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Abstract 
A new approach to locating accuracy assessment sample units 
was used to quantify 2010 land cover accuracy, in addition to be-
ing able to make statements about 2006-2010 land cover change 
mapping accuracy for National Oceanic and Atmospheric 
Administration (NOAA) Coastal Change Analysis Program (C-CAP) 
data. Three customized tiers of sampling strata were created, 
as discussed, to meet these goals. Stratified random sampling 
was employed in each stratum with a six out of nine pixel-
homogeneity criteria (different from the final minimum mapping 
unit) required for each sampling unit. Accuracy was assessed for 
nine regions in the coastal United States with overall accuracy 
ranging from 82.3 percent to 85.6 percent. Binary change was 
mapped with 88.7 percent accuracy, with the largest error being 
errors of commission (71.2 percent user accuracy). This sampling 
design also allowed for the identification of 137 locations where 
true change was not mapped, allowing for statements to be made 
about missed change.  

Introduction
Land cover and land cover change are of critical importance, 
with implications for water quality (Kang et al., 2014; Lu and 
Weng, 2006; Margriter et al., 2014), wildlife habitat (Lowe and 
Peterson, 2014; Millette et al., 2014; Porter et al., 2015), forest 
fragmentation (Civco et al., 2002; Nagendra et al., 2004), eco-
system health (Greene et al., 2014; Lowe and Peterson, 2014; 
Nestlerode et al., 2014), human health (Cleckner and Allen, 
2014; Liang and Gong, 2015; Raghavan et al., 2014), and 
climate change (Galbraith et al., 2002; Hansen and Loveland, 
2012; Morris et al., 2002).

In 2010, over 123 million people, or 39 percent of the na-
tion’s population, lived in coastal shoreline counties, repre-
senting less than 10 percent of the U.S. land area (excluding 
Alaska) (U.S. Census Bureau, 2011). Population density 
within this area is expected to increase to 14.26 persons per 
square kilometer (37 persons per square mile) by 2020, while 
the expected increase for the entire U.S. is 4.25 persons per 
square kilometer (11 persons per square mile) (Woods and 
Poole Economics, 2011). Economic data for the U.S. indicate 
that ocean- and Great Lakes-dependent businesses employed 
2.8 million people, paid $107.5 billion in wages, and pro-
duced $282.2 billion in goods and services in 2011. From 
2010 to 2011, the ocean and Great Lakes economy gained 
67,000 jobs, an increase of 2.4 percent - twice the employ-
ment growth rate of the U.S. economy as a whole. Real gross 
domestic product grew by 2.7 percent, faster than the U.S. 
economy as a whole (1.6 percent) (NOAA ENOW). Because 

of the importance of the U.S. coastal zones, and the rate at 
which change is occurring within it, the need for accurate and 
timely land cover and land cover change data is vital.

Through its Coastal Change Analysis Program (C-CAP), the 
National Oceanic and Atmospheric Administration (NOAA) 
produces land cover for the coastal regions of the United 
States. C-CAP inventories coastal intertidal areas, wetlands, 
and adjacent uplands with a goal of monitoring these habitats 
by updating the land cover every five years (Dobson et al., 
1985; NOAA C-CAP, 2015). Resulting data are then incorpo-
rated into, and serve as the coastal expression of, the United 
States Geological Survey (USGS) National Land Cover Database 
(NLCD). 

The nationwide C-CAP baseline was developed from im-
agery acquired by the Landsat suite of satellites, circa 2001, 
using a standardized classification approach (unsupervised/
supervised classification, spatial modeling, hand edits, etc.). 
Since that time, additional dates have been created for 1996, 
2006, and 2010, in addition to limited geographies having 
data for 1985 and 1992. The C-CAP approach to creating a new 
date of land cover consists of identifying potential areas of 
change between multiple dates of Landsat data (e.g., 2006 to 
2010) through a variety of spectral change analyses, classify-
ing those areas of potential change in the new date, then over-
laying classified areas of change over remaining non-change 
areas to create a wall-to-wall map for the new date. Over time, 
as additional dates of land cover were created, the change de-
tection and mapping methods have improved, previous errors 
have been addressed, and significant steps have been taken 
to improve the overall quality of the map. The completion of 
the 2010 data incorporated the largest improvements to date, 
including improved impervious surface/developed land cover 
from the USGS and improved wetland/upland distinction 
through the development and application of a NOAA Office for 
Coastal Management wetland potential layer. 

A previous accuracy assessment of C-CAP land cover was 
performed on the 2001 data set. This first assessment focused 
on the single-date map accuracy and included no assessment 
of the mapped change (1996 to 2001). Since that time, new 
land cover classes have been added, the nation has expe-
rienced a considerable amount of land cover change, and 
improvements have been made in detecting and mapping 
change. For these reasons, C-CAP determined that an accuracy 
assessment of the 2010 wall-to-wall land cover and mapped 
2006-2010 change would be part of this update cycle. 
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Methods
The accuracy assessment of remotely sensed products (e.g., 
land cover and change maps) has three major components 
that should be decided upon before work begins: the sampling 
design, the response design, and the analysis (Congalton and 
Green, 2009; Stehman and Czaplewski, 1998). These three 
components are directly influenced by the objectives of the 
map, i.e., the reasons for its creation. C-CAP data are intended 
for use at county, regional, and national scales. The data can 
be used to analyze land cover distribution at single points in 
time as well as changes across five-year intervals.

Sampling Design
Before beginning the accuracy assessment, the C-CAP team de-
cided to perform nine regional accuracy assessments, which 
could then be combined into a national-level report (Figure 
1). The regions were determined by considering boundaries 
used during the creation of the data sets, general similarity 
of land cover and change rates within regions, and similar 
geographic extents. To meet the objectives of this accuracy 
assessment, a three-stratum approach was used within each 
region, including (a) current change, (b) near current (2006-
2010) and previously mapped change (1996-2001 and 2001-
2006) with the geographic “nearness” determined by region as 
described below, and (c) the remaining area (Figure 2). From 
past C-CAP data sets, it was known that change within coastal 
regions occupies a very small portion of the landscape over 
a five-year period (approximately four percent). To obtain 
adequate reference locations within mapped change areas, 
recommendations by Olofsson et al. (2014) were followed and 
Stratum 1 (black) was created, which contained all pixels of 
mapped change between 2006 and 2010. Reference locations 
within this stratum could be used to assess change/no-change 
accuracy, individual change class accuracy, and overall map-
ping accuracy. The remaining area in the region (no-change 
mapped between 2006 and 2010) was then to be split between 
Strata 2 and 3, described below.

From past C-CAP experience it has been noticed that 
change is often spatially auto-correlated, which means that 
new change tends to occur at or near previous change. This 
can easily be seen in urban expansion (Mertens and Lam-
bin, 2000; Sudhira et al., 2004; Yeh and Li, 2001) or in the 
clustering of timber activity. Past C-CAP data also have shown 

the same location changing multiple times. For example, a 
cultivated field becomes a bare field (before development) and 
then becomes a neighborhood. Silviculture activities can be 
easily seen as forests are cut and the stand transitions from 
grass to shrub and back to forest (Foody et al., 1996; Gregory 
et al., 1981; Lunetta et al., 2004). This knowledge was used to 

Figure 1. The C-CAP mapping area was divided into nine regional assessments. The overall accuracy and kappa are indicated for each 
region and for the national level.

Figure 2. A three- stratum approach was used for placement of 
reference sites, including current 2006-2010 change (Stratum 1, 
black), adjacent-to current and past change (1996-2001 and 2001-
2006) (Stratum 2, mid-gray), and the remaining area (Stratum 3, 
light gray background). The buffered distance included in Strata 2 
varied per region assessed and ranged from 6 to 19 pixels.
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design Stratum 2 (medium gray in Figure 2) to assess poten-
tial missed change as well as overall mapping accuracy. All C-
CAP change pixels from 1996-2001, 2001-2006, and 2006-2010 
were combined and spatially buffered, until the buffered area 
plus past change areas approximated the desired target area 
(half the full assessment area minus 2006-2010 change area). 
Stratum 1 was then removed from the area to ensure that it 
was not double-sampled. 

The remaining area (not in Strata 1 or 2) became Stratum 
3 (dark gray background). Reference locations in this stratum 
may help identify missed change but would be most useful in 
assessing wall-to-wall accuracy. 

The next step was to determine the quantity, type, and 
placement of sample units within each stratum. Determining 
the sample size for this accuracy assessment was a balance 
of maintaining statistical validity, keeping time and costs in 
check, and still meeting the objectives. Several authors have 
discussed methods toward determining appropriate sample 
size (Congalton, 1988; Hay, 1979; Hord and Brooner, 1976; and 
van Genderen and Lock, 1978). While these techniques are 
valid approaches to computing overall map or class accuracy, 
they were not designed to populate an error matrix. The error 
matrix provides overall accuracy, individual class accuracies, 
and the ability to analyze which classes are being confused. 
To populate an error matrix to analyze mapping accuracy and 
class confusion, a common “rule-of-thumb” for the number 
of accuracy assessment locations for land cover mapping is 
50 per class (Congalton, 1991; Congalton and Green, 1999). C-
CAP has a maximum 25-class land cover scheme (http://coast.
noaa.gov/digitalcoast/_/pdf/ccap_class_scheme.pdf), although 
only 23 are present in this mapping effort (there were no Un-
classified or Tundra), and not all classes were present in every 
region (total number of categories ranged from 17 to 22 per 
region). Occasionally a class may have been present, but was 
very rare and may not have been a category of overall interest. 

Regions were assessed as they were completed, with the 
western Great Lakes completed first. Within this region, 18 
land cover classes were present. Based on the 50 per class 
target minimum, a total of 900 sample locations was set 
as the standard per region, with 300 being placed in each 
stratum. The standard of 900 per region was used for con-
sistency across all regions, even though the total number of 
classes varied from 17 to 22. This may have resulted in fewer 
sample units than would be ideal, with the more rare classes 
(e.g., Aquatic Bed) being under-sampled. Sample units were 
identified using the ERDAS Imagine® Accuracy Assessment 
tool with the following criteria: stratified random placement; 
a minimum of 10 per class (not always met with rare classes); 
and six out of nine land cover pixels around the location (3 
× 3 pixel window) required to be homogenous (or location 
would be discarded). The targeted number of at least 50 points 
per class was not always met and is explained in the “Results” 
section in more detail. The rationale for the homogeneity cri-
teria is explained more in the “Response Design” section.

Response Design
Response design for accuracy assessment refers to the proto-
cols involved when determining agreement between reference 
and map classifications. Olofsson et al. (2014) refers to four 
major features: spatial unit, the source(s) used for reference 
classification, labeling protocol for reference classification, 
and definition of agreement.

To keep the natural heterogeneity of land cover in the land-
scape, C-CAP land cover does not perform any spatial filtering 
or aggregating of land cover (i.e., final products are delivered 
30 meter pixels). With this in mind, it may seem logical to as-
sess at the single pixel level. At the same time, C-CAP is intend-
ed for use at the county, regional, or national scale and should 
only be used as a screening tool for very local or site-specific 

management decisions. As a compromise between these two 
scales (single-pixel mapping unit versus best use of the data at 
the regional level), it was decided that a 3 × 3 pixel window 
would be the sample unit. This window size is used to help 
account for mixed pixels, allow for natural homogeneity in the 
landscape, and allow for potential registration error among the 
data sources, and is deemed appropriate based on the scale at 
which C-CAP data should be used. According to recommenda-
tions in Stehman and Wickham (2011), a reference unit con-
taining class heterogeneity may be treated as a homogenous 
unit if specified thresholds are met. For this assessment, a six 
out of nine (or greater) pixel land cover agreement within the 
sample unit was treated as homogenous in the analysis. Users 
of C-CAP data should be aware of these considerations. 

Reference data for the previous C-CAP accuracy assessment 
(2001 product) were collected through a combination of in-
situ data collection, reference site collection from airplanes, 
and photointerpretation of high-resolution imagery (satellite 
and aerial). This process was labor intensive, expensive, and 
took considerable time to complete. Reference data sources 
for the 2010 accuracy assessment were freely available 
imagery and ancillary data sets, including Landsat, National 
Agriculture Imagery Program (NAIP), Google Earth™, Bing 
Maps, National Wetlands Inventory (NWI), and Soil Survey 
Geographic database (SSURGO). One big advantage to using 
Landsat, NAIP, and Google Earth was the availability of mul-
tiple dates, which assisted in determining land cover change. 
Another advantage of many of these data sets was their avail-
ability as web based services (NAIP, NWI, SSURGO) or stand-
along products (Google Earth, Bing Maps), which removed the 
need to have the data stored locally. The NWI and SSURGO data 
sets were viewed within Google Earth, allowing interpret-
ers quick and easy access to specific NWI classes and SSURGO 
hydric rating, drainage class, and flooding frequency, which 
assisted in identifying wetland classes. The final interpreter’s 
land cover call was based on the assessment of all available 
data sets to arrive at the best decision, with no ancillary data 
set being used in an absolute manner.

The 900 reference units per region were randomized and 
split into three groups of 600 each for interpretation. This 
splitting of reference units was performed such that each 
reference unit was interpreted by two independent reviewers. 
Each reviewer had access to all available reference data men-
tioned above and was responsible for labeling each reference 
unit with a primary 2010 land cover call, a fuzzy (alternate) 
2010 land cover call (if needed), and a 2006-2010 land cover 
change/no-change call. Fuzzy calls were only used if the inter-
preter could not positively identify a single dominant land 
cover (e.g., natural speckling of land cover classes), or when 
similar classes could not be positively separated (e.g., shrub 
is distinguished from forest by a height criteria, which may 
be difficult to determine from available data sets). The use of 
fuzzy calls is well documented in the literature when consid-
ering land cover mapping (Gopal and Woodcock, 1994; Muller 
et al., 1998; Wickham et al., 2010; Wickham et al., 2013). After 
interpretation, if reviewers disagreed on the reference, fuzzy, 
or change calls, those points were not dropped, but were re-
viewed and discussed to determine final reference calls.

The 2010 land cover and 2006-2010 binary land cover 
change values were extracted for the nine pixels that com-
prised each sample unit location. To be deemed correct, 
six of the nine sample-unit land cover pixels had to match 
the reference call (or fuzzy call). The six out of nine criteria 
was subjectively arrived at as a balance between the desire 
to allow for natural speckling in the land cover and to not 
overly bias the accuracy assessment through the use of only 
homogenous areas. The same criterion was used for change/
no-change calls.
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Analysis
Error matrices (Congalton et al., 1983) were used to calculate 
overall accuracy, user’s and producer’s accuracy, and kappa 
statistics for the overall map. This first matrix was used for 
analyzing the accuracy of the wall-to-wall map based on all 
8,100 sample units. A second matrix was used to assess the 
accuracy within mapped change areas (Stratum 1), which 
allows for statements to be made in regard to newly mapped 
areas. A final matrix using reference sites deemed change 
by the interpreters was created to determine how well true 
change was being mapped. Change/no-change was also exam-
ined, including overall, user’s, and producer’s accuracy. These 
statistics were initially computed for each of the nine regions 
for creating custom C-CAP accuracy reports (http://coast.noaa.
gov/digitalcoast/publications/regional-reports) and then com-
bined for this national-level analysis.

Results and Discussion
The distribution of all accuracy assessment sample units, 
by category and strata, is listed in Table 1. A total of 8,100 
sample units were used across the three strata and 23 total 
land cover classes. Scrub/Shrub received the most accuracy 
assessment sample units (788), and Estuarine Forested Wet-
land received the fewest (21). Only three classes contained 
fewer than the recommended 50 sample units (Congalton, 
1991; Congalton and Green, 1999). As might be expected, 
these three classes also make up the least amount of area 
mapped within the C-CAP area (approximately one-tenth of 
one percent). The last two columns in Table 1 can be com-
pared to assess if a class was sampled proportionally to its 

area. For example, Mixed Forest received 4.7 percent of the 
accuracy assessment sample units and made up 5.8 percent 
of the national coastal region. The largest discrepancy is with 
Evergreen Forest receiving 7.7 percent of the accuracy assess-
ment sample units and making up 14.4 percent of the national 
coastal region. 

The differences between reference units and mapped area 
(last two columns of Table 1) can generally be tied to the dis-
tribution of sample units across the three strata. For example, 
7.0 percent of the sample units occurred in mapped Grass-
land/Herbaceous, while only 4.9 percent of the nation was 
mapped as this class. Grassland/Herbaceous appears to be 
much more heavily sampled in Stratum 1 (314 sample units) 
compared to the other strata, even though Stratum 1 was only 
3.7 percent of the C-CAP mapped area. This occurred because 
Grassland/Herbaceous was one of the most common classes 
occurring in change areas, thus receiving more sample units 
in comparison to the other strata where Grassland/Herbaceous 
consisted of a much smaller percentage. 

2010 Land Cover
The target overall accuracy for C-CAP is 85 percent with single 
class accuracy of 80 percent. The national overall accuracy 
was 84.0 percent with a kappa value of 0.83. The majority of 
classes met the C-CAP target specification of 80 percent per 
class accuracy. Of the ten instances where accuracy was be-
low the targeted 80 percent, all exceeded 70 percent. No class-
es fell below the 80 percent threshold for both producer and 
user accuracy. As mentioned earlier, nine regional accuracy 
assessments were performed to compute statistics per region, 

table 1. Distribution oF accuracy assessment samPle units anD lanD coVer. the miDDle Four columns show the Distribution oF accuracy assessment (aa) 
samPle units across the three strata. the two rightmost columns DisPlay the oVerall Distribution oF the aa samPle units anD the oVerall Distribution oF 
lanD coVer. the last two rows show the lanD area anD Percent oF the Full maPPing area. 
 Accuracy Assessment Sample Units Percent of

Land Cover Stratum 1 Stratum 2 Stratum 3 Total Sample Units Region

Developed, High Intensity (HID) 112 100 90 302 3.7% 0.6%

Developed, Medium Intensity (MID) 150 115 95 360 4.4% 1.4%

Developed, Low Intensity (LID) 158 129 121 408 5.0% 3.1%

Developed, Open Space (OSD) 162 110 105 377 4.7% 1.6%

Cultivated Crops (CULT) 120 185 243 548 6.8% 10.5%

Pasture/Hay (PAST) 96 155 167 418 5.2% 7.0%

Grassland/Herbaceous (GRS) 314 136 116 566 7.0% 4.9%

Deciduous Forest (DEC) 109 218 230 557 6.9% 11.8%

Evergreen Forest (EVR) 183 243 201 627 7.7% 14.4%

Mixed Forest (MIX) 72 169 138 379 4.7% 5.8%

Scrub/Shrub (SS) 437 202 149 788 9.7% 10.7%

Palustrine Forested Wetland (PFW) 91 187 187 465 5.7% 8.8%

Palustrine Scrub/Shrub Wetland (PSS) 141 128 109 378 4.7% 2.6%

Palustrine Emergent Wetland (PEM) 146 124 106 376 4.6% 2.2%

Estuarine Forested Wetland (EFW)  10 11 21 0.3% 0.1%

Estuarine Scrub/Shrub Wetland (ESS) 2 16 21 39 0.5% 0.0%

Estuarine Emergent Wetland (EEM) 33 76 81 190 2.3% 0.9%

Unconsolidated Shore (UCS) 68 80 67 215 2.7% 0.2%

Bare Land (BARE) 153 98 91 342 4.2% 0.7%

Open Water (OW) 116 115 283 514 6.3% 12.4%

Palustrine Aquatic Bed (PAB) 17 37 27 81 1.0% 0.0%

Estuarine Aquatic Bed (EAB) 20 50 51 121 1.5% 0.1%

Perennial Snow (SNOW)  17 11 28 0.3% 0.0%

Total 2700 2700 2700 8100   

Area (square miles) 29,740 387,164 376,559 793,463   

Percent of Region 3.7% 48.8% 47.5%    
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then combined for the full report. The overall accuracy and 
kappa values for each region and the national level are shown 
in Figure 1. The full error matrix for the nation is shown in 
Table 2. At the regional level, overall accuracies ranged from a 
low of 82.3 percent in the Southeast, while the highest was in 
the western Great Lakes at 85.6 percent. 

Major sources of classification confusion as revealed in the 
error matrix include the following.

Low Vegetation
Pasture/Hay, Cultivated, Grassland, and Open Space Devel-
oped were all mapped with some confusion. The confusion 
between Cultivated and Pasture/Hay is fairly common and 
has been seen in other maps (Fuller et al., 1994; Vogelmann et 
al., 2001; Wickham et al., 2010; Wickham et al., 2013). These 
classes are often best classified through the use of multiple 
dates of imagery to help detect spectral trends throughout the 
growing season. Typically, two dates of imagery were avail-
able for the 2010 classification, but they were not selected 
with Cultivated classification as the primary driver and thus 
may not have been the best available for these classes. Ad-
ditionally, Pasture and Cultivated are often discriminated 
by land use, which may be difficult to distinguish through 
remote sensing alone, especially at the scale used by C-CAP.

Scrub/Shrub, Grassland, and Forest
Timber activity, which often results in the cycling of grass-
land to scrub/shrub to forest over time, occurs heavily in 
several regions of the coastal area. Within each region, and 
the full nation, changes within these classes were the domi-
nant type of change. The scrub/shrub class is generally a 
transitional class between Grassland and forest classes and is 
distinguished in C-CAP by a height criterion (woody vegeta-
tion less than 5-meter height is scrub/shrub). Depending on 
the region and species of forest, the transitions between these 
classes may occur at different rates. It was not uncommon to 
identify areas of grass to forest change in the Southeast over 
this five-year time span, where southern yellow pine planta-
tions are common. In the Northeast or Great Lakes, previ-
ously cut forest areas may remain in the grass or scrub/shrub 
category for a much longer time. Many studies have reported 
that longer gaps in time between mapping efforts result in 
forest change detection errors (Lunetta et al., 2004; Muchoney 
and Haack, 1994; Sader et al., 2003). Two studies in particular 
(Lunetta et al., 2004; Wilson and Sader, 2002) recommended 
using imagery collected less than three years apart to detect 
forest harvesting operations and other changes that do not 
remove the full canopy. Since height cannot be directly mea-
sured in the Landsat data, other criteria must be used (tone, 
texture, shadow, etc.), resulting in the confused classes. 

Levels of Development
The developed classes were separated from each other 
through the application of thresholds to a percent impervi-
ous surface (e.g., if the percent impervious was 80 percent or 
greater, the class was High Intensity Developed). Errors in the 
percent impervious surface value could translate to errors in 
the development class label. The majority of the error among 
these classes was isolated to the immediate neighboring 
intensity class (e.g., Low Intensity Developed being confused 
with Open Space Developed or Medium Intensity Developed). 
Because the percent impervious surface is a spectrally derived 
value, it is susceptible to variation from spectral differences 
naturally caused by the time of the year or the reflectivity of 
different impervious surfaces (e.g., blacktop versus concrete). 
Thus, two surfaces that should have the same imperviousness 
percentage, and Development category, may receive different 
values. More information on the creation of the percent im-
pervious surface and its accuracy can be found in Wickham et 
al. (2010), Wickham et al. (2013), and Xian and Homer (2010).
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Bare Land
Bare Land was occasionally classified as developed catego-
ries. This is most common when a site is being prepared for 
development, but construction has not yet begun. The prox-
imity to existing development, and the bright reflectance of 
the bare soil, creates confusion with developed land (Alberti 
et al., 2004; Platt and Goetz, 2004; Treitz et al., 1992). 

Water and Unconsolidated Shore
Open Water was incorrectly mapped as Unconsolidated 
Shore. In coastal locations, nearshore wave action, water 
turbidity, and tidal stage all influence the separation of these 
two classes. Examination of these incorrect sample locations 
shows that the Unconsolidated Shore class is most likely 
overmapped in general, often because of wave action and 
nearshore sediment present in the imagery.

The use of fuzzy or alternate calls was allowed in condi-
tions where the field class was either difficult to positively 
identify (e.g., Cultivated versus Pasture, shrub versus forest, 
different levels of development) or where there was natural 
variability in the landscape (e.g., near edge features). Using 
fuzzy calls increases the chance for a correct label, but may 
potentially artificially inflate the reported map accuracy if 
they are overused. Fuller et al. (1994) demonstrated that by 
removing class boundary pixels (edge pixels) from their Land-
sat classification, their final accuracy rose from 46 percent to 
71 percent. Analysis showed that 36.2 percent (2,932) of the 
sample units received a fuzzy call, and of the 6,806 correctly 
mapped sample units, 1,120 (16.5 percent) were correct due 
to the fuzzy call. A matrix plotting “primary reference call” 
versus “fuzzy reference call” was constructed to analyze the 
specific nature of reference class confusion. As was expected, 
the majority of the fuzzy calls occurred within the four devel-
oped classes, among the low vegetation classes (Grassland, 
Cultivated, and Pasture), between shrub and Grassland, and 
between shrub and forested. 

2006-2010 Change
To date there is no standard approach to assessing categorical 
land cover change maps. One of the more common approach-
es is to use the standard confusion matrix with the land cover 
change categories representing the row and column values 
(Congalton and Green, 2009; Khorram, 1999). The 2006 NLCD 
used a modified version of this approach to assess 2001-2006 
land cover change (Wickham et al., 2013). For their study, 
Multi-Resolution Land Characteristics Consortium partners 
selected a subset of 22 land cover change categories of inter-
est, which were then assessed. However, for C-CAP, a full 
change assessment would possibly represent a 625 class × 625 
class matrix, which is not practical or economical. Instead of 
attempting to identify priority change categories, it was decid-
ed to assess change/no-change accuracy using a 2 × 2 matrix 
(Congalton and Green, 2009; Morisette and Khorram, 2000), 
with the hopes that the stratification method used would al-
low statements to be made about mapped or missed change.

Overall, C-CAP’s change/no-change accuracy was 88.7 per-
cent (Table 3). Committed change (falsely identified change) 
was the largest error with a user accuracy of 71.2 percent (777 
sample locations mapped as change, but deemed no-change 
by the reviewers), which is much higher than omitted change 
(93.3 percent producers accuracy). The 777 committed error 
locations were assessed in their own error matrix and resulted 
in 74.6 percent overall accuracy. This seems to indicate that 
the method used to identify potential change pixels (i.e., 
creating the change mask) may be overestimating change, but 
the methods used to assign a land cover class are reasonably 
accurate. C-CAP is willing to accept higher rates of commit-
ted change error (opposed to omitted change error) as long 

as these locations are accurately mapped, and thus improve 
the overall product. These locations and trends of committed 
change may be used in future editing efforts, since they are 
indicative of potential errors with the 2006 map.

Two additional land cover error matrices were created to 
compare different categories of change based on Table 3. The 
overall statistics are shown in Table 4. The error matrix for 
reference units in mapped change areas (Table 5) allowed for 
statements about the accuracy of the current mapping effort 
and indicated an 82.3 percent accuracy. This value is slightly 
lower than the overall map accuracy. The second category of 
change was those sample units where both the map and the in-
terpreter identified change (1,923 sample units). The accuracy 
of these was 86.3 percent. Land cover confusion within these 
matrices was similar to the overall map discussed previously. 
It may be useful to compare these two values to the accuracy 
of the committed sample units (74.6 percent) in the preceding 
paragraph. The 2006 land cover was used during the clas-
sification of the 2010 map as training data, and errors within 
that map (as indicated by the 777 sample units) may affect 
the training data and any trend modeling that may take place 
(e.g., 2006 shrub transitioning to 2010 forest). The net effect 
was that incorrect 2006 land cover data reduced the 2010 land 
cover accuracy either due to lesser quality training data or the 
inability to accurately model logical land cover transitions.

Assessing mapped change is a fairly straightforward task, 
but assessing missed change is problematic. Of the 5,400 
total sample units in mapped no-change areas, only 137 were 
deemed missed change. Stratum 2 (specifically designed to 
try to identify potential missed change) contained 107 (78.1 
percent) of these missed change locations. After conduct-
ing the change analysis, the team felt that overall change 
had been somewhat overcalled, although there were limited 
missed true change sites as well. As designed, Stratum 2 ap-
peared to be helpful in identifying potentially missed change 
in C-CAP land cover. Because C-CAP land cover updates are cre-
ated by classifying potential change areas only, and keeping 
non-change areas as currently mapped, there is a preference 
to slightly over-map potential change at the beginning, so as 
to not miss change features. As the potential change features 
are mapped, ideally areas of no-change will fall out because 
the newer land cover call will match the older land cover call, 
resulting in no change.

table 3. error matrix For change anD no-change For the 2006-2010 
c-caP lanD coVer change ProDuct.

 Reference   

  No Change Change Total Users

M
ap No Change 5263 137 5400 97.5%

Change 777 1923 2700 71.2%

 Total 6040 2060 8100  

 Producers 87.1% 93.3%  88.7%

table 4. oVerall lanD coVer accuracy From DiFFerent change categories. 
these samPle units were subset From locations oF maPPeD change anD can 
be useD as an inDicator oF the lanD coVer accuracy oF current maPPing 
Processes.

  From Error Matrix

Change Category
Sample 
Units Correct

Overall 
Accuracy

All Mapped Change 2700 2223 82.3%

Mapped Change = Reference Change 1923 1659 86.3%
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Conclusions
C-CAP uses consistent methods and approaches for mapping 
land cover and land cover change for the coastal regions of 
the U.S. with a stated accuracy target of 85 percent overall 
and 80 percent per class. Nine regional accuracy assessments 
were performed on the 2010 C-CAP data. These nine reports 
were combined to produce this national-level accuracy report. 
The combined accuracy for the nation was 84.0 percent, with 
the majority of individual classes exceeding 80 percent ac-
curacy. There were no classes with accuracy below 80 percent 
for both user and producer accuracy. 

A unique sampling strata approach was used in an effort to 
assess mapped change areas as well as make some statements 
regarding potential missed change. Change/no-change accu-
racy for the nation was 88.7 percent, with commission errors 
being the largest component. It was found that 74.6 percent 
of the false change locations received the correct 2010 call, 
indicating that the new classification approaches appear to be 
working fairly well.

Although the accuracy did not meet the targeted 85 per-
cent, the overall quality of the map was high. During the 2010 
land cover update cycle, the C-CAP team expended consider-
able effort to improve the mapping accuracy and consistency 
of development and wetland classes across the nation. As C-
CAP completes the next round of land cover updates, improve-
ments to other land cover classes will be incorporated as 
deemed appropriate. Each regional accuracy report highlights 
several of these areas for improvement.
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