PRINCIPLE #4. CONSISTENCY IN REPORTING AFO AIR EMISSIONS MITIGATION PRACTICES

Hosted by: USDA-agricultural Air Quality Task Force

Location: EPA RTP NC

Date: Sept 27-18, 2010

TEAM . . . THINK TANK . . . THINK BASIN

- Robert Burns, PhD, University of Tennessee (Lead)
- David Schmidt, University of Minnesota
- Hongwei Xin, PhD, Iowa State University
- Hong Li, PhD, Iowa State University
- Richard Gates, PhD, University of Illinois

ORIGINAL TASK

- Discuss key components of mitigation practices including
 - System efficiency
 - Mitigating mechanism
 - Mitigation efficiency
 - Efficacy of emission reduction
 - Cost effectiveness
 - Limitations of application

PAPER OUTLINE

- Describe the need for reporting consistency
- Example "Standardized Reporting Framework"
- Resources required to finalize such a Framework

NEED FOR STANDARDIZATION

- There is a recognized need to reduce air emissions to meet federal or state standards and public demands
- To meet this need there has been a significant amount of effort in the private and public sector to develop mitigation technologies or strategies
- Regulators, farmers and the public need assurances that the anticipated emission reductions from these technologies are achieved in the field

MITIGATION METHODS

Pre-generation

- Building design changes (e.g. mechanical ventilation)
- Building ventilation system changes (e.g. evaporative cooling)
- Integrated manure treatment systems (e.g. belt systems)
- Diet manipulation (e.g. phase feeding)
- Management techniques (e.g. litter management)
- Post-generation
 - Manure storage covers
 - Physical, chemical or biological filtration systems
- Progression from "mitigation technique" to standard practice such as phase feeding in swine production

QUANTIFICATION OF MITIGATION

- Comparison to Baseline
 - What is baseline?

GATES ET AL. (2008)

Reference		Stocking l) Density	Flocks	Litter	Mean ER(g/b/d)	Location
1	52	12.7	3	New	0.49	KY
1	52	12.2	9	Built-up	0.62	
2	42	14.7	10	New	0.47	KY, PA
2	42	14.7	12	Built-up	0.65	
2	49	13.4	24	Built-up	0.76	
2	63	10.8	20	Built-up	0.98	
3	42	16.1	9	Built-up	0.92	TN,
4	49	13.5	12	Built-up	0.63	TX
5	42	20	1	Built-up	1.18	DE

- 1) Burns et al 2007
- 2) Wheeler et al 2006
- 3) Burns et al 2003
- 4) Lacey et al 2003
- 5) Siefert et al 2004

QUANTIFICATION OF MITIGATION

- Comparison to Baseline
 - What is baseline?
 - Burns 2007,
 - Average ammonia emission range of 0.49 to 1.18 grams/bird/day with each building having its own diurnal, seasonal and flock cycle variation
 - What should be the baseline?

Comparison to Control

- Within Farm Variation
 - Diurnal
 - Seasonal
 - Management
- Between Farm Variation

WHICH FARM SHOULD YOU USE FOR CONTROL?

Reference		Stocking l) Density	Flocks	Litter	Mean ER(g/b/d)	Location
1	52	12.7	3	New	0.49	KY
1	52	12.2	9	Built-up	0.62	
2	42	14.7	10	New	0.47	KY, PA
2	42	14.7	12	Built-up	0.65	
2	49	13.4	24	Built-up	0.76	
2	63	10.8	20	Built-up	0.98	
3	42	16.1	9	Built-up	0.92	TN,
4	49	13.5	12	Built-up	0.63	TX
5	42	20	1	Built-up	1.18	DE

- 1) Burns et al 2007
- 2) Wheeler et al 2006
- 3) Burns et al 2003
- 4) Lacey et al 2003
- 5) Siefert et al 2004

Figure S2A_2. 2003 NH₃ Emission Rates - Site 2, Batch 2, 3, 4, 5 & 6

DEEP PITTED FINISHING BARN H2S FLUX

Units, Measurement, and Sampling Protocols

- Principles 1,2, and 3
 - Report in appropriate (and likely multiple) units
 - Report all measureable factors
 - Continuous or intermittent measurements
 - Measurement equipment
 - Quantify all variation and uncertainty
- Need to accurately verify technology claims quickly and inexpensively – tradeoffs between accuracy and testing cost
- Additional Questions
 - What happens when all testing and reporting criteria are not met?
 - What about pilot and lab testing of a mitigation technology

BUILDING "CONSUMER" CONFIDENCE

- Certification or Standard Testing
 - Energy rating for appliances (mileage rates, etc.)
 - EPA Environmental Verification Testing Program
 - GHG emissions and carbon credits
 - Ammonia Green Label Program in Netherlands

EXAMPLE OF STANDARD PROTOCOL (MOSQUERA AND OGINK 2006)

- Four farms
- Grouped by design and critical management factors
- Six sampling events over 12 months
 - e.g. Jan, March, May, July, Sept, Nov
- Specific measurement equipment
 - Airflow
 - Gas Measurement
- Statistical analysis

BUILDING "CONSUMER" CONFIDENCE

- Certification or Standard Testing Energy rating for appliances
 - Other Environmental Technologies through the EPA Environmental Verification Testing Program
 - GHG emissions and carbon credits
 - Ammonia Green Label Program in Netherlands
- "Review Panels"
 - Health Risk Values
 - Environmental regulations
 - Medical procedures or treatments

BUILDING "CONSUMER" CONFIDENCE

- Certification or Standard Testing Energy rating for appliances
 - Other Environmental Technologies through the EPA Environmental Verification Testing Program
 - GHG emissions and carbon credits
 - Ammonia Green Label Program in Netherlands
- "Review Panels"
 - Health Risk Values
 - Environmental regulations
 - Medical procedures or treatments
- Standardized Reporting . . .

General Information

- Make and model of equipment tested
- Mode of action
- Possible unintended consequences
- Anticipated capital and operation costs reported in appropriate units

Example: Air Treatment using Biofiltration

- UMN Design Specs with lava rock media (~1 inch dia.)
- Physical filtration and biological transformation
- Potential for GHG emissions?
- Estimated Cost: \$XX per pig space, \$XX per pig lb of pollutant, \$XX per pound of meat produced

Experimental Design

- Hypothesis and test statistics
 - Note that the experimental design for testing technologies is specific to the type of technology tested

Example

- Pre- and Post-biofilter testing on pit fan exhaust stream from three farms in SE MN. Two biofilters per site. Tested 3 times over 12 month period for ammonia, hydrogen sulfide and odor reductions.
- Captured gasses in tedlar bag using using a vacuum box
- Analyzed using XYZ equipment

- Raw Data Reporting (Principle 2)
- Example

Date	Farm ID	Biofilter ID	In	Out	Notes

- Statistical Analysis (Principle 3)
- Example:
 - 75% reduction for ammonia (p<0.01)
 - 85% reduction in hydrogen sulfide (p<0.01)
 - 50% odor reduction at p(<0.1)
 - Reductions on pit fan ventilation air only. This would occur only during minimum ventilation periods.
 - Biofilter performance was a function of depth of manure in pit with better reductions when manure level was higher

SUMMARY AND ADDITIONAL THOUGHTS

- There is a need to improve "consumer" confidence in mitigation technologies
- We must be quicker at moving mitigation technologies to market through quick, inexpensive, and accurate testing
- Development of a Standard Reporting Framework is one option
- Such a framework must be integrated with the information presented in Principles 1,2, and 3
- Reporting and Protocols would not be significantly different than testing for the "assigning" of an Emission Rate for a source

SUMMARY AND ADDITIONAL THOUGHTS

- Developing and implementing such a framework requires
 - Leadership
 - Cooperation among stakeholders and disciplines
 - An organizational framework
 - Professional society (ASABE, AWMA)
 - USDA collaborative research groups
 - Integrated teams assembled through AFRI grants
 - Significant resources
 - Methods development research is typically not funded
 - This is not Rocket Science it is much more complicated

ADDITIONS BY OTHER TEAM MEMBERS?

THANKS!

PROVIDE SOME CONTEXT

- Federal Register Vol 75 No 155 Thursday August 12,
 2010
- FAO/WHO group regarding food safety and subgroup on veterinary drug residuals in food.
 - Discussion paper on methods of analysis for residues of veterinary drugs in foods.
 - Draft priority list of veterinary drugs requiring evaluation or reevaluation
 - Factors related to the establishment of Acceptable Dietary Intake (ADI) and the process of recommending MRLs.
 - Discussion paper on sampling plan for residue control for aquatic animal products