RadEMSL

EMSL’s radiochemistry facility, RadEMSL, is designed to accelerate scientific discovery and deepen the understanding of the chemical fate and transport of radionuclides in terrestrial and subsurface ecosystems.

The facility offers experimental and computational tools uniquely suited for actinide chemistry studies. The spectroscopic and imaging instruments at this facility are ideally designed for the study of contaminated environmental materials, examination of radionuclide speciation and detection of chemical signatures. RadEMSL houses nuclear magnetic resonance instruments and surface science capabilities, such as X-ray photoelectron spectroscopy, electron microscopy, electron microprobe, transmission electron microscopy and scanning electron microscopy. RadEMSL users also have access to expert computational, modeling and simulation resources and support.

The facility provides an environment where multiple experimental approaches are encouraged. Investigating problems at an integrated, cross-disciplinary level encourages holistic understanding, which ultimately provides policy makers the information they need to make sound remediation choices.

Like all of EMSL's capabilities, those housed in RadEMSL are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Research conducted in the annex requires special information and handling. Prior to submitting a proposal, potential users should familiarize themselves with the guidance for using and shipping radioactive material to the annex.

RadEMSL videos on EMSL's YouTube channel - Learn about the individual instruments in the facility and specifically how they advance subsurface and terrestrial ecosystem science.

And don't miss the virtual tour of RadEMSL.

Additional Information:

EMSL’s radiochemistry facility, RadEMSL, is designed to accelerate scientific discovery and deepen the understanding of the chemical fate and transport of radionuclides in terrestrial and subsurface ecosystems.

The facility offers experimental and computational tools uniquely suited for actinide chemistry studies. The spectroscopic and imaging instruments at this facility are ideally designed for the study of contaminated environmental materials, examination of radionuclide speciation and detection of chemical signatures. RadEMSL houses nuclear magnetic resonance instruments and surface science capabilities, such as X-ray photoelectron spectroscopy, electron microscopy, electron microprobe, transmission electron microscopy and scanning electron microscopy. RadEMSL users also have access to expert computational, modeling and simulation resources and support.

The facility provides an environment where multiple experimental approaches are encouraged. Investigating problems at an integrated, cross-disciplinary level encourages holistic understanding, which ultimately provides policy makers the information they need to make sound remediation choices.

Like all of EMSL's capabilities, those housed in RadEMSL are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Research conducted in the annex requires special information and handling. Prior to submitting a proposal, potential users should familiarize themselves with the guidance for using and shipping radioactive material to the annex.

RadEMSL videos on EMSL's YouTube channel - Learn about the individual instruments in the facility and specifically how they advance subsurface and terrestrial ecosystem science.

And don't miss the virtual tour of RadEMSL.

Additional Information:

Microbial mineral colonization across a subsurface redox transition zone.

Abstract: 

Thisstudyemployed16SrRNAgeneampliconpyrosequencingtoexaminethehypothesisthatchemolithotrophicFe(II)-oxidizing bacteria(FeOB)would preferentially colonizetheFe(II)-bearing mineral biotite compared to quartz sand whenthe minerals were incubated in situ within a subsurface redox transition zone(RTZ) at the Hanford 300 Area site in Richland, WA, USA.The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediment sand groundwater (Benzineetal.,2013). Sterilized portions of sand+biotite or sand alone were incubated in situ for 5 months within a multilevel sampling(MLS) apparatus thats pannedaca. 2-minterval across the RTZ in two separate groundwater wells.Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments.Both mineral-associated and groundwater communities were dominated by heterotrophictaxa, with organisms from the Pseudomonadaceae accountingforupto70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism(including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophictaxa within 300 Area sediments and ground water.Although heterotrophic organisms clearly dominated the colonized minerals,several putativelithotrophic (NH4+,H2,Fe(II),andHS−oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.

Citation: 
Converse B, JP McKinley, CT Resch, and EE Roden.2015."Microbial mineral colonization across a subsurface redox transition zone."Frontiers in Microbiology 6:858. doi:10.3389/fmicb.2015.00858
Authors: 
B Converse
JP McKinley
CT Resch
EE Roden
Facility: 
Volume: 
Issue: 
Pages: 
Publication year: 
2015

Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.

Abstract: 

Despite the regular occurrence of both magnetite and iron-metabolizing bacteria in the same environments, it is currently unknown whether the iron(II) and iron(III) in magnetite can be cycled between different bacteria and whether or how magnetic properties are affected by this metabolic activity. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizer Rhodopseudomonas palustris TIE-1 can oxidize solid-phase magnetite nanoparticles using light energy, leading to a decrease in the measured magnetic susceptibility (MS). This process likely occurs at the surface and is reversible in the dark by the Fe(III)-reducer Geobacter sulfurreducens resulting in an increase in MS. These results show that iron ions bound in highly crystalline mineral magnetite are bioavailable as electron stores and electron sinks under varying environmental conditions, making magnetite a potential “biogeobattery” during day/night cycles. These findings are relevant for environmental studies and reinforce the impact of microbial redox processes on the global iron cycle.

Citation: 
Byrne J, N Klueglein, CI Pearce, KM Rosso, E Appel, and A Kappler.2015."Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria."Science 347(6229):1473-1476. doi:10.1126/science.aaa4834
Authors: 
M Kevin
Byrne J
N Klueglein
CI Pearce
KM Rosso
E Appel
A Kappler
Facility: 
Volume: 
347
Issue: 
6229
Pages: 
1473-1476
Publication year: 
2015

Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.

Abstract: 

Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.

Citation: 
Tfaily MM, RK Chu, N Tolic, KM Roscioli, CR Anderton, L Pasa-Tolic, EW Robinson, and NJ Hess.2015."Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry."Analytical Chemistry 87(10):5206-5215. doi:10.1021/acs.analchem.5b00116
Authors: 
M Malak
Nikola Tolic
Ljiljana Pasa-Tolic
Errol W Robinson
Nancy J Hess
Tfaily MM
RK Chu
N Tolic
KM Roscioli
CR Anderton
L Pasa-Tolic
EW Robinson
NJ Hess
Capabilities: 
Volume: 
87
Issue: 
10
Pages: 
5206-5215
Publication year: 
2015

Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials.

Abstract: 

This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

Citation: 
Liu C, Y Liu, SN Kerisit, and JM Zachara.2015."Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials."Reviews in Mineralogy and Geochemistry 80(1):191-216. doi:10.2138/rmg.2015.80.06
Authors: 
Liu Chongxuan
Liu C
Y Liu
SN Kerisit
JM Zachara
Facility: 
Volume: 
80
Issue: 
1
Pages: 
191-216
Publication year: 
2015

Effect of Graphene with Nanopores on Metal Clusters.

Abstract: 

Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).

Citation: 
Zhou H, X Chen, L Wang, X Zhong, G Zhuang, X Li, D Mei, and J Wang.2015."Effect of Graphene with Nanopores on Metal Clusters."Physical Chemistry Chemical Physics. PCCP 17(37):24420-24426. doi:10.1039/c5cp04368a
Authors: 
H Zhou
X Chen
L Wang
X Zhong
G Zhuang
X Li
D Mei
J Wang
Capabilities: 
Volume: 
17
Issue: 
37
Pages: 
24420-24426
Publication year: 
2015

Dynamic Structural Changes of SiO2 Supported Pt−Ni Bimetallic Catalysts over Redox Treatments Revealed by NMR and EPR.

Abstract: 

SiO2 supported Pt−Ni bimetallic catalysts with different nickel loadings were prepared and their structural changes after redox treatments were studied by XRD, NMR, and EPR. It is found that the paramagnetic Ni species are mainly located on the surface of silica lattice. The relaxation of detected 29Si nuclei in our samples is mainly governed by a spin-diffusion mechanism. The paramagnetic effects are reflected in the spin−lattice relaxation of Q4 species, with the oxidized samples presenting faster relaxation rates than the corresponding reduced ones. Meanwhile the Q3 species, which are in close contact with the paramagnetic nickel ions, are “spectrally invisible”. In reducing atmosphere Ni gradually diffuses into Pt NPs to form PtNi alloys. While under oxidization treatment, the alloyed Ni atoms migrate outward from the core of Pt NPs and are oxidized. The main EPR spectrum results from reduced nickel species, and the reduced samples show stronger EPR signal than the corresponding oxidized ones. However, in the reduced samples, the superparamagnetic or ferromagnetic metallic Ni particles were inside the PtNi NPs, making their influence on the 29Si relaxation in the SiO2 support weaker than the oxidized samples.

Citation: 
Xu S, ED Walter, Z Zhao, MY Hu, X Han, JZ Hu, and X Bao.2015."Dynamic Structural Changes of SiO2 Supported Pt?Ni Bimetallic Catalysts over Redox Treatments Revealed by NMR and EPR."Journal of Physical Chemistry C 119(36):21219-21226. doi:10.1021/acs.jpcc.5b06344
Authors: 
Xu S
ED Walter
Z Zhao
MY Hu
X Han
JZ Hu
X Bao
Capabilities: 
Volume: 
119
Issue: 
36
Pages: 
21219-21226
Publication year: 
2015

Pages

Instruments

Highlighted Research Applications EMSL's Bruker wide-bore 750 MHz solids/liquids spectrometer is dedicated to radiological and environmental...
Custodian(s): Nancy Washton
The Bruker EMX electron paramagnetic resonance (EPR) spectrometer performs continuous-wave magnetic resonance using electron spins to selectively...
Custodian(s): Eric Walter
Housed in EMSL's RadEMSL (Radiochemistry Annex), the field emission electron microprobe (EMP) enables chemical analysis and imaging of radionuclides...
Custodian(s): Bruce Arey
EMSL's Digital Instruments Radiological BioScope™ Atomic Force Microscope (AFM) allows radiological samples to be examined in fluids or air with...
Custodian(s): Kevin M. Rosso
The environmental scanning electron microscope (ESEM) is a new-generation SEM that can image samples under controlled environments and temperatures...
Custodian(s): Bruce Arey, Scott Lea

Science Highlights

Posted: September 22, 2016
Plutonium is a highly complex element. Scientists at Pacific Northwest National Laboratory and Washington State University used RadEMSL, EMSL’s...
Posted: March 22, 2016
The Science A recent study examined in unprecedented detail the structural and thermodynamic properties of uranium (U(v)) containing compounds...
Posted: September 22, 2015
The Science Uranium dioxide (UO2) contains the less soluble and immobile form of uranium in nature, so it is the desired end product of...
Posted: July 31, 2015
Corrosion in uranium dioxide, a major component of fuel rods in nuclear reactors, causes the rods to expand creating problems during routine...
Posted: April 14, 2015
The Science Scientists found the incorporation of neptunium (V) (NpO2+, neptunyl) and uranium (VI) (UO22+, uranyl) in a variety of mineral...

Instruments

There are no related projects at this time.

Related Videos