

Alternative Fuel and Conventional Vehicle Air Pollutant Emissions

Andrew Burnham

Argonne National Laboratory

Clean Cities Webinar January 28, 2015

Outline of Presentation

- Introduction of Air Pollutant Emissions and AFLEET Tool
- Air Pollutant Trends
- Heavy-Duty Diesel and AFV Emissions
- Light-Duty Gasoline and AFV Emissions

Introduction of Air Pollutant Emissions and AFLEET Tool

Vehicles Cause Several Emission/Air Quality Concerns -PM and O₃ Most Widespread Health Threats

- Carbon monoxide (CO)
 - At low levels can exacerbate cardiovascular disease, by reducing O₂ delivery
 - At high levels can be poisonous
- Particulate matter (PM)
 - Can cause serious health effects impacting the lungs and heart
 - Health impacts depend on size
 - Fine PM (PM2.5) cause more damage than coarse PM (PM10)
- Nitrogen oxides (NOx)
 - Contributes to various environmental problems, primary concern is ozone
- Volatile organic compounds (VOCs)
 - Contributes to various environmental problems, primary concern is ozone
 - Regulated as NMOG (LDVs) and NMHC (HDVs)
- Ozone (O₃)
 - Produced from reaction of NOx, VOCs, and sunlight
 - Can cause serious health effects impacting the lungs and heart

Argonne has Supported DOE's Clean Cities with Tool Development for 15+ Years

- AirCRED (1998-2007)
 - Estimated O₃ precursor & CO emission credits from AFVs for SIPs
- Clean Cities AOI 4 Emissions Benefit Tool (2009)
 - Estimated GHG & air pollutant benefits of Recovery Act grant proposals
- AFLEET Tool (2013-present)
 - Estimates cost of ownership, petroleum use, GHGs, & air pollutants of lightand heavy-duty vehicles
 - AFLEET Tool & user manual available at: <u>http://greet.es.anl.gov/afleet</u>

U.S. Department of Energy

"AFLEET Tool" to Analyze Costs & Benefits of AFVs

- Developed in 1998, AirCRED was a DOE and EPA co-sponsored tool for Clean Cities Stakeholders
 - Used EPA's MOBILE model and annual emission vehicle/engine certification results
 - EPA software focused on gasoline and diesel
 - Certification data used to compare alternative fuels with conventional counterparts
- AFLEET Tool uses same methodology as AirCRED
 - Uses EPA's new MOVES model for gasoline and diesel
 - Incorporates data showing NOx and PM in-use vehicle emissions are much higher than previous estimates
 - AFLEET reviewed by NGVA, PERC, EPRI, NTEA, and NREL
- Argonne researchers examining latest work HDV emissions
 - Findings will be implemented into AFLEET

Air Pollutant Trends

Source: EPA, 2014, National Trends in Ozone Levels

Significant Progress Made Reducing U.S. Total Air Pollutant Emissions

Source: EPA, 2014, Air Quality Trends

8

Motor Vehicle Emissions as % of U.S. Total Emissions*

- Gasoline light-duty vehicles = large source of CO, NOx, VOCs
- Diesel heavy-duty trucks = large source of NOx
- PM from both are important due proximity of emissions to the public

Regulatory Focus for Vehicles Has Been on Ozone (and NOx as its Typical Primary Driver) and PM

- 135 million people in O₃ nonattainment areas
- 63 million people in PM2.5 nonattainment areas
- No counties are in nonattainment for CO

Counties Designated Nonattainment for PM-2.5 (1997 Standard) and/or PM-2.5 (2006 Standard)

Source: EPA, 2014, The Green Book Nonattainment Areas for Criteria Pollutants

EPA's Heavy-Duty Engine NOx and PM Standards Tightened by 98% since 1988

- Standards required significant improvements in engine controls and aftertreatment systems for diesel HDVs
 - Diesel particulate filters (DPFs) for PM & selective catalytic reduction (SCR) for NOx

11

EPA's HD Standard for CO hasn't changed since 1985

Regulations switched from total hydrocarbons to non-methane hydrocarbons in 2004

12

EPA's LDV Standards Similarly Focused on NOx & PM

- CO standard looks to go up but this is due to changes in testing procedure
 - Tier 1/2 standards for "full useful life" (100K+ mi); prior for "half useful life" (50K mi)

Research Shows "Gross Emitters" Can Attribute for Significant % of Emissions, Especially for LDVs

Analysis in California in 2010

Source: McDonald et al., 2013, Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas

Turnover of Older Vehicles with Less Strict Emission Has Helped Reduce Emissions

Light- and Heavy-Duty Vehicles Have Made Similar Emissions Progress, Though Still Work To Be Done

Heavy-Duty Diesel and AFV Emissions

Stricter Regulations have Resulted in Significant Improvements in Diesel Emissions

25 18.120 17.216.4 15 12.8g/km 8.0 10 5.0 5 2.1 0.0 0.5 1.4 1.5 0.9 0.7 1.0 1.4 0.5 0.5 0.9 0.4 0.3 0 CO*10 THC*100 NOx PM*100 EPA 1998 8.3 L EPA 2007 8.9 L EPA 2010 8.9 L (1) EPA 2010 8.9 L (2) EPA 2010 8.9 L (3)

Regulated Emissions - Diesel Plaforms - Manhattan

Source: Nylund & Koponen, 2012, Fuel and Technology Alternatives for Buses

Emission Control Technologies Overshadow Fuel Effects on Emissions for Diesel v Biodiesel

EPA 2010 8.9 L (1) - Fuel Effects - UDDS

Source: Nylund & Koponen, 2012, Fuel and Technology Alternatives for Buses

Both Diesel & NG HD Engines Made Great Progress on PM

- 1996 NG engine = 0.04 g/bhp-hr; 75% lower than diesel
 - 1996 diesel over standard but compliant through averaging, banking, and trading program
- 2013 NG engine = 0 g/bhp-hr; same as diesel

In-Use Testing Has Shown DPFs Are Highly Effective

 CA has been testing the in-use emissions of new and old diesel and alt. fuel vehicles to compare air pollutant emissions

Source: CARB, 2014, Truck Sector In-Use Emissions Technology Assessment

Similar Certification Improvements for NOx

- 1996 NG engine = 1.5 g/bhp-hr; 33% lower than diesel
- 2013 NG engine = 0.1 g/bhp-hr; 50% lower than diesel

In-Use Testing Shows Progress Needed For Diesel NOx

Testing suggests potential issues with SCR performance in the real world

- Cold starts
- Low-load, low-speed operations
- Deterioration is a concern

SCR Highly Effective at Highway Speeds but Potential for Off-Cycle Emissions

SI NGV trucks had much lower off-cycle NOx than diesels

24

Duty Cycle Significantly Impacted NOx for Diesel Drayage Trucks, NG Trucks Were Consistently Low

SI NGV trucks NOx did not increase dramatically in low speed/low load conditions

NG Spark-Ignited HD Engines Significantly Higher CO Emissions than Diesel

- Differences in engine types and aftertreatment cause difference in CO
 - CI diesel use lean burn (more O_2 to oxidize CO to CO_2) combustion with oxidation catalyst
 - SI NG use stoichiometric (less O₂ available) and no oxidation catalyst

Recent Analysis of Heavy-Duty Propane Have Shown Slightly Higher Emissions vs. Gasoline Counterparts

- All LPG engines conversion of gasoline engines
- Deterioration factors used for LPG are typically higher than gasoline
 - Direct emission results not always higher
 - More detailed deterioration tests could show LPG benefits

Limited In-Use Testing Has Been Done on Propane, but CA Pre-2010 Test Shows Some Benefits vs. Diesel

- Diesel bus had DPF but not SCR; SCR diesel should have much lower NOx
 - LPG shows PM benefit and had very low NOx

28

Heavy Duty AFVs Can Continue to Provide Benefits

- Heavy-duty standards has become increasingly strict
 - Required significant improvements in engine controls & aftertreatment systems
- Alt fuels may take advantage by having simpler/less costly aftertreatment
 - Some AFV engines don't require PM filters or SCR systems
- Absolute certification benefits of AFVs have diminished but still can be relative benefits
 - In-use benefits are possible as well if diesel controls/aftertreatment don't operate properly
 - Alternative fuels may not always be better for every pollutant
 - Due to differences in engine types, controls & aftertreatment
- CA adopted optional NOx HD standards to incentivize further reductions
 - Can certify at 0.10, 0.05 or 0.02 g/bhp-hr
 - Carl Moyer Program provides grants for these engines

Light-Duty Gasoline and AFV Emissions

Recent Analysis of Light-Duty AFVs & HEVs vs. Gasoline Counterparts Have Shown Emission Reductions

Further work needed to examine PHEVs

Research has Shown Gasoline Direct Injection (GDI) LDVs Increase PM2.5

- GDI engine market share increased from 4% in MY09 to 38% in MY14
 - Trend is to use downsized GDI engines with turbocharging
 - Maintain performance while improving fuel economy
 - Testing has show that GDI vehicles can increase PM (mass) by ~10x
 - Also increases the number of fine particulates
 - Technical solutions being developed
 - Particulate filters
 - May provide opportunity for AFVs, HEVs and PEVs
 - Lower incremental cost?

Source: Khalek, 2011, Particle Emissions from Direct Injection Gasoline Engines

Light Duty AFVs Can Continue to Provide Benefits

- Light-duty standards have become increasingly strict
 - Required significant improvements in engine controls & aftertreatment systems
- EPA's Tier 3 passenger car and truck standard will further reduce emissions
 - Coordinated with CA air pollutant (LEV III) and EPA GHG standards
 - Increases durability testing from 120,000 to 150,000 miles
 - By 2017, reduces gasoline sulfur content by 67%
 - By 2025, reduces NOx and VOCs by 80%, PM by 70%, CO by 75%
- Alt fuels may take advantage by having simpler/less costly aftertreatment
 - Gasoline direct injection may require particulate filters
 - Though stricter standards may pose challenges for some AFVs as well
- Regulatory focus is to have zero emission vehicles (ZEVs) like BEVs and FCVs to reduce air pollutants and other environmental concerns
 - California and 9 other states have adopted ZEV program

Summary

- AFLEET uses EPA's MOVES model and annual emission certification results to compare alternative fuels with conventional counterparts
 - Updating based on latest research
- EPA light- & heavy-duty standards have becoming increasingly strict
- Both conventional and alternative fuels have made significant reductions to meet those standards
 - Alt fuels continue to have emissions benefits
 - Absolute certification benefits are smaller even if the relative ratio is large
 - In-use emission benefits possible as well

Future standards will pose potential opportunities and challenges for AFVs

- Potential challenge to meet standards
- Potential benefit of less costly aftertreatment
- Ability to get to zero emissions

Thank you!!!

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

> This work has been supported and assisted by: Linda Bluestein: U.S. Department of Energy Dennis Smith: U.S. Department of Energy Hao Cai: Argonne National Laboratory Michael Wang: Argonne National Laboratory Marcy Rood Werpy: Argonne National Laboratory

> > For additional information contact: <u>aburnham@anl.gov</u>

Backup Slides

EPA National Ambient Air Quality Standards

Pollutant [final rule cite]		Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide		primary	8-hour	9 ppm	Not to be exceeded more than once per year
[76 FR 54294, Aug 31, 2011]			1-hour	35 ppm	
<u>Lead</u> [<u>73 FR 66964, Nov 12, 2008]</u>		primary and secondary	Rolling 3 month average	0.15 μg/m ^{3 <u>(1)</u>}	Not to be exceeded
<u>Nitrogen Dioxide</u> [<u>75 FR 6474, Feb 9, 2010]</u> [<u>61 FR 52852, Oct 8, 1996]</u>		primary	1-hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		primary and secondary	Annual	53 ppb ⁽²⁾	Annual Mean
<u>Ozone</u> [73 FR 16436, Mar 27, 2008]		primary and secondary	8-hour	0.075 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years
Particle Pollution Dec 14, 2012	PM _{2.5}	primary	Annual	12 μg/m³	annual mean, averaged over 3 years
		secondary	Annual	15 μg/m³	annual mean, averaged over 3 years
		primary and secondary	24-hour	35 μg/m³	98th percentile, averaged over 3 years
	PM ₁₀	primary and secondary	24-hour	150 μg/m³	Not to be exceeded more than once per year on average over 3 years
<u>Sulfur Dioxide</u> [<u>75 FR 35520, Jun 22, 2010]</u> [38 FR 25678, Sept 14, 1973]		primary	1-hour	75 ppb ⁽⁴⁾	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

Analysis of Proposed Ozone Standards

¹ Core Based Statistical Area (CBSA) refers collectively to both metropolitan statistical areas (MSA) and micropolitan areas ²2217 counties violate a 65 ppb standard (six times the number of counties that violate the 2008 (75 ppb) standard)

Source: URS, 2011

Analysis of Proposed Ozone Standards

Counties Where Measured Ozone is Above Proposed Range of Standards (65 – 70 parts per billion)

Source: EPA, 2014, Proposed Revisions to National Ambient Air Quality Standards for Ozone

Analysis of Proposed Ozone Standards

Because several areas in California are not required to meet the existing standard by 2025 and may not be required to meet a revised standard until sometime between 2032 and 2037, EPA analyzed California separately. Details are available in the Regulatory Impact Analysis for this proposal.

Source: EPA, 2014, Proposed Revisions to National Ambient Air Quality Standards for Ozone