Effectiveness	(\$/ton)			\$858	\$2,064	\$2,477	\$3,092
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix

1) Based on NDEP Reid-Gardner BART Determination, October 22, 2009, Table 1. Heat input values appear to be based on 1.0 capacity factor and 1152 MMBtu/hr

2) Baseline emissions and control option emissions based upon NDEP's October 22, 2009 BART determination, Table 1. Based on NDEP baseline, which is higher than NVE submittal. By comparison, NVE's Unit 1 baseline was 1625 tpy NOx Reid Gardner NOx Emission Estimates (Based upon NDEP Cost and Control Estimates)

Unit No.	Annual Heat Input ¹
	(MMBtu/yr)
Unit 1	9,818,313
Unit 2	10,501,749
Unit 3	10,063,851

Unit No.	Parameter	Units	Baseline ²	LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	SCR+LNB+OFA	SCR+ROFA
Unit 1	Emission Rate	(tpy)	2,267	1,784	1,340	959	417	417
	Removed	(tpy)		483	927	1,308	1,850	1,850
	Removal Rate	(%)		21.3%	40.9%	57.7%	81.6%	81.6%
	Emission Factor	(lb/MMBtu)	0.462	0.363	0.273	0.195	0.085	0.085
	Annual Cost	(\$)		\$550,024	\$1,130,186	\$1,652,724	\$4,733,357	\$5,379,929
	Average Cost Effectiveness ³	(\$/ton)		\$1,139	\$1,219	\$1,264	\$2,559	\$2,908
	Incremental Cost Effectiveness ³	(\$/ton)			\$1,307	\$1,371	\$5,684	\$6,877
Unit 2	Emission Rate	(tpy)	2,445	1,866	1,401	1,003	435	435
	Removed	(tpy)		579	1,044	1,442	2,010	2,010
	Removal Rate	(%)		23.7%	42.7%	59.0%	82.2%	82.2%
	Emission Factor	(lb/MMBtu)	0.466	0.355	0.267	0.191	0.083	0.083
	Annual Cost	(\$)		\$550,024	\$1,152,595	\$1,700,533	\$4,782,107	\$5,454,808
	Average Cost Effectiveness ³	(\$/ton)		\$950	\$1,104	\$1,179	\$2,379	\$2,714
	Incremental Cost Effectiveness ³	(\$/ton)			\$1,296	\$1,377	\$5,425	\$6,610
Unit 3	Emission Rate	(tpy)	2,268	2,121	1,590	1,400	494	494
	Removed	(tpy)		147	678	868	1,774	1,774
	Removal Rate	(%)		6.5%	29.9%	38.3%	78.2%	78.2%
	Emission Factor	(lb/MMBtu)	0.451	0.421	0.316	0.278	0.098	0.098
	Annual Cost	(\$)		\$550,024	\$1,079,908	\$1,582,340	\$4,704,449	\$5,386,851
	Average Cost Effectiveness ³	(\$/ton)		\$3,742	\$1,593	\$1,823	\$2,652	\$3,037
	Incremental Cost Effectiveness ³	(\$/ton)			\$998	\$2,644	\$3,446	\$4,199

1) As listed in NDEP Reid-Gardner BART Determination, October 22, 2009, Table 1, "Base Heat Input."

Based on listed emission rates and emission factors, "base heat input" and not "total heat input" was used.

2) Baseline emissions and control option emissions based upon NDEP's October 22, 2009 BART determination, Table 1.

Based on NDEP baseline, which is higher than NVE submittal. By comparison, NVE's Unit 1 baseline was 1625 tpy NOx

3) Average and incremental cost effectiveness values as reported in NDEP's October 22, 2009 BART determination, Table 1.

Control Cost Comparison - LNB+OFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	t 1		Ur	nit 2	Uı	nit 3	
	NDEP		EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
						Cost		Cost	
	Value	%	Value	%					Comments
Capital Costs									
Low NOx Burners (Upgrade) + OFA/F	OFA								
Major Materials Design and	\$1,600,000		\$1,600,000		\$1,600,000	\$1,600,000	\$1,600,000	\$1,600,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although
Supply Construction									this line item description suggests it includes more than just PEC. The CCM provides more detailed
									guidance on what constituent elements may be included in this line item, but the NDEP appendix does not
K									provide sufficient detail to make more specific determinations.
Construction	\$1,120,000	70%	\$1,120,000	70%	\$1,120,000	\$1,120,000	\$1,120,000	\$1,120,000	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed
									guidance on what constituent elements are allowed in this line item, but the NDEP appendix does not
Balance of Plant	\$800,000	50%	\$800,000	50%	\$800,000	\$800,000	\$800,000	\$800,000	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in
	<u></u>	50/	<u> </u>	50/	\$00.000	#00.000	#00.000	<u> </u>	the CCM, and are considered part of direct capital costs (DCC).
Electrical (Allowance)	\$80,000	5%	\$80,000	5%	\$80,000	\$80,000	\$80,000	\$80,000	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so
	01/00/000	100/	#0	00/	¢1.00.000	<u></u>	<u> </u>	<u> </u>	are retained here without revision
Owner's Costs	\$160,000	10%	\$0	0%	\$160,000	\$0	\$160,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost
									Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional
C	\$256,000	160/	\$0	00/	\$256,000	\$0	\$256,000	¢0	details would be needed to make that dete
Surcharge	\$256,000	10%	\$U	0%	\$256,000	\$U \$0	\$256,000	\$U	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$192,000	1270	\$0	0%	\$192,000	\$0	\$192,000	\$0	APUDC is not anowed for any of the applications listed in the EPA Control Cost Manual
Subiolai, LINB+OFA Capital Cost	\$4,208,000	150/	\$3,600,000	150/	\$4,208,000	\$3,600,000	\$4,208,000	\$3,600,000	EDA Control Cost Manual munidar for anniant continuous ante of un to 150/ of the total of direct control
Contingency	\$240,000	13%	\$240,000	13%	\$240,000	\$240,000	\$240,000	\$240,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital
									costs (DCC) and multicer instanation costs.
Total LNB+OFA Capital Cost	\$4,448,000		\$3,840,000		\$4,448,000	\$3,840,000	\$4,448,000	\$3,840,000	
Total Capital Cost	\$4,448,000		\$3,840,000		\$4,448,000	\$3,840,000	\$4,448,000	\$3,840,000	

Control Cost Comparison - LNB+OFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

	U	nit 1		Unit 2		Unit 3	
	NDEP	EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Revised	
				Cost		Cost	
	Value %	Value %					Comments
Annual Costs							
Fixed O&M Costs							
Operating Labor	\$0	\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$32,000	\$32,000	\$32,000	\$32,000	\$32,000	\$32,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included in
Maintenance Labor	\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0	\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$80,000	\$80,000	\$80,000	\$80,000	\$80,000	\$80,000	
Variable Costs							
Reagent	\$0	\$0	\$0	\$0	\$0	\$0	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0	\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for NDEP's
							estimate is not clear, however, and it is difficult to determine how catalyst costs determined using the CCM
							might compare.
Auxiliary Power	\$0	\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
							equipment.
Subtotal, variable costs	\$0	\$0	\$0	\$0	\$0	\$0	
Debt Service/Capital Recovery1	\$470,024	\$362,469	\$470,024	\$362,469	\$470,024	\$362,469	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in determining
							cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule and the
							Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control Cost Manual
							uses 7% interest rate in SNCR example calculations (Section 4-2, Chap 1, p1-37). In addition, the CCM
							also recommends a 20 year economic lifetime for SNCR (p1-37), although 30 year lifetimes have often been
							specified in BART and BACT analyses.
Total Annual Costs	\$550,024	\$442,469	\$550,024	\$442,469	\$550,024	\$442,469	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5% 20

7.0% 20

Control Cost Comparison - LNB+OFA+SNCR
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	t 1		Ur	nit 2	U	nit 3	
	NDEP	ļ	EPA Revised	Cost	NDEP	EPA Revised Cost	NDEP	EPA Revised Cost	
	Value	%	Value	%	L				Comments
Capital Costs				!	1				
Low NOx Burners (Upgrade) + OFA									
Major Materials Design and Supply Construction	\$1,600,000		\$1,600,000		\$1,600,000	\$1,600,000	\$1,600,000	\$1,600,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. The CCM provides more detailed guidance on what constituent elements may be included in this line item, but the NDEP appendix does not provide sufficient detail to make more specific determinations.
Construction	\$1,120,000	70%	\$1,120,000	70%	\$1,120,000	\$1,120,000	\$1,120,000	\$1,120,000	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP
Balance of Plant	\$800,000	50%	\$800,000	50%	\$800,000	\$800,000	\$800,000	\$800,000	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in the CCM, and are considered part of direct capital costs (DCC).
Electrical (Allowance)	\$80,000	5%	\$80,000	5%	\$80,000	\$80,000	\$80,000	\$80,000	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so are retained here without revision
Owner's Costs	\$160,000	10%	\$0	0%	\$160,000	\$0	\$160,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
Surcharge	\$256,000	16%	\$0	0%	\$256,000	\$0	\$256,000	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$192,000	12%	\$0	0%	\$192,000	\$0	\$192,000	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
Subtotal, LNB+OFA Capital Cost	\$4,208,000		\$3,600,000		\$4,208,000	\$3,600,000	\$4,208,000	\$3,600,000	
Contingency	\$240,000	15%	\$240,000	15%	\$240,000	\$240,000	\$240,000	\$240,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Total LNB+OFA Capital Cost	\$4,448,000		\$3,840,000		\$4,448,000	\$3,840,000	\$4,448,000	\$3,840,000	
Selective Non-Catalytic Reduction (SN	CR)								
Major Materials Design and Supply Construction	\$1,350,000		\$1,350,000	_	\$1,350,000	\$1,350,000	\$1,350,000	\$1,350,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. See comments in
Construction	\$202,500	15.0%	\$202,500	15%	\$202,500	\$202,500	\$202,500	\$202,500	See comments in LNB+OFA section above. While these costs to not directly correspond to EPA
Balance of Plant	\$162,000	12.0%	\$162,000	12%	\$162,000	\$162,000	\$162,000	\$162,000	CCM line items, they are comparable to certain allowed costs. As a result, these costs are
Electrical (Allowance)	\$67,500	5.0%	\$67,500	5%	\$67,500	\$67,500	\$67,500	\$67,500	retained without revision.
Owner's Costs	\$135,000	10.0%	\$0	0%	\$135,000	\$0	\$135,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
Surcharge	\$216,000	16.0%	\$0	0%	\$216,000	\$0	\$216,000	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$162,000	12.0%	\$0	0%	\$162,000	\$0	\$162,000	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual
Subtotal, SCR Capital Cost	\$2,295,000		\$1,782,000		\$2,295,000	\$1,782,000	\$2,295,000	\$1,782,000	
Contingency	\$202,500	15%	\$202,500	15%	\$202,500	\$202,500	\$202,500	\$202,500	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Total SNCR Capital Cost	\$2,497,500		\$1,984,500		\$2,497,500	\$1,984,500	\$2,497,500	\$1,984,500	
Total Capital Cost	\$6,945,500		\$5,824,500	ļ	\$6,945,500	\$5,824,500	\$6,945,500	\$5,824,500	

Control Cost Comparison - LNB+OFA+SNCR
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

	1	Um	4.1	-	(In: 4.2	T.		
	NDED	Un		NDED	Unit 2	NDED		
	NDEP		EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Kevised	
					Cost		Cost	
	Value	%	Value %					Comments
Annual Costs								
Fixed O&M Costs								
Operating Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$83,000		\$83,000	\$83,000	\$83,000	\$83,000	\$83,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are
Maintenance Labor	\$124,500		\$124,500	\$124,500	\$124,500	\$124,500	\$124,500	included in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$207,500		\$207,500	\$207,500	\$207,500	\$207,500	\$207,500	
Variable Costs								
Reagent	\$151,080		\$151,080	\$169,985	\$169,985	\$98,612	\$98,612	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0		\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for
								NDEP's estimate is not clear, however, and it is difficult to determine how catalyst costs
								determined using the CCM might compare.
Auxiliary Power	\$37,668		\$37,668	\$41,172	\$41,172	\$39,858	\$39,858	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate
								SCR equipment.
Subtotal, variable costs	\$188,748		\$188,748	\$211,157	\$211,157	\$138,470	\$138,470	
Debt Service/Capital Recovery ¹	\$733,938		\$549,792	\$733,938	\$549,792	\$733,938	\$549,792	
								Regarding interest rates EPA calculated capital recoveries using 3% and 7% interest rates in
								determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air
								Visibility rule and the Guidelines for BART Determinations under the Regional Haze regulations
								Visionity fulle and the Outdennes for BART Determinations under the Regional fraze regulations
								The EPA Control Cost Manual uses 7% interest rate in SNCR example calculations (Section 4-2,
								(1.1.57). In addition, the CCM also recommends a 20 year economic lifetime for SNCK
								(p1-37), although 30 year lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$1,130,186		\$946,040	\$1,152,595	\$968,449	\$1,079,908	\$895,762	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5%

20

7.0%

20

Control Cost Comparison - ROFA+Rotami
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Unit 1			Ur	Unit 2		nit 3		
		NDEP		EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
		Value	%	Value	%		-		-	Comments
Capital (Costs									
Rota	ting Overfire Air (ROFA)									
	Major Materials Design and Supply Construction	\$2,880,000		\$2,880,000		\$2,880,000	\$2,880,000	\$2,880,000	\$2,880,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. The CCM provides more detailed guidance on what constituent elements may be included in this line item, but the NDEP appendix does not provide sufficient detail to make more specific determinations.
	Construction	\$742,500		\$742,500		\$742,500	\$742,500	\$742,500	\$742,500	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix does not provide sufficient detail to make this evaluation
	Balance of Plant	\$1,440,000	50%	\$1,440,000	50%	\$1,440,000	\$1,440,000	\$1,440,000	\$1,440,000	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in the CCM, and are considered part of direct capital costs (DCC).
	Electrical (Allowance)	\$864,000	30%	\$864,000	30%	\$864,000	\$864,000	\$864,000	\$864,000	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so are retained here without revision
	Owner's Costs	\$288,000	10%	\$0	0%	\$288,000	\$0	\$288,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that determination.
	Surcharge	\$460,800	16%	\$0	0%	\$460,800	\$0	\$460,800	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$345,600	12%	\$0	0%	\$345,600	\$0	\$345,600	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
	Subtotal, ROFA Capital Cost	\$7,020,900		\$5,926,500		\$7,020,900	\$5,926,500	\$7,020,900	\$5,926,500	
	Contingency	\$864,000	30%	\$432,000	15%	\$864,000	\$432,000	\$864,000	\$432,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Tota	ROFA Capital Cost	\$7,884,900		\$6,358,500		\$7,884,900	\$6,358,500	\$7,884,900	\$6,358,500	
Rota	mix									
	Major Materials Design and Supply Construction	\$1,029,000		\$1,029,000		\$1,029,000	\$1,029,000	\$1,029,000	\$1,029,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. See comments in ROFA above.
	Construction	\$247,500		\$247,500		\$247,500	\$247,500	\$247,500	\$247,500	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix does not provide sufficient detail to make this evaluation
	Balance of Plant	\$123,480	12.0%	\$123,480	12%	\$123,480	\$123,480	\$123,480	\$123,480	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in the CCM, and are considered part of direct capital costs (DCC).
	Electrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs are accounted for elsewhere
	Owner's Costs	\$102,900	10.0%	\$0	0%	\$102,900	\$0	\$102,900	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that determination.
	Surcharge	\$164,640	16.0%	\$0	0%	\$164,640	\$0	\$164,640	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$123,480	12.0%	\$0	0%	\$123,480	\$0	\$123,480	\$0	AFUDC is not allowed for SNCR (comparable to Rotamix) in the EPA Control Cost Manual
	Subtotal, Rotamix Capital Cost	\$1,791,000		\$1,399,980		\$1,791,000	\$1,399,980	\$1,791,000	\$1,399,980	
	Contingency	\$154,350	15%	\$154,350	15%	\$154,350	\$154,350	\$154,350	\$154,350	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Tota	Rotamix Capital Cost	\$1,945,350		\$1,554,330		\$1,945,350	\$1,554,330	\$1,945,350	\$1,554,330	
Total Ca	pital Cost	\$9,830,250		\$7,912,830		\$9,830,250	\$7,912,830	\$9,830,250	\$7,912,830	

Control Cost Comparison - ROFA+Rotami
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	t 1	1	Unit 2	Uı	nit 3	
	NDEP		EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Revised	
	Value	%	Value %					Comments
Annual Costs								
Fixed O&M Costs								
Operating Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$48,000		\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included in
Maintenance Labor	\$72,000		\$72,000	\$72,000	\$72,000	\$72,000	\$72,000	the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$120,000		\$120,000	\$120,000	\$120,000	\$120,000	\$120,000	
Variable Costs								
Reagent	\$213,062		\$213,062	\$234,741	\$234,741	\$126,347	\$126,347	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0		\$0	\$0	\$0	\$0	\$0	
Auxiliary Power	\$280,890		\$280,890	\$307,020	\$307,020	\$297,221	\$297,221	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SNCR
								(comparable to Rotamix) equipment.
Subtotal, variable costs	\$493,952		\$493,952	\$541,761	\$541,761	\$423,568	\$423,568	
Debt Service/Capital Recovery ¹	\$1,038,772		\$746,915	\$1,038,772	\$746,915	\$1,038,772	\$746,915	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in determining
								cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule and the
								Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control Cost Manual
								uses 7% interest rate in SNCR example calculations (Section 4-2, Chap 1, p1-37). In addition, the CCM
								also recommends a 20 year economic lifetime for SNCR (p1-37), although 30 year lifetimes have often been specified in BART and BACT analyses
Total Annual Cost:	\$1,652,724		\$1,360,867	\$1,700,533	\$1,408,676	\$1,582,340	\$1,290,483	

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 1)

7.0% 20

8.5%

20

Control Cost Comparison - SCR+LNB+OFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

			Uni	t 1		Un	it 2	Un	it 3	
		NDEP		EPA Revised (Cost	NDEP	EPA Revised	NDEP	EPA Revised	
							Cost		Cost	
		Value	%	Value	%					Comments
Capital Co	sts									
Low NC	Dx Burners (Upgrade) + OFA									
	Major Materials Design and Supply Construction	\$1,600,000		\$1,600,000		\$1,600,000	\$1,600,000	\$1,600,000	\$1,600,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. The CCM provides more detailed guidance on what constituent elements may be included in t
	Construction	\$1,120,000	70%	\$1,120,000	70%	\$1,120,000	\$1,120,000	\$1,120,000	\$1,120,000	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix
	Balance of Plant	\$800,000	50%	\$800,000	50%	\$800,000	\$800,000	\$800,000	\$800,000	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in the CCM, and are considered part of direct capital costs (DCC).
	Electrical (Allowance)	\$80,000	5%	\$80,000	5%	\$80,000	\$80,000	\$80,000	\$80,000	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so are retained here without revision
	Owner's Costs	\$160,000	10%	\$0	0%	\$160,000	\$0	\$160,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
	Surcharge	\$256,000	16%	\$0	0%	\$256,000	\$0	\$256,000	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$192,000	12%	\$0	0%	\$192,000	\$0	\$192,000	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual, Section 4.2, Chap 2, Table 2.5
S	ubtotal, LNB+OFA Capital Cost	\$4,208,000		\$3,600,000		\$4,208,000	\$3,600,000	\$4,208,000	\$3,600,000	
С	ontingency	\$240,000	15%	\$240,000	15%	\$240,000	\$240,000	\$240,000	\$240,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Total R	OFA Capital Cost	\$4,448,000		\$3,840,000		\$4,448,000	\$3,840,000	\$4,448,000	\$3,840,000	
Selectiv	e Catalytic Reduction (SCR)									
	Major Materials Design and Supply Construction	\$20,000,000		\$20,000,000		\$20,000,000	\$20,000,000	\$20,000,000	\$20,000,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. See comments in ROFA
	Construction	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs
	Balance of Plant	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	are accounted for elsewhere
	Electrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	
	Owner's Costs	\$2,000,000	10.0%	\$0	0%	\$2,000,000	\$0	\$2,000,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
	Surcharge	\$3,200,000	16.0%	\$0	0%	\$3,200,000	\$0	\$3,200,000	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$2,400,000	12.0%	\$0	0%	\$2,400,000	\$0	\$2,400,000	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual
S	ubtotal, SCR Capital Cost	\$27,600,000		\$20,000,000		\$27,600,000	\$20,000,000	\$27,600,000	\$20,000,000	
С	ontingency	\$3,000,000	15%	\$3,000,000	15%	\$3,000,000	\$3,000,000	\$3,000,000	\$3,000,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs.
Total S	CR Capital Cost	\$30,600,000		\$23,000,000		\$30,600,000	\$23,000,000	\$30,600,000	\$23,000,000	
Total Capi	tal Cost	\$35,048,000		\$26,840,000		\$35,048,000	\$26,840,000	\$35,048,000	\$26,840,000	

Control Cost Comparison - SCR+LNB+OFA NDEP costs not allowed by EPA Control Cost Manual

NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

	T	Un	it 1		U	nit 2	U	nit 3	
	NDEP		EPA Revised	i Cost	NDEP	EPA Revised	NDEP	EPA Revised	
						Cost		Cost	
	Value	%	Value	%					Comments
Annual Costs									
Fixed O&M Costs									
Operating Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$132,000		\$132,000		\$132,000	\$132,000	\$132,000	\$132,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are
Maintenance Labor	\$198,000		\$198,000		\$198,000	\$198,000	\$198,000	\$198,000	included in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$330,000		\$330,000		\$330,000	\$330,000	\$330,000	\$330,000	
Variable Costs									
Reagent	\$301,192		\$301,192		\$326,816	\$326,816	\$257,830	\$257,830	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$150,000		\$150,000		\$150,000	\$150,000	\$150,000	\$150,000	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for
									NDEP's estimate is not clear, however, and it is difficult to determine how catalyst costs determined
									using the CCM might compare.
Auxiliary Power	\$248,609		\$248,609		\$271,735	\$271,735	\$263,063	\$263,063	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
									equipment.
Subtotal, variable costs	\$699,801		\$699,801		\$748,551	\$748,551	\$670,893	\$670,893	
Debt Service/Capital Recovery ¹	\$3,703,556		\$2,533,506		\$3,703,556	\$2,533,506	\$3,703,556	\$2,533,506	Regarding interest rates EPA calculated capital recoveries using 3% and 7% interest rates in
									determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility
									rule and the Guidelines for BART Determinations under the Regional Haze regulations The EPA
									Control Cost Manual uses 7% interest rate in SCR example calculations (Section 4-2, Chap 2, p2-57).
									In addition, the CCM also recommends a 20 year economic lifetime for SCR (p2-57) although 30 year
									lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$4,733,357		\$3,563,307	/	\$4,782,107	\$3,612,057	\$4,704,449	\$3,534,399	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5% 20

7.0% 20

Control Cost Comparison - SCR+ROFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	t 1		Un	it 2	Un	nit 3	
	NDEP		EPA Revised (Cost	NDEP	EPA Revised	NDEP	EPA Revised	
						Cost		Cost	
	Value	%	Value	%					Comments
Capital Costs									
Rotating Overfire Air (ROFA)									
Major Materials Design and	\$2,880,000		\$2,880,000		\$2,880,000	\$2,880,000	\$2,880,000	\$2,880,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM.
Supply Construction									although this line item description suggests it includes more than just PEC. The CCM provides more
									detailed guidance on what constituent elements may be included in this line item, but the NDEP
									appendix does not provide sufficient detail to make more specific determinations.
Construction	\$742,500		\$742,500		\$742,500	\$742,500	\$742,500	\$742,500	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more
									detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix
									does not provide sufficient detail to make this evaluation
Balance of Plant	\$1,440,000	50%	\$1,440,000	50%	\$1,440,000	\$1,440,000	\$1,440,000	\$1,440,000	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed
									in the CCM, and are considered part of direct capital costs (DCC).
Electrical (Allowance)	\$864,000	30%	\$864,000	30%	\$864,000	\$864,000	\$864,000	\$864,000	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC),
									and so are retained here without revision
Owner's Costs	\$288,000	10%	\$0	0%	\$288,000	\$0	\$288,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
									Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item,
									additional details would be needed to make that determination.
Surcharge	\$460,800	16%	\$0	0%	\$460,800	\$0	\$460,800	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$345,600	12%	\$0	0%	\$345,600	\$0	\$345,600	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
Subtotal, ROFA Capital Cost	\$7,020,900		\$5,926,500		\$7,020,900	\$5,926,500	\$7,020,900	\$5,926,500	
Contingency	\$864,000	30%	\$432,000	15%	\$864,000	\$432,000	\$864,000	\$432,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
									capital costs (DCC) and indirect installation costs.
Total ROFA Capital Cost	\$7,884,900		\$6,358,500		\$7,884,900	\$6,358,500	\$7,884,900	\$6,358,500	
Selective Catalytic Reduction (SCR)									
Major Materials Design and	\$20,000,000		\$20,000,000		\$20,000,000	\$20,000,000	\$20,000,000	\$20,000,000	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM,
Supply Construction									although this line item description suggests it includes more than just PEC. See comments in ROFA
Construction	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs
Balance of Plant	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	are accounted for elsewhere
Electrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	
Owner's Costs	\$2,000,000	10.0%	\$0	0%	\$2,000,000	\$0	\$2,000,000	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
									Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item,
									additional details would be needed to make that determination.
Surcharge	\$3,200,000	16.0%	\$0	0%	\$3,200,000	\$0	\$3,200,000	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$2,400,000	12.0%	\$0	0%	\$2,400,000	\$0	\$2,400,000	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual, Section 4.2, Chap 2, Table 2.5
Subtotal, SCR Capital Cost	\$27,600,000		\$20,000,000		\$27,600,000	\$20,000,000	\$27,600,000	\$20,000,000	
Contingency	\$3,000,000	15%	\$3,000,000	15%	\$3,000,000	\$3,000,000	\$3,000,000	\$3,000,000	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
	\$20,000,0C2		220 000 CCA		#30 c00 000	\$33.000.00C	\$30.c00.000	\$33.000.00C	capital costs (DCC) and indirect installation costs.
Total SCR Capital Cost	\$30,600,000		\$23,000,000		\$30,600,000	\$23,000,000	\$30,600,000	\$23,000,000	
Total Capital Cost	\$38,484,900		\$29,358,500		\$38,484,900	\$29,358,500	\$38,484,900	\$29,358,500	

Control Cost Comparison - SCR+ROFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

	1	Uni	it 1		U	nit 2	τ	Jnit 3	
	NDEP		EPA Revised	1 Cost	NDEP	EPA Revised	NDEP	EPA Revised	
	1		1			Cost		Cost	
	Value	%	Value	%					Comments
Annual Costs									
Fixed O&M Costs									
Operating Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$148,000		\$148,000		\$148,000	\$148,000	\$148,000	\$148,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included
Maintenance Labor	\$222,000		\$222,000		\$222,000	\$222,000	\$222,000	\$222,000	in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$370,000		\$370,000		\$370,000	\$370,000	\$370,000	\$370,000	
Variable Costs									
Reagent	\$301,192		\$301,192		\$326,816	\$326,816	\$257,830	\$257,830	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$112,500		\$112,500		\$112,500	\$112,500	\$132,000	\$132,000	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for NDEP's
1	1		1						estimate is not clear, however, and it is difficult to determine how catalyst costs determined using the
· · · · · · · · · · · · · · · · · · ·			1						CCM might compare.
Auxiliary Power	\$529,500		\$529,500		\$578,755	\$578,755	\$560,284	\$560,284	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
· · · · · · · · · · · · · · · · · · ·	1		1						equipment.
Subtotal, variable costs	\$943,192		\$943,192		\$1,018,071	\$1,018,071	\$950,114	\$950,114	
Debt Service/Capital Recovery1	\$4,066,737		\$2,771,235		\$4,066,737	\$2,771,235	\$4,066,737	\$2,771,235	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in
									determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule
									and the Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control
									Cost Manual uses 7% interest rate in SCR example calculations (Section 4-2, Chap 2, p2-57). In
									addition, the CCM also recommends a 20 year economic lifetime for SCR (p2-57), although 30 year
									lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$5,379,929		\$4,084,427	1	\$5,454,808	\$4,159,306	\$5,386,851	\$4,091,349	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5% 20

7.0% 20

Appendix B:

EPA Analysis of NOx Control Cost Estimates (2011 update) for Reid Gardner Generating Station

See <u>www.regulations.gov</u>, docket ID number EPA-R09-OAR-2011-0130

Comparison of SCR Control Costs (Updated, 2011)

Parameter			Reid Ga	rdner			
	Un	it 1	Uni	it 2	Uni	it 3	
	NDEP	Revised EPA	NDEP	Revised EPA	NDEP	Revised EPA	
Unit Output (kW)	100	,000	100,	000	100,	000	
Heat Input (MMBtu/hr)	11	.32	11	32	11	32	
Boiler Type	Wall-	fired	Wall-	fired	Wall-	fired	
Ctrl technology	SCR+LN	IB+OFA	SCR+LN	B+OFA	SCR+LN	B+OFA	
Ctrl Emission Rate (Ib/MMBtu)	0.085	0.085	0.083	0.083	0.098	0.098	
Total Capital Costs	\$39,754,076	\$30,443,946	\$39,754,076	\$30,443,946	\$39,754,076	\$30,443,946	
Total Annual Costs							
Fixed Costs	\$330,000	\$330,000	\$330,000	\$330,000	\$330,000	\$330,000	
Variable Costs	\$699,801	\$699,801	\$748,551	\$748,551	\$670,893	\$670,893	
Capital Recovery	\$4,200,852	\$2,873,693	\$4,200,852	\$2,873,693	\$4,200,852	\$2,873,693	
	20 yrs @ 8.5%	20 yrs @ 7.0%	20 yrs @ 8.5%	20 yrs @ 7%	20 yrs @ 8.5%	20 yrs @ 7%	
Total Annual Costs	\$5,230,653	\$3,903,494	\$5,279,403	\$3,952,244	\$5,201,745	\$3,874,586	
NOx Removed from baseline (tpy)	1,850	1,850	2,010	2,009	1,774	1,775	
Average Cost per ton (\$/ton)	\$2,827	\$2,110	\$2,627	\$1,967	\$2,932	\$2,183	
Incremental Cost per ton (\$/ton)	\$6,370	\$4,534	\$6,080	\$4,330	\$3,856	\$2,756	
Previous ctrl technology	ROFA+F	Rotamix	ROFA+R	lotamix	ROFA+Rotamix		

Reid Gardner NOx Control Effectiveness Summary - EPA Revised Costs

Unit No.	Annual Heat Input ¹
	(MMBtu/yr)
Unit 1	9,818,313
Unit 2	10,501,749
Unit 3	10,063,851

Unit No.	Parameter	Units	Baseline ²	LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	SCR+LNB+OFA	SCR+ROFA
Unit 1	Emission Rate	(tpy)	2,267	1,784	1,340	959	417	417
	Removed	(tpy)		483	927	1,308	1,850	1,850
	Removal Rate	(%)		21.3%	40.9%	57.7%	81.6%	81.6%
	Emission Factor	(lb/MMBtu)	0.462	0.363	0.273	0.195	0.085	0.085
	Annual Cost	(\$)		\$491,140	\$1,019,864	\$1,448,604	\$3,903,494	\$4,447,126
	Average Cost Effectiveness	(\$/ton)		\$1,017	\$1,100	\$1,107	\$2,110	\$2,404
	Incremental Cost Effectiveness	(\$/ton)			\$1,191	\$1,124	\$4,534	\$5,538
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix
Unit 2	Emission Rate	(tpy)	2,445	1,866	1,401	1,003	436	436
	Removed	(tpy)		579	1,044	1,442	2,009	2,009
	Removal Rate	(%)		23.7%	42.7%	59.0%	82.2%	82.2%
	Emission Factor	(lb/MMBtu)	0.466	0.355	0.267	0.191	0.083	0.083
	Annual Cost	(\$)		\$491,140	\$1,042,273	\$1,496,413	\$3,952,244	\$4,522,005
	Average Cost Effectiveness	(\$/ton)		\$848	\$998	\$1,038	\$1,967	\$2,251
	Incremental Cost Effectiveness	(\$/ton)			\$1,185	\$1,141	\$4,330	\$5,334
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix
Unit 3	Emission Rate	(tpy)	2,268	2,118	1,590	1,399	493	493
	Removed	(tpy)		150	678	869	1,775	1,775
	Removal Rate	(%)		7%	30%	38%	78%	78%
	Emission Factor	(lb/MMBtu)	0.451	0.421	0.316	0.278	0.098	0.098
	Annual Cost	(\$)		\$491,140	\$969,586	\$1,378,220	\$3,874,586	\$4,454,048
	Average Cost Effectiveness	(\$/ton)		\$3,284	\$1,430	\$1,586	\$2,183	\$2,510
	Incremental Cost Effectiveness	(\$/ton)			\$906	\$2,137	\$2,756	\$3,396
	Previous ctrl technology				LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	ROFA+Rotamix

1) Based on NDEP Reid-Gardner BART Determination, October 22, 2009, Table 1. Heat input values appear to be based on 1.0 capacity factor and 1152 MMBtu/hr

2) Baseline emissions and control option emissions based upon NDEP's October 22, 2009 BART determination, Table 1. Based on NDEP baseline, which is higher than NVE submittal. By comparison, NVE's Unit 1 baseline was 1625 tpy NOx Reid Gardner NOx Emission Estimates (Based upon NDEP Cost and Control Estimates)

Unit No.	Annual Heat Input ¹
	(MMBtu/yr)
Unit 1	9,818,313
Unit 2	10,501,749
Unit 3	10,063,851

Unit No.	Parameter	Units	Baseline ²	LNB+OFA	LNB+OFA+SNCR	ROFA+Rotamix	SCR+LNB+OFA	SCR+ROFA
Unit 1	Emission Rate	(tpy)	2,267	1,784	1,340	959	417	417
	Removed	(tpy)		483	927	1,308	1,850	1,850
	Removal Rate	(%)		21.3%	40.9%	57.7%	81.6%	81.6%
	Emission Factor	(lb/MMBtu)	0.462	0.363	0.273	0.195	0.085	0.085
	Annual Cost	(\$)		\$613,138	\$1,228,736	\$1,778,147	\$5,230,653	\$5,915,459
	Average Cost Effectiveness ³	(\$/ton)		\$1,269	\$1,325	\$1,359	\$2,827	\$3,198
	Incremental Cost Effectiveness ³	(\$/ton)			\$1,386	\$1,442	\$6,370	\$7,633
Unit 2	Emission Rate	(tpy)	2,445	1,866	1,401	1,003	435	435
	Removed	(tpy)		579	1,044	1,442	2,010	2,010
	Removal Rate	(%)		23.7%	42.7%	59.0%	82.2%	82.2%
	Emission Factor	(lb/MMBtu)	0.466	0.355	0.267	0.191	0.083	0.083
	Annual Cost	(\$)		\$613,138	\$1,251,145	\$1,825,956	\$5,279,403	\$5,990,338
	Average Cost Effectiveness ³	(\$/ton)		\$1,059	\$1,198	\$1,266	\$2,627	\$2 <i>,</i> 980
	Incremental Cost Effectiveness ³	(\$/ton)			\$1,372	\$1,444	\$6,080	\$7,332
Unit 3	Emission Rate	(tpy)	2,268	2,121	1,590	1,400	494	494
	Removed	(tpy)		147	678	868	1,774	1,774
	Removal Rate	(%)		6.5%	29.9%	38.3%	78.2%	78.2%
	Emission Factor	(lb/MMBtu)	0.451	0.421	0.316	0.278	0.098	0.098
	Annual Cost	(\$)		\$613,138	\$1,178,458	\$1,707,763	\$5,201,745	\$5,922,381
	Average Cost Effectiveness ³	(\$/ton)		\$4,171	\$1,738	\$1,967	\$2,932	\$3,338
	Incremental Cost Effectiveness ³	(\$/ton)			\$1,065	\$2,786	\$3,856	\$4,652

1) As listed in NDEP Reid-Gardner BART Determination, October 22, 2009, Table 1, "Base Heat Input."

Based on listed emission rates and emission factors, "base heat input" and not "total heat input" was used.

2) Baseline emissions and control option emissions based upon NDEP's October 22, 2009 BART determination, Table 1. Based on NDEP baseline, which is higher than NVE submittal. By comparison, NVE's Unit 1 baseline was 1625 tpy NOx

3) Average and incremental cost effectiveness values as reported in NDEP's October 22, 2009 BART determination, Table 1.

Control Cost Comparison - LNB+OFA (enhanced)
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

1			Uni	t 1		U	nit 2	U	nit 3	
		NDEP		EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
							Cost		Cost	
		Value	%	Value	%					Comments
Capital Co	osts									
Low N	Ox Burners (Upgrade) + OFA/Re	OFA								
	Major Materials Design and	\$1,814,842		\$1,814,842		\$1,814,842	\$1,814,842	\$1,814,842	\$1,814,842	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM,
	Supply Construction									although this line item description suggests it includes more than just PEC. The CCM provides more
										detailed guidance on what constituent elements may be included in this line item, but the NDEP
										appendix does not provide sufficient detail to make more specific determinations.
	Construction	\$1,270,389	70%	\$1,270,389	70%	\$1,270,389	\$1,270,389	\$1,270,389	\$1,270,389	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more
										detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix
	Balance of Plant	\$907,421	50%	\$907,421	50%	\$907,421	\$907,421	\$907,421	\$907,421	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed
-										in the CCM, and are considered part of direct capital costs (DCC).
_	Electrical (Allowance)	\$90,742	5%	\$90,742	5%	\$90,742	\$90,742	\$90,742	\$90,742	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC),
										and so are retained here without revision
	Owner's Costs	\$181,484	10%	\$0	0%	\$181,484	\$0	\$181,484	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
										Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item,
										additional details would be needed to make that dete
	Surcharge	\$290,375	16%	\$0	0%	\$290,375	\$0	\$290,375	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$217,781	12%	\$0	0%	\$217,781	\$0	\$217,781	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
5	Subtotal, LNB+OFA Capital Cost	\$4,773,034		\$4,083,395		\$4,773,034	\$4,083,395	\$4,773,034	\$4,083,395	
(Contingency	\$272,226	15%	\$272,226	15%	\$272,226	\$272,226	\$272,226	\$272,226	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
										capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion),
										Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total I	NB+OFA Capital Cost	\$5,045,261		\$4,355,621		\$5,045,261	\$4,355,621	\$5,045,261	\$4,355,621	
Total Cap	ital Cost	\$5,045,261		\$4,355,621		\$5,045,261	\$4,355,621	\$5,045,261	\$4,355,621	

Control Cost Comparison - LNB+OFA (enhanced)
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Unit 1		Unit 2		Unit 3	
	NDEP	EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Revised	
				Cost		Cost	
	Value %	% Value %					Comments
Annual Costs							
Fixed O&M Costs							
Operating Labor	\$0	\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$32,000	\$32,000	\$32,000	\$32,000	\$32,000	\$32,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included
Maintenance Labor	\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0	\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$80,000	\$80,000	\$80,000	\$80,000	\$80,000	\$80,000	
Variable Costs							
Reagent	\$0	\$0	\$0	\$0	\$0	\$0	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0	\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for NDEP's
							estimate is not clear, however, and it is difficult to determine how catalyst costs determined using the
							CCM might compare.
Auxiliary Power	\$0	\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
							equipment.
Subtotal, variable costs	\$0	\$0	\$0	\$0	\$0	\$0	
Debt Service/Capital Recovery ¹	\$533,138	\$411,140	\$533,138	\$411,140	\$533,138	\$411,140	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in
							determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule
							and the Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control
							Cost Manual uses 7% interest rate in SNCR example calculations (Section 4-2, Chap 1, p1-37). In
							addition, the CCM also recommends a 20 year economic lifetime for SNCR (p1-37), although 30 year
							lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$613,138	\$491,140	\$613,138	\$491,140	\$613,138	\$491,140	

1)

Debt Service/Capital Recovery Interest rate (%) = 8.5% 7.0% 20

Equipment lifetime (years) = 20

Control Cost Comparison - LNB+OFA+SNCR
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	it 1		U	nit 2	U	nit 3	
	NDEP		EPA Revised	Cost	NDEP	EPA Revised Cost	NDEP	EPA Revised Cost	
	Value	%	Value	%					Comments
Capital Costs									
Low NOx Burners (Upgrade) + OFA	1								
Major Materials Design and Supply Construction	\$1,814,842		\$1,814,842		\$1,814,842	\$1,814,842	\$1,814,842	\$1,814,842	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. The CCM provides more detailed guidance on what constituent elements may be included in this line item, but the NDEP appendix does not provide sufficient detail to make more specific determinations.
Construction	\$1,270,389	70%	\$1,270,389	70%	\$1,270,389	\$1,270,389	\$1,270,389	\$1,270,389	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP
Balance of Plant	\$907,421	50%	\$907,421	50%	\$907,421	\$907,421	\$907,421	\$907,421	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in the CCM, and are considered part of direct capital costs (DCC).
Electrical (Allowance)	\$90,742	5%	\$90,742	5%	\$90,742	\$90,742	\$90,742	\$90,742	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so are retained here without revision
Owner's Costs	\$181,484	10%	\$0	0%	\$181,484	\$0	\$181,484	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
Surcharge	\$290,375	16%	\$0	0%	\$290,375	\$0	\$290,375	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$217,781	12%	\$0	0%	\$217,781	\$0	\$217,781	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
Subtotal, LNB+OFA Capital Co	st \$4,773,034		\$4,083,395		\$4,773,034	\$4,083,395	\$4,773,034	\$4,083,395	
Contingency	\$272,226	15%	\$272,226	15%	\$272,226	\$272,226	\$272,226	\$272,226	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion), Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR
Total LNB+OFA Capital Cost	\$5,045,261		\$4,355,621		\$5,045,261	\$4,355,621	\$5,045,261	\$4,355,621	
Selective Non-Catalytic Reduction (S	SNCR)								
Major Materials Design and Supply Construction	\$1,531,273		\$1,531,273		\$1,531,273	\$1,531,273	\$1,531,273	\$1,531,273	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM, although this line item description suggests it includes more than just PEC. See comments in
Construction	\$229,691	15.0%	\$229,691	15%	\$229,691	\$229,691	\$229,691	\$229,691	See comments in LNB+OFA section above. While these costs to not directly correspond to EPA
Balance of Plant	\$183,753	12.0%	\$183,753	12%	\$183,753	\$183,753	\$183,753	\$183,753	CCM line items, they are comparable to certain allowed costs. As a result, these costs are
Electrical (Allowance)	\$76,564	5.0%	\$76,564	5%	\$76,564	\$76,564	\$76,564	\$76,564	retained without revision.
Owner's Costs	\$153,127	10.0%	\$0	0%	\$153,127	\$0	\$153,127	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional details would be needed to make that dete
Surcharge	\$245,004	16.0%	\$0	0%	\$245,004	\$0	\$245,004	\$0	There is no provision for surcharge in the EPA Control Cost Manual
AFUDC	\$183,753	12.0%	\$0	0%	\$183,753	\$0	\$183,753	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual
Subtotal, SCR Capital Cost	\$2,603,164		\$2,021,280		\$2,603,164	\$2,021,280	\$2,603,164	\$2,021,280	
Contingency	\$229,691	15%	\$229,691	15%	\$229,691	\$229,691	\$229,691	\$229,691	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post- Combustion), Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total SNCR Capital Cost	\$2,832,855		\$2,250,971		\$2,832,855	\$2,250,971	\$2,832,855	\$2,250,971	
Total Capital Cost	\$7,878,116		\$6,606,592		\$7,878,116	\$6,606,592	\$7,878,116	\$6,606,592	

Control Cost Comparison - LNB+OFA+SNCR
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	4 1	I	init 2	I.	nit 2	
	NDER	UII	EDA Daviard Cont	NDER	EDA Davieral	NDED	EDA Daviard	
	NDEP		EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Revised	
	Value	9/	Voluo 94		Cost		Cost	Commonte
	value	/0	value /6	1				Comments
Annual Costs								
Fixed O&M Costs								
Operating Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$83,000		\$83,000	\$83,000	\$83,000	\$83,000	\$83,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are
Maintenance Labor	\$124,500		\$124,500	\$124,500	\$124,500	\$124,500	\$124,500	included in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$207,500		\$207,500	\$207,500	\$207,500	\$207,500	\$207,500	
Variable Costs								
Reagent	\$151,080		\$151,080	\$169,985	\$169,985	\$98,612	\$98,612	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0		\$0	\$0	\$0	\$0	\$0	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for
								NDEP's estimate is not clear, however, and it is difficult to determine how catalyst costs
								determined using the CCM might compare.
Auxiliary Power	\$37,668		\$37,668	\$41,172	\$41,172	\$39,858	\$39,858	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate
								SCR equipment.
Subtotal, variable costs	\$188,748		\$188,748	\$211,157	\$211,157	\$138,470	\$138,470	
Debt Service/Capital Recovery ¹	\$832,488		\$623,616	\$832,488	\$623,616	\$832,488	\$623,616	
								Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in
								determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air
								Visibility rule and the Guidelines for BART Determinations under the Regional Haze regulations
								The EPA Control Cost Manual uses 7% interest rate in SNCR example calculations (Section 4-2)
								Chap 1, p_{1-37}). In addition, the CCM also recommends a 20 year economic lifetime for SNCR
								(p1-37) although 30 year lifetimes have often been specified in BART and BACT analyses
Total Annual Costs	\$1,228,736		\$1,019,864	\$1,251,145	\$1,042,273	\$1,178,458	\$969,586	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5%

20

7.0%

20

Control Cost Comparison - ROFA+Rotami
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

			Uni	t 1		Un	it 2	Un	it 3	
		NDEP		EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
		Value	%	Value	%					Comments
Canital Costs			,.							
Rotating ()verfire Air (ROFA)									
M	faior Materials Design and	\$3,266,715		\$3,266,715		\$3,266,715	\$3,266,715	\$3,266,715	\$3,266,715	Vander actimate. Comparable to Burghaged Equipment Cast (BEC) as described in EBA CCM, although
Si	upply Construction									this line item description suggests it includes more than just PEC. The CCM provides more detailed
										guidance on what constituent elements may be included in this line item. but the NDEP appendix does not
										provide sufficient detail to make more specific determinations.
C	onstruction	\$742,500		\$742,500		\$742,500	\$742,500	\$742,500	\$742,500	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more
										detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix does
										not provide sufficient detail to make this evaluation
B	alance of Plant	\$1,633,358	50%	\$1,633,358	50%	\$1,633,358	\$1,633,358	\$1,633,358	\$1,633,358	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in
										the CCM, and are considered part of direct capital costs (DCC).
E	lectrical (Allowance)	\$980,015	30%	\$980,015	30%	\$980,015	\$980,015	\$980,015	\$980,015	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and
										so are retained here without revision
0	wner's Costs	\$326,672	10%	\$0	0%	\$326,672	\$0	\$326,672	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost
										Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional
		6522 (74	1.60/	60		£522 (74	e0	\$500 (7A	¢0	details would be needed to make that determination.
	ELIDC	\$522,674	10%	<u>\$0</u>	0%	\$322,074	<u>\$0</u>	\$522,674	<u>\$0</u>	There is no provision for surcharge in the EPA Control Cost Manual
A	atal ROFA Capital Cost	\$392,000	1270	\$0	070	\$392,000	\$0	\$392,000	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
Cont	ingener	\$7,803,939	200/	\$0,022,387	150/	\$7,803,939	\$0,022,387	\$7,803,939	\$0,022,387	EDA Control Cost Manual provides for project contingency costs of up to 150% of the total of direct conital
Com	ingency	\$980,015	3076	\$490,007	1370	\$980,015	\$490,007	\$980,015	\$490,007	costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion), Tables 1.4
										and 2.5 allow a project contingency of 15% for SNCR and SCR applications
Tatal BOE	A Conital Cost	\$9.942.052		\$7.112.504		¢9 942 052	\$7.112.504	\$9.942.052	\$7.112.504	and an appropriate source generation of the second s
Rotamix	A Capital Cost	\$0,040,950		\$7,112,594		\$6,643,953	\$7,112,594	\$6,643,953	\$7,112,594	
M	faior Materials Design and	\$1.167.100		\$1.167.100		\$1.167.100	\$1.167.100	\$1.167.100	\$1.167.100	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM although
Si	upply Construction	\$1,107,100		\$1,107,100		\$1,107,100	\$1,107,100	\$1,107,100	\$1,107,100	this line item description suggests it includes more than just PEC. See comments in ROFA above.
	onstruction	\$247 500		\$247.500		\$247 500	\$247.500	\$247 500	\$247.500	Vander actimate. Comparable to Indiract installation costs as described in EDA CCM. Again more
0	onstruction	\$247,500		\$247,500		\$247,500	\$247,500	\$247,500	\$247,500	detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix does
										not provide sufficient detail to make this evaluation
В	alance of Plant	\$140.052	12.0%	\$140.052	12%	\$140.052	\$140.052	\$140.052	\$140.052	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed in
		,		,		,	,	,	,	the CCM, and are considered part of direct capital costs (DCC).
E	lectrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs are
										accounted for elsewhere
0	wner's Costs	\$116,710	10.0%	\$0	0%	\$116,710	\$0	\$116,710	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control Cost
										Manual. Although it is possible that certain CCM-allowed costs are included in this line item, additional
										details would be needed to make that determination.
St	urcharge	\$186,736	16.0%	\$0	0%	\$186,736	\$0	\$186,736	\$0	There is no provision for surcharge in the EPA Control Cost Manual
A	FUDC	\$140,052	12.0%	\$0	0%	\$140,052	\$0	\$140,052	\$0	AFUDC is not allowed for SNCR (comparable to Rotamix) in the EPA Control Cost Manual
Subt	otal, Rotamix Capital Cost	\$1,998,150		\$1,554,652		\$1,998,150	\$1,554,652	\$1,998,150	\$1,554,652	
Cont	ingency	\$175,065	15%	\$175,065	15%	\$175,065	\$175,065	\$175,065	\$175,065	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct capital
										costs (DCC) and indirect installation costs. For example, Section 4.2 (NOX Post-Combustion), Tables 1.4
										and 2.5 anow a project contingency of 15% for SNCK and SCK applications.
Total Rota	mix Capital Cost	\$2,173,215		\$1,729,717		\$2,173,215	\$1,729,717	\$2,173,215	\$1,729,717	
Total Capital	l Cost	\$11,017,168		\$8,842,311		\$11,017,168	\$8,842,311	\$11,017,168	\$8,842,311	

Control Cost Comparison - ROFA+Rotami
NDEP costs not allowed by EPA Control Cost Manual
NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Uni	t 1	1	Unit 2	Un	it 3	
	NDEP		EPA Revised Cost	NDEP	EPA Revised	NDEP	EPA Revised	
	Value	%	Value %					Comments
Annual Costs								
Fixed O&M Costs								
Operating Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$48,000		\$48,000	\$48,000	\$48,000	\$48,000	\$48,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included in
Maintenance Labor	\$72,000		\$72,000	\$72,000	\$72,000	\$72,000	\$72,000	the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0	\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$120,000		\$120,000	\$120,000	\$120,000	\$120,000	\$120,000	
Variable Costs								
Reagent	\$213,062		\$213,062	\$234,741	\$234,741	\$126,347	\$126,347	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$0		\$0	\$0	\$0	\$0	\$0	
Auxiliary Power	\$280,890		\$280,890	\$307,020	\$307,020	\$297,221	\$297,221	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SNCR
								(comparable to Rotamix) equipment.
Subtotal, variable costs	\$493,952		\$493,952	\$541,761	\$541,761	\$423,568	\$423,568	
Debt Service/Capital Recovery ¹	\$1,164,195		\$834,652	\$1,164,195	\$834,652	\$1,164,195	\$834,652	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in determining
								cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule and the
								Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control Cost Manual
								uses 7% interest rate in SNCR example calculations (Section 4-2, Chap 1, p1-37). In addition, the CCM
								also recommends a 20 year economic lifetime for SNCR (p1-37), although 30 year lifetimes have often been specified in BART and BACT analyses.
Total Annual Cost:	\$1,778,147		\$1,448,604	\$1,825,956	\$1,496,413	\$1,707,763	\$1,378,220	

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 1)

8.5% 7.0% 20

20

Control Cost Comparison - SCR+LNB+OFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

			Uni	t 1		Un	it 2	Un	it 3	
		NDEP	1	EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
							Cost		Cost	
		Value	%	Value	%					Comments
Capital (Costs									
Low	NOx Burners (Upgrade) + OFA									
	Major Materials Design and	\$1,814,842		\$1,814,842		\$1,814,842	\$1,814,842	\$1,814,842	\$1,814,842	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM,
	Supply Construction									although this line item description suggests it includes more than just PEC. The CCM provides more
		61 270 200	700/	¢1 270 200	700/	¢1.070.200	61 270 200	£1.270.200	61 270 200	detailed guidance on what constituent elements may be included in t
	Construction	\$1,270,389	70%	\$1,270,389	/0%	\$1,270,389	\$1,270,389	\$1,270,389	\$1,270,389	Vendor estimate. Comparable to Indirect installation costs as described in EPA CCM. Again, more detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix
	Balance of Plant	\$907,421	50%	\$907,421	50%	\$907,421	\$907,421	\$907,421	\$907,421	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are
										allowed in the CCM, and are considered part of direct capital costs (DCC).
	Electrical (Allowance)	\$90,742	5%	\$90,742	5%	\$90,742	\$90,742	\$90,742	\$90,742	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC), and so are retained here without revision
	Owner's Costs	\$181,484	10%	\$0	0%	\$181,484	\$0	\$181,484	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
										Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item,
										additional details would be needed to make that dete
	Surcharge	\$290,375	16%	\$0	0%	\$290,375	\$0	\$290,375	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$217,781	12%	\$0	0%	\$217,781	\$0	\$217,781	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual, Section 4.2, Chap 2, Table 2.5
	Subtotal, LNB+OFA Capital Cost	\$4,773,034		\$4,083,395		\$4,773,034	\$4,083,395	\$4,773,034	\$4,083,395	
	Contingency	\$272,226	15%	\$272,226	15%	\$272,226	\$272,226	\$272,226	\$272,226	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
										capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion),
										Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total	ROFA Capital Cost	\$5,045,261		\$4,355,621		\$5,045,261	\$4,355,621	\$5,045,261	\$4,355,621	
Selec	tive Catalytic Reduction (SCR)									
	Major Materials Design and	\$22,685,500		\$22,685,500		\$22,685,500	\$22,685,500	\$22,685,500	\$22,685,500	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM,
	Supply Construction									although this line item description suggests it includes more than just PEC. See comments in ROFA
	Construction	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs
	Balance of Plant	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	are accounted for elsewhere
	Electrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	
	Owner's Costs	\$2,268,550	10.0%	\$0	0%	\$2,268,550	\$0	\$2,268,550	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
										Cost Manual. Although it is possible that certain CCM-allowed costs are included in this line item,
										additional details would be needed to make that dete
	Surcharge	\$3,629,680	16.0%	\$0	0%	\$3,629,680	\$0	\$3,629,680	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$2,722,260	12.0%	\$0	0%	\$2,722,260	\$0	\$2,722,260	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual
	Subtotal, SCR Capital Cost	\$31,305,990		\$22,685,500		\$31,305,990	\$22,685,500	\$31,305,990	\$22,685,500	
	Contingency	\$3,402,825	15%	\$3,402,825	15%	\$3,402,825	\$3,402,825	\$3,402,825	\$3,402,825	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
										capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOX Post-Combustion),
										rables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total	SCB Capital Cost	\$24 709 915		\$26.088.325		\$24 708 815	\$26.099.225	\$24 709 915	\$26.089.225	
T at a L C		\$34,708,815		\$20,088,525		\$34,708,815	\$20,000,325	\$34,708,815	\$20,088,525	
1 otal Ca	pital Cost	\$39,754,076		\$30,443,946		\$39,754,076	\$30,443,946	\$39,754,076	\$30,443,946	

Control Cost Comparison - SCR+LNB+OFA NDEP costs not allowed by EPA Control Cost Manual

NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

		Un	it 1		U	nit 2	U	Jnit 3	
	NDEP		EPA Revised	Cost	NDEP	EPA Revised	NDEP	EPA Revised	
						Cost		Cost	
	Value	%	Value	%					Comments
Annual Costs									
Fixed O&M Costs									
Operating Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$132,000		\$132,000		\$132,000	\$132,000	\$132,000	\$132,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are
Maintenance Labor	\$198,000		\$198,000		\$198,000	\$198,000	\$198,000	\$198,000	included in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$330,000		\$330,000		\$330,000	\$330,000	\$330,000	\$330,000	
Variable Costs									
Reagent	\$301,192		\$301,192		\$326,816	\$326,816	\$257,830	\$257,830	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$150,000		\$150,000		\$150,000	\$150,000	\$150,000	\$150,000	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for
						I			NDEP's estimate is not clear, however, and it is difficult to determine how catalyst costs determined
									using the CCM might compare.
Auxiliary Power	\$248,609		\$248,609		\$271,735	\$271,735	\$263,063	\$263,063	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
									equipment.
Subtotal, variable costs	\$699,801		\$699,801		\$748,551	\$748,551	\$670,893	\$670,893	
Debt Service/Capital Recovery1	\$4,200,852		\$2,873,693		\$4,200,852	\$2,873,693	\$4,200,852	\$2,873,693	Regarding interest rates EPA calculated capital recoveries using 3% and 7% interest rates in
									determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility
									rule and the Guidelines for BART Determinations under the Regional Haze regulations. The EPA
									Control Cost Manual uses 7% interest rate in SCR example calculations (Section 4-2, Chap 2, p2-57)
									In addition, the CCM also recommends a 20 year economic lifetime for SCR (p2-57) although 30 year
									lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$5,230,653	_	\$3,903,494	,	\$5,279,403	\$3,952,244	\$5,201,745	\$3,874,586	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5% 20

7.0% 20

Control Cost Comparison - SCR+ROFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

			Uni	t 1		Un	it 2	Un	uit 3	
		NDEP		EPA Revised (Cost	NDEP	EPA Revised	NDEP	EPA Revised	
							Cost		Cost	
		Value	%	Value	%					Comments
Capital C	losts									
Rotat	ing Overfire Air (ROFA)									
	Major Materials Design and	\$3,266,715		\$3,266,715		\$3,266,715	\$3,266,715	\$3,266,715	\$3,266,715	Vendor estimate Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM
	Supply Construction									although this line item description suggests it includes more than just PEC. The CCM provides more
	** ·									detailed guidance on what constituent elements may be included in this line item, but the NDEP
										appendix does not provide sufficient detail to make more specific determinations.
	Construction	\$742,500		\$742,500		\$742,500	\$742,500	\$742,500	\$742,500	Vendor estimate Comparable to Indirect installation costs as described in EPA CCM. Again, more
										detailed guidance on what constituent elements are allowed in this line item, but the NDEP appendix
										does not provide sufficient detail to make this evaluation
	Balance of Plant	\$1,633,358	50%	\$1,633,358	50%	\$1,633,358	\$1,633,358	\$1,633,358	\$1,633,358	Balance of plant is construed to refer to other capital expenditures beyond PEC. Such costs are allowed
										in the CCM. and are considered part of direct capital costs (DCC).
	Electrical (Allowance)	\$980,015	30%	\$980,015	30%	\$980,015	\$980,015	\$980,015	\$980,015	Electrical equipment is included in the EPA control cost manual as part of direct capital costs (DCC).
				,	-	,	,			and so are retained here without revision
	Owner's Costs	\$326,672	10%	\$0	0%	\$326,672	\$0	\$326,672	\$0	Owner's costs such as project management advisory fees legal etc. are not included in the Control
										Cost Manual Although it is possible that certain CCM-allowed costs are included in this line item.
										additional details would be needed to make that determination.
	Surcharge	\$522,674	16%	\$0	0%	\$522,674	\$0	\$522,674	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$392,006	12%	\$0	0%	\$392,006	\$0	\$392,006	\$0	AFUDC is not allowed for any of the applications listed in the EPA Control Cost Manual
	Subtotal, ROFA Capital Cost	\$7,863,939		\$6,622,587		\$7,863,939	\$6,622,587	\$7,863,939	\$6,622,587	
	Contingency	\$980,015	30%	\$490,007	15%	\$980,015	\$490,007	\$980,015	\$490,007	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
	0									capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion),
										Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total	ROFA Capital Cost	\$8,843,953		\$7,112,594		\$8,843,953	\$7,112,594	\$8,843,953	\$7,112,594	
Select	ive Catalytic Reduction (SCR)									
	Major Materials Design and	\$22,685,522		\$22,685,522		\$22,685,522	\$22,685,522	\$22,685,522	\$22,685,522	Vendor estimate. Comparable to Purchased Equipment Cost (PEC) as described in EPA CCM,
	Supply Construction									although this line item description suggests it includes more than just PEC. See comments in ROFA
	Construction	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	Zero estimate provided by NDEP. Based upon the documentation provided, it is unclear if these costs
	Balance of Plant	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	are accounted for elsewhere
	Electrical (Allowance)	\$0	0.0%	\$0	0%	\$0	\$0	\$0	\$0	
	Owner's Costs	\$2,268,552	10.0%	\$0	0%	\$2,268,552	\$0	\$2,268,552	\$0	Owner's costs such as project management, advisory fees, legal, etc., are not included in the Control
		. , , .				. , , ,		. , , ,		Cost Manual Although it is possible that certain CCM-allowed costs are included in this line item.
										additional details would be needed to make that determination.
	Surcharge	\$3,629,684	16.0%	\$0	0%	\$3,629,684	\$0	\$3,629,684	\$0	There is no provision for surcharge in the EPA Control Cost Manual
	AFUDC	\$2,722,263	12.0%	\$0	0%	\$2,722,263	\$0	\$2,722,263	\$0	AFUDC is not allowed for SCR in the EPA Control Cost Manual, Section 4.2, Chap 2, Table 2.5
	Subtotal, SCR Capital Cost	\$31,306,020		\$22,685,522		\$31,306,020	\$22,685,522	\$31,306,020	\$22,685,522	
	Contingency	\$3,402,828	15%	\$3,402,828	15%	\$3,402,828	\$3,402,828	\$3,402,828	\$3,402,828	EPA Control Cost Manual provides for project contingency costs of up to 15% of the total of direct
										capital costs (DCC) and indirect installation costs. For example, Section 4.2 (NOx Post-Combustion),
										Tables 1.4 and 2.5 allow a project contingency of 15% for SNCR and SCR applications.
Total	SCR Capital Cost	\$34,708,849		\$26,088,350		\$34,708,849	\$26,088,350	\$34,708,849	\$26,088,350	
Total Car	oital Cost	\$43.552.802		\$33,200,945		\$43.552.802	\$33,200,945	\$43,552,802	\$33,200,945	

Control Cost Comparison - SCR+ROFA

NDEP costs not allowed by EPA Control Cost Manual NDEP costs allowed by EPA Control Cost Manual, but modified from NDEP estimate

· · · · · · · · · · · · · · · · · · ·	1	Un	it 1		Ur	ait 2	U	Jnit 3	
1	NDEP		EPA Revised	l Cost	NDEP	EPA Revised	NDEP	EPA Revised	
1	1		1		1	Cost		Cost	
	Value	%	Value	%					Comments
Annual Costs									
Fixed O&M Costs									
Operating Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional operating labor was provided.
Maintenance Materials	\$148,000		\$148,000		\$148,000	\$148,000	\$148,000	\$148,000	The EPA Control Cost Manual provides for maintenance materials and labor. These costs are included
Maintenance Labor	\$222,000		\$222,000		\$222,000	\$222,000	\$222,000	\$222,000	in the revised EPA estimate, although no basis was provided.
Administrative Labor	\$0		\$0		\$0	\$0	\$0	\$0	No estimate of additional administrative labor was provided.
Subtotal, fixed O&M costs	\$370,000		\$370,000		\$370,000	\$370,000	\$370,000	\$370,000	
Variable Costs									
Reagent	\$301,192		\$301,192		\$326,816	\$326,816	\$257,830	\$257,830	EPA CCM does provide for certain raw material costs such as reagent costs.
Catalyst Replacement	\$112,500		\$112,500		\$112,500	\$112,500	\$132,000	\$132,000	The EPA Control Cost Manual does provide for SCR catalyst replacement costs. The basis for NDEP's
1	1		1		1				estimate is not clear, however, and it is difficult to determine how catalyst costs determined using the
'			1		1				CCM might compare.
Auxiliary Power	\$529,500		\$529,500		\$578,755	\$578,755	\$560,284	\$560,284	The EPA Control Cost Manual does provide for utility costs, such as those needed to operate SCR
'	1		1		1				equipment.
Subtotal, variable costs	\$943,192		\$943,192		\$1,018,071	\$1,018,071	\$950,114	\$950,114	
Debt Service/Capital Recovery ¹	\$4,602,267		\$3,133,934		\$4,602,267	\$3,133,934	\$4,602,267	\$3,133,934	Regarding interest rates, EPA calculated capital recoveries using 3% and 7% interest rates in
									determining cost effectiveness for the Regulatory Impact Analysis for the Final Clean Air Visibility rule
									and the Guidelines for BART Determinations under the Regional Haze regulations. The EPA Control
									Cost Manual uses 7% interest rate in SCR example calculations (Section 4-2, Chap 2, p2-57). In
									addition, the CCM also recommends a 20 year economic lifetime for SCR (p2-57), although 30 year
									lifetimes have often been specified in BART and BACT analyses.
Total Annual Costs	\$5,915,459		\$4,447,126	<i>.</i>	\$5,990,338	\$4,522,005	\$5,922,381	\$4,454,048	

1)

Debt Service/Capital Recovery Interest rate (%) = Equipment lifetime (years) = 8.5% 20

7.0% 20

Appendix C:

Model Emission Rate Calculations for Reid Gardner Generating Station See <u>www.regulations.gov</u>, docket ID number EPA-R09-OAR-2011-0130

Modeling Scenarios for EPA's RH SIP Action on Reid Gardner Generating Station

updated 2012-03-07

				Control Technology	
Code	Name	Description	NOx	SO2	PM10
00	Baseline 1	WRAP Baseline	None	Wet Soda Ash Scrubber	Mechanical Flyash Collector
02	Baseline 1a	WRAP Baseline (NOx), NDEP BART determination (PM10, SO2)	None	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
04	Baseline 2	NDEP adjusted baseline (NOx), NDEP BART determination (PM10, SO2)	LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
11	Control Option 1	LNB + OFA (enhanced)	LNB + OFA (enhanced)	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
12	Control Option 2	SNCR + LNB w/ OFA	SNCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
13	Control Option 3	ROFA w/ Rotamix	ROFA w/ Rotamix	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
14	Control Option 4	SCR + ROFA	SCR + ROFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
15	Control Option 5	SCR + LNB w/ OFA	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter
16	Control Option 6	SCR + LNB w/ OFA @.06	SCR + LNB w/ OFA @.06	Wet Soda Ash Scrubber (upgraded)	Fabric Filter

Code is the number appearing in the CALPUFF model file name, e.g. cf_c11_2002.inp for CALPUFF, code 11 for control option 1, 2002 meteorol

	Elevation above MSL (feet)	Stack Height (feet)	Stack Diameter (feet)	Stack Crossec Area (#2)	Exit Temp	Exit Velocity	Exit Flowrate	Annual Unit Capacity Factor	Boiler Heat Input (100% Ioad) (MMBtu/br)	Notes
Reid Gardner Unit 1	1573	200	13.3	1.39	135	52 4	436702	86%	1215	1 10165
Reid Gardner Unit 2	1572	249	13.3	139	145	50.3	419288	94%	1215	2
Reid Gardner Unit 3	1570	270	12.9	131	151	71.4	559911	91%	1237	3
							10/700 0011			

436793.0311

1 Per Table 2-1, Reid Gardner 1 NVE BART Analysis submittal to NDEP, p.2-2 (p.13 in PDF) 2 Per Table 2-1, Reid Gardner 2 NVE BART Analysis submittal to NDEP, p.2-2 (p.13 in PDF)

3 Per Table 2-1, Reid Gardner 3 NVE BART Analysis submittal to NDEP, p.2-2 (p.13 in PDF)

in metric units, converte	ed from the abo	ve		m_per_ft kJ_per_BTU	0.3048 1.05506				
stack parm abbrevs	ES	HS	DS		TS	VS			
								Annual Unit	Boiler Heat
	Elevation	Stack	Stack	Stack Crossec				Capacity	Input (100%
	above MSL	Height	Diameter	Area	Exit Temp	Exit Velocity	Exit Flowrate	Factor	load)
	(m)	(m)	(m)	(m2)	(deg K)	(m/s)	(acmm)	(percent)	(GJ/hr)
Reid Gardner Unit 1	479.5	60.96	4.05	12.9	330.37	15.97	12366	86%	1282
Reid Gardner Unit 2	479.1	75.90	4.05	12.9	335.93	15.33	11873	94%	1282
Reid Gardner Unit 3	478.5	82.30	3.93	12.1	339.26	21.76	15855	91%	1305

The stack parameters are identical to those used in BART modeling for the WRAP, except WRAP elevations were about 8 m higher.

Since WRAP stack coordinates (latitude and longitude) are about 700 m away from plant location in CAMD, whereas the values used in

the CH2MHill modeing were about 7000 m away, WRAP stack location and elevations will be used.

(The meteorological inputs are in the WRAP coordinate system for Arizona, which we will be using.)

Calculated values below are in italics (coordinate conversions done using Golden Software's MapViewer 6.2)

		Dist. from CAMD,							
	info source	km	WRAP coordinat	te system	Geographic cod	ordinates	CH2MHill coordinate system		
			X km	Y km	longitude	latitude	X km	Y km	
Plant location	CAMD	0	-1556.0167	-218.6810	-114.6364	36.6531			
Reid Gardner Unit 1	WRAP	0.7	-1555.5060	-218.2230	-114.6318	36.6581			
Reid Gardner Unit 2	WRAP	0.7	-1555.5120	-218.2522	-114.6318	36.6578			
Reid Gardner Unit 3	WRAP	0.6	-1555.5210	-218.2911	-114.6318	36.6574			
Reid Gardner Unit 1	CH2MHill	7.0	-1550.0586	-222.4074			210.827	-366.266	
Reid Gardner Unit 2	CH2MHill	7.0	-1550.0649	-222.4367			210.827	-366.296	
Reid Gardner Unit 3	CH2MHill	7.1	-1550.0731	-222.4757			210.82729	-366.336	

Reid Gardner Generating Station Nevada Regiona Haze SIP

Page 1 of 1

U.S. EPA, Region 9 Printed 4/2/2012

Unit No.	Heat Input				
	(1-hr, 24-hr) ¹	(Annual Ave) ²			
	(MM	Btu/hr)			
Reid Gardner Unit 1	1215	1132			
Reid Gardner Unit 2	1215	1082			
Reid Gardner Unit 3	1237	1135			

¹ Max heat input as listed in TV Permit No. AP4911-0897. These values were also used by NV Energy to develop the maximum 24-hr ave emission rates used in visibility mode ² Annual average based on 0.86 annual capacity factor, as indicated by Nevada Energy in Appendix A of each unit's respective NVE BART Analysis (October 22, 2008).

Baseline Emission Factors

			NC	Эx	SC)2	PM	10	
			(Ib/MMBtu)	(lb/hr)	(Ib/MMBtu)	(lb/hr)	(Ib/MMBtu)	0 (lb/hr) 58 53 53 49 49 0.2 0.2 0.1	Notes
Reid Gardner Unit 1	WRAP Emissio	on Rate	0.591	718	0.329	400	0.0474	58	2
	NDEP baselin	e (SIP)	0.462	561					3
	CAMD 2001-	03 (NVE)	0.576	700	0.332	403			2
	CAMD 2001-	03 (EPA)	0.566	731	0.36	400			
	CAMD 2005-	07 (EPA)	0.458	545	0.19	236			
Reid Gardner Unit 2	WRAP Emissio	on Rate	0.635	772	0.28	340	0.044	53	2
	NDEP baselin	e (SIP)	0.466	566					3
	CAMD 2001-	03 (NVE)	0.613	745	0.277	337			2
	CAMD 2001-	-03 (EPA)	0.571	804	0.276	375			
	CAMD 2005-	07 (EPA)	0.425	655	0.39	399			
Reid Gardner Unit 3	WRAP Emissio	on Rate	0.592	732	0.32	396	0.04	49	2
	NDEP baselin	e (SIP)	0.451	558					3
	CAMD 2001-	03 (NVE)	0.579	716	0.29	359			2
	CAMD 2001-	03 (EPA)	0.548	732	0.29	396			
	CAMD 2005-	07 (EPA)	0.448	658	0.195	246			
Reid Gardner Unit 1	from	Title V permit limit		0.46		0.55		0.2	
Reid Gardner Unit ?	NVF reports	Title V permit limit		0.46		0.55		0.2	
Reid Gardner Unit 3	Table 2- 1	Title V permit limit		0.46		0.55		0.1	

¹ Ib/MMBtu value based on Table 2-1 from each unit's respective NVE BART Analysis submittal to NDEP (October 22, 2008)

² Corresponds to the revised NOx emission rate used as the baseline in the Nevada RH SIP. NDEP did not revise SO2 or PM10 emissions.

NOx Control Scenario Emission Factors

	Control Technology		Ν	Юx	PM10 ³		SO2⁴		
		NDEP Estimates ^{1,5} NV Energy Estimates ²							
		(Ib/MMBtu)	(lb/hr)	(Ib/MMBtu)	(lb/hr)	(Ib/MMBtu)	(lb/hr)	(Ib/MMBtu)	(lb/hr)
Reid Gardner Unit 1	LNB w/ OFA (enhancement)	0.364	442	0.30	365	0.015	18	0.15	182
	SNCR w/ LNB and OFA	0.273	332	0.23	279	0.015	18	0.15	182
	ROFA w/ Rotamix	0.195	237	0.16	194	0.015	18	0.15	182
	SCR w/ ROFA	0.085	103	0.07	85	0.015	18	0.15	182
	SCR w/ LNB and OFA	0.085	103	0.07	85	0.015	18	0.15	182
	SCR w/ LNB and OFA @.06	0.06	73			0.015	18	0.15	182
Reid Gardner Unit 2	LNB w/ OFA (enhancement)	0.355	431	0.30	365	0.015	18	0.15	182
	SNCR w/ LNB and OFA	0.267	324	0.23	279	0.015	18	0.15	182
	ROFA w/ Rotamix	0.191	232	0.16	194	0.015	18	0.15	182
	SCR w/ ROFA	0.083	101	0.07	85	0.015	18	0.15	182
	SCR w/ LNB and OFA	0.083	101	0.07	85	0.015	18	0.15	182
	SCR w/ LNB and OFA @.06	0.06	73			0.015	18	0.15	182
Reid Gardner Unit 3	LNB w/ OFA (enhancement)	0.421	521	0.30	371	0.015	19	0.15	186
	SNCR w/ LNB and OFA	0.316	391	0.23	285	0.015	19	0.15	186
	ROFA w/ Rotamix	0.278	344	0.16	198	0.015	19	0.15	186
	SCR w/ ROFA	0.098	121	0.07	87	0.015	19	0.15	186
	SCR w/ LNB and OFA	0.098	121	0.07	87	0.015	19	0.15	186
	SCR w/ LNB and OFA @.06	0.06	74			0.015	19	0.15	186

¹ Control technology performance as used by NDEP in development of the Regional Haze SIP. As summarized in Table 1, NDEP Reid Gardner BART Determination Review (Oc ² Control technology performance as indicated by Nevada Energy in Appendix A of each unit's respective NVE BART Analysis (October 2008)

³ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber. Per the NV RH SIP, this emission rate is based on a 24-hr ave

⁴ PM10 emissions based upon Nevada's PM10 BART determination of fabric filters. Per the NV RH SIP, this emission rate is based on a 3-hr averaging period ⁵ EPA estimate for SCR of 0.06 lb/MMBtu NOx

Coal Properties

Coal Type ¹						Average ²	Highest			
Property		Bowie	Skyline	Sufco	Dugout	Aberdeen	Crandall	West Ridge	Value	Value
Moist.	%	8.5	9.79	9.69	5.53	6.83	7.5	5.78	7.66	9.79
Ash	%	9.06	7.64	7.97	8.65	8.5	8	7.48	8.19	9.06
Volatile Matter	%	33.53	38.2	35.95	33.05	38	41.05	34.91	36.38	41.05
Fixed Carbon	%	48.91	44.37	46.39	52.77	46.16	43	51.84	47.63	52.77
Sulfur	%	0.46	0.57	0.29	0.51	0.51	0.45	1.35	0.59	1.35
HHV	Btu/lb	12,012	11,712	11,463	12,469	12,276	12,400	12,856	12,170	12,856

Notes:

1 Coal properties as presented in Table 2-2 of respective NVE BART Analyses

2 Average values used in calculations below, where necessary. Note that NV Energy used Skyline coal in most of its calculations (per Appendix A of NVE BART Analyses)

PM10 Speciation

Option 1a (Total PM10, scrubber)

Assuming WRAP emissions represent Total PM10 (filterable PM10 + condensable PM10). This option is basically identical to NPS' approach Based on scrubber as emission control

1 Condensable PM10 EF calculated using , AP-42, Table 1.1-5 (9/98), PC boiler, with FGD control

2 Filterable PM10 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 10 µm. Based on scrubber as particulate control.

3 PM2.5 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 2.5 µm. Based on scrubber as particulate control.

4 Organic/Inorganic CPM emission factors based upon AP-42, Table 1.1-5 (9/98), PC boiler

5 EC fraction based on black carbon % as listed in Table 6 of "Catalog of Global Emissions Inventories and Emission Inventory Tools for Black Carbon, Jan 2002 Draft"

Option 1b (Total PM10, fabric filter/baghouse)

Assuming WRAP emissions represent Total PM10 (filterable PM10 + condensable PM10). This option is basically identical to NPS' approach Based on fabric filter as emission control

Emission Factor^{4,5} Emission Factor^{1,2} Emission Factor³ (lb/MMBtu) (%) (lb/MMBtu) (lb/MMBtu) (%) Inorganic CPM 0.0160 Condensable PM10 0.020 75% Organic CPM 0.0040 **Emission Rate** (Total PM10) PM Coarse (10-2.5 µm) 0.0034 50% ► PM Coarse 0.0034 Filterable PM10 0.0067 25% 0.0032 Fine Soil PM Fine (<2.5 µm) 0.0034 50% Fine EC 0.00012 Total 100% Total

1 Condensable PM10 EF calculated using , AP-42, Table 1.1-5 (9/98), PC boiler, with FGD control

2 Filterable PM10 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 10 µm. Based on baghouse as particulate control.

3 PM2.5 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 2.5 µm, based on baghouse as particulate control

4 Organic/Inorganic CPM emission factors based upon AP-42, Table 1.1-5 (9/98), PC boiler

5 EC fraction based on black carbon % as listed in Table 6 of "Catalog of Global Emissions Inventories and Emission Inventory Tools for Black Carbon, Jan 2002 Draft"

CALPUFF Species

SO4

SOA

PMC

PMF

EC

CALPUFF Species (%) 60% SO4 15% SOA 13% PMC 12% PMF EC 0.47% 100%

Option 2 (Method 5 + back half, scrubber)

Assuming WRAP emissions are based on Method 5 (Total filterable PM) including back-half catch (condensables). Reid Gardner's 2004 TV permit renewal requires Method 5 + back half catch testing for compliance demonstration. Based on scrubber as emission control

1 Condensable PM10 EF calculated using , AP-42, Table 1.1-5 (9/98), PC boiler

2 Filterable PM10 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 10 µm. Based on scrubber as particulate control.

3 PM2.5 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 2.5 µm. Based on scrubber as particulate control.

4 Organic/Inorganic CPM emission factors based upon AP-42, Table 1.1-5 (9/98), PC boiler

5 EC fraction based on black carbon % as listed in Table 6 of "Catalog of Global Emissions Inventories and Emission Inventory Tools for Black Carbon, Jan 2002 Draft"

6 Filterable PM10+ EF calculated based on AP-42, Table 1.1-6 (9/98), using the difference between PM10 and PM15 Efs. Scrubber as particulate control

Option 3 (Filterable PM, scrubber)

Assuming WRAP emissions are based on Method 5 only (Total filterable PM). No back-half catch (condensables).

Based on scrubber as emission control

1 Filterable PM10+ EF calculated based on AP-42, Table 1.1-6 (9/98), using the difference between PM10 and PM15 Efs. Scrubber as particulate control

2 Filterable PM10 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 10 µm. Based on scrubber as particulate control.

3 PM2.5 EF calculated based on AP-42, Table 1.1-6 (9/98) for particles < 2.5 µm. Based on scrubber as particulate control.

4 Organic/Inorganic CPM emission factors based upon AP-42, Table 1.1-5 (9/98), PC boiler

5 EC fraction based on black carbon % as listed in Table 6 of "Catalog of Global Emissions Inventories and Emission Inventory Tools for Black Carbon, Jan 2002 Draft"

	Emission F (lb/MMBtu)	actor ^{4,5} (%)	CALPUFF Species
ic CPM	0.016	9%	SO4
СРМ	0.004	2%	SOA
arse	0.040	22%	PMC
il	0.097	54%	PMF
;	0.004	2%	EC
	0.0202	11%	Not included
	Total	100%]

	Emission F	actor ^{4,5}	
	(Ib/MMBtu)	(%)	CALPUFF Species
ic CPM			SO4
СРМ			SOA
arse	0.040	25%	PMC
il	0.097	60%	PMF
;	0.004	2%	EC
	0.0202	13%	Not included
	Total	100%	7

Reid Gardner Generating Station

Baseline Emission Calculations

Baseline 1: WRAP emission baseline

Unit Name	Control Technology			Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	None	Wet Soda Ash Scrubber	Mechanical Flyash Collector	1215	12,170	0.59	7.66
Reid Gardner Unit 2	None	Wet Soda Ash Scrubber	Mechanical Flyash Collector	1215	12,170	0.59	7.66
Reid Gardner Unit 3	None	Wet Soda Ash Scrubber	Mechanical Flyash Collector	1237	12,170	0.59	7.66

00 Baseline 1 uses WRAP emission factors for NOx, SO2, and filterable PM

Unit Name	NOx		SO	2	H2SO4 ⁺ SO4 Filterable PM ² Speciated PM10 E					missions ³			
									SO4	SOA	Coarse	Fine Soil	EC
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/hr)	(lb/hr)	(Ib/MMBtu)	(lb/hr)			(lb/hr)		
Reid Gardner Unit 1	0.591	718	0.329	400	0.572	0.560	0.0474	58		4.86	14.40	34.66	1.33
Reid Gardner Unit 2	0.635	772	0.28	340	0.572	0.560	0.044	53		4.86	13.37	32.18	1.24
Reid Gardner Unit 3	0.592	732	0.32	396	0.582	0.570	0.04	49		4.95	12.37	29.78	1.14

¹H2SO4 Emission Calculations based upon "Estimating Total Sulfuric Acid Emissions from Stationary Power Plants," EPRI, Technical Update, April 2010

ER = E2 * K * F1 * F2, based upon Equations 4-1 and 4-3 (fuel combustion only)

Where,

ER =	H2SO4 emission	ons, (lb/hr)
E2 =	SO2 emissions	, (lb/hr)
Κ =	1.53	SO2 to H2SO4 mol wt conversion
F1 =	0.00111	Fuel impact factor, western bituminous coal, dry bottom boiler
F2 =	0.5	Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using lo
	0.65	Table 4-5, wet venturi scrubber

E2 = K1 * K2 * C1 * S1, based upon Equation 4-2b. Although SO2 CEMS data exists, it was not used in the calculation because insufficient data exists to calculate the

E2 = SO2 emissions (lb/hr)K1 =2.00S to SO2 mol wt ratioK2 =0.95Sulfur Conversion to SO2, bituminous coalC1 = Dry coal burn rate (ton/hr)S1 = Coal sulfur dry wt fraction

² Although these emissions are represented in WRAP documenation as PM10, they were represented in NV Energy visibility modeling as filterable PM and speciated as such. They are also confilterable PM in this baseline run in order to be consistent.

³ PM10 speciation is based upon Option 3, which assumes the WRAP PM10 emission rate represents results of Method 5 testing (filterable PM)

PM species	(wt%)	
Inorganic CPM (SO4)		Inorganic CPM based upon SO4 emissions generated from H2SO4
Organic CPM (SOA)		Organic CPM emissions based upon AP-42 (9/98), Table 1.1-5 (20% of CPM-TOT emission factor)
Coarse (PMC)	25%	
Fine Soil (PMF)	60%	
Elemental Carbon (EC)	2%	
Baseline Emission Calculations

Baseline 1a: WRAP emission baseline NOx, NDEP BART for SO2 and PM10

Unit Name	Control Techno	ology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	None	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	None	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	None	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

02 Baseline 1a uses WRAP emission factors for NOx, and NDEP's BART determination for SO2 and PM10

Unit Name	NO	NOx SO2 ¹		PM10 ²		Speciated PM10 Emissions ³					
	(lb/MMBtu)	(lb/hr)	(Ib/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	SO4 (pre-rxn)	SOA	Coarse (lb/hr)	Fine Soil	EC
Reid Gardner Unit 1	0.591	718	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.635	772	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.592	732	0.15	186	0.015	19	11.11	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Per TV Permit No. AP4911-0897, PM10 source testing must consist of Method 201A and 202, which would indicate that total PM10 test dat

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

Baseline Emission Calculations

Baseline 2: EPA baseline (NDEP baseline NOx, NDEP BART for SO2 and PM10)

Unit Name	Control Technolo	ogy		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

04 Baseline 2 uses NDEP SIP's baseline emission factors for NOx, and NDEP's BART determination for SO2 and PM10

Unit Name	NOx		SO2	SO2 ¹		PM10 ²		Speciated PM10 Emissions ³			
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	SO4 (pre-rxn)	SOA	Coarse (lb/hr)	Fine Soil	EC
Reid Gardner Unit 1	0.462	561	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.466	566	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.451	558	0.15	186	0.015	19	11.11	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Per TV Permit No. AP4911-0897, PM10 source testing must consist of Method 201A and 202, which would indicate that

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

NOx Control Scenario Emission Calculations

Control Scenario 1: Upgraded LNB

Unit Name	Control Techn	ology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	LNB + OFA (enhanced)	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	LNB + OFA (enhanced)	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	LNB + OFA (enhanced)	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

Control 1 emissions based on NDEP estimate of NOx for LNB+OFA, NDEP's BART determination for SO2 and PM10

Unit Name	NC	NOx SO2 ¹		PM1	PM10 ²		Speciated PM10 Emissions ³				
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	SO4 (pre-rxn)	SOA	Coarse (lb/hr)	Fine Soil	EC
Reid Gardner Unit 1	0.364	442	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.355	431	0.15	182	0.015	18	10.91	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.421	521	0.15	186	0.015	19	11.11	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testin

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

NOx Control Scenario Emission Calculations

Control Scenario 2: SNCR with LNB w/ OFA

Unit Name	Control Teo	chnology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
	SNCR +	Wet Soda Ash					
Reid Gardner Unit 1	LNB w/	Scrubber	Fabric Filter	1215	12,170	0.59	7.66
	OFA	(upgraded)					
	SNCR +	Wet Soda Ash					
Reid Gardner Unit 2	LNB w/	Scrubber	Fabric Filter	1215	12,170	0.59	7.66
	OFA	(upgraded)					
	SNCR +	Wet Soda Ash					
Reid Gardner Unit 3	LNB w/	Scrubber	Fabric Filter	1237	12,170	0.59	7.66
	OFA	(upgraded)					

Control 2 emissions based on NDEP estimate of NOx for SNCR+LNB+OFA, NDEP's BART determination for SO2 and PM10

Unit Name	NC	Эx	SO2	1	PM10 ²		Speciated PM10 Emissions ³					
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	SO4 (pre-rxn)	SO4 (post rxn) ⁴	SOA (lb/hr)	Coarse	Fine Soil	EC
Reid Gardner Unit 1	0.273	332	0.15	182	0.015	18	10.91	0.00	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.267	324	0.15	182	0.015	18	10.91	0.00	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.316	391	0.15	186	0.015	19	11.11	0.00	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testing must consist o

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

ER[NH3] = Ammonia Slip calculation

9780 dscf/MMBtu, from Method 19, Table 19-2 "Fuel F-factors". Fd-factor listed for bituminous coal @ 0% O2.

- 5 ppmv @ 6% O2 (ammonia slip). ROFA+Rotamix guarantee, as indicated in NVE BART analyses, p3-6
- 385.6 SCF/lbmol, molar volume @ STP.
- lb/lbmol, NH3 MW 17.0

Unit No.	Ammonia Emission Rate						
	SCFH	lbmol/hr	lb/hr				
Unit 1	83.34	0.216	3.67				
Unit 2	83.34	0.216	3.67				
Unit 3	84.85	0.220	3.74				

Sample Calc (Unit 1):

1215 MMBtu	9780 dscf	5 parts NH3	(20.9 - 0) O2	lbmol	17 lb N
hr	MMBtu	1,000,000	(20.9 - 6) O2	385.6 SCF	lbm

ER = ((EM_{SO4} - ER_{NH3})*98.6) * F2, based on modified equation 4-7

Where,

ER = H2SO4 emitted (lb/hr)

EM = H2SO4 manufactured (lbmol/hr)

ER[NH3] = Ammonia slip (lbmol/hr) F2 =

- 0.5 Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using low S eastern bituminous factor per EPF Table 4-4, baghouse 0.10

 - 0.65 Table 4-5, wet venturi scrubber

Unit No.	H2SO4						
	E	EM	E	R			
	(pre-re	eaction)	(post-reaction)				
	lb/hr	lbmol/hr	lbmol/hr	lb/hr			
Unit 1	10.91	0.111	-0.105	-0.34			
Unit 2	10.91	0.111	-0.105	-0.34			
Unit 3	11.11	0.113	-0.107	-0.34			

NH3 = nol 3.67 lb hr

Reid Gardner Generating Station NOx Control Scenario Emission Calculations

Control Scenario 3: ROFA w/ Rotamix

Unit Name	Control Tec	hnology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	ROFA w/ Rotamix	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	ROFA w/ Rotamix	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	ROFA w/ Rotamix	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

Control 3 emissions based on NDEP estimate of NOx for ROFA+Rotamix, NDEP's BART determination for SO2 and PM10

Unit Name	NO	Эх	SO2	1	PM1	0 ²		Speciat	ed PM10 En	nissions ³		
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	SO4 (pre-rxn)	SO4 (post rxn) ⁴	SOA (lb/hr)	Coarse	Fine Soil	EC
Reid Gardner Unit 1	0.195	237	0.15	182	0.015	18	10.91	0.00	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.191	232	0.15	182	0.015	18	10.91	0.00	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.278	344	0.15	186	0.015	19	11.11	0.00	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testing must consist o

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

ER[NH3] = Ammonia Slip calculation

9780 dscf/MMBtu, from Method 19, Table 19-2 "Fuel F-factors". Fd-factor listed for bituminous coal @ 0% O2.

- 5 ppmv @ 6% O2 (ammonia slip). ROFA+Rotamix guarantee, as indicated in NVE BART analyses, p3-6
- 385.6 SCF/lbmol, molar volume @ STP.
- lb/lbmol, NH3 MW 17.0

Unit No.	Ammonia Emission Rate						
	SCFH	lbmol/hr	lb/hr				
Unit 1	83.34	0.216	3.67				
Unit 2	83.34	0.216	3.67				
Unit 3	84.85	0.220	3.74				

Sample Calc (Unit 1):

		I	1		
1215 MMBtu	9780 dscf	5 parts NH3	(20.9 - 0) O2	lbmol	17 lb N
hr	MMBtu	1,000,000	(20.9 - 6) O2	385.6 SCF	lbm

ER = ((EM_{SO4} - ER_{NH3})*98.6) * F2, based on modified equation 4-7

Where,

ER = H2SO4 emitted (lb/hr)

EM = H2SO4 manufactured (lbmol/hr)

ER[NH3] = Ammonia slip (lbmol/hr) F2 =

- 0.5 Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using low S eastern bituminous factor per EPF Table 4-4, baghouse 0.10

 - 0.65 Table 4-5, wet venturi scrubber

Unit No.	H2SO4						
	E	EM	E	R			
	(pre-re	eaction)	(post-reaction)				
	lb/hr	lbmol/hr	lbmol/hr	lb/hr			
Unit 1	10.91	0.111	-0.105	-0.34			
Unit 2	10.91	0.111	-0.105	-0.34			
Unit 3	11.11	0.113	-0.107	-0.34			

NH3 = nol 3.67 lb hr

Reid Gardner Generating Station NOx Control Scenario Emission Calculations

Control Scenario 4: SCR with ROFA

Unit Name	Control Tee	chnology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	SCR + ROFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	SCR + ROFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	SCR + ROFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

Control 4 emissions based on NDEP estimate of NOx for SCR+ROFA, NDEP's BART determination for SO2 and PM10

Unit Name	NC	Эx	SO2	,1	H2SO4 ⁴	SO4	PM	110 ²		Spec	ciated PM10) Emissions ³		
	(Ib/MMBtu)	(lb/br)	(Ib/MMRtu)	(lb/br)	(from SCR)	(lb/br)	(Ib/MMBtu)	(lb/br)	SO4	SO4 (total)	SOA (lb/br	Coarse	Fine Soil	EC
				(10/11)		(ווו (טו)					ווואמו))		
Reid Gardner Unit 1	0.085	103	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.083	101	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.098	121	0.15	186	0.15	0.148	0.015	19	11.11	11.26	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testing must consist of Method 201A and

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

E2 = K1 * K2 * C1 * S1, based upon Equation 4-2b. Although SO2 CEMS data exists, it was not used in the calculation because insufficient data exists to calculate the CEMS correction factor

Where,

E2 = SO2 emissions (lb/hr)

- K1 = 2.00 S to SO2 mol wt ratio
- 0.95 Sulfur Conversion to SO2, bituminous coal K2 =
- C1 = Dry coal burn rate (lb/hr)
- S1 = Coal sulfur dry wt fraction

Unit No.	SO2		
	C1	E2	
	(lb/hr)	(lb/hr)	
Unit 1	99838	1034.66	
Unit 2	99838	1034.66	
Unit 3	101646	1053.40	

EM = K * S2 * f[sops] * E2 * F3[scr], based on equation 4-6

Where,

FM =	H2SO4	manufactured	(lh/hr)

	11200 I manaia	
K =	1.53	SO2 to H2SO4 molecular wt conversion
S2 =	0.0050	SCR catalyst SO2 oxidation rate, based upon 3 layers of catalyst
f[sops] =	0.98	Operating factor of SCR system. Corresponds to baseload operation, per Equation 4-6
F3[scr] =	1	SCR technology impact factor, non-PRB coal, per Equation 4-6
E2 =	SO2 emissions,	(lb/hr)

Unit No.	H2SO4
	EM
	(ton/hr)
Unit 1	7.76
Unit 2	7.76
Unit 3	7.90

 ER_{NH3} = Ammonia Slip calculation

- 9780 dscf/MMBtu, from Method 19, Table 19-2 "Fuel F-factors". Fd-factor listed for bituminous coal @ 0% O2.
- 0.75 ppmv @ 6% O2 (ammonia slip), per Equation 4-6.
- 385.6 SCF/lbmol, molar volume @ STP.
- lb/lbmol, NH3 MW 17.0

Unit No.	Ammonia Emission Rate				
	SCFH	lbmol/hr	lb/hr		
Unit 1	12.50	0.032	0.55		
Unit 2	12.50	0.032	0.55		
Unit 3	12.73	0.033	0.56		

Sample Calc (Unit 1):

1215 MMBtu	9780 dscf	0.75 parts NH3	(20.9 - 0) O2	Ibmol	17 lb NH3 =
hr	MMBtu	1,000,000	(20.9 - 6) O2	385.6 SCF	Ibmol

0.55 lb hr $ER = ((EM_{H2SO4} - ER_{NH3})*MW_{H2SO4}) * F2$, based on modified equation 4-7

lb/lbmol

Where,

ER = H2SO4 emitted (lb/hr)

EM_{SO4} = H2SO4 manufactured (lbmol/hr)

ER_{NH3} = Ammonia slip (lbmol/hr)

 $MW_{H2SO4} = 98.6$

F2 = 0.5 Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using low S eastern bituminous factor per EPRI recommendation) 0.10 Table 4-4, baghouse

0.65 Table 4-5, wet venturi scrubber

Unit No.		H2SO4				
	E	EM	E	R		
	(pre-re	eaction)	(post-re	eaction)		
	lb/hr	lb/hr lbmol/hr		lb/hr		
Unit 1	7.76	0.079	0.046	0.15		
Unit 2	7.76	0.079	0.046	0.15		
Unit 3	7.90	0.080	0.047	0.15		

NOx Control Scenario Emission Calculations

Control Scenario 5: SCR with LNB and OFA

Unit Name	Control Teo	chnology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Deid Cordoor Unit 1	SCR +	Wet Soda Ash	Fabria Filtor	1015	10.170	0.50	7//
Reid Gardner Unit 1	OFA	(upgraded)	Fabric Filter	1215	12,170	0.59	7.00
Reid Gardner Unit 2	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

Control 5 emissions based on NDEP estimate of NOx for SCR+LNB+OFA, NDEP's BART detemination for SO2 and PM10

Unit Name	N	Эх	SO2	,1	H2SO4 ⁴	SO4	PN	/110 ²		Spec	iated PM10) Emissions ³		
					(from SCR)				SO4	SO4 (total)	SOA	Coarse	Fine Soil	EC
	(lb/MMBtu)	(lb/hr)	(lb/MMBtu)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/MMBtu)	(lb/hr)			(lb/hr	·)		
Reid Gardner Unit 1	0.085	103	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.083	101	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.098	121	0.15	186	0.15	0.148	0.015	19	11.11	11.26	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testing must consist of Meth-

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

E2 = K1 * K2 * C1 * S1, based upon Equation 4-2b. Although SO2 CEMS data exists, it was not used in the calculation because insufficient data exists to calculate the CEMS correction factor

Where,

E2 = SO2 emissions (lb/hr)

K1 = 2.00 S to SO2 mol wt ratio

0.95 Sulfur Conversion to SO2, bituminous coal K2 =

C1 = Dry coal burn rate (lb/hr)

S1 = Coal sulfur dry wt fraction

Unit No.	SO2		
	C1	E2	
	(lb/hr)	(lb/hr)	
Unit 1	99838	1034.66	
Unit 2	99838	1034.66	
Unit 3	101646	1053.40	

EM = K * S2 * f[sops] * E2 * F3[scr], based on equation 4-6

Where,

EM = H2SO4 manufactured (lb/hr)

K = 1.53 SO2 to H2SO4 molecular wt conversion

S2 = SCR catalyst SO2 oxidation rate, based upon 0.5% conversion at 3 layers of catalyst 0.0050

f[sops] = 0.98 Operating factor of SCR system. Corresponds to baseload operation, per Equation 4-6

SCR technology impact factor, non-PRB coal, per Equation 4-6 F3[scr] = 1

E2 = SO2 emissions, (lb/hr)

Unit No.	H2SO4
	EM
	(ton/hr)
Unit 1	7.76
Unit 2	7.76
Unit 3	7.90

 ER_{NH3} = Ammonia Slip calculation

dscf/MMBtu, from Method 19, Table 19-2 "Fuel F-factors". Fd-factor listed for bituminous coal @ 0% O2. 9780

- 0.75 ppmv @ 6% O2 (ammonia slip), per Equation 4-6.
- 385.6 SCF/lbmol, molar volume @ STP.

lb/lbmol, NH3 MW 17.0

Unit No.	Ammonia Emission Rate						
	SCFH	lbmol/hr	lb/hr				
Unit 1	12.50	0.032	0.55				
Unit 2	12.50	0.032	0.55				
Unit 3	12.73	0.033	0.56				

Sample Calc (Unit 1):

1215 MMBtu	9780 dscf	0.75 parts NH3	(20.9 - 0) O2	Ibmol	17 lb NH3
hr	MMBtu	1,000,000	(20.9 - 6) O2	385.6 SCF	lbmol

0.55 lb hr

=

$ER = ((EM_{H2SO4} - ER_{NH3})*MW_{H2SO4}) * F2$, based on modified equation 4-7

Where,

ER = H2SO4 emitted (lb/hr)

 EM_{SO4} = H2SO4 manufactured (lbmol/hr)

ER_{NH3} = Ammonia slip (lbmol/hr)

MW_{H2SO4} = 98.6 lb/lbmol

F2 = 0.5 Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using low S eastern bituminous factor per EPRI recor 0.10 Table 4-4, baghouse

0.65 Table 4-5, wet venturi scrubber

Unit No.	H2SO4						
	E	EM	E	R			
	(pre-re	eaction)	(post-reaction)				
	lb/hr	lbmol/hr	lbmol/hr	lb/hr			
Unit 1	7.76	0.079	0.046	0.15			
Unit 2	7.76	0.079	0.046	0.15			
Unit 3	7.90	0.080	0.047	0.15			

NOx Control Scenario Emission Calculations

Control Scenario 6: SCR with LNB and OFA, EPA estimate of 0.06 lb/MMBtu NOx

Unit Name	Control Tech	nnology		Heat Input	HHV	Fuel Sulfur	Moisture
	NOx	SO2	PM10	(MMBtu/hr)	(Btu/lb)	wt%	wt%
Reid Gardner Unit 1	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 2	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1215	12,170	0.59	7.66
Reid Gardner Unit 3	SCR + LNB w/ OFA	Wet Soda Ash Scrubber (upgraded)	Fabric Filter	1237	12,170	0.59	7.66

Control 6 emissions based on EPA estimate of NOx for SCR+LNB+OFA, NDEP's BART determination for SO2 and PM10

Unit Name	NC	Dx	SO2	1	H2SO4 ⁴	SO4	PM	110 ²		Spec	ciated PM10) Emissions ³		
		(lb/br)		(lb/br)	(from SCR)	(lb /br)		(lb/br)	SO4	SO4 (total)	SOA	Coarse	Fine Soil	EC
		(III/III)		(11/01)	(11/11)	(111/01)	(ID/IVIIVIBLU)	(11/01)	-		ווז/מו))		
Reid Gardner Unit 1	0.060	73	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 2	0.060	73	0.15	182	0.15	0.145	0.015	18	10.91	11.06	2.73	2.29	2.21	0.08
Reid Gardner Unit 3	0.060	74	0.15	186	0.15	0.148	0.015	19	11.11	11.26	2.78	2.33	2.25	0.09

¹ SO2 emissions based upon Nevada's SO2 BART determination of upgraded wet soda ash scrubber

² PM10 emissions based upon Nevada's PM10 BART determination of fabric filters.

³ PM10 speciation is based upon Option 1b (Total PM10, fabric filter/baghouse). Although the basis for the BART PM10 limit is unclear, TV Permit No. AP4911-0897 requires that PM10 source testing must consist of Method 201A and

PM species	(wt%)
Inorganic CPM (SO4)	60%
Organic CPM (SOA)	15%
Coarse (PMC)	13%
Fine Soil (PMF)	12%
Elemental Carbon (EC)	0.47%

E2 = K1 * K2 * C1 * S1, based upon Equation 4-2b. Although SO2 CEMS data exists, it was not used in the calculation because insufficient data exists to calculate the CEMS correction factor

Where,

E2 = SO2 emissions (lb/hr)

- K1 = 2.00 S to SO2 mol wt ratio
- K2 = 0.95 Sulfur Conversion to SO2, bituminous coal
- C1 = Dry coal burn rate (lb/hr)
- S1 = Coal sulfur dry wt fraction

Unit No.	SO2			
	C1	E2		
	(lb/hr)	(lb/hr)		
Unit 1	99838	1034.66		
Unit 2	99838	1034.66		
Unit 3	101646	1053.40		

EM = K * S2 * f[sops] * E2 * F3[scr], based on equation 4-6

Where,

EM =	H2SO4 manufact	tured (lb/hr)

K =	1.53	SO2 to H2SO4 molecular wt conversion
S2 =	0.0050	SCR catalyst SO2 oxidation rate, based upon 0.5% conversion at 3 layers of catalyst
f[sops] =	0.98	Operating factor of SCR system. Corresponds to baseload operation, per Equation 4-6
F3[scr] =	1	SCR technology impact factor, non-PRB coal, per Equation 4-6
E2 -	SO2 amissions	(lb/br)

E2 = SO2 emissions, (lb/hr)

Unit No.	H2SO4		
	EM		
	(ton/hr)		
Unit 1	7.76		
Unit 2	7.76		
Unit 3	7.90		

 ER_{NH3} = Ammonia Slip calculation

- 9780 dscf/MMBtu, from Method 19, Table 19-2 "Fuel F-factors". Fd-factor listed for bituminous coal @ 0% O2.
- 0.75 ppmv @ 6% O2 (ammonia slip), per Equation 4-6.
- 385.6 SCF/lbmol, molar volume @ STP.
- lb/lbmol, NH3 MW 17.0

Unit No.	Ammonia Emission Rate					
	SCFH	lbmol/hr	lb/hr			
Unit 1	12.50	0.032	0.55			
Unit 2	12.50	0.032	0.55			
Unit 3	12.73	0.033	0.56			

Sample Calc (Unit 1):

1215 MMBtu	9780 dscf	0.75 parts NH3	(20.9 - 0) O2	Ibmol	17 lb NH3 =
hr	MMBtu	1,000,000	(20.9 - 6) O2	385.6 SCF	Ibmol

0.55 lb hr

$ER = ((EM_{H2SO4} - ER_{NH3})*MW_{H2SO4}) * F2$, based on modified equation 4-7

Where,

F2 =

ER = H2SO4 emitted (lb/hr)

 EM_{SO4} = H2SO4 manufactured (lbmol/hr)

ER_{NH3} = Ammonia slip (lbmol/hr)

MW_{H2SO4} = 98.6 lb/lbmol

0.5 Table 4-3, air heater removal factor. Although fuel sulfur content is low, Reid Gardner coal ash is still assumed to be acidic (using low S eastern bituminous factor per EPRI recommendation)
0.10 Table 4-4, baghouse

0.65 Table 4-5, wet venturi scrubber

Unit No.	H2SO4									
	E	EM	ER							
	(pre-re	eaction)	(post-reaction)							
	lb/hr	lbmol/hr	lbmol/hr	lb/hr						
Unit 1	7.76	0.079	0.046	0.15						
Unit 2	7.76	0.079	0.046	0.15						
Unit 3	7.90	0.080	0.047	0.15						

Appendix D:

Historical Emissions for Reid Gardner Generating Station (as reported in CAMD)

See <u>www.regulations.gov</u>, docket ID number EPA-R09-OAR-2011-0130

STATE	FACILITY_NAME	ORISPL_CO UNITID	OP_YEAR	ASSOC_ST# PRG_COD	DE SUM_OP_TNUM_	_MOI SO2_M	ASS	SO2_RATE	NOX_RATE	NOX_MASS (CO2_MASS	HEAT_INPUT	CO2_RATE	OWN_DISPLAY	UNIT_TYPE_INFO	PRIMARY_FSECONDARS	SO2_CONT NOX_CONT PART_CON CAP	PACITY_INPUT
						(tons/yr	·) ((lb/MMBtu)	(lb/MMBtu)	(tons/yr) (tons/yr)	(MMBtu/yr)	(tons/MMBtu)				1M)	MBtu/hr)
NV	Reid Gardner	2324	1 200	1 ARP	7211.5	12	587.506	0.15	0.42	1652.943	790,945	7,894,057	0.100	NV Energy (Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx BI Other	1215
NV	Reid Gardner	2324	1 200	2 ARP	7673.5	12	492.827	0.10	0.47	2221.394	956 <i>,</i> 356	9,491,928	0.101	NV Energy (Operator) (Ended Dec	3 Dry bottom wall-fire (Coal S	Sodium Bas Low NOx BI Other	1215
NV	Reid Gardner	2324	1 200	3 ARP	8271.5	12	749.629	0.15	0.45	2312.514	1,031,866	10,138,698	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx BI Other	1215
NV	Reid Gardner	2324	1 200	4 ARP	7598.5	12	215.018	0.05	0.38	1771.312	933,887	9,237,466	0.101	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx BI Other	1215
NV	Reid Gardner	2324	1 200	5 ARP	7902.75	12	186.87	0.04	0.37	1780.584	974,563	9,578,809	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1215
NV	Reid Gardner	2324	1 200	6 ARP	7911.25	12	247.374	0.05	0.36	1663.686	934,613	9,088,376	0.103	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1215
NV	Reid Gardner	2324	1 200	7 ARP	6583.68	12	132.603	0.04	0.38	1412.933	732,650	7,345,334	0.100	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1215
NV	Reid Gardner	2324	1 200	8 ARP	6665.5	12	137.398	0.04	0.39	1340.789	671,618	6,732,582	0.100	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Baghouse (1215
NV	Reid Gardner	2324	1 200	9 ARP	6235.59	12	172.236	0.05	0.31	997.701	645,540	6,374,908	0.101	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx B Baghouse	1215
NV	Reid Gardner	2324	1 201	0 ARP	6481.17	12	200.513	0.06	0.27	856.633	631,645	6,339,957	0.100	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx B Baghouse	1215
NV	Reid Gardner	2324	1 201	1 ARP	6386.3	12	275.563	0.10	0.24	677.033	569,220	5,440,729	0.105	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx B Baghouse	1215
	Poid Cardpor	2224	2 200	1 400	7402 5	10	126 205	0.10	0.42	1047 112	005 107	0.021.250	0 100	NV/Enorgy (Operator)	Dry bottom wall fire.	Cool	Codium Parlow NOV PrOther	1015
	Reid Gardner	2324	2 200		7492.5	12	430.285	0.10	0.43	1947.113	905,107	9,031,359	0.100	NV Energy (Operator)	Dry bottom wall-fire (Sodium Bas Low NOX B Other	1215
	Reid Gardner	2324	2 200	Z ARP	8074.75	12	234.404	0.05	0.46	2504.151	1,099,225	10,841,071	0.101	NV Energy (Operator) (Ended Dec	Dry bottom wall-fire (Sodium Bas Low NOX B Other	1215
	Reid Gardner	2324	2 200	3 ARP	/599	12	527.698	0.10	0.46	2386.279	1,034,507	10,162,427	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loal S	Sodium Bas Low NOX B Other	1215
	Reid Gardner	2324	2 200	4 ARP	8035	12	268.916	0.05	0.40	2285.593	1,165,348	11,556,209	0.101	NV Energy (Owner/Operator)	Dry bottom wall-fire (Sodium Bas Low NOx B Other	1215
	Reid Gardner	2324	2 200	5 ARP	6992.5	12	224.022	0.05	0.39	1861.09	961,732	9,530,909	0.101	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loai S	Sodium Bas Low NOx B Other	1215
	Reid Gardner	2324	2 200		/590./5	12	249.144	0.05	0.39	2053.589	1,058,480	10,323,703	0.103	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loal S	Sodium Bas Low NOX B Other	1215
	Reid Gardner	2324	2 200		8157.20	12	188.967	0.04	0.40	1952.307	1,006,145	9,771,674	0.103	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loal S	Sodium Bas Low NOx B Other	1215
	Reid Gardner	2324	2 200	8 ARP	//52./5	12	122.196	0.03	0.40	1606.043	821,436	8,048,541	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loai S	Sodium Bas Low NOX B Other	1215
	Reid Gardner	2324	2 200	9 ARP	5406.78	12	153./22	0.05	0.33	949.288	572,183	5,590,251	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Bodium Bas Low NOX B Bagnouse (1215
NV	Reid Gardner	2324	2 201	O ARP	6/55.55	12	219.063	0.06	0.29	1045.961	699,409	6,967,468	0.100	NV Energy (Owner/Operator)	Dry bottom wall-fire (Loal S	odium Bas Low NOx B Baghouse	1215
NV	Reid Gardner	2324	2 201	1 ARP	6065.84	12	261.760	0.10	0.25	669.406	546,329	5,287,823	0.103	NV Energy (Owner/Operator)	Dry bottom wall-fire (2031	Sodium Bas Low NOX B Baghouse	1215
NV	Reid Gardner	2324	3 200	1 ARP	8172.25	12	571.735	0.11	0.44	2216.213	995,971	9,973,357	0.100	NV Energy (Operator)	Dry bottom wall-fire	Coal S	Sodium Bas Low NOx BI Other	1237
NV	Reid Gardner	2324	3 200	2 ARP	8068.25	12	272.945	0.05	0.45	2320.33	1,014,028	10,154,344	0.100	NV Energy (Operator) (Ended Dec	: 3 Dry bottom wall-fire (Coal	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	3 ARP	7698	12	519.154	0.11	0.36	1665.226	1,010,950	9,453,692	0.107	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	4 ARP	8022.5	12	235.284	0.05	0.32	1672.191	1,041,994	10,365,003	0.101	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	5 ARP	7875.25	12	270.388	0.06	0.30	1440.373	1,031,676	9,590,769	0.108	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	6 ARP	6948.25	12	195.758	0.04	0.33	1504.294	943,403	9,009,871	0.105	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	7 ARP	6833.33	12	141.604	0.03	0.28	1176.845	840,818	8,126,408	0.103	NV Energy (Owner/Operator)	Dry bottom wall-fire	Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	8 ARP	7091.43	12	160.794	0.04	0.25	1032.485	841,932	8,101,831	0.104	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Ba៖ Low NOx B၊ Other	1237
NV	Reid Gardner	2324	3 200	9 ARP	6747.79	12	221.27	0.06	0.26	969.336	783,836	7,549,004	0.104	NV Energy (Owner/Operator)	Dry bottom wall-fire	Coal S	Sodium Bas Low NOx B⊦Baghouse (1237
NV	Reid Gardner	2324	3 201	0 ARP	7231.19	12	243.069	0.06	0.23	930.935	828,066	8,080,157	0.102	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx B Baghouse	1237
NV	Reid Gardner	2324	3 201	1 ARP	5965.13	12	295.296	0.10	0.21	578.259	592,631	5,642,747	0.105	NV Energy (Owner/Operator)	Dry bottom wall-fire (Coal S	Sodium Bas Low NOx B Baghouse	1237
NIV	Reid Gardner	2224	1 200	1 ARD	7070 75	12	571 831	0.06	0.30	3771 881	2 118 0/0	20 697 548	0 102	NV/Energy (Operator)	Dry bottom wall-fire (Coal (Sodium Bastow NOx B Baghouse	2956
	Reid Gardner	2324	4 200 1 200	1 ANF 2 ADD	8270 5	12	057 206	0.00	0.30	2688 655	2,110,040	20,097,348	0.102	NV Energy (Operator) (Ended Dec	Dry bottom wall-fire (Coal C	Sodium Bas Low NOX B Baghouse	2956
	Reid Gardner	2324	4 200		7579.5	12 2	912 657	0.05	0.33	1217 052	2,202,240	21,802,437	0.103	NV Energy (Operator) (Ended Dec	if Dry bottom wall fire (Sodium Bas Low NOX B Baghouse	2950
	Reid Gardner	2324	4 200		7520.25	12 2	043.037	0.23	0.37	4347.932	2,401,337	23,137,911	0.104	NV Energy (Owner/Operator) Call	if Dry bottom wall fire (Sodium Bas Low NOX B Baghouse	2950
	Reid Gardner	2524	4 200		2002	12 1	017.50Z	0.10	0.29	5169.400 2022 091	2,147,230	21,051,500	0.102	NV Energy (Owner/Operator) Call	if Dry bottom wall-fire (Sodium Bas Low NOX B Baghouse	2950
	Reid Cardner	2324	4 200		1073 7600 F	12 1	412.4/4 222 722	0.13	0.34	2421 E 40	2,200,140	22,303,722	0.101	NV Energy (Owner/Operator) Call	if Dry bottom wall-life(Codium Bac Low NOX B Bagnouse	2900
	Reid Cardner	2324	4 200		7002 50	12 1	522.122	0.12	0.30	3421.548 2020	2,230,077	22,152,880	0.101	NV Energy (Owner/Operator) Call	if Dry bottom wall-life(Codium Bac Low NOX B Bagnouse	2930
	Reid Cardner	2324	4 200	י אגץ ס אחא	10U2.30	12	007.848 520 515	0.07	0.27	2029	2,139,141	20,913,008	0.102	NV Energy (Owner/Operator) Call	if Dry bottom wall-life(Codium BacLow NOX B Baghouse	2930
		2324	4 200		0/92.28	12	520.515	0.07	0.22	1004.931	1,538,533	14,757,038	0.104	NV Energy (Owner/Operator) Call	in Dry Dollom Wall-Tire(2900
	Reid Gardner	2324	4 200		/918.23	12	098.18	0.09	0.23	1222.05/	1,558,907	12,010,205	0.105	NV Energy (Owner/Operator) Call	if Dry bottom Wall-Tire (Sodium Bat Low NOX B Baghouse	2950
		2324	4 201		09/4.UZ	12		0.10	0.20	1232.07	1,200,586	10 742 424	0.105	NV Energy (Owner/Operator) Call				2900
INV	Reid Gardner	2324	4 201	τ Ακγ	bU34.2	12	292.25/	0.11	0.19	1141.287	1,120,032	10,742,124	0.105	wv Energy (Owner/Operator) Call	incory bottom wall-fire (BOUIUM BASLOW NOX BEBAGNOUSE	2950

STATE	FACILITY_N C	ORISPL_(UNITID (DP_YEAR	ASSOC_NTH PRG_COD	E SUM_OP_TIME (hours/month)	GLOAD (MWh/month)	SLOAD SO2_MASS (tons/month) (Measured)	NOX_RATE (lb/MMBtu) (Measured)	NOX_MASS (tons/month) (Calculated)	CO2_MASS (tons/month	HEAT_INPUT) (MMBtu/month)	CO2_Rate (tons/MMBtu)	PRIMARY_FSI	ECONDAR SO2_CONT NOX_CONT PART_CONTROL_INFO
NV	Reid Gardn	2324	1	2010	1 ARP	730	77698	18	0.27	107	77321	780991	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	2 ARP	672	73606	31	0.28	104	75374	748523	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	3 ARP	595	63029	29	0.30	99	63854	642373	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	4 ARP	515	48364	15	0.27	68	48722	488562	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	5 ARP	744	69680	14	0.28	99	70021	707571	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	6 ARP	636	59186	22	0.25	78	61609	618698	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	7 ARP	744	75120	26	0.28	111	78330	790081	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	8 ARP	557	53008	20	0.22	63	54948	554486	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	9 ARP	412	32317	12	0.24	41	33507	334823	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	10 ARP	222	18579	6	0.25	24	18835	189179	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	11 ARP	22	77	0	0.09	0	213	2468	0.086	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2010	12 ARP	633	43695	7	0.25	62	48909	482204	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	1 ARP	474	38998	12	0.23	48	43574	422126	0.103	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	2 ARP	0								Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	3 ARP	58	1837	1	0.21	3	2096	22714	0.092	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	4 ARP	294	23626	11	0.24	33	26733	259754	0.103	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	5 ARP	565	43573	26	0.29	71	49012	479250	0.102	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	6 ARP	720	66595	56	0.27	98	77082	727630	0.106	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	7 ARP	743	66981	44	0.26	88	72052	681521	0.106	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	8 ARP	744	65516	27	0.25	77	65492	624454	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	9 ARP	717	58036	29	0.24	67	58399	556823	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	10 ARP	608	45449	20	0.23	54	49091	468074	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	11 ARP	720	59924	29	0.23	70	64074	610917	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	1	2011	12 ARP	744	57604	20	0.23	68	61613	587467	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	1 ARP	684	70401	17	0.31	117	77549	752217	0.103	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	2 ARP	630	67548	24	0.31	112	73781	726047	0.102	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	3 ARP	595	63169	27	0.35	123	68485	681122	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	4 ARP	547	54346	22	0.32	97	58932	588523	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	5 ARP	744	70012	24	0.31	117	76517	763142	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	6 ARP	650	62525	21	0.30	107	69091	693868	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	7 ARP	483	41873	17	0.28	69	46135	475897	0.097	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	8 ARP	660	64159	22	0.26	96	72586	728205	0.100	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	9 ARP	675	54543	21	0.25	79	63156	626957	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	10 ARP	426	33888	13	0.26	53	39289	387095	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	11 ARP	10	0	0	0.04	0	47	713	0.066	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2010	12 ARP	652	47943	11	0.27	75	53841	543682	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	1 ARP	514	41314	12	0.29	69	46580	459082	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	2 ARP	310	25868	19	0.26	39	29417	289361	0.102	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	3 ARP	0								Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	4 ARP	0								Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	5 ARP	621	46425	26	0.25	72	53342	537280	0.099	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	6 ARP	563	45916	38	0.24	68	55171	544195	0.101	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	7 ARP	743	65741	48	0.25	88	73730	711074	0.104	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	8 ARP	744	62252	30	0.24	75	65999	629266	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	9 ARP	599	44743	20	0.26	61	48819	465481	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	10 ARP	744	54721	23	0.23	68	61974	590899	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	11 ARP	720	59202	30	0.24	76	65626	625716	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	2	2011	12 ARP	507	40950	18	0.25	54	45671	435468	0.105	Coal	Sodium Bas Low NOx B Baghouse

STATE	FACILITY_NC	DRISPL_(UN	NITID OP	P_YEAR	ASSOC_NTH PRG_CODE	SUM_OP_TIME (hours/month)	GLOAD (MWh/month)	SLOAD SO2_MASS (tons/month) (Measured)	NOX_RATE (lb/MMBtu) (Measured)	NOX_MASS (tons/month) (Calculated)	CO2_MASS (tons/month)	HEAT_INPUT) (MMBtu/month)	CO2_Rate (tons/MMBtu)	PRIMARY_FS	SECONDAR SO2_CONT NOX_CONT PART_CONTROL_INFO
NV	Reid Gardn	2324	3	2010	1 ARP	707	77024	23	0.25	106	87858	842894	0.104	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2010	2 ARP	670	74279	21	0.24	97	84132	813445	0.103	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2010	3 ARP	593	64219	19	0.26	95	73197	710223	0.103	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2010	4 ARP	719	73106	25	0.24	98	84712	827120	0.102	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2010	5 ARP	564	49496	17	0.22	63	57475	565832	0.102	Coal	Sodium BacLow NOx B Baghouse
NV	Reid Gardn	2324	3	2010	6 ARP	712	69416	23	0.22	92	80183	793660	0.102	Coal	Sodium BacLow NOx B Baghouse
NV	Reid Gardn	2324	3	2010	7 ARP	716	73449	30	0.23	99	86489	851718	0.101	Coal	Sodium BacLow NOx BiBaghouse
NV/	Reid Gardn	2324	3	2010	2 ΔRP	695	65800	25	0.20	8/	8/691	818///2	0.102	Coal	Sodium BacLow NOX B Baghouse
NV/	Reid Gardn	2324	3	2010	9 ARP	658	54401	19	0.20	66	66451	650978	0.103	Coal	Sodium Bac Low NOx B Baghouse
	Reid Gardn	2324	3	2010		482	J4401 /6185	24	0.20	65	58265	562684	0.102	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardn	2324	2	2010		70	5175	1	0.23	7	6/11	62216	0.104	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardn	2324	2	2010		625	75000	1	0.19	, E0	59201	5700 <i>44</i>	0.101	Coal	Sodium BacLow NOX B Baghouse
	Reid Gardn	2324	2	2010		695	40900	10	0.19		760201	725709	0.100	Coal	Sodium Backow NOX B Baghouse
	Reid Gardin	2524	с С	2011		412	27041	24	0.20	75	/0920	/55/96	0.105	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardin	2324	3	2011	Z ARP	412	37941	23	0.20	45	47706	455431	0.105	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardin	2324	5	2011	3 ARP	0	20200	C	0.21	77	25407	220020	0 107	Coal	Socium Bas Low NOX B Baghouse
	Reid Gardn	2324	3	2011	4 ARP	260	20360	0	0.21	27	25497	238626	0.107	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardn	2324	3	2011	5 ARP	445	27930	22	0.23	40	34850	328082	0.106	Coal	Sodium Bas Low NOX B Baghouse
	Reid Gardh	2324	3	2011	6 ARP	709	67371	65	0.19	78	84044	/9/95/	0.105	Coal	Sodium Bastow NOx B Baghouse
NV	Reid Gardn	2324	3	2011	7 ARP	682	63662	49	0.21	75	/32/8	699952	0.105	Coal	Sodium Bas Low NOX B Baghouse
NV	Reid Gardh	2324	3	2011	8 ARP	/15	63312	35	0.21	/2	/1198	678864	0.105	Coal	Sodium Bas Low NOX B Bagnouse
NV	Reid Gardn	2324	3	2011	9 ARP	568	43/3/	22	0.20	46	50155	478210	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2011	10 ARP	590	45679	22	0.20	48	51578	491782	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2011	11 ARP	650	52704	23	0.19	54	59156	564046	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	3	2011	12 ARP	250	16643	4	0.24	19	18249	173998	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	1 ARP	633	147714	88	0.22	160	149597	1426374	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	2 ARP	321	85569	39	0.21	89	87140	830860	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	3 ARP	56	0	0	0.03	0	400	3817	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	4 ARP	627	96658	33	0.21	107	102556	977833	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	5 ARP	639	72380	27	0.21	84	82594	787501	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	6 ARP	572	97455	46	0.21	104	100665	959813	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	7 ARP	744	146529	76	0.20	137	150608	1436003	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	8 ARP	733	136697	51	0.19	127	141694	1351015	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	9 ARP	616	110989	47	0.19	107	116637	1112104	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	10 ARP	669	106081	33	0.19	109	116342	1109292	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	11 ARP	647	82251	42	0.21	93	95108	906817	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2010	12 ARP	718	103274	97	0.20	115	117244	1117877	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	1 ARP	15	0	0	0.06	0	246	2347	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	2 ARP	620	89922	55	0.22	110	101878	971377	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	3 ARP	192	17585	7	0.17	22	20377	194295	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	4 ARP	0								Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	5 ARP	556	102011	44	0.18	98	107913	1028925	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	6 ARP	648	130140	80	0.22	142	134642	1283777	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	7 ARP	744	157867	97	0.20	151	162505	1549441	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	8 ARP	686	136139	90	0.21	144	141577	1349895	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	9 ARP	647	137850	94	0.22	147	142205	1355874	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	10 ARP	561	116332	55	0.20	116	117480	1120130	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	11 ARP	666	86361	28	0.21	90	88739	846115	0.105	Coal	Sodium Bas Low NOx B Baghouse
NV	Reid Gardn	2324	4	2011	12 ARP	699	103695	44	0.22	121	109070	1039947	0.105	Coal	Sodium Bas Low NOx Bi Baghouse
										_				-	

1

1

Appendix E:

The files and spreadsheets listed below are too voluminous to be included in a hardcopy version, and are available electronically on <u>www.regulations.gov</u>, under Docket ID number EPA-R09-OAR-2011-0130

In addition, the CALPUFF modeling input and output files, including meteorological data, will be made available electronically upon request.

Model File list (mod_files.txt)

Comparison of EPA's RGGS CALPUFF modeling and variants to WRAP BART modeling results (WRAP_compare_tables.xls)

CALPUFF Model Results (RGGS_TSD_CALPUFF_tables.xls)

EPA results for 98th percentile delta deciviews, with NOx emissions Visibility Method 6, annual avg. background Visibility Method 6, best 20% background Visibility Method 8, annual avg. background Visibility Method 8, best 20% background

EPA results for 98th percentile delta deciviews, with individual years Visibility Method 6, annual avg. background Visibility Method 6, best 20% background Visibility Method 8, annual avg. background Visibility Method 8, best 20% background

EPA results for Number of days over 0.5 and 1.0 deciviews Visibility Method 6, annual avg. background Visibility Method 6, best 20% background Visibility Method 8, annual avg. background Visibility Method 8, best 20% background

Modeling results from CH2MHill for Nevada Energy RGGS control scenario names in Nevada Energy in BART analysis Unit 1 Reid Gardner G.S. Visibility Impacts as Modeled by CH2MHill in 2008 Unit 2 Reid Gardner G.S. Visibility Impacts as Modeled by CH2MHill in 2008 Unit 3 Reid Gardner G.S. Visibility Impacts as Modeled by CH2MHill in 2008