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ORIGINAL TASKORIGINAL TASK

 To describe procedures and techniques for 
i  i i l d  d  h  ill l d processing emissions-related raw data that will lead 

to reduced uncertainty of resultant emissions data. 
Specific objectives:p j

 To describe procedures and protocols for determining 
instantaneous and daily emissions from raw data;instantaneous and daily emissions from raw data;

 To describe backup checks of source ventilation rate to 
enhance quality on resultant emissions; q y ;

 To illustrate the procedure of assessing emissions 
uncertainty through error analysis.y g y



PAPER OUTLINEPAPER OUTLINE
0. Governing equations for emissions rate (ER) 
1 D t i i  ER f  lti l  l ti  i  i l  1. Determining ER from multiple locations in single 

(large) building
2. Daily ER from instantaneous ER vs. from daily mean 

ventilation rate (VR) x daily mean concentration
3. Daily & cumulative ER per animal or per animal 

marketedmarketed
4. Handling methodology for missing within-day data
5. Use of CO2 balance as indirect check of VR
6. Use of mass balance for ER data quality check
7. ER estimates from dynamic flux chamber
8 Uncertainty analysis for ER estimates8. Uncertainty analysis for ER estimates
9. Continuous vs strategic periodic measurements



EMISSIONS RATE EQUATION
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1. DETERMINATION OF SOURCE ER 
FROM MULTIPLE-LOCATION
MEASUREMENTS
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MULTIPLE-LOCATION SAMPLING:
INTERPOLATION
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Dynamic concentrations between multiple locations over 
time may be obtained through interpolation.



MULTIPLE-LOCATION SAMPLING:
WITHIN SAMPLE INTERPOLATION ALIGN

VRWITH VR
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2. DETERMINATION OF DAILY EMISSIONS OF A
CONSTITUENT FROM INSTANTANEOUS ERS VS. 

D M C DFROM DAILY MEAN CONCENTRATION AND DAILY
MEAN VR
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Care needs to be taken when using daily mean concentration and mean 
ventilation rate to determine daily emissions The method is valid onlyventilation rate to determine daily emissions. The method is valid only 
when one or both of the two variables (VR or concentration) remain 
relatively constant. 



3. DETERMINATION OF DAILY AND
CUMULATIVE EMISSIONS PER ANIMALCUMULATIVE EMISSIONS PER ANIMAL
OR PER ANIMAL MARKETED

Bird Age, d Bird 
Population

Daily ER, 
lb/barn d

Cumulative ER, 
lb/barn

Cumulative ER, 
g/bird marketedPopulation lb/barn-d lb/barn g/bird marketed

1 25695 0.73 0.73 0.01 
2 25680 0.93 1.67 0.03
3 25665 1.03 2.69 0.05
4 25646 1.12 3.82 0.07
5 25635 1 36 5 17 0 095 25635 1.36 5.17 0.09
6 25622 1.17 6.34 0.11
7 25610 0.86 7.20 0.13
8 25596 1.20 8.39 0.15
9 25587 2.25 10.6 0.19 
10 25578 4.41 15.1 0.27
11 25561 5.18 20.2 0.36
12 25550 6.26 26.5 0.47
13 25540 6.76 33.3 0.59 
14 25523 5.31 38.6 0.69

When dealing with animals of highly variable body weight (e.g., meat-
type animals), use of cumulative emissions per animal or animal unit 
(500 kg body weight) marketed is more adequate than daily emissions

15 25509 7.38 45.9 0.82
16 25499 8.11 54.1 0.96
17 25486 12.5 66.6 1.18 
18 25472 18.8 85.3 1.52
19 25449 22.5 107.8 1.92

(500 kg body weight) marketed is more adequate than daily emissions 
per animal or AU

20 25433 22.7 130.6 2.33
21 25417 23.8 154.4 2.75 

 



4. HANDLING OF MISSING WITHIN-DAY
C D DCONCENTRATION DATA AND DAILY
EMISSION DATA

Time-weighted average, as opposed to arithmetic mean, should be 
used when estimating daily emissions where there are missing 
hourly ER data and there exist circadian patterns in the emissions.hourly ER data and there exist circadian patterns in the emissions.
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5  U CO B I5. USE OF CO2 BALANCE FOR INDIRECT
ESTIMATION OF VR
o Indirect determination of VR through CO2
balance can provide a useful backup or check for 
directly determined building VR and its use isdirectly determined building VR, and its use is 
encouraged when possible. 

o Metabolic heat production data reflecting the 
current animal genetics, nutrition and environment 
are essential to the success of the method. 

o The method may not work well when difference 
in CO concentration between the exhaust andin CO2 concentration between the exhaust and 
incoming air streams is less than 200 PPM.



6  U M B E6. USE OF MASS BALANCE TO ESTIMATE
EMISSIONS OR CHECK DATA QUALITY

o Mass balance should be considered and included, 
when possible, as a check to emission values p ,
obtained from flow integration method. 

o Precise mass balance can be a logisticalo Precise mass balance can be a logistical 
challenge on commercial facilities.



7. PRESENTATION OF GASEOUS
E O DEMISSIONS OBTAINED WITH DYNAMIC
FLUX CHAMBERS

o ER measured with DFC 
can be greatly affected by air 
exchange rate (ACH) 
th h DFCthrough DFC

o Recommend that air flow 
rate(s) through the DFC be ( ) g
specified when reporting 
emissions data obtained with 
this method

o Recommend that discussion be initiated to standardize air exchange 
rate(s) (ACH) when using a DFC. Although the measured values may 
still not reflect the actual ER, at least data from different studies share 
some common ground for comparison.



8. UNCERTAINTY OF COMPONENT
MEASUREMENTS AND RESULTANT ER 
ESTIMATION
Uncertainty of an emission value should be estimated through error analysis 
and provided when reporting emissions. For recent project we found that 
unless VR uncertainty can be controlled below 10%, concentration 
uncertainty of 0.5% vs. 5% makes little difference in the resultant emission 
rate uncertainty
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9. CONTINUOUS VS. STRATEGIC PERIODIC
MEASUREMENTS

o Strategic, intermittent sampling, as opposed to 
continuous monitoring, coupled with statistical modeling 
may provide viable means to significantly reduce time andmay provide viable means to significantly reduce time and 
resource requirements for estimating annual emissions. 

This approach co ld increase the abilit to sample moreo This approach could increase the ability to sample more 
farms, which in turn enhances representativeness of the 
data. 
o Variance = Var(measurement uncertainty) 

+ Var(within house)
+ Var(between houses) Var(between houses)



DISCUSSION
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