

City of Henderson Department of Public Works, Engineering Division Land Development and Flood Control

Hydrology Study Submittal Checklist and Application

Hydrology Study Title SNWA River Mountain Solar

Date _ 04-21-2015

Submittal Type (Check One):

□ New Hydrology Study

- □ Supplemental (information for a previous submittal)
- Addendum (response to comments)
- Update (after original approval)

The items listed below are the minimum required for submittal. For adequate review, all items identified in the *Clark County Regional Flood Control District Hydrologic Criteria and Drainage Design Manual* must be included. Note: Attention to the City of Henderson section of the manual is critical.

For Addendums, Updates, and Supplemental Submittals:

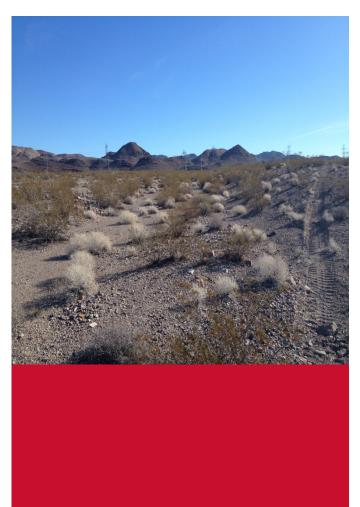
Original Study Number. PHYD - 2015730019

All submittals *must* include:

- \Box This form;
- One (1) copy of the hydrology study, addendum, or update; including
- \square One (1) copy of related maps folded to 8 $\frac{1}{2}$ x 11"
- Standard Form 1, wet stamped, signed and dated by a State of Nevada Professional Engineer and bound as the first page of the study, addendum, or update.
- Letter signed by the engineer certifying that all items on the CD match the paper versions and bound into the study behind Standard Form 1 (or 2, when required).
- One (1) CD containing PDF versions of all of the above items.

New submittals *must* also include:

- □ Community Development Permit Number: C <u>UP-14</u> <u>500508-A1</u>
 ◆ (Tentative Map, Design Review, etc.)
- Completed Standard Form 2, bound into the study behind Standard Form 1
- □ Submittal fee based on acreage:


\$750.00 – Up to 5 Acres \$2000.00 – 5.1 to 320 Acres \$4000.00 – 320.1 to 2560 Acres \$6000.00 – 2560.1+ Acres

Addendum submittals *must* also include:

- Copy of City of Henderson comment letter, bound into each copy behind Standard Form 1.
- No charge for first addendum. **\$400.00 submittal fee for each subsequent addendum.**

Update submittals *must* also include:

- **Within** one (1) year of original approval: \$400 submittal fee.
- **Over** one (1) year from original approval: Fee based upon acreage, see above.
- Copy of approval letter for original study bound into each copy behind Standard Form 1

Technical Drainage Study

Southern Nevada Water Authority River Mountains Solar

1299 Burkholder Blvd

Henderson, NV 89015

April 21, 2015

DRAINAGE STUDY INFORMATION FORM Name of Development: a) Descriptive (Cross Streets) North/South: Elatard: Date: 4/21/15 Location of Development: a) Descriptive (Cross Streets) North/South: Elatard: Date: 4/21/15 Location of Development: a) Descriptive (Cross Streets) North/South: Elatard: Date: 4/21/15 Location of Development: a) Descriptive (Cross Streets) North/South: Elatard: Date: 4/21/15 Location of Development: a) Descriptive (Cross Streets) North/South: Elatard: Range: 63 E () APN: 172-15-301-001 FMail Address: Altard: Streets Address: 1299 Richard Bunker Ave, Henderson, NV 99015 Streets Contact Person-Name: Mark: Fountain Telephone No:: 602-522-7700 Firm: HDR Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Lead Development/Land Disturbance Process: Type of Land Development/Land Disturbance Process: 2 a cres 2 acres 2.1 appende Land Area: At Site; 127 acres Being Developed/Disturbed; 92 acres 2.1 appendix dupter development/Land Disturbance Process: 2 acres 2.2 appendix dupter Property located in a designated FEMA Flood Hazard Area? Yes** No	Ну	DROLOGIC	CRITERIA AND	DRAINAGI	e manu	AL
Location of Development: a) Descriptive (Cross Streets) North/South: <u>Richard Bunker Ave</u> , <u>East/West</u> : <u>Burkholder Boulevard</u> b) Section: 14 Township:22 S Range: 63 E c) APN:	DR	AINAGE S	STUDY INFO	RMAT	ION FC	DRM
Location of Development: a) Descriptive (Cross Streets) North/South: <u>Richard Bunker Ave</u> , <u>East/West</u> : <u>Burkholder Boulevard</u> b) Section: 14 Township:22 S Range: 63 E c) APN:	Name of Development: SNWA Riv	ver Mountai	ln Solar		Date:	4/21/15
b) Section: 14 Township: 22 S Range: 63 E c) APN: 179-15-301-001 Name of Owner: United States of America c/o Southern Nevada Water Authority Telephone No:: 702-856-3500 Fax No: E-Mail Address: Address: 1299 Richard Bunker Ave, Henderson, NV 89015 Contact Person-Name: Mark Fountain Telephone No:: 602-522-7700 * Mail Address: Mark. Fountain®hdrinc.com Fax No:: 602-522-7707 Firm: HDR Address:) North/South: <u>Rich</u>			
Name of Owner: United States of America c/o Southern Nevada Water Authority Telephone No.: 702-856-3500 Fax No.: E-Mail Address: Address: 1239 Richard Bunker Ave, Henderson, NV 89015 Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 *E-Mail Address: Mark. Fountain@ndrinc.com Fax No.: 602-522-7707 Firm: HDR Address: Mark. Fountain@ndrinc.com Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522 Fax No Fax No. Fax No.: 602-522 Fax No Fax No.: 602-522-770 Fax No.: 602-522 Fax No Fax No. Fax No Fax No Fax No. Fax No.: 602-522 Fax No Fax No Fax			East/West: Burkl	lolder Bo	oulevard	f
Name of Owner: United States of America c/o Southern Nevada Water Authority Telephone No.: 702-856-3500 Fax No.: E-Mail Address: Address: 1239 Richard Bunker Ave, Henderson, NV 89015 Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 *E-Mail Address: Mark. Fountain@ndrinc.com Fax No.: 602-522-7707 Firm: HDR Address: Mark. Fountain@ndrinc.com Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522-7700 Fax No.: 602-522 Fax No Fax No. Fax No.: 602-522 Fax No Fax No.: 602-522-770 Fax No.: 602-522 Fax No Fax No. Fax No Fax No Fax No. Fax No.: 602-522 Fax No Fax No Fax	b) Section	:14	Township: 22	S	Range	. 63 E
Name of Owner: United States of America c/o Southern Nevada Water Authority Telephone No.: 702-856-3500 Fax No.: E-Mail Address: Address: 1239 Richard Bunker Ave, Henderson, NV 89015 Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 *E-Mail Address: Mark. Fountain@hdrinc.com Fax No.: 602-522-7707 Firm: HDR Address: Mark. Fountain@hdrinc.com Fax No.: 602-522-7700 Large Parcel Map Par	c) APN :	179-15-301	-001			
Telephone No: 702-856-3500 Fax No: E-Mail Address: Address: 1299 Richard Bunker Ave, Henderson, NV 89015 Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 Film: FMail Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process: Recoring Subdivision Map Parcel Map Planned Unit Development Other (Please specify below) Large Parcel Map X Building Permit 1. Total Owned Land Area: At Site: 127 a Cres Being Developed/Disturbed: 92 a Cres 2.1s a portion or all of the subject property located in a designated FEMA Flood Haard Area? Ves* INO 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Ves** INO 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject streetiste: INO If yes, please identify documentation: 6. Has the site drainage been evaluated in the past? If YES INO NO If yes, please identify documentation: 8. If Known, please briefly identify the proposed discharge point(s) of runoff from the site: West side and north side of the						
Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 * E-Mail Address: Mark.Fountain@hdrinc.com Fax No.: 602-522-7707 Firm: HDR 602-522-7707 Firm: Bail Clearing and Grading Only Parcel Map Yestic Studiyision Map Control Large Parcel Map X Building Permit 1. Total Owned Land Area: At Site: 127 a Cres Being Developed/Disturbed: 92 a Cres 2. is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No A Proposed Upeo of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: No Hypeosed Upeo of development (Residential, Commercial, Etc.): Solar generation 6. Hos the site drainage been evaluated in the past? YES NO If yes, please identify documentation: R. Hyper Mountains & Water Treatment Facility Techrinical Drainage Study The Nown, please briefly id					la Water	r Authority
Contact Person-Name: Mark Fountain Telephone No.: 602-522-7700 * E-Mail Address: Mark Fountain@hdrinc.com Fax No.: 602-522-7707 Firm: HDR 602-522-7707 Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process: Being Developed/Disturbed: Parcel Map X Building Permit 1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 acres 2. is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes* No A Proposed Upeo of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: No Hypeosed Upeo of development (Residential, Commercial, Etc.): Solar generation 6. Hos the site drainage been evaluated in the past? Y SE NO If yes, please identify documentation: R. Hypeosed Upeo of development (Residential, Commercial, Etc.): Solar generation<	Telephone No.: 702-856-3500	Fax No.:	E-Mai	Address:		
Firm: HDR Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process:	Address:1299 Richard Bur	nker Ave, H	lenderson, NV	89015		
Firm: HDR Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process:	Mark For	ntain			602-	522-7700
Firm: HDR Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process: Rezoning Subdivision Map Clearing and Grading Only Parcel Map Planned Unit Development Other (Please specify below) Large Parcel Map X Building Permit Other (Please specify below) 1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 acres 2. Is a portion or all of the subject property located in a designated ERMA Flood Hazard Area? Yes** INO 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** INO 6. Approximate upstream land area which drains to the subject site: Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: Solar generation Solar generation 6. Has the site drainage been evaluated in the past? EY FS INO If yes, please identify documentation: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site: west side and north side of the Site 8. Briefly describe your proposed schedule for the subject property. This form may provide sufficient information to serve as the Conceptual Drainage Study. YMERER Sin	* 5 Mail Addresse Mark Founta	in@hdrinc.(COM	Telephone I	No.: 002-	-7707
Address: 3200 E Camelback Road, Suite 350, Phoenix, AZ 85018 Type of Land Development/Land Disturbance Process: Rezoning Subdivision Map Clearing and Grading Only Parcel Map Planned Unit Development Other (Please specify below) 1. Total Owned Land Area: At Site; 127 aCTES Being Developed/Disturbed; 92 aCTES 2. is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Control District Master Planned Facility? Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solary section Solary Solary 6. Has the site drainage been evaluated in the past? NO If yes, please identify documentation:: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site:	Firm: HDR			Fax_No.:	002-522	- / / 0 /
Type of Land Development/Land Disturbance Process: Subdivision Map Clearing and Grading Only Parcel Map Planned Unit Development Other (Please specify below) Large Parcel Map X Building Permit 92 accres 1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 accres 2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Ves** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: 6. Has the site drainage been evaluated in the past? Yes No 6. Has the site drainage been evaluated in the past? YES NO Mo If yes, please identify documentation: River Mountains Water Treatment Facility Technical Drainage Study 7. 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site: west side and north side of the Site 8. Briefly describe your proposed schedule for the subject project: Grading plan submittal to City of Henderson on May 5th, IFC drawings to contractor on June 1 Submit this form as part of the required drainage	Address: 3200 E Camelb	ack Road.	Suite 350, Ph	oenix. A	Z 85018	
Rezoning Subdivision Map Clearing and Grading Only Parcel Map Planned Unit Development Other (Please specify below) 1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 acres 2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solary Setting 6. Has the site drainage been evaluated in the past? YES No If yes, please identify documentation:: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site: west side and north side of the Site 8. Briefly describe your proposed schedule for the subject project: Grading plan submittal to City of Henderson on May 5th, IFC drawings to contractor on June 1 *New Required Field *New Required Field Standard Control District is required. *New Required Field </td <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>				,		
Parcel Map Planned Unit Development Other (Please specify below) Large Parcel Map X Building Permit Other (Please specify below) 1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 acres 2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Ves** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Control District Master Planned Facility? Ves** No 4. Proposed type of development (Residential, Commercial, Etc.):: Solar generation Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: Solar generation Solar generation 6. Has the site drainage been evaluated in the past? BY YES NO NO If yes, please identify documentation:: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site: west side and north side of the Site Submit this form as part of the required drainage study to the local entity which has jurisdiction over the subject property. This form may provide sufficient information to serve as the Conceptual Drainage Study. No Submit this form as part of the required drainage study to the local entity which has jurisdiction over the subject property. This form may provi			Subdivision Map		Clearing a	and Grading Only
1. Total Owned Land Area: At Site: 127 acres Being Developed/Disturbed: 92 acres 2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: 6. Has the site drainage been evaluated in the past? No 6. Has the site drainage been evaluated in the past? Yes** No 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site: west side and north side of the Site 8. Briefly describe your proposed schedule for the subject project: Grading plan submittal to City of Henderson on May 5th, IFC drawings to contractor on June 1 1 New Required Field **Review and concurrence of the Clark County Regional Flood Control District is required. *Nown, or sead with the form as part of the required drainage study to the local entity which has jurisdiction over the subject property. This form may provide sufficient information to serve as the Conceptual Drainage Study. *New Required Field **Review and concurrence of the Clark County Regional Flood Control District is required. *Revision <td< td=""><td></td><td></td><td></td><td>ment</td><td>the second s</td><td></td></td<>				ment	the second s	
2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: Solar generation No 6. Has the site drainage been evaluated in the past? YES NO If yes, please identify documentation: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site:	Large Parcel Map	x	Building Permit		-	
2. Is a portion or all of the subject property located in a designated FEMA Flood Hazard Area? Yes** No 3. Is the property bordered or crossed by an existing or proposed Clark County Regional Flood Yes** No 4. Proposed type of development (Residential, Commercial, Etc.): Solar generation Solar generation 5. Approximate upstream land area which drains to the subject site: Solar generation No 6. Has the site drainage been evaluated in the past? YES NO If yes, please identify documentation: River Mountains Water Treatment Facility Technical Drainage Study 7. If known, please briefly identify the proposed discharge point(s) of runoff from the site:	1.5	7 0000-			0	2 acres
GINEER-S the subject property. This form may provide sufficient information to serve as the Conceptual Drainage Study. MARK A. FOUNTAIN FOUNTAIN FOUNTAIN Exp: 6/30/15 CIVIL Foundation Mark A. Foundation FOUNTAIN Foundation Exp: 6/30/15 CIVIL Foundation Mark A. Foundation Foundation Foundation CIVIL Foundation Mark A. Foundation Foundation Foundation Mark A. Foundation Foundation Foundation <	 Has the site drainage been evaluated River Mountains Water If known, please briefly identify the p west side and north Briefly describe your proposed sched 	l in the past? 図い r Treatment proposed discharge side of th lule for the subject	YES □ NO If yes, p Facility Teo point(s) of runoff from Site project: Grading	plan su	Drainage	e Study to City of
No. 2160 Local Entity File No. Engineer's Seal Local Entity File No. REFERENCE: STANDARD FORM 1	MGINEER.SIA	the subject prope Study. *New Require	rty. This form may provid d Field	le sufficient info	rmation to se	rve as the Conceptual Drainage ontrol District is required.
Image: Seal Algorithm Local Entity File No. REFERENCE: STANDARD FORM 1	Si & Exp: 4/24/10 8			Re	evision	Date
No. 2160 Local Entity File No. Engineer's Seal Local Entity File No. REFERENCE: STANDARD FORM 1	NO & CIVIL SO					
Indicases Indicases Engineer's Seal Local Entity File No. REFERENCE: STANDARD FORM 1	IN Y YOMAD A M					
REFERENCE: STANDARD FORM 1	10.210					
REFERENCE: STANDARD FORM 1	Engineer's Soal 4/2/2015		ntity File No.			
	Engineer's Seal		huty File NO.			
Updated 05/01/2008	REFERENCE:				STA	NDARD FORM 1

March 9, 2015

Mark A. Fountain, P.E. HDR 3200 E. Camelback Road, Ste. 350 Phoenix, AZ 85018

Re: Technical Drainage Study SNWA River Mountain Solar Permit Number: PHYD 2015730019

Dear Mr. Fountain:

This letter provides comments on the above referenced drainage study dated February 13, 2015. The City of Henderson reviewed this study and based on the documents submitted, we have the following comments:

- 1. The project site is located on and proposes to discharge to property under the jurisdiction of the Bureau of Reclamation. The engineer must coordinate with the Bureau of Reclamation for the proposed improvements.
- 2. The project proposes rip rap within what appears to be a power line easement at the northeast corner of the project (see sheet C-802). Documentation must be provided which indicates that this is allowed within the easement or written permission must be obtained from the easement grantee.
- 3. The Rational Method Hydrology calculations are based on rainfall for the McCarran Airport Rainfall Area. Per CCRFCD HCDDM Figure 513, the watershed does not lie within the McCarran Airport Rainfall Area. The hydrology and all subsequent calculations must be revised.
- 4. The Standard Form 4 must be revised as the overland flow length for several basins exceeds the 500 foot maximum per CCRFCD HCDDM Equation 602.
- 5. As proposed, the development of the site will increase runoff at the northwest corner of the site from 86 cfs to 133 cfs (more when the hydrology is revised per comment #3). This is an increase of 55%. A discussion of the impacts to downstream properties must be provided and additional may be necessary showing that downstream facilities can handle the increase in flow. If downstream properties and facilities cannot handle the additional flow, the design must be revised to mitigate the increase.

- 6. The design of the spreader basins must be revised to include a low flow outlet.
- 7. Figure 4, Existing Subbasin Map, must be revised to remove the proposed improvements from the map.
- 8. Figure 6, Proposed Subbasin Map, must be revised to address the following:
 - a. The bar scale distance increments are labeled incorrectly
 - b. The labels for the culvert inverts overwrite the text for P-A6, A-7-N, P-A11, PA-3, and for the flow rate at P-A8
- 9. A section or construction note must be provided for the swales adjacent to the site roadways to show how the flow is contained and conveyed along the roadway in subbasins B-2-S, B-4-S, A-6-S, and A-8-S.
- 10. Numerous culverts do not contain callouts to the rip rap sizes and grouting as determined in the calculations. Confirm all culvert outlet rip rap callouts are accurate.
- 11. The Engineers seal on the Standard Form 1 did not include all of the information required by the Nevada Administration Code. The seal must include the license expiration date, the signature of the engineer, and the date of signature. Please verify that all documents requiring an engineer's seal includes all of the required information.
- 12. The project proposes to use NDOT standard details. The appropriate details must be called out in the construction note or the details must be provided within the plan if the proposed improvement doesn't conform to the standard.
- 13. Provide a detailed response to any drainage study comments from other agencies in the next submittal (i.e. SNWA, CCPW, BOR, etc.).
- 14. The following grading plan comments must be addressed with the next submittal:
 - a. Sheet C-801: Revise the leader line for construction note 8 at P-A10 to be directed to the single culvert
 - b. Sheet C-801: Add the width to construction note 4 in subbasin A-10
 - c. Sheet C-801: Revise construction note to refer to Detail 3
 - d. Sheet C-802: Provide a construction note for the rip rap in subbasin OFF-D1
 - e. Sheet C-802: Provide construction note 7 for the channel upstream of OFF-D3 to indicate rip rap to be in agreement with the calculations
 - f. Sheet C-804: Show rip rap at P-A4 to agree with the calculations

Any work within washes or channels conveying jurisdictional Waters of the United States (e.g. Lower Las Vegas Wash), regardless of whether the flow is ephemeral or perennial, may require concurrence from the U.S. Army Corps of Engineers.

Mark A. Fountain, P.E. SNWA River Mountain Solar March 9, 2015 Page 3

Projects that disturb over one (1) acre or any area adjacent to a water way must submit to the Nevada Division of Environmental Protection: (1) a "Notice of Intent" to discharge that certifies a stormwater pollution prevention plan has been developed and is maintained on site, (2) a request for inclusion in the Stormwater General Permit No. NVR100000. A phased construction unit in a contiguous subdivision is considered under construction until paving, building construction or planting has covered all stripped or disturbed surface areas. For more information, including forms and applications contact the Nevada Division of Environmental Protection at http://ndep.nv.gov/bwpc/storm01.htm or call (775) 687-9429.

Please be aware that as additional information becomes available and/or restudies of Flood Insurance Studies are performed, the information submitted by the above named engineering firm may be superseded. Compliance with the regulatory elements and design standards specified in the <u>Uniform Regulations for the Control of Drainage</u> does not imply a guarantee that properties will be free from flooding or flood damage.

Please contact me if you have any questions concerning these comments.

Sincerely,

Albert J. Jankowiak, P.E., CFM Project Engineer II

Reviewer: Chris O. Stone, P.E., Willdan Engineering

Date:	Tuesday, April 21, 2015
Project:	SNWA River Mountains Solar Permit Number: PHYD 2015730019
To:	Albert J. Jankowiak, PE - City of Henderson
From:	Mark Fountain, PE, ENV SP, CFM
Subject:	Technical Drainage Study Review Comment Responses
Attachments	Attachment 1 – Bureau of Reclamation Review Letter

Memo

Dear Mr. Jankowiak, PE, CFM

A Technical Drainage study for the River Mountains Solar project was submitted to the City of Henderson on February 13, 2015. The following are responses addressing the comments we received from the City of Henderson on March 9, 2015. Comment responses from HDR are italicized.

1. The project site is located on and proposes to discharge to property under the jurisdiction of the Bureau of Reclamation. The engineer must coordinate with the Bureau of Reclamation for the proposed improvements.

A copy of the Drainage Study was provided to the Bureau of Reclamation (BOR) to have the proposed improvements reviewed. Attached is the response email we received from the BOR where it states that a technical review is not required as long as they are provided with written verification that the City of Henderson has reviewed and approved the Study.

2. The project proposes rip rap within what appears to be a power line easement at the northeast comer of the project (see sheet C-802). Documentation must be provided which indicates that this is allowed within the easement or written permission must be obtained from the easement grantee.

Riprap has been removed from this area. Plans have been updated to reflect this change (Sheet C-802).

hdrinc.com

 The Rational Method Hydrology calculations are based on rainfall for the McCarran Airport Rainfall Area. Per CCRFCD HCDDM Figure 513, the watershed does not lie within the McCarran Airport Rainfall Area. The hydrology and all subsequent calculations must be revised.

The hydrology calculations were revised using the Time-Intensity-Frequency curves found in section 500 of the CCRFCD HCDDM for the rainfall data outside of the McCarran Airport area. Calculations were based on the rainfall isopluvials found in Figures 501 – 512 within Appendix A – Hydrologic Calculations.

4. The Standard Form 4 must be revised as the overland flow length for several basins exceeds the 500 foot maximum per CCRFCD HCDDM Equation 602.

Overland flow lengths have been revised to meet the 500 foot maximum.

5. As proposed, the development of the site will increase runoff at the northwest corner of the site from 86 cfs to 133 cfs (more when the hydrology is revised per comment #3). This is an increase of 55%. A discussion of the impacts to downstream properties must be provided and additional may be necessary showing that downstream facilities can handle the increase in flow. If downstream properties and facilities cannot handle the additional flow, the design must be revised to mitigate the increase.

Per phone conversation with Mr. Albert Jankowiak on April 13, 2015, Section V-7 was pointed out as a discussion of the impacts, and per his advisement additional text was included. This text consists of acknowledging the flow increases, identifying the next facility downstream is 0.5-miles downstream, providing a statement that it is the engineers opinion that the increase in proposed flows will be attenuated due to the additional downstream tributary area and longer flow path, and a statement that there will be no adverse effect on these downstream facilities.

6. The design of the spreader basins must be revised to include a low flow outlet.

A drain was provided for each of the proposed spreader basins.

7. Figure 4, Existing Subbasin Map, must be revised to remove the proposed improvements from the map.

Figure 4 was revised to remove proposed improvements.

- 8. Figure 6, Proposed Subbasin Map, must be revised to address the following:
 - a. The bar scale distance increments are labeled incorrectly
 - b. The labels for the culvert inverts overwrite the text for P-A6, A-7-N, P-AII, PA-3, and for the flow rate at P-A8

The distance increments on the bar scale have been corrected. Inverts were removed from Figure 6, see Figure 7 for inverts.

9. A section or construction note must be provided for the swales adjacent to the site roadways to show how the flow is contained and conveyed along the roadway in subbasins B-2-S, B-4-S, A-6-S, and A-8-S.

Plans now include construction note identifying the berm detail for the locations mentioned above. The berm detail has been revised to show two scenarios: berm with road and berm with no road.

10. Numerous culverts do not contain callouts to the rip rap sizes and grouting as determined in the calculations. Confirm all culvert outlet rip rap callouts are accurate.

Plans have been updated to include a culvert table with riprap sizes and outlet protection specifications. Please see Sheet C-501.

11. The Engineers seal on the Standard Form 1 did not include all of the information required by the Nevada Administration Code. The seal must include the license expiration date, the signature of the engineer, and the date of signature. Please verify that all documents requiring an engineer's seal includes all of the required information.

Acknowledged.

12. The project proposes to use NDOT standard details. The appropriate details must be called out in the construction note or the details must be provided within the plan if the proposed improvement doesn't conform to the standard.

Key Note 8 states the standard detail name and type. Culvert sizing is included in Culvert Schedule on sheet C-501.

13. Provide a detailed response to any drainage study comments from other agencies in the next submittal (i.e. SNWA, CCPW, BOR, etc.).

No other drainage study comments have been provided.

- 14. The following grading plan comments must be addressed with the next submittal:
 - a. Sheet C-801: Revise the leader line for construction note 8 at P-A 10 to be directed to the single culvert *This culvert was removed.*
 - b. Sheet C-801: Add the width to construction note 4 in subbasin A-10 Updated to show road width of 20'.
 - c. Sheet C-801: Revise construction note to refer to Detail 3 Updated.
 - d. Sheet C-802: Provide a construction note for the rip rap in subbasin OFF-D1 Updated.
 - e. Sheet C-802: Provide construction note 7 for the channel upstream of OFF-D3 to indicate rip rap to be in agreement with the calculations *Updated.*

f. Sheet C-804: Show rip rap at P-A4 to agree with the calculations Calculations updated to show earth at this location, velocities within limits. No riprap to be installed upstream of culvert P-A4. Riprap is specified downstream of P-A4.

Any work within washes or channels conveying jurisdictional Waters of the United States (e.g. Lower Las Vegas Wash), regardless of whether the flow is ephemeral or perennial, may require concurrence from the U.S. Army Corps of Engineers.

Acknowledged.

Projects that disturb over one (1) acre or any area adjacent to a water way must submit to the Nevada Division of Environmental Protection: (1) a "Notice of Intent" to discharge that certifies a stormwater pollution prevention plan has been developed and is maintained on site, (2) a request for inclusion in the Stormwater General Permit No. NVRIOOOOO. A phased construction unit in a contiguous subdivision is considered under construction until paving, building construction or planting has covered all stripped or disturbed surface areas. For more information, including forms and applications contact the Nevada Division of Environmental Protection at http://ndep.nv.gov/bwpc/stormO1.htm or call (775) 687-9429.

Preparation of SWPPP and NOI submission is in process.

Please be aware that as additional information becomes available and/or restudies of Flood Insurance Studies are performed, the information submitted by the above named engineering firm may be superseded. Compliance with the regulatory elements a n d design standards specified in the <u>Uniform Regulations for the Control of Drainage</u> does not imply a guarantee that properties will be free from flooding or flood damage.

Acknowledged.

If you have any questions or would like additional supporting information for the development of the comment responses here-in, please do not hesitate to contact me by phone at 602.522.7700 or by email at mark.fountain@hdrinc.com.

Sincerely,

ought

Mark Fountain, PE, ENV SP, CFM Water Resources Project Manager

cc. - file

Drago, Chad

From: Sent: To: Subject: Erika Brosz <ebrosz@sunedison.com> Tuesday, April 07, 2015 1:55 PM Drago, Chad; Christina White FW: Drainage Report for River Mountains Solar Project

FYI

Erika Brosz, PE Design Manager (650) 868-0549

From: Streier, Faye [mailto:fstreier@usbr.gov]
Sent: Tuesday, April 07, 2015 1:47 PM
To: Erika Brosz
Cc: Rebecca (Becci) Rogers; Marc Maynard; Gary Wood; Chiaki Lowrey
Subject: Drainage Report for River Mountains Solar Project

Erika,

Thanks for sending the Technical Drainage Study for the River Mountains Solar Project. I understand from you and Gary Wood that the Study will be submitted to the City of Henderson, who has jurisdiction for flood control in this location, for review to confirm that the study is consistent with the Clark County Flood Control manual requirements. The Bureau of Reclamation does not need to perform a technical review of the Study if we are provided written verification that the City of Henderson has reviewed the Study and approved it for form and content.

Faye Streier National Environmental Policy Act Coordinator Bureau of Reclamation, Lower Colorado Region P.O. Box 61470 Boulder City, NV 89006 Office- 702-293-8132 Cell- 702-379-5197 Fax- 702-293-8418 fstreier@usbr.gov

Confidentiality Statement of SunEdison and its subsidiaries: The contents of this message, together with any attachments, are intended only for the use of the individual or entity to which they are addressed and may contain information that is legally privileged and confidential. If you are not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this message, or any attachment, is strictly prohibited. If you have received this message in error, please notify the original sender immediately by telephone or by return E-mail and delete this message, along with any attachments, from your computer.

No Contract: Regardless of content, this email shall not operate to bind SunEdison or its subsidiaries to any purchase order or contract unless pursuant to a written agreement signed by SunEdison or its subsidiaries expressly permitting the use of email for such purpose.

HYDROLOGIC CRITERIA AN	HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL				
DRAINAGE SUB	MITTAL CHE	CKLIST			
Project Name: SNWA River Mnt Solar	Map ID:				
Firm Name: HDR	Engineer: Mark 1	Fountain			
Address: 3200 E Camelback Road, S	uite 350				
City: Phoenix	State: AZ	Zip: 85018			
Phone Number: 602-522-7700	Fax Number: 602-	-522-7707			
Property Owner: United States of Ame	rica c/o Sout	hern Nevada Water Aut			
Address: 1299 Richard Bunker Ave					
_{City:} Henderson	State: NV	_{Zip:} 89015			
Reviewed By:	Date Received:	Date Accepted for Review:			
The following checklist is intended as a guide for the the local entity and Clark County Regional Flood Continformation required prior to the entity performing a r Technical Drainage Study is prepared within the guide District (CCRFCD) Hydrologic Criteria and Drainage I. This document is intended as an aid in preparing Tec for compliance with local and regional criteria. This extent of the information, calculations or exhibits whice use.	rol District (if necessary eview. The engineer v elines as set forth in the Design Manual (MANUA hnical Drainage Studies form is not intended to l ch may be necessary to	 r). The listed items are the minimum will remain responsible to ensure the Clark County Regional Flood Control L). s. Each study submitted is reviewed be all inclusive and does not limit the 			
I. GENERAL REQUIREMENT	If items are not applicable for the subject site, provide N/A.				
Yes No	Yes No				
Design Manual Standard Form	4 See Appendiz	x A (spreadsheet)			
2 copies of the 24" x 36" Drainag	2 copies of the 24" x 36" Drainage Plan.				
	• • • • • • • •	lowing off-site grading or discharge.			
II. MAPS AND EXHIBITS Same property owner					
Yes No					
A copy of a current Flood Insurance Rate Map (FIRM) with the site delineated.					
A copy of the current CCRFCD Master Plan Update Figure, (F-x), for Flood Control Facilities and Environmental areas with the site delineated.					
REFERENCE:		STANDARD FORM 2			

н	YDRC	DLOGIC CRITERIA AND DRAINAGE	DESIGN MANUAL	
		DRAINAGE SUBMITTAL CHE	CKLIST	
II. MAP	S AND E	XHIBITS (Continued)		
Yes	No			
		Off-site drainage basin maps for existing, interim and fut topography, basin boundaries, concentration points, and		
		On-site drainage basin maps for existing and proposed of topography, basin boundaries, concentration points, and		
		Vicinity Map with local and major cross streets identified	and a north arrow.	
III. DRA	INAGE P	PLAN		
Yes	No			
X		Sheet size: 24" x 36" sealed by a registered engineer in	n the State of Nevada.	
X		Minimum scale: 1" = 60'.		
X		Project name.		
<u> </u>		Vicinity Map with local and major cross streets.		
X		Revision box.		
X		North arrow and bar scale.		
		Engineer's/consultant's address and phone number.		
		Elevation datum and benchmark.		
X		Legend for symbols and abbreviations.		
		Cut/fill scarps, where applicable.		
		Street names, grades, widths.		
<u>N/A</u>	Proposed future and existing spot grades for top of curbs and street crowns at lot lines, grade breaks, and along curb returns on both sides of the street.			
		Existing contours encompassing the site and 100 feet beyond with spot elevations for important locations, where appropriate.		
<u>N/A</u>		Minimum finish floor elevations with top-of-curb elevations at upstream end of lot.		
X	C Proposed typical street sections.			
REFER	ENCE:		STANDARD FORM 2	

HYDRC	LOGIC CRITERIA AND DRAINAGE	DESIGN MANUAL	
	DRAINAGE SUBMITTAL CHE	CKLIST	
III. DRAINAGE F	PLAN (Continued)		
Yes No			
N/A	Streets with off-set crowns.		
	Proposed contours or spot elevations in sufficient detail t and slopes.	to exhibit intended drainage patterns	
	Property lines.		
N/A	Right-of-way lines and widths, existing and proposed.		
	Existing improvements and their elevations.		
<u> x </u>	Delineation of proposed on-site drainage basins indicatin storm peak flows at basin concentration points.	ng area and 10-year and 100-year	
<u>N/A</u>	Concentration points and drainage flow direction with Q_1	$_{\rm 100}$ and $V_{\rm 100}$ and $D_{\rm 100}$ in streets.	
	Cumulative flows, velocity, and direction of flow at upstre the 10-year and 100-year flows.	am and downstream ends of site for	
<u>N/</u> A	Location and cross-section of street capacity calculation	IS.	
	Cross-sectional detail for channels, including cutoff wall locations.		
	Existing and proposed drainage facilities, appurtenances, and connections (i.e., sidewalk, ditches, swales, storm drain systems, unimproved and improved channels, and culverts, etc.) stating size, material, shape, and slope with plan and profile and HGL calculations.		
<u></u>	Existing and proposed drainage easements and widths s sectional detail must be provided that shows appropriate		
<u>N/A</u>	Location and detail of existing, proposed, and future blo $16" \times 48"$. Wrought iron gate is required for flows > 10 of		
<u>N/A</u>	Location and detail of flood walls illustrating depth of flow, proposed grouting height, etc.		
n/A	Perimeter retaining wall locations. All existing and proposed walls (retaining screen and flood) must be shown with adjacent ground elevations. Flood walls with 8-inch concrete masonry unit.		
n/a	Building and/or lot numbers.		
n/a	Alignment of all existing, proposed, or future Regional Fa	acilities adjacent to the site.	
	Limits of existing floodplain based on current FIRM or best available information; limits of proposed floodplains based on best available information.		
REFERENCE:		STANDARD FORM 2	

HYDR	OLOGIC CRITERIA AND DRAINAGE	DESIGN MANUAL	
	DRAINAGE SUBMITTAL CHE	CKLIST	
III. DRAINAGE	PLAN (Continued)		
Yes No			
<u>n/a</u>	For areas in Zone A, AE, AH, and AO, base flood elevation lot; BFEs may be listed on each lot, or in a table. Finish minimum of 18 inches above BFE.		
n/a	Appropriately elevated "humps" 6 inches above the 100 accesses where the intent is to protect the site from the		
n/a	Street slopes for perimeter and interior streets. The min	nimum slope is 0.4 percent.	
n/a	Location and detail of best management practice (BMP) development (LID) (if required).	for parking lots and low impact	
IV. HYDROLO	GIC ANALYSIS		
<u> </u>	Appropriate soil information and Soils Map for existing a and property delineated.	and future conditions with subbasins	
<u>x</u>	Input and output information for existing conditions from computer models (HEC-1 or TR-55). The flow routing diagram must be provided with HEC-1 models. Rational Method		
	Input and output information for future conditions from control The flow routing diagram must be provided with HEC-1		
	Use of correct precipitation values in and around the Mc	Carran Airport rainfall area.	
X	A discussion in the text of the hydrologic analysis justifyi supporting assumptions, and calculations.	ng subbasin boundaries and cutoffs,	
	A summary table of stormwater flows showing basin are basins and combined basin flows, where applicable.	a, Q_{10} and Q_{100} for both individual	
	Copies of supporting technical information referenced from a previously approved study and a statement accepting these results.		
	C On-site facilities must perpetuate flows through or around the site without significantly impacting adjacent property owners in accordance with current Nevada Drainage Law.		
<u>N/A</u>	N/A Calculation for impervious area for parking lots and LIDs (if required).		
REFERENCE	:	STANDARD FORM 2	

HYDR	HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL			
	DRAINAGE SUBMITTAL CHECKLIST			
V. HYDRAULIC	CANALYSIS			
Yes No				
n/a	Flow split calculations and supporting documentation or reference for the method of flow split calculations used.			
<u>n/a</u>	Normal depth street flow calculations and cross section diagrams for all interior and perimeter streets. Provide "d x v" products for the Q_{100} and Q_{10} flows representing the worst case for interior and all perimeter streets. $Q_{100} d x v \le 8$. $Q_{10} d x v \le 6$ and 12 foot dry lane for rights-of-way ≥ 80 feet. Calculations must be labeled by street name as indicated on the Grading Plan.			
	A summary table of interior and exterior street capacity calculations showing the street name, Q_{100} flow, slope, depth of flow, velocity and depth times velocity product and streets needing to meet 12 foot dry lane criteria.			
n/a	Appropriate hydraulic calculations for block wall openings assuming a 50 percent vertical clogging factor. (Assume the lower half of the opening is plugged.)			
_n/a	Appropriate hydraulic calculations at drainage easement entrance and discharge locations to set finish floor elevations. Hydraulic calculations must include submerged weir, superelevation and tee intersection losses, where appropriate.			
n/a	Provide necessary freeboard requirements to set the finished floor elevations of all proposed buildings, 2 x depth of flow or depth of flow plus 18 inches of freeboard, whichever is less. The minimum requirement is 6 inches above adjacent upstream top of curb. Buildings adjacent to drainage easements must always be provided with 18 inches of freeboard above the Q ₁₀₀ weir height or flow depth, whichever is greater.			
n/a 	· · ·			
	 Field survey data. Input and output information. Plotted cross-sections based on survey with proper encroachments. A map showing the location of the cross-sections. Analysis of both sub and super-critical flow segments. A summary table and a discussion of the results in the text of the report. 			
n/a	Provide a 50 percent clogging factor in the capacity calculation for drop inlets.			
	Hydraulic calculations for culverts and storm drains. D-Load calculations must be provided for storm drain pipes in public rights-of-way, including headwater pool inundation.			
	The mitigation of nuisance water, both during construction and in the fully developed condition, must be addressed.			
n/a	n/a Provide BMP type, size and supporting calculations for parking lots and LIDs (if required).			
REFERENCE	: STANDARD FORM 2			

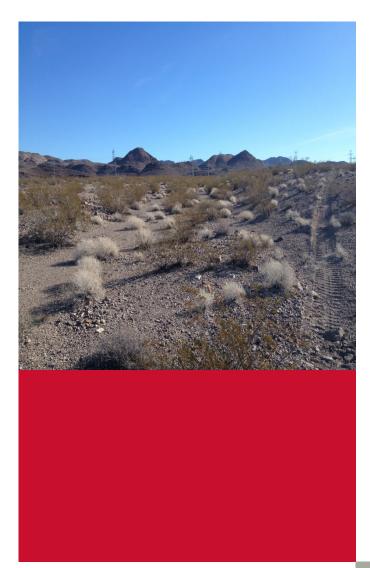
- HOS

April 21, 2015

City of Henderson Attn: Albert Jankowiak, PE, CFM 240 Water Street, MSC 112 Henderson, NV 89015

Mr. Jankowiak, This letter certifies to the best of my knowledge that all items on the included data CD within the report match the printed paper versions.

Please feel free to contact us with any questions at 602.792.8800.


Sincerely,

HER ONTAL

Mark Fountain, PE, ENV SP, CFM Water Resources Project Manager

hdrinc.com

3200 E. Camelback Road, Suite 350, Phoenix, AZ 85018 T 602.522.7700

Technical Drainage Study

SNWA River Mountains Solar

1299 Burkholder Blvd

Henderson, NV 89015

April 21, 2015

Table of Contents

II.	General Location and Development Description	3
A	. Location of Property	3
B	. Description of Property	4
III.	Drainage Basin Description	4
A	. Off-Site Drainage Description	4
B	. On-Site Drainage Description	4
С	. Master Planning Information	7
D	. Floodplain Information	7
E.	. Previous Drainage Studies	7
IV.	Proposed Drainage Facilities	8
A	. General Description	8
B	. Maintenance	9
С	. Compliance with Regulations and Adopted Plans	9
D	. Hydrologic Analyses	10
E.	. Facility Design Calculations	11
V.	Conclusions	12
VI.	References	14

Appendix A: Hydrologic Calculations

Appendix B: Hydraulic Calculations

Appendix C: River Mountain Water Treatment Facility Technical Drainage Study Excerpts Appendix D: Data CD

- Figure 1 Project Location Figure 2 – 2013 Las Vegas Valley Flood Control Master Plan Drainage Basins Figure 3 - Regional Flood Control Facilities Figure 4 – Existing Subbasin Map Figure 5 – FIRM Panel Figure 6 – Proposed Subbasin Map
- Figure 7 Drainage Plan

II. General Location and Development Description

A. Location of Property

The Southern Nevada Water Authority (SNWA) River Mountains Solar project (see **Figure 1 – Location and Vicinity Map**) is in the city of Henderson, Clark County, State of Nevada within:

- The SW ¼ and W ½ of the SE ¼ of Section 14, Township 22 S, Range 63 E
- The S ½ of Section 15, Township 22 S, Range 63 E
- The N ½ of Sections 22, Township 22 S, Range 63 E

The project is confined by the River Mountains Water Treatment Facility (RMWTF), inside a fully fenced perimeter. The site can be accessed through Burkholder Blvd adjacent to the west and south property boundaries. The proposed project site is enclosed on the south by the Western Area Power Administration Power Line Corridor easement and on the east by the Navajo IPP-McCullough Power Line corridor easement.

Adjacent to the property site is the River Mountains Water Treatment Facility. Surrounding developments include the Newport Electrical Substation, Burkholder Reservoir, and River Mountains Pumping Station as well as residential development to the west and south of the site.

Figure 1 - Project Location

As shown in **Figure 3 - Regional Flood Control Facilities**, the regional flood control facilities in vicinity, but not adjacent, to the proposed project site are East C-1 Detention Basin, East C-1 Levee, Drake Channel, and C-1 Channel. The site is located within the C1-51A drainage basin of the Las Vegas Valley map reflected on **Figure 2 - Drainage Basins**. Figure 2 and 3 are taken from the 2013 Las Vegas Valley Flood Control Master Plan Update.

B. Description of Property

The existing conditions at the 92-acre site are characterized as barren with very sparse desert vegetation. Multipe washes run across the site and large boulders are seen on the top surface of the terrain. The general slope of the undulating terrain is to the northwest with an overall grade of approximately 4%. There are no existing irrigation facilities on the Site. Upstream of the site there is an existing Federal Emergency Management Agency (FEMA) accredited East C-1 levee which protects the River Mountains Water Treatment Facility from the 100-year return event from the River Mountains which are part of the Lake Mead National Recreation Area..

The proposed project will consist of photovoltaic panel array systems designed to help meet the power needs of the River Mountains Water Treatment Facility. The facility currenlty obtains their hydropower from Hoover Dam and a few smaller solar arrays.

III. Drainage Basin Description

A. Off-Site Drainage Description

The proposed SNWA River Mountain Solar project site is located to the west of the River Mountains. Uphill of the site there is an existing FEMA accredited East C-1 levee which protects the River Mountains Water Treatment Facility from the 100-year return event offsite flows from the adjacent mountains to the east. The off-site drainage potentially impacting the project site is local runoff from the east which enters through discrete washes as shown in **Figure 4 – Existing Subbasin Map**.

As the project is protected by the above mentioned FEMA accredited levee, off-site flows from non-discrete locations will not occur. There is no evidence of recent non-discrete flows coming onto the site. See **Figure 5 – FIRM Panel** for the location of the existing FEMA accredited levee with respect to the proposed project site.

Existing land use within the upstream basins are limited to the existing SNWA Treatment Plant and the Navajo IPP-McCullough Power Line corridor easement. There are no proposed developments within the upstream basin.

The hydrologic soil group for the site and the upstream basins is Type A as defined by the NRCS Soil Survey included in **Appendix A – Hydrologic Calculations**. The vegetation is sparse desert vegetation. The slope of the site is approximately 4% to the northwest. There are no man made conveyances on the site. Natural conveyances found on-site consist of incised desert washes flowing in a riverine condition.

B. On-Site Drainage Description

Existing Condition:

The on-site drainage areas are shown on **Figure 6 – Proposed Subbasin Map**. The site is undeveloped and generally slopes from southeast to northwest at 4%. In the

existing condition, there are six subbasins that enter the site through riverine condition (Existing Subbasins A - F).

Existing Basins 'A' and 'B' discharge from the site along the west side through the existing SNWA fence to the east side of Burkholder Boulevard. The existing flows then drain to the north along the east side of Burkholder Boulevard to concentration point (CP) 'A' which is a 24-inch corrgated metal pipe (CMP) culvert and CP 'B' which is also a 24-inch CMP culvert. In the existing condition, these culverts are not sized for the 100-year flow. As flow ponds behind existing cuvlert A it spills over into existing culvert B, which then spills over the existing Burkholder Boulevard to the west. Discharges through existing culverts A and B are conveyed to their respective downstream concentration points designated and EX-DS-A and EX-DS-B. The culvert/weir calculations for these locations can be found in **Appendix B – Hydraulic Calculations**.

Four of the washes convey on-site flow as concentrated flow through at-grade trail crossings, designated as CP 'C', 'D', 'E', and 'F' along the north side of the Site. See **Table 1 – Existing Condition Flow Summary**.

Concentration Point	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
Ex A	23	80
Ex B	10	33
Ex C	2	7
Ex D	9	32
Ex E	1	1
Ex F	7	23
EX-DS-A	16	18
EX-DS-B	17	95

Table 1 – Existing Condition Flow Summary

Proposed Condition:

Proposed on-site runoff will be intercepted through a series of swales, ditches, and collected at on-site. Discharge from Basins 'A' and 'B' will be collected into spreader basins. Collected stormwater will then discharges from the spreader basins by way of rip-rap protected weirs at existing natural flowpaths elevations to mimic the historic condition at the edge of spreader basins. The spreader basins will be drained with 18-inch pipes. The purpose the drain pipes is not to convey design flows, but to prevent ponded water from remaining in the spreader basins after the event has passed.

Proposed Basins 'C', D', 'E', and 'F' will discharge through the existing at grade trail crossings on the north side of the Site. The existing structures are capable of handling the proposed flows. Proposed Basins 'C', 'E', and 'F' do not increase flows above the existing condition. Proposed Basin 'D' increases flows slightly which causes a minimal increase in flow depth. See **Section V – 7 – Downstream Impact** for a comparison of dishcarges and depths.

Based upon the proposed improvements, discharge from the site will continue to exit at their historic locations. The proposed discharges will be slightly higher than the existing in some locations as a result of the proposed site conditions. It is anticipated that discharges exiting the proposed project site will result in minimal differences from the existing condition as discussed in **Section V – 7 – Downstream Impact.**

Hydrologic analyses were prepared to estimate the peak on-site runoff under both existing and proposed conditions are included in **Appendix A – Hydrologic Calculations**. See **Table 2 – Proposed Condition Flow Summary**.

Concentration Point	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
A-6-S	10	21
A-7-S	5	11
A-8-S	9	19
A-9-S	9	20
B-2-S	7	15
B-3-S	8	16
B-4-N	1	3
B-4-S	7	16
D-1-N	2	5
D-1-S	8	16
OFF-A4-S	5	18
OFF-A5-N	1	4
OFF-A5-S	4	15
OFF-C1	1	1
OFF-D3	7	24
OFF-E	1	1
OFF-F	7	23
P-E1	1	1
P-E2	1	1
P-A4	5	18
P-A3	6	22
P-A2	6	22
P-A5	6	19
A-9-N	1	2
P-A8	24	58
P-A7	27	65
P-A6	35	81
P-A1	34	79
P-A	41	108
P-OFF-D2	7	23
P-D1	11	23
P-D	15	41
P-B4	8	18
P-B3	17	36
P-B2	23	50
P-OFF-B2	24	52
P-B	24	52
DS-A	17	19
DS-B	48	141

Table 2 – Proposed Condition Flow Summary

C. Master Planning Information

Upstream of the site are two Master Plan Update (MPU) facilities (see **Figure 3** - **Regional Flood Control Facilities**). These facilities can be found on Figure F-47 of the 2013 Las Vegas Valley Flood Control MPU and can be identified as the East C-1 Detention Basin and East C-1Levee, MPU regional Facility number C1DC 0303 and C1HV 0300, respectively. Discharges from the East C-1 Detention Basin are routed to the Northeast C-1 Levee and diverted in a northwesterly direction across the alluvial fan to the east end of the Drake Channel and ultimately into the C-1 Channel.

The East C-1 Levee was constructed as part of the East C-1 Detention Basin in April, 1998. Both the detention basin and the levee were constructed to protect the RMWTF, effectively truncating the apex of the alluvial fan spreading west from the River Mountains escarpment. Based on the Ten Year Construction Program Fiscal Year 2013-2022, there are no proposed or under construction master plan facilities on the subject site.

D. Floodplain Information

The proposed project is located within a previous identified FEMA Flood Insurance Rate Map (FIRM). The project site is depicted upon the effective FIRM panel dated November 16, 2011 and can be identified as community panels No. 320004F and 320005F (Panel 2610 and 2620 of 4090), containing the City of Henderson and City of Boulder. The project site is shown within a shaded Zone X, which is described as an area of the 100-year floodplain determined to be less than one foot in depth. A copy of the FEMA FIRM is found in **Figure 5 – FIRM Panel**.

As there are no FEMA Special Floodplain Hazard Areas located on the site, there are no calculated floodplains for the proposed conditions.

E. Previous Drainage Studies

During our research, a previous drainage study was identified and an excerpt is included in **Appendix C.** See **Appendix D – Data CD** for a copy of the entire report:

 River Mountains Water Treatment Facility (RMWTF), Final Technical Drainage Study prepared by Montgomery Watson/CH2M Hill for Southern Nevada Water Authority.

The 100-year discharge for the entry culvert to the site was obtained from the above report. Subbasin 8C was identified to have a discharge of 130 cfs and was utilized to size the proposed entry culverts at the entry road on the south side of the site. The discharge from these culverts continues to the west and into the existing onsite retention basin.

IV. Proposed Drainage Facilities

A. General Description

The general approach to the proposed drainage facilities is to discharge flows at the historic discharge locations. The discharges are slightly larger than the existing conditions, but will have minimal impact to the downstream properties. Upstream flows will be routed through and around the Site and discharged at historic locations. The proposed drainage facilities are shown in **Figure 7 - Drainage Plan**.

The proposed drainage system will include a network of channels consisting of: rip-rap lined channels, where velocities are greater than 5 feet per second (fps) but less than 10 fps, and compacted native soil channels where velocities are less than 5 fps.

1. The proposed local drainage system captures runoff from the solar fields with a berm and swale. This flow is routed to the edges of the solar fields to collector channels. At road crossings the collector channels are piped under the road.

Discharges from on-site basins contributing to CP 'A' and 'B' are collected through the above mentioned berms and swales into spreader basins. The flow then discharges out of the spreader basins through rip-rap lined weirs for connection into the downstream existing natural flowpaths to mimic the historic condition.

Discharges from onsite basins contributing to CP 'C', 'D', 'E' and 'F' are also collected through the above mentioned berms and swales and discharged at concentration points along north edge of the site. The discharges along the north edge are at-grade trail crossings. The at-grade trail crossings have a capacity to handle approximatley a depth of 1-foot of flow over them. In the proposed condition, CP 'C', 'E', and 'F' handle the same or less flow then in the existing at depths less than 0.5-feet. CP 'D' has a flow depth of 0.38-feet which is 0.06-feet higher than the existing, which is well below the 1-foot capacity.

2. The proposed local off-site drainage system captures upstream runoff impacting the site and routes it through and around the site.

Basin 'Off-E' has a relatively small drainage area and discharges to the existing atgrade trail crossing at CP 'P-E'

Basin 'Off-D3' discharges to the north of the site. This runoff is captured on the upstream side of the site and routed via a channel to CP 'P-D'.

Basin 'Off-C-1' has a relatively small drainage area and discharges to the existing atgrade trail crossing at CP 'P-C'.

CP 'P-B' includes on-site and off-site drainage basins. Flow is conveyed through or around the site into spreader basin 'Off-B1'. SB 'Off-B1' discharges through two weirs which spread flows back to the existing condition and ultimately into existing Culvert 'B'.

CP 'P-A5' and on-site basins are conveyed through the center of the site and into spreader basin 'P-A1'. Spreader basin 'P-A1' discharges through two weirs which spread the flows back to the existing condition and ultimately into existing Culvert 'A'.

Discharge from basins 'Off-A4-S', 'Off-A3', and 'Off-A2' area captured and routed around the southern portion of the site. The flow goes through proposed culvert 'P-A4' which passes the flow under the site fence. The channel then is routed to the west, under the entry road through culvert 'P-A3', towards spreader basin 'P-A2'. Spreader basin 'P-A2' discharges through two weirs which spread the flows back to the historic discharge locations and ultimately into Existing Culvert 'A'.

3. A regional flood control system is not located at, does not pass through, and does not contribute off-site discharges to the site, therefore no additional regional flood control system analysis is required.

B. Maintenance

To preserve the design integrity and purpose of the proposed drainage system, ongoing maintenance of the recommended design is required. A maintenance program is the responsibility of private developers for facilities on private property, within all drainage easements, private streets, and right-of-ways unless accepted by the City or County. Failure to provide routine pre and post storm maintenance can jeopardize the design of the drainage system as it is intended through the project's plans and specifications causing it to perform inadequately and lead to a reduced level of protection for the site.

C. Compliance with Regulations and Adopted Plans

- 1. The site is in compliance with all Master Planned Flood Control Facilities. All off-site and onsite flows are being returned to their historic flow paths.
- 2. FEMA floodplains do not exist on-site, therefore compliance with FEMA floodplain regulations is not applicable.
- The site is not located on an active alluvial fan as the FEMA acredited levee East C-1, located to the east diverts off-site flows. As such, compliance with rules and regulations for developments on alluvial fans is not applicable.
- 4. The site is in compliance with the previously approved drainage studies for the subject site as all off-site and onsite flows are being returned to their historic flow paths.
- 5. The site does not include opportunities for Low Impact Development. Construction best management practices will be implemented to meet NPDES requirements.
- 6. There are no requests for variances from the requirements of the drainage criteria or local entities' development code.
- 7. Efforts have been made to be in practical compliance with the Uniform Regulations.

8. The hydrologic and hydraulic design of the proposed facilities have used the Clark County HCDDM (MANUAL) and other generally accepted engineering practices.

D. Hydrologic Analyses

Hydrologic analyses were calculated using the rational method outlined in the Clark County Drainage Manual (HCDDM). Time of concentration calculations were calculated using the flow paths and methodology called out in the HCDDM. Rainfall is per **Figure 501 – 512** at the center of the Site, adjusted depths per **Table 501**, Ratio to 1-hour durations per **Table 504**, and 1-hour depths per Equations 501 – 502. Rainfall calculations are included along with the existing and proposed rational method calculation within **Appendix A – Hydrologic Calculations**.

Rational 'C' values for the existing condition were taken from **Table 601** as 'Undeveloped Areas':

- C₁₀=0.25
- C₁₀₀=0.50

Proposed Rational 'C' values were calculated using a weighted average of existing desert and impervious area. The impervious area for the solar panels was calculated as the average horizontal area of the panels as they rotate throughout the day. The average was determined using: at night the panels are "stowed" at 60-degrees from horizontal – 12-hours, on average at midday the panels are at horizontal – 4 hours, and at midmorning and midafternoon the panels are at 30-degrees (4 hours + 4 hours). This approach is deemed conservative due to the fact that the panels create disconnected impervious areas. Runoff falls from the panels, and hits the bare earth and infiltrates. See **Appendix B – Hydrologic Calculations** for weighted 'C' value calculations.

Rational 'C' values for the proposed condition:

- Bare earth: C₁₀=0.25, C₁₀₀=0.50
- Impervious Area: C₁₀=0.85 C₁₀₀=0.95
- Solar field (weighted): C₁₀=0.54 C₁₀₀=0.68
- Existing off-site and on-site hydrologic calculations were based upon the subbasins as shown in Figure 4 – Existing Subbasin Map and are found in Appendix A – Hydrologic Calculations.
- Existing off-site and proposed on-site hydrologic calculations were based upon the proposed subbasins as shown in Figure 6 – Proposed Subbasin Map and are found in Appendix A – Hydrologic Calculations.
- 3. The upstream watershed outside of the SNWA facility will not be developed as it is within the Navajo IPP-McCullough Power Line corridor easement. Thus developd off-site hydrologic calculations are not provided. Future development upstream of the solar facility within the SNWA campus is unknown at this time, but will be controlled by SNWA administration. Any development that will occur will be required to perform additional

hydrology and hydraulics, seperate from this deliverable, to ensure no adverse affect occurs on the site.

E. Facility Design Calculations

- 1. Design calculations for the proposed drainage system are based upon the Clark County Drainage Manual (CCDM) and generally accepted engineering practices.
 - a. Channel calculations use Manning's Equation and 'n' values shown in **Table 702** of the HCDDM.Channel calculations were completed using Bentely's Flowmaster hydraulic program with outputs and summaries included in **Appendix B – Hydraulic Calculations.** Manning's roughness 'n' values are per the HCCDM:
 - Bare earth: n=0.22
 - Rip-rap: n=0.35

Rip-rap for the channels is specified for velocities greater than 5 fps. Channels specified here-in for bare earth will encounter lower discharges and velocities. All channels have velocities lower than 8.5 fps and thus a D_{50} = 6-inch is sufficient per **Figure II-C-1** found in **Appendix B – Hydraulic Calculations**.

- b. Culvert calculations are calculated per the HCDDM using Bentley's CulvertMaster hydraulics program with outputs and summaries included in Appendix B – Hydraulic Calculations. Manning's roughness 'n' values are per the HCCDM:
 - HDPE (smooth wall): n=0.013
 - CMP: n=0.024

Outlet protection at culverts is based upon the exit velocity calculated for the culverts on **Figure II-C-1** found in **Appendix B – Hydraulic Calculations**. Length of outlet protection is 3*D (36" and less) and 4*D (42" and greater) per HCDDM **Figure 712**.

- V < 8.5 fps D50 = 6-inch
- V < 12.5 fps D50=12-inch
- V > 12.5 fps Grouted Riprap
- c. Spreader basin weir calculations and at-grade trail crossings were calculated using the broad crested weir equation. Weir calculations were completed using Bentley's Flowmaster hydraulic program with outputs and summaries included in **Appendix B Hydraulic Calculations**. To complete the weir calcualtions for the spreader basins, it was assumed that the flow was evenly distributed between weirs with the same crest elevation.

Outlet protection at the spreader basin outfalls should be protected by heavy riprap (D_{50} = 18-inches) as defined by **Table 1102** of the HCDDM and Uniform Stardard Specification Section 610.02.04 of the Region Transportation Commission of Southern Nevada.

V. Conclusions

- 1. The site is in general conformance and compliance with the "Drainage Laws".
- 2. The site is in compliance with the previously approved drainage studies for the subject site as all off-site and on-site flows are being returned to their historic flow paths.
- 3. FEMA floodplains do not exist on-site, therefore compliance with FEMA floodplain regulations is not applicable.
- 4. The hydrologic and hydraulic design of the proposed facilities have used the Clark County HCDDM (MANUAL) and other generally accepted engineering practices
- 5. Efforts have been made to be in practical compliance with the Uniform Regulations.
- 6. The proposed drainage facilities will be effective in controlling storm runoff. The 100-year storm is the design event for the Site.
- 7. There are minimal impacts that the proposed development has on off-site property and facilities. It is anticipated that discharges exiting the proposed project site will result in minimal differences from the existing condition.

As discussed in **Section III-B – On-Site Drainage Description**, Existing Culverts A and B are not sized for the 100-year storm, causing existing stormwater flows to overtop Burkholder Boulevard and discharge downstream into the existing undeveloped land also owned by SNWA. This situation will be maintained in the proposed condition as well. The increase in water surface elevations and velocities downstream of Existing Culverts A and B are minimal. The engineer acknowledges the flow increases. The next facility downstream of these culverts are two 12-inch driveway culverts located at S Magic Way approximately 0.5 miles downstream. It is in the engineers opinion that due to the increase in downstream tributary area and additional flows path, attenuation of the flow will occur and there will be no adverse effect on the downstream facilities. See **Table 5 - Flow Summary** below for a summary of the Existing and Proposed flows and **Table 3 – West Outfall Summary** below for a comparison of the channel flow depths and velocities downsteam of existing culverts A and B.

Concentration Point	Condition	Q ₁₀₀ (cfs)	Flow Depth (ft)	Velocity (fps)
EX-DS-A	Existing	18	0.4	7.2
DS-A	Proposed	19	0.5	7.3
EX-DS-B	Existing	95	0.7	9.9
DS-B	Proposed	141	0.8	11.2

Table 3 – West Outfall Summary

Proposed discharges at concentration points 'C', 'E', and 'F' through the at-grade trail crossings do not have flow increases. Concentration point 'D' has a minimal increase and a resulting minimal increase in water surface elvation at the crossing. It is anticipated that discharges exiting the proposed project site will result in minimal differences from the existing condition.. See **Table 4 – North Outfall Summary.**

Concentration Point	Condition	Q ₁₀₀ (cfs)	Flow Depth above crest (ft)
EX C	Existing	7	0.15
OFF-C1	Proposed	1	0.04
EX D	Existing	32	0.32
P-D	Proposed	41	0.38
EX E	Existing	1	0.06
OFF-E	Proposed	1	0.06
EX F	Existing	23	0.39
OFF-F	Proposed	23	0.39

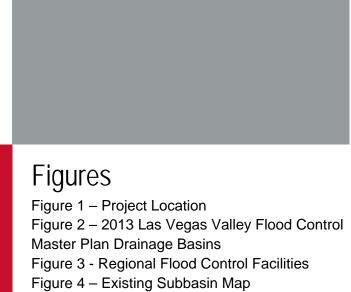
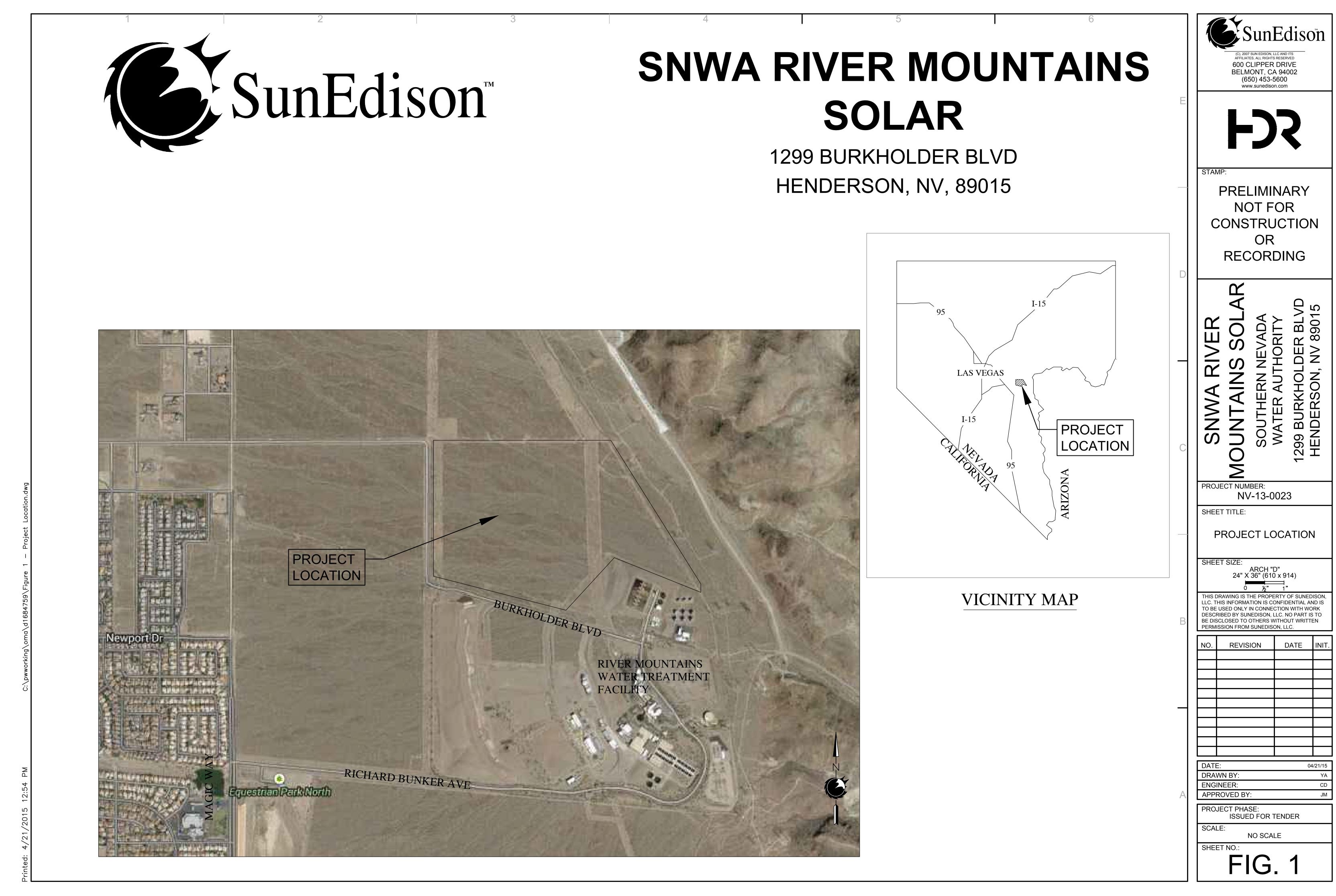
Table 4 – North Outfall Summary

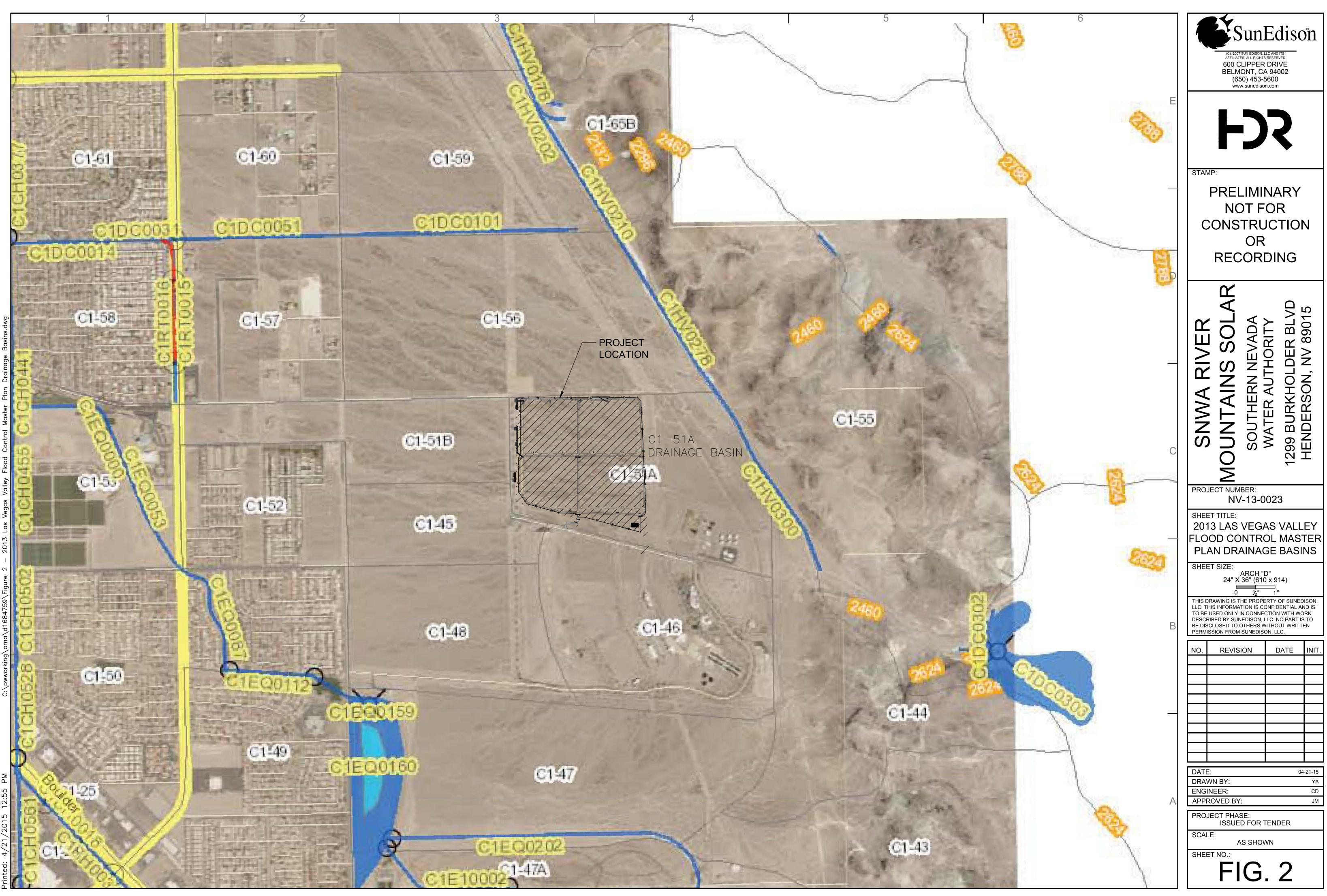
Flow Summary	100-year (cfs)	
Discharge		
Point	Existing	Proposed
А	80	108
DS-A	18	19
В	33	52
DS-B	95	141
С	7	1
D	32	41
E	1	1
F	23	23

Table 5 – Flow Summary

VI. References

- 1. River Mountain Water Treatment Facility (RMWTF) Final Technical Drainage Study by Montgomery Watson/CH2M Hill. December 1, 1997.
- 2. 2013 Las Vegas Valley Regional Flood Master Plan Update. Facility Inventory Figure F-47. <u>http://gustfront.ccrfcd.org/FileLibrary2/FileLibrary.aspx</u>
- Clark County Regional Flood Control District Ten Year Construction Program Fiscal Year 2013-2022. <u>http://gustfront.ccrfcd.org/pdf_arch1/Administrative/Ten%20Year%20Program/Ten%20Year%202013-2022.pdf</u>
- 4. Bentley Systems Inc. Flowmaster, Version V8i, 2015, Select Series 1. (08.11.01.03)
- 5. Bentley Systems Inc. Culvertmaster, Version V3.3, 2015. (03.03.00.04)
- 6. Clark Country Regional Flood Control District. Floodzone and Floodview Advanced and Interactive Maps. <u>http://www.ccrfcd.org/gis.htm</u>. Accessed January 14, 2015.
- 7. USDA Soil Survey. <u>http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey</u>.aspx . Area inquiry. Accessed January 12, 2015.


Figure 5 – FIRM Panel

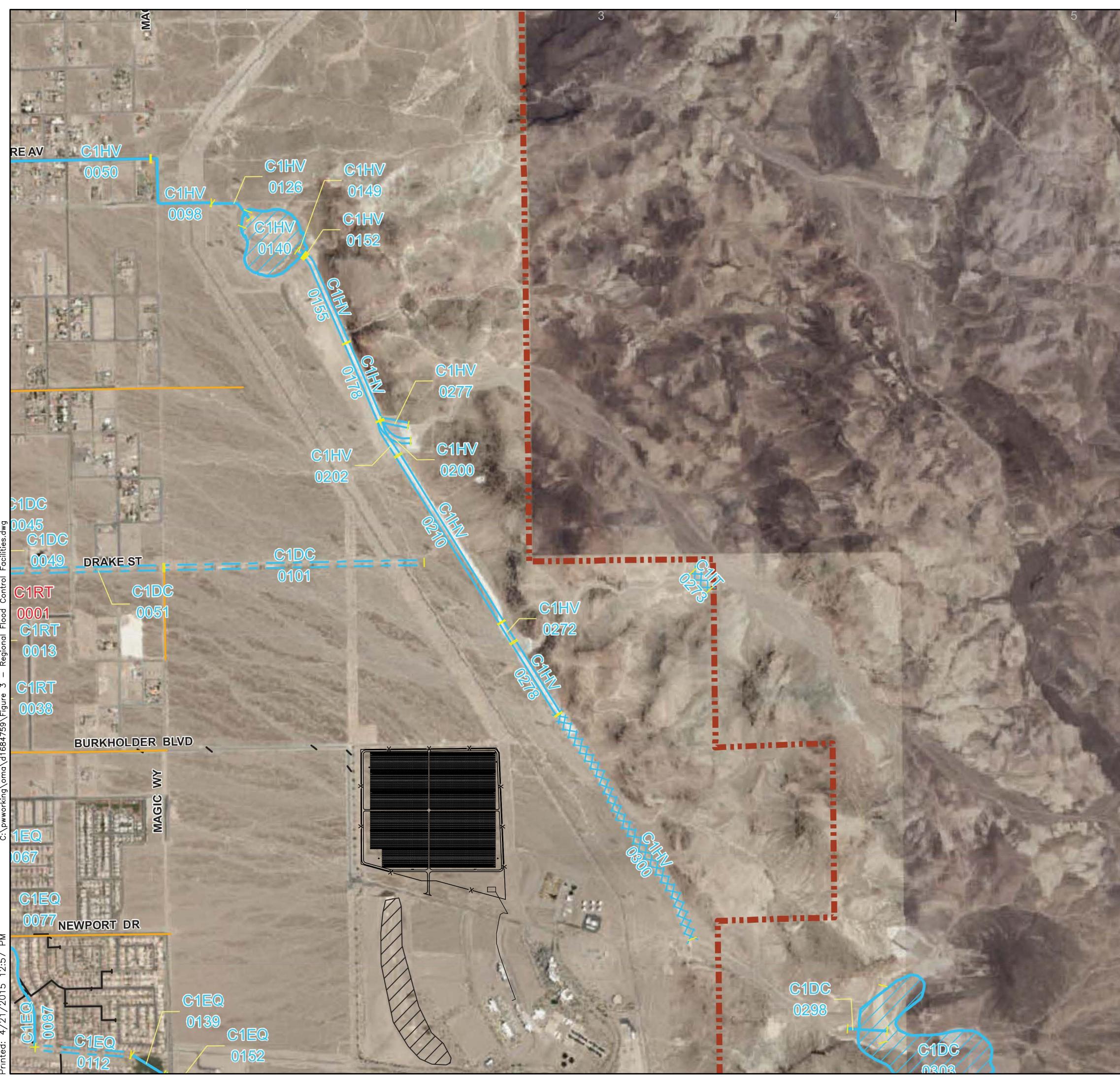
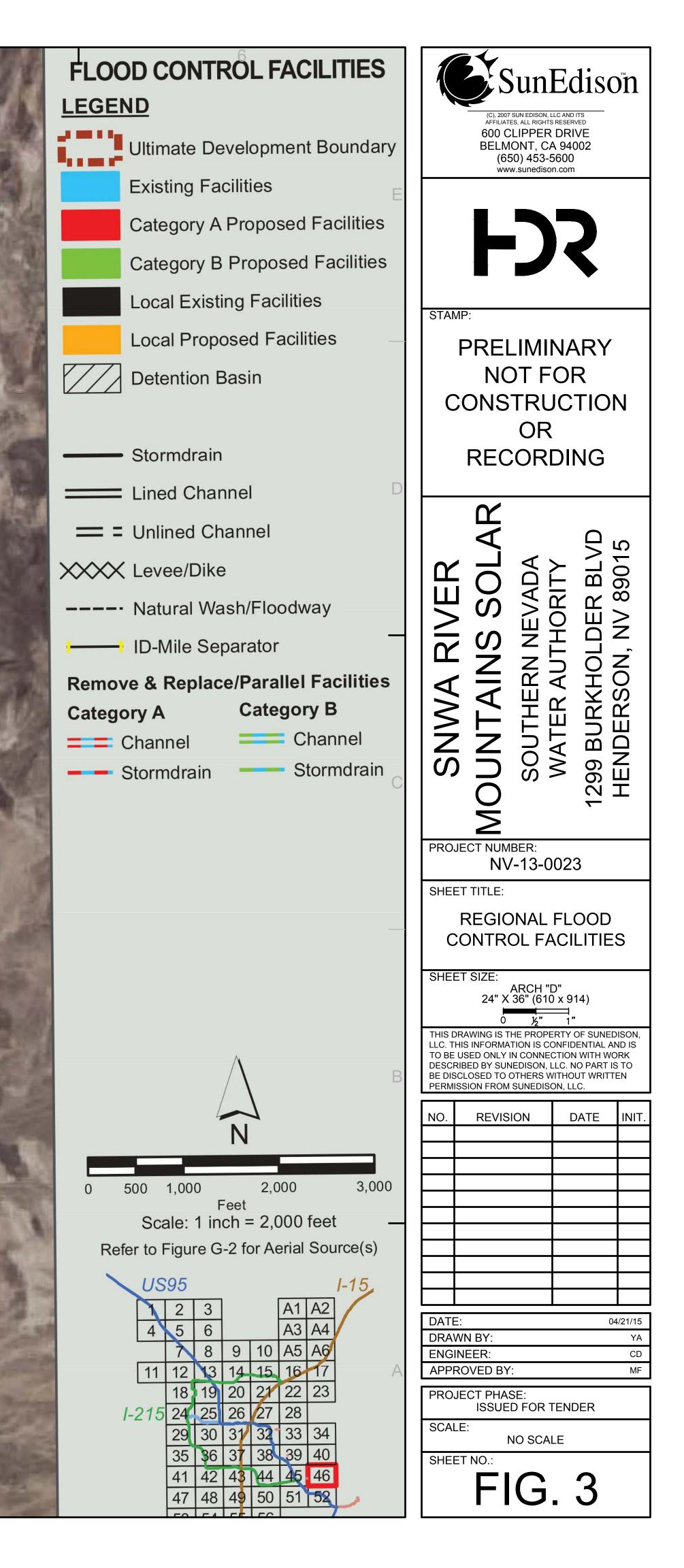
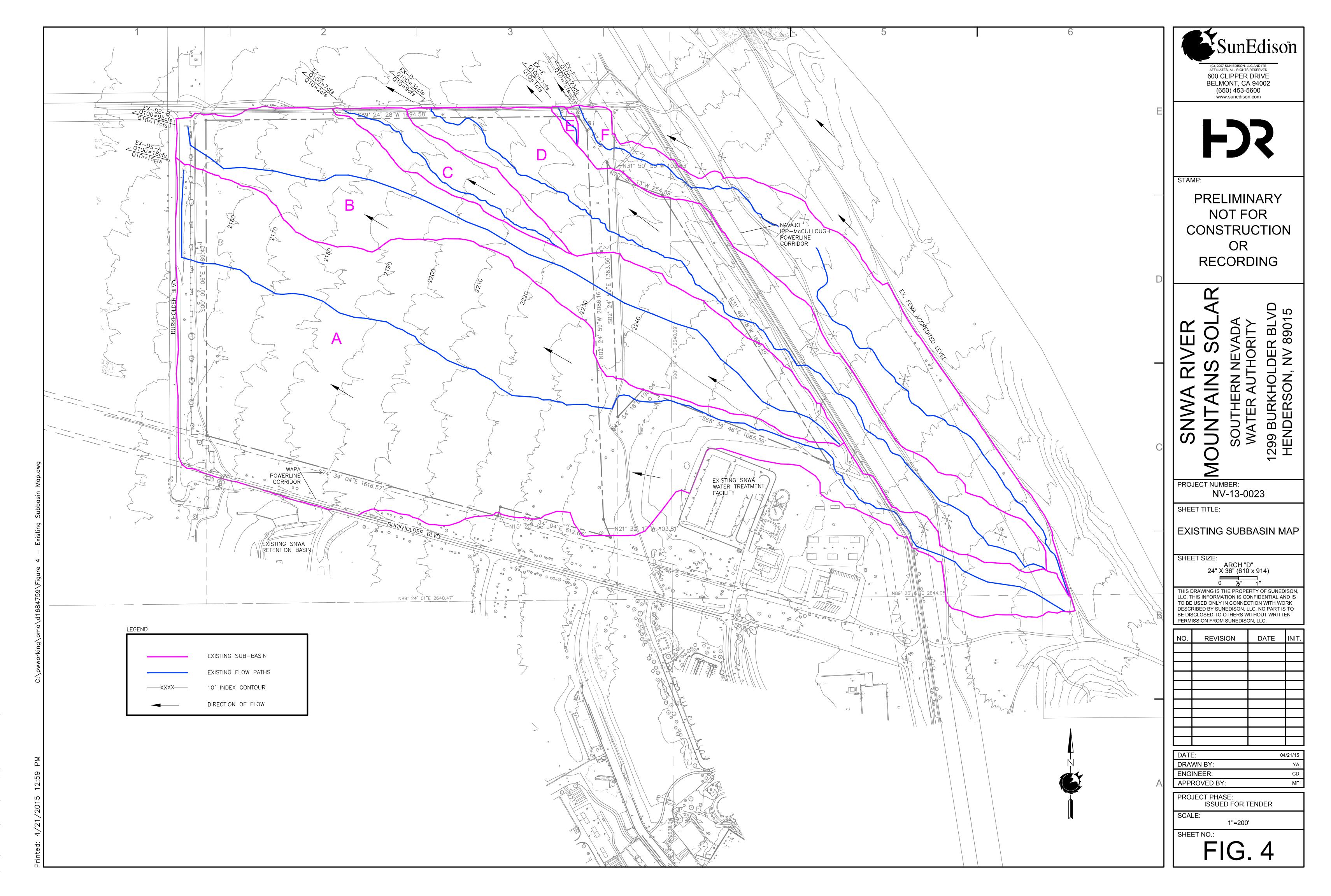
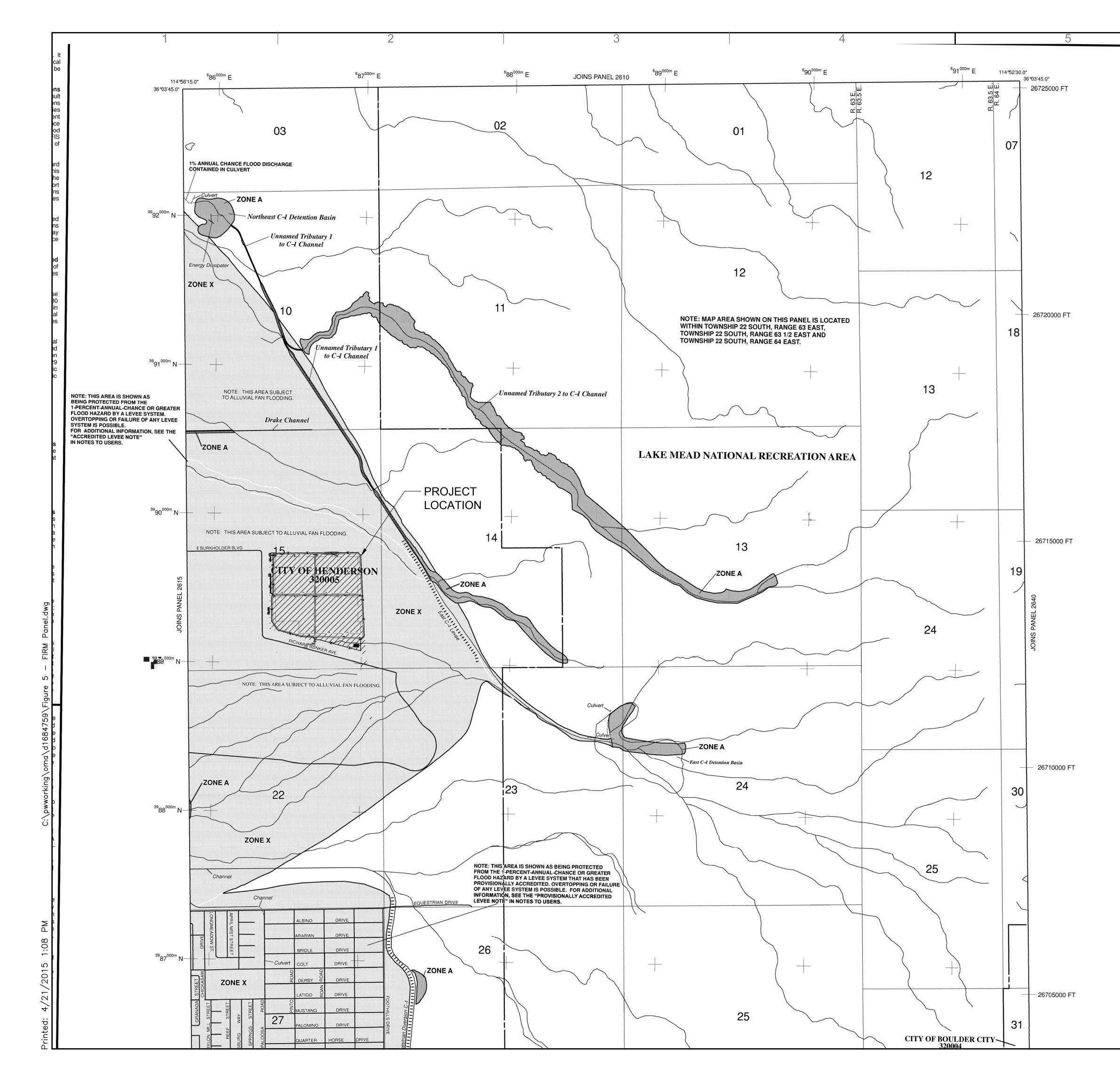
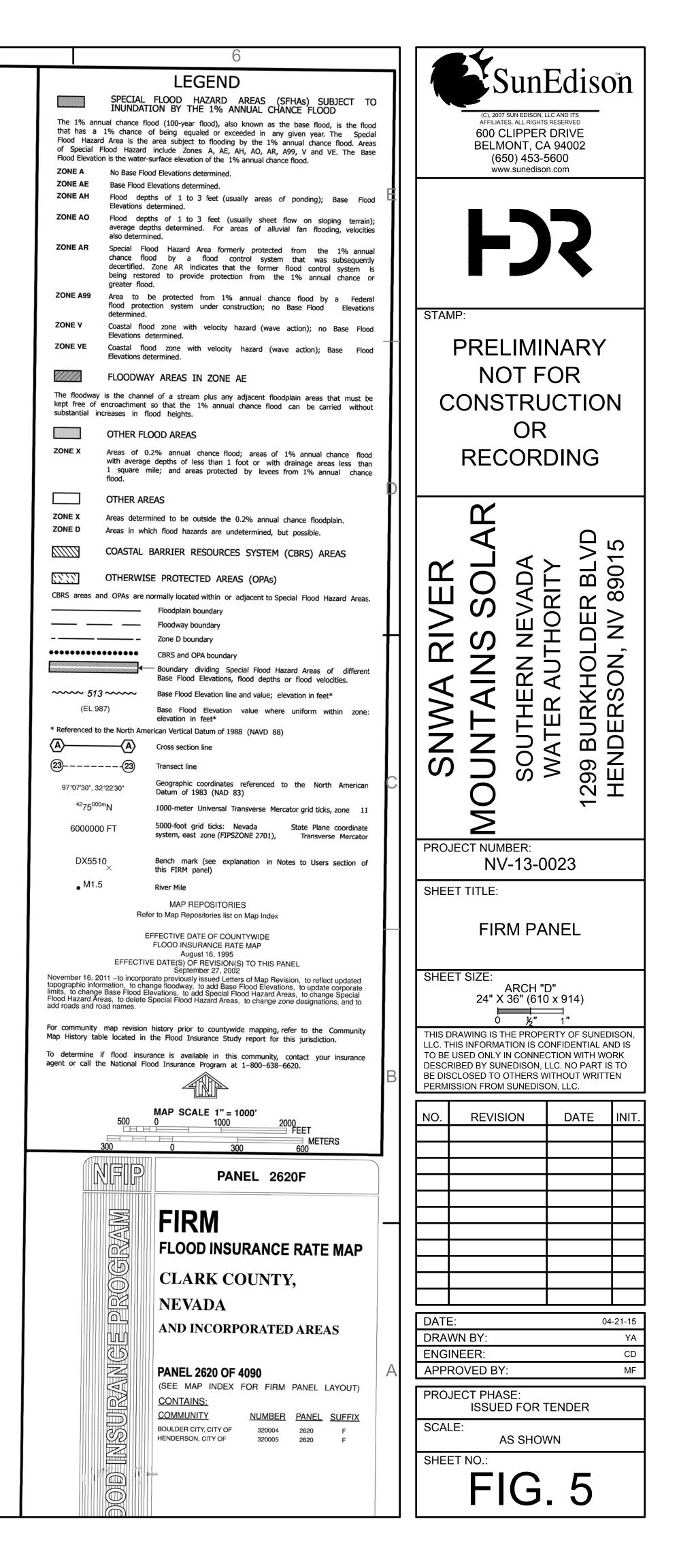

Figure 6 – Proposed Subbasin Map

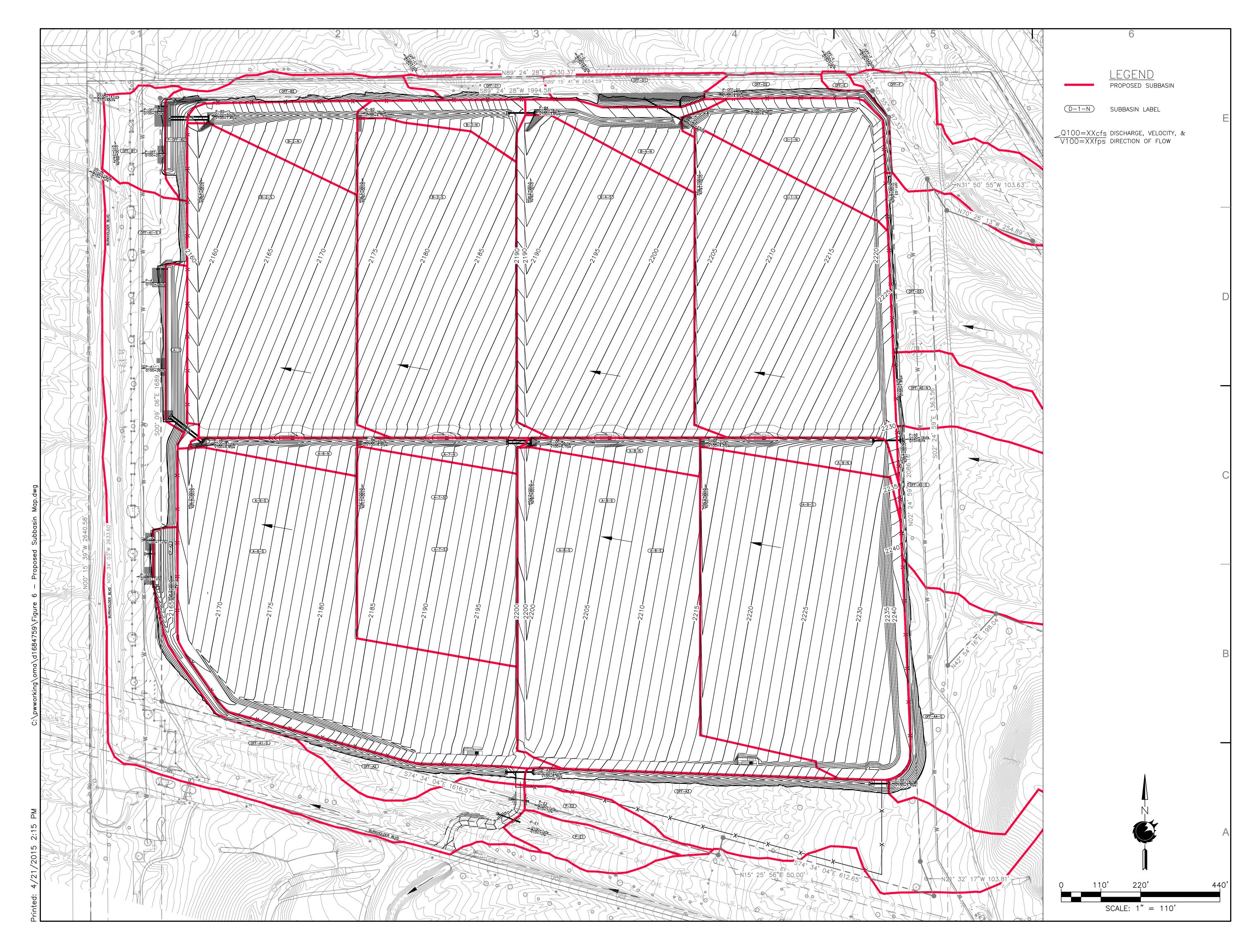
Figure 7 – Drainage Plan

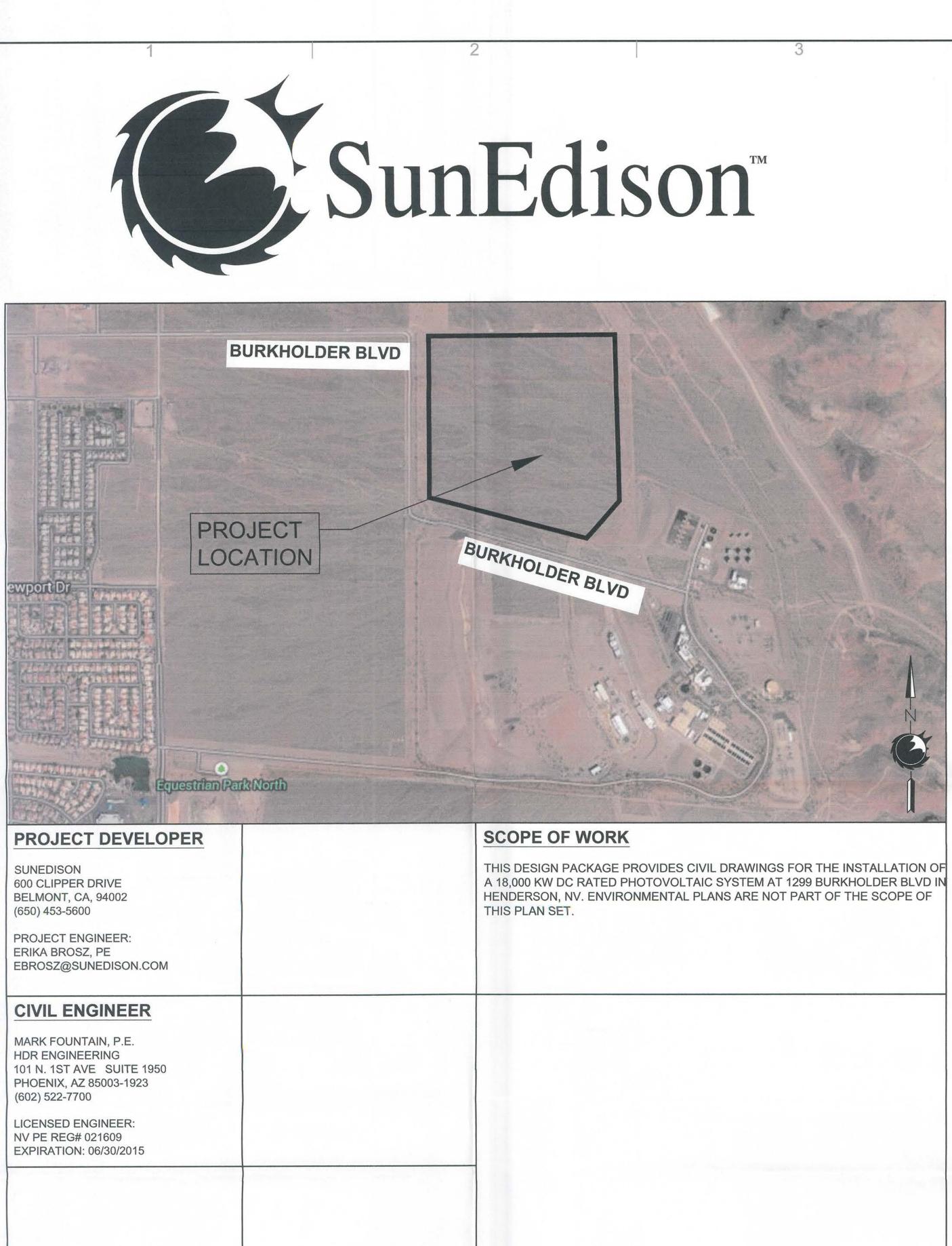

hdrinc.com 3200 E. Camelback Road, Suite 350 Phoenix, AZ 85018 602.522.7700



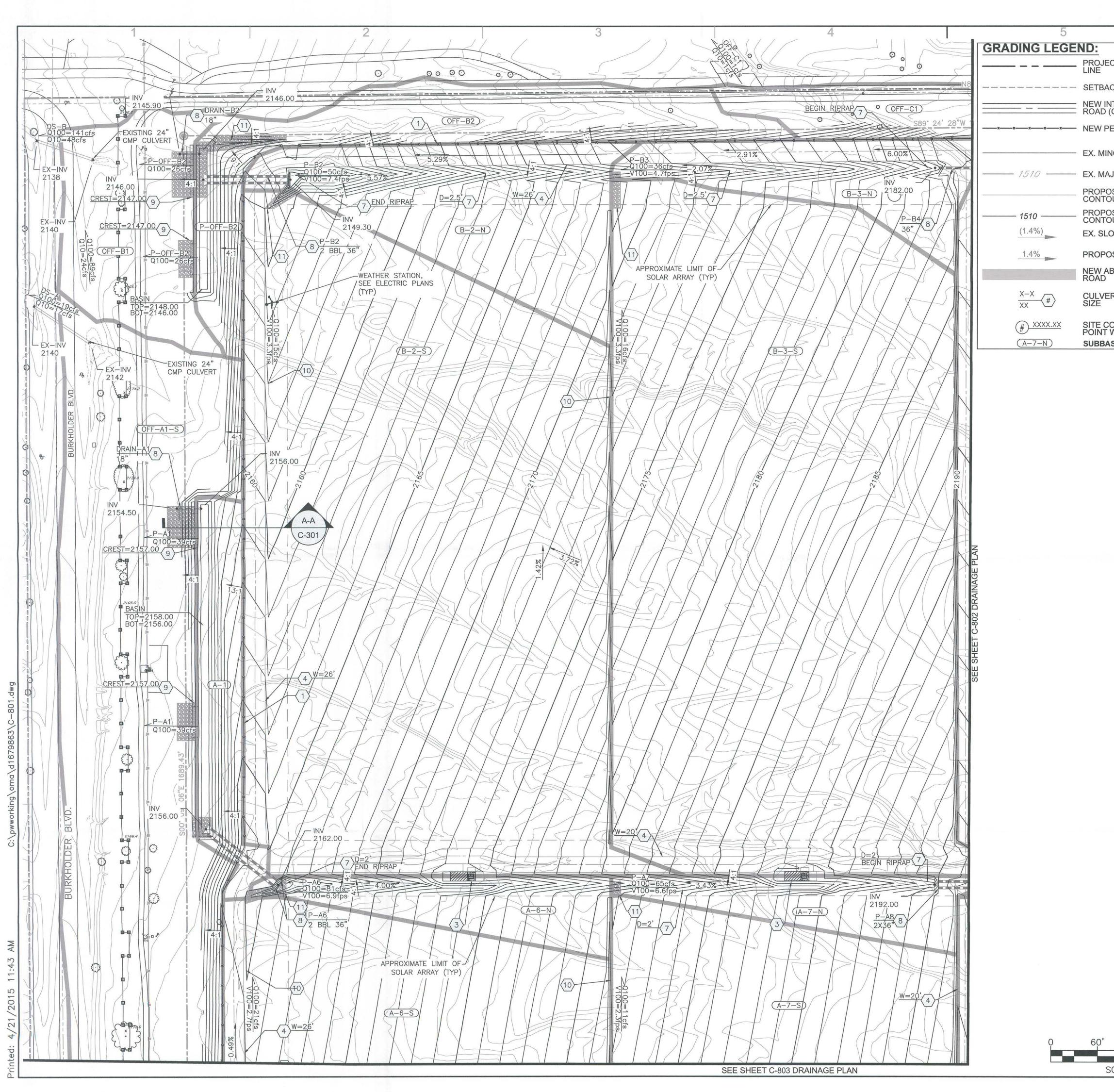





C·\ numerbing\ ama\ d1684750\ Figure 3 __ Beginnel Flood Control Facilities dura

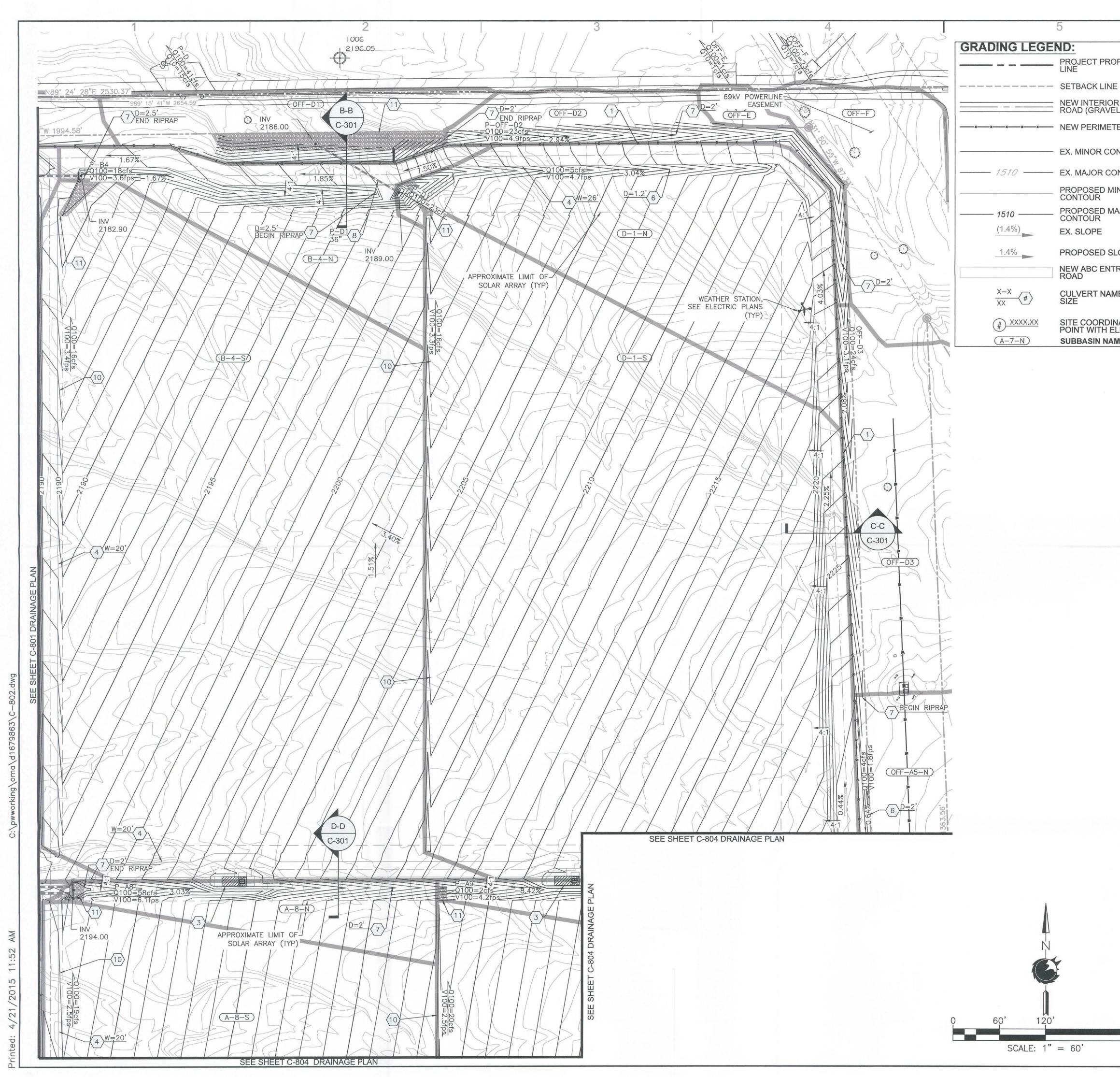


2

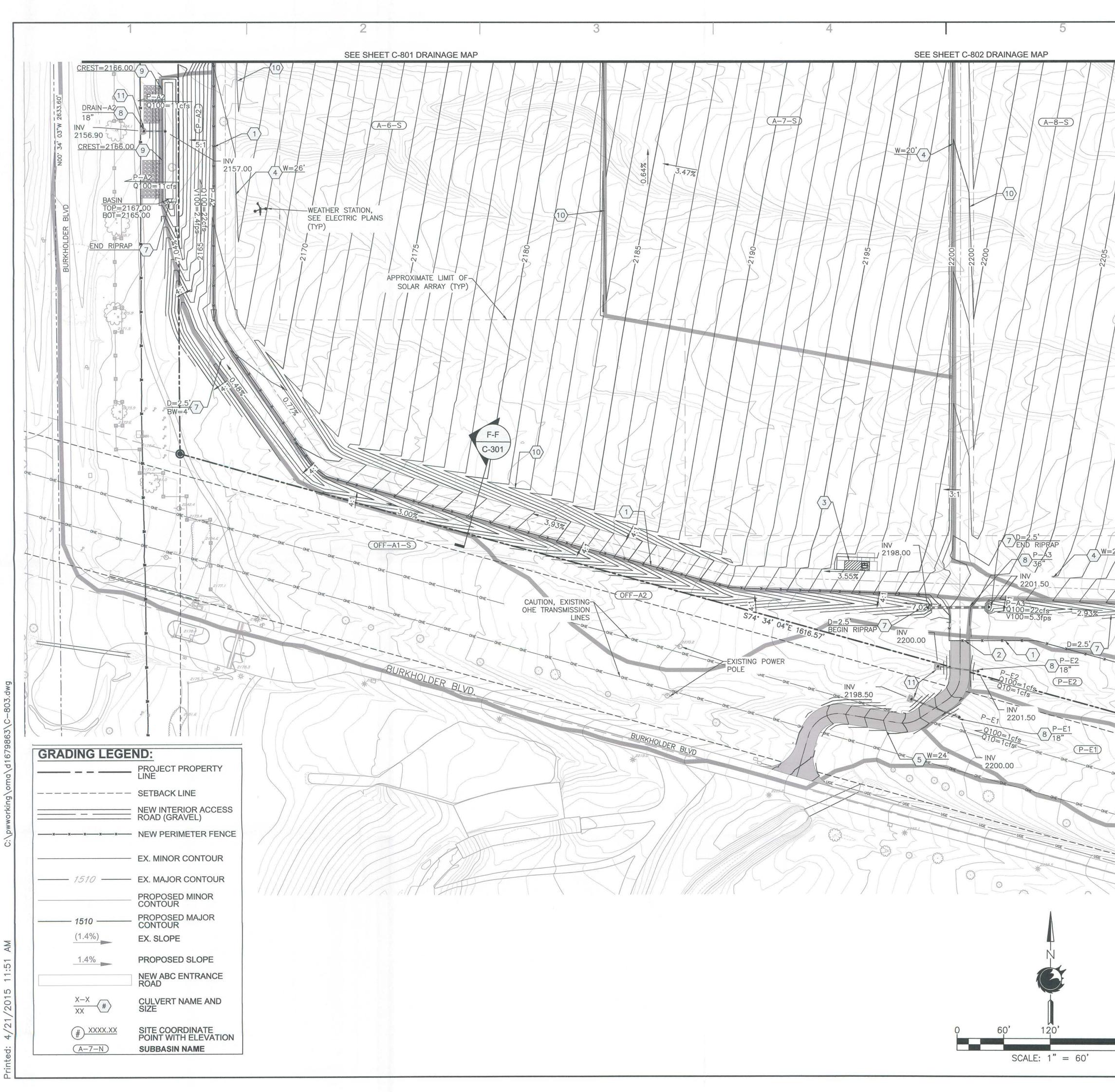

SNWA RIVER M SOLA 1299 BURKHOLDI HENDERSON, N FIGURE 7 - DRAIN

	CIVIL SHEETS
SHEET NUMBER	SHEET TITLE
C-800	DRAINAGE MAP COVER SHEET
C-801	DRAINAGE MAP
C-802	DRAINAGE MAP
C-803	DRAINAGE MAP
C-804	DRAINAGE MAP
C-301	CIVIL SECTIONS
C-501	ROAD, GRADING, & EROSION & SED
C-502	FENCE & GATE DETAILS

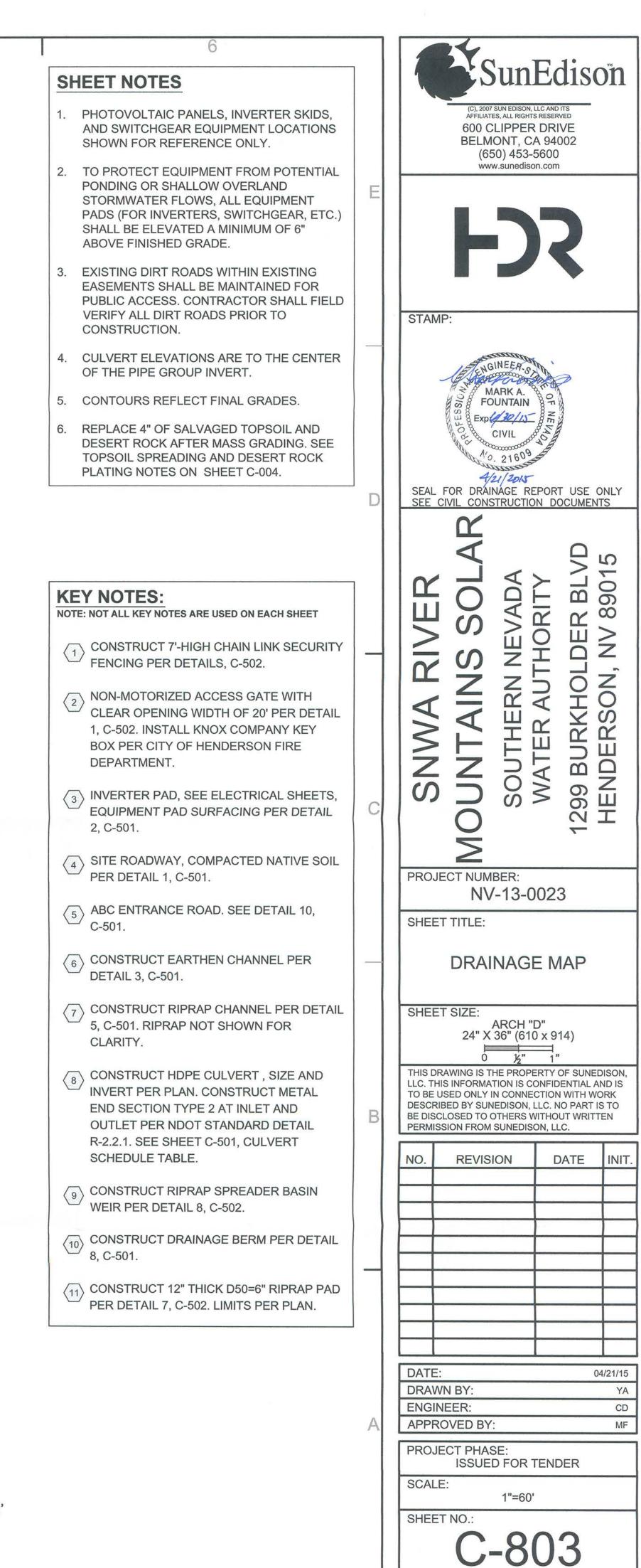
APPLICABLE CODES AND STANDARDS


 INTERNATIONAL BUILDING CODE 2012 CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

IOUNTAINS	C), 2007 SUN EDISON, LLC AND ITS AFFILIATES, ALL RIGHTS RESERVED 600 CLIPPER DRIVE BELMONT, CA 94002
	(650) 453-5600 www.sunedison.com
R	E FJS
ER BLVD	STAMP:
V, 89015	GINEERO
NAGE PLAN	MARK A. FOUNTAIN Exp: 6/30/115 CIVIL CIVIL MO 21609
	D SEAL FOR DRAINAGE REPORT USE ONLY SEE CIVIL CONSTRUCTION DOCUMENTS
	SOLAI SOLAI RADA RITY 89015
	N NEVA N NEVA SCIDER N, NV 8
EDIMENT CONTROL DETAILS	URKH(
	1299 BL HENDI
	PROJECT NUMBER: NV-13-0023 SHEET TITLE:
	DRAINAGE MAP TITLE SHEET
	SHEET SIZE: ARCH "D" 24" X 36" (610 x 914) <u> </u>
	B B B B B C C C C C C C C C C C C C C C
	NO. REVISION DATE IN
	DATE: 04/21/2 DRAWN BY: Y ENGINEER: OC A APPROVED BY:
	PROJECT PHASE: ISSUED FOR TENDER SCALE: NO SCALE
	SHEET NO.: C-800


orking\oma\d1679863\C-801.dwg, Plot, 4/21/2015 11:43:22 AM, yarmei

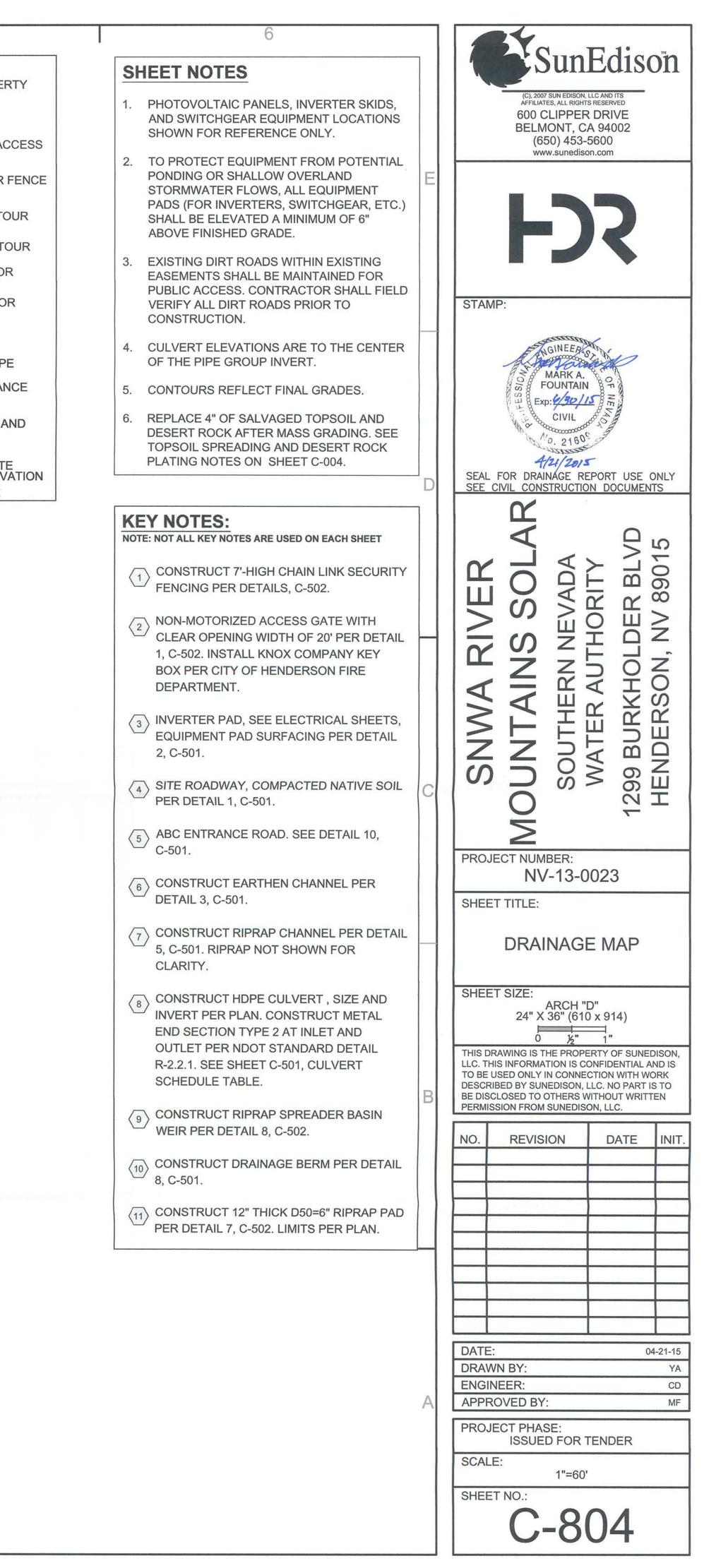
	0		
	6 SHEET NOTES		SunEdison
ECT PROPERTY	 PHOTOVOLTAIC PANELS, INVERTER SKIDS, AND SWITCHGEAR EQUIPMENT LOCATIONS 		(C), 2007 SUN EDISON, LLC AND ITS AFFILIATES, ALL RIGHTS RESERVED
	SHOWN FOR REFERENCE ONLY.		600 CLIPPER DRIVE BELMONT, CA 94002
INTERIOR ACCESS (GRAVEL)	2. TO PROTECT EQUIPMENT FROM POTENTIAL		(650) 453-5600 www.sunedison.com
PERIMETER FENCE	PONDING OR SHALLOW OVERLAND STORMWATER FLOWS, ALL EQUIPMENT PADS (FOR INVERTERS, SWITCHGEAR, ETC.)	Е	
INOR CONTOUR	SHALL BE ELEVATED A MINIMUM OF 6" ABOVE FINISHED GRADE.		
AJOR CONTOUR	3. EXISTING DIRT ROADS WITHIN EXISTING		
OSED MINOR OUR	EASEMENTS SHALL BE MAINTAINED FOR PUBLIC ACCESS. CONTRACTOR SHALL FIELD		
OSED MAJOR OUR	VERIFY ALL DIRT ROADS PRIOR TO CONSTRUCTION.		STAMP:
LOPE	4. CULVERT ELEVATIONS ARE TO THE CENTER		AUTER
OSED SLOPE	OF THE PIPE GROUP INVERT.		AGINEER ST
ABC ENTRANCE	5. CONTOURS REFLECT FINAL GRADES.		FOUNTAIN FOUNTAIN
ERT NAME AND	6. REPLACE 4" OF SALVAGED TOPSOIL AND DESERT ROCK AFTER MASS GRADING. SEE TOPSOIL SPREADING AND DESERT ROCK		SHOLL CIVIL
	PLATING NOTES ON SHEET C-004.		4/21/2015
T WITH ELEVATION		D	SEAL FOR DRAINAGE REPORT USE ONLY SEE CIVIL CONSTRUCTION DOCUMENTS
	KEY NOTES: NOTE: NOT ALL KEY NOTES ARE USED ON EACH SHEET		
	CONSTRUCT 7'-HIGH CHAIN LINK SECURITY FENCING PER DETAILS, C-502.		DL/ BLVI 39015
	NON-MOTORIZED ACCESS GATE WITH		SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
	 CLEAR OPENING WIDTH OF 20' PER DETAIL 1, C-502. INSTALL KNOX COMPANY KEY BOX PER CITY OF HENDERSON FIRE DEPARTMENT. 		AUTHORN NE NUTHOLDI NN NE NUTHOLDI NN NE NUTHOLDI NN NE NU NU NE NU
	INVERTER PAD, SEE ELECTRICAL SHEETS, EQUIPMENT PAD SURFACING PER DETAIL 2, C-501.		NTA NTA NTA NTA NTA NTA DERS
	SITE ROADWAY, COMPACTED NATIVE SOIL PER DETAIL 1, C-501.	С	NHEN HEN
	$ \begin{array}{ c c c } \hline & \text{ABC ENTRANCE ROAD. SEE DETAIL 10,} \\ \hline & \text{C-501.} \end{array} $		PROJECT NUMBER:
	6 CONSTRUCT EARTHEN CHANNEL PER DETAIL 3, C-501.		NV-13-0023 SHEET TITLE:
	CONSTRUCT RIPRAP CHANNEL PER DETAIL 5, C-501. RIPRAP NOT SHOWN FOR CLARITY.		DRAINAGE PLAN
	8 CONSTRUCT HDPE CULVERT, SIZE AND INVERT PER PLAN. CONSTRUCT METAL END SECTION TYPE 2 AT INLET AND OUTLET PER NDOT STANDARD DETAIL R-2.2.1. SEE SHEET C-501, CULVERT SCHEDULE TABLE.		SHEET SIZE: ARCH "D" 24" X 36" (610 x 914) 0 ½" 1" THIS DRAWING IS THE PROPERTY OF SUNEDISON, LLC. THIS INFORMATION IS CONFIDENTIAL AND IS TO BE USED ONLY IN CONNECTION WITH WORK DESCRIBED BY SUNEDISON, LLC. NO PART IS TO
	9 CONSTRUCT RIPRAP SPREADER BASIN WEIR PER DETAIL 8, C-502.	B	BE DISCLOSED TO OTHERS WITHOUT WRITTEN PERMISSION FROM SUNEDISON, LLC.
	(10) CONSTRUCT DRAINAGE BERM PER DETAIL 8, C-501.		NO. REVISION DATE INIT.
	CONSTRUCT 12" THICK D50=6" RIPRAP PAD PER DETAIL 7, C-502. LIMITS PER PLAN.		
N 66 120'	240'	A	DATE: 04-21-15 DRAWN BY: YA ENGINEER: CD APPROVED BY: MF PROJECT PHASE: ISSUED FOR TENDER SCALE: 1"=60' SHEET NO.:
SCALE: 1" = 60'			C-801

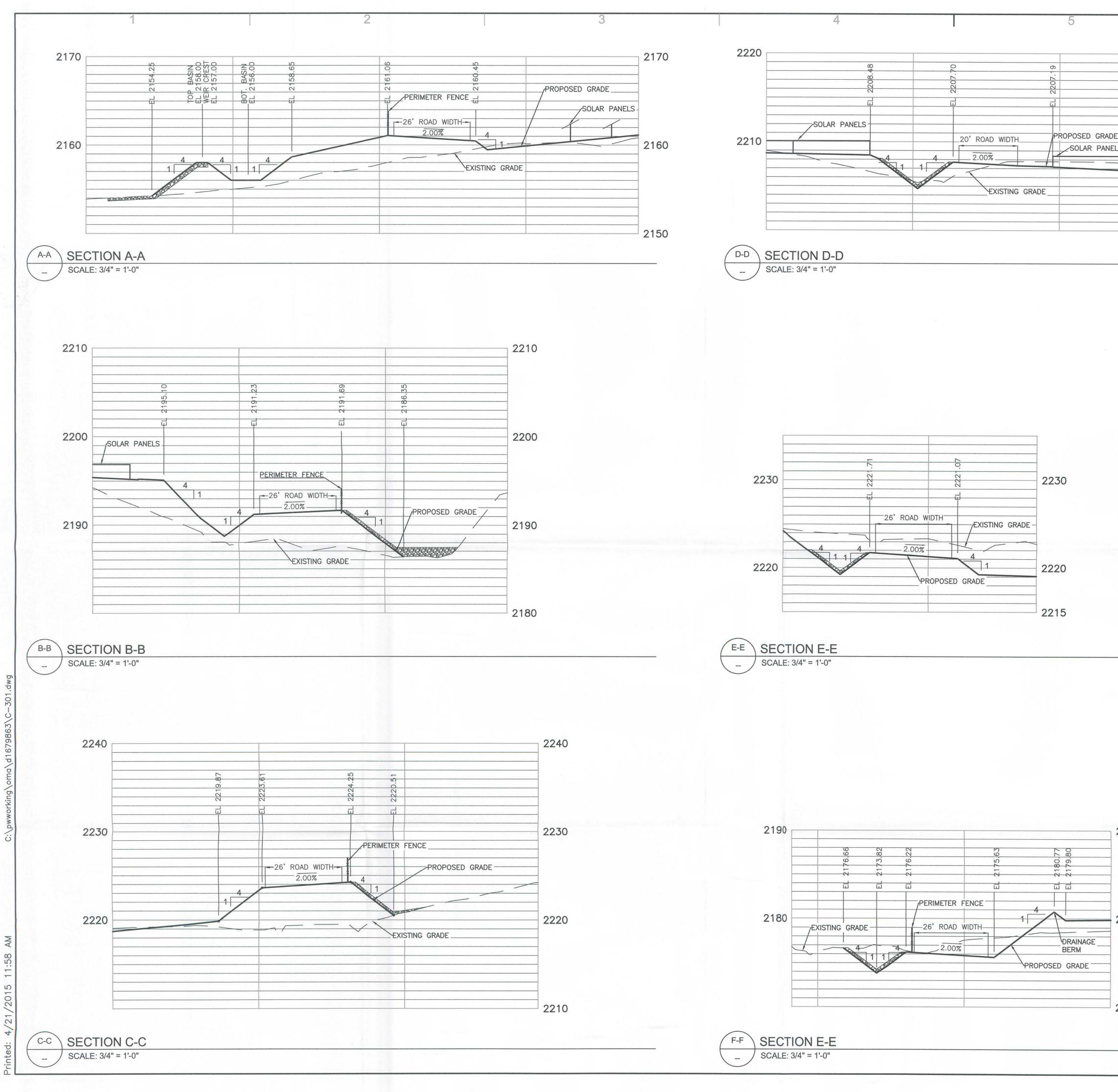


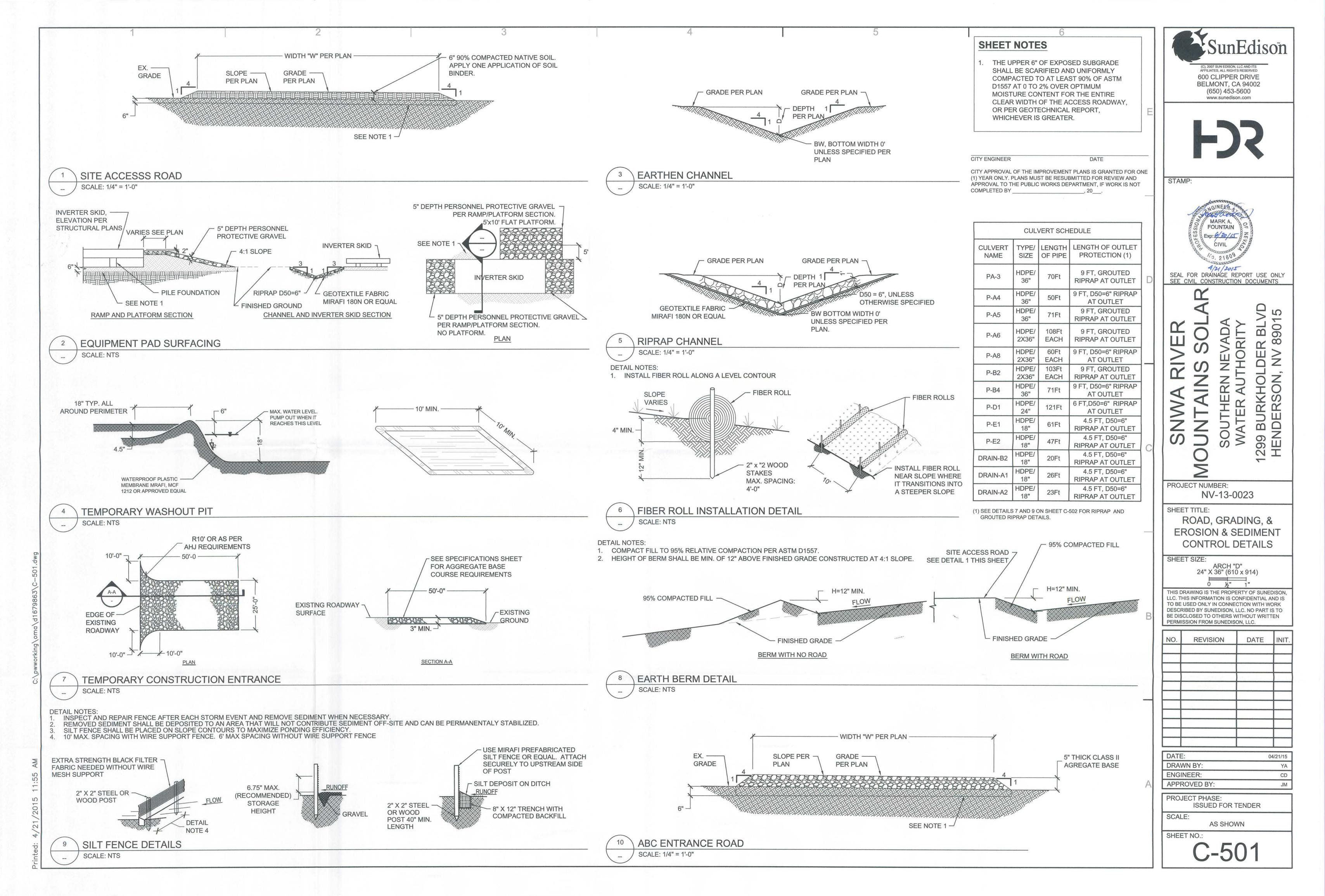
wworking/oma/d1679863/C-802.dwg, Plot, 4/21/2015 11:52:33 AM, yarm

	6			BY	Sun	Ediso	⊃ັn
PERTY	 SHEET NOTES PHOTOVOLTAIC PANELS, INVERTER SKIDS, AND SWITCHGEAR EQUIPMENT LOCATIONS SHOWN FOR REFERENCE ONLY. 			(C), 200 AFFILIA 600 (7 SUN EDISON, TES, ALL RIGHT	N	511
R ACCESS L) ER FENCE NTOUR NTOUR	 TO PROTECT EQUIPMENT FROM POTENTIAL PONDING OR SHALLOW OVERLAND STORMWATER FLOWS, ALL EQUIPMENT PADS (FOR INVERTERS, SWITCHGEAR, ETC.) SHALL BE ELEVATED A MINIMUM OF 6" ABOVE FINISHED GRADE. EXISTING DIRT ROADS WITHIN EXISTING EASEMENTS SHALL BE MAINTAINED FOR 	E		(6	50) 453- w.sunedisc	5600 on.com	
AJOR	PUBLIC ACCESS. CONTRACTOR SHALL FIELD VERIFY ALL DIRT ROADS PRIOR TO CONSTRUCTION.		STA	MP:			
OPE	4. CULVERT ELEVATIONS ARE TO THE CENTER OF THE PIPE GROUP INVERT.			A Start	GINEER	and the second	
RANCE	5. CONTOURS REFLECT FINAL GRADES.			NO SSE	FOUNTAIN	DF WEL	
NATE LEVATION	 REPLACE 4" OF SALVAGED TOPSOIL AND DESERT ROCK AFTER MASS GRADING. SEE TOPSOIL SPREADING AND DESERT ROCK PLATING NOTES ON SHEET C-004. 		SEAL	FOR DRA	CIVIL ^N : 216 ¹ /21/201 INAGE RI	SPORT USE	ONLY
WE	KEY NOTES: NOTE: NOT ALL KEY NOTES ARE USED ON EACH SHEET					DOCUMEN	
	CONSTRUCT 7'-HIGH CHAIN LINK SECURITY FENCING PER DETAILS, C-502.		۲ د		NDA	BLVD	9015
	NON-MOTORIZED ACCESS GATE WITH CLEAR OPENING WIDTH OF 20' PER DETAIL 1, C-502. INSTALL KNOX COMPANY KEY BOX PER CITY OF HENDERSON FIRE DEPARTMENT.	-	RIVE	INS S	RN NEVA	AUTHOR	ON, NV 8
	(3) INVERTER PAD, SEE ELECTRICAL SHEETS, EQUIPMENT PAD SURFACING PER DETAIL 2, C-501.		ZWN	NTA	UTHEI	NTER /	DERS
	SITE ROADWAY, COMPACTED NATIVE SOIL PER DETAIL 1, C-501.	С	Ū.	D N	SOI	299 E	HEN
	5 ABC ENTRANCE ROAD. SEE DETAIL 10, C-501.		PRO		IRED.	~	
	6 CONSTRUCT EARTHEN CHANNEL PER DETAIL 3, C-501.				/-13-0	023	
	CONSTRUCT RIPRAP CHANNEL PER DETAIL 5, C-501. RIPRAP NOT SHOWN FOR CLARITY.	_	SHE	DRAI	NAGE	E PLAN	
	CONSTRUCT HDPE CULVERT, SIZE AND INVERT PER PLAN. CONSTRUCT METAL END SECTION TYPE 2 AT INLET AND OUTLET PER NDOT STANDARD DETAIL R-2.2.1. SEE SHEET C-501, CULVERT SCHEDULE TABLE.		THIS I LLC. T	24" X 0 DRAWING IS T HIS INFORMA	TION IS C		ND IS
	(9) CONSTRUCT RIPRAP SPREADER BASIN WEIR PER DETAIL 8, C-502.	В	DESCI BE DIS	RIBED BY SUI	NEDISON, OTHERS V	LLC. NO PART I	S TO
	CONSTRUCT DRAINAGE BERM PER DETAIL 8, C-501.		NO.	REVIS	SION	DATE	INIT.
	CONSTRUCT 12" THICK D50=6" RIPRAP PAD PER DETAIL 7, C-502. LIMITS PER PLAN.						
			ENG	E: WN BY: INEER: ROVED BY	7.	0	4/21/15 YA CD MF
			PRO	JECT PHA	SE:	TENDER	. IVIIT
240'			SCAI	E: TNO.:	1"=60'		
			SHE		-8	02	

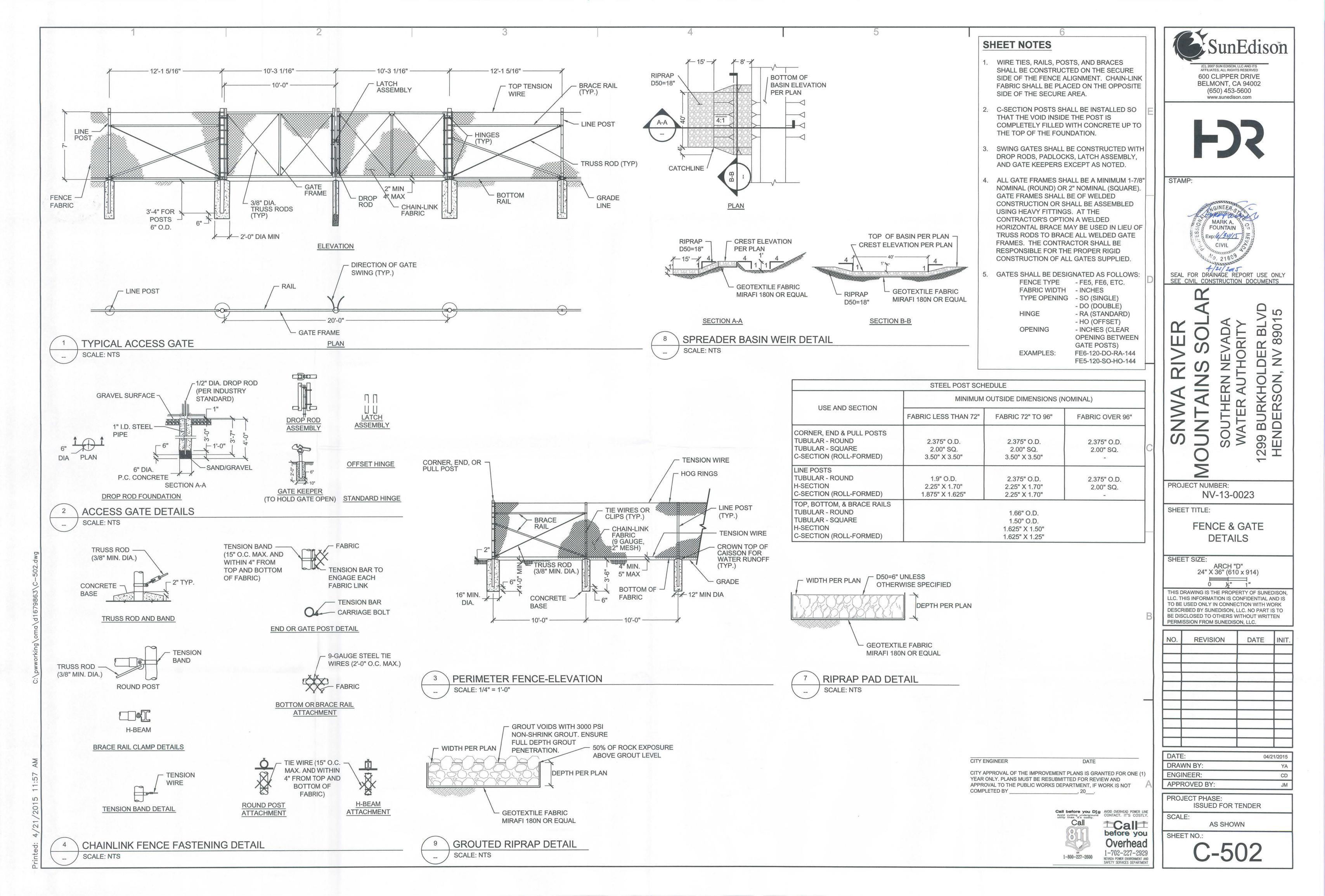
orking\oma\d1679863\C-803.dwg, Plot, 4/21/2015 11:50:47 AM, ye




240'


wworking\oma\d1679863\C-804.dwg, Plot, 4/21/2015 11:49:10 AM, yarmen

		5
	GRADING LEGE	ND:
-		PROJECT PROPER
13		SETBACK LINE
3		NEW INTERIOR AC ROAD (GRAVEL)
-	xx	NEW PERIMETER F
-		EX. MINOR CONTO
	1510	EX. MAJOR CONTO
-		PROPOSED MINOR CONTOUR
-	1510	PROPOSED MAJOF CONTOUR
	(1.4%)	EX. SLOPE
	1.4%	PROPOSED SLOPE
[NEW ABC ENTRAN ROAD
	$\frac{X-X}{XX}$ #	CULVERT NAME AI SIZE
	# XXXX.XX	SITE COORDINATE POINT WITH ELEVA
L	(A-7-N)	SUBBASIN NAME




	C		
1	6 SHEET NOTES		SunEdison
2220	1. REFER TO SHEETS C-401 TO C-404 FOR		
	SECTION LOCATIONS.		(C), 2007 SUN EDISON, LLC AND ITS AFFILIATES, ALL RIGHTS RESERVED 600 CLIPPER DRIVE
			BELMONT, CA 94002 (650) 453-5600 www.sunedison.com
		F	www.sunedison.com
E ⁻ 2210	LEGEND		
	RIPRAP LINED CHANNEL		
			STAMP:
2200			STENGINEER.
			S MARK A.
			SS Exp: (4/30/ 5 8 7
			No. 21609
			4/21/20/5 SEAL FOR DRAINAGE REPORT USE ONLY
		D	SEE CIVIL CONSTRUCTION DOCUMENTS
			SP015 89015 89015
			N S S S S S S S S S S S S S S S S S S S
		-	
			KS R A K A K A K A K A K A K A K A K A K A
			SOU SOU SOU SOU SOU SOU SOU A FAND
		С	HEP SC OC
			Š
			PROJECT NUMBER:
			NV-13-0023
			SHEET TITLE:
		_	CIVIL SECTIONS
			SHEET SIZE:
			ARCH "D" 24" X 36" (610 x 914)
			0 ½" 1" THIS DRAWING IS THE PROPERTY OF SUNEDISON,
			LLC. THIS INFORMATION IS CONFIDENTIAL AND IS TO BE USED ONLY IN CONNECTION WITH WORK
		В	DESCRIBED BY SUNEDISON, LLC. NO PART IS TO BE DISCLOSED TO OTHERS WITHOUT WRITTEN PERMISSION FROM SUNEDISON, LLC.
			NO. REVISION DATE INIT.
2190			
		-	
2120			
2180			DATE: 04/21/15
CIT	Y ENGINEER DATE Y APPROVAL OF THE IMPROVEMENT PLANS IS GRANTED FOR O	NE (1)	DRAWN BY: YA ENGINEER: CD
YE. AP	AR ONLY. PLANS MUST BE RESUBMITTED FOR REVIEW AND PROVAL TO THE PUBLIC WORKS DEPARTMENT, IF WORK IS NOT MPLETED BY, 20		APPROVED BY: JM
			PROJECT PHASE: ISSUED FOR TENDER
2170	Avoid cutting underground utility lines. It's costly. Call		SCALE: AS SHOWN
	before		SHEET NO .:
	Overh 1-800-227-2600	-2929	C-301
	1-800-227-2600 NEVADA POWER ENVI SAFETY SERVICES [CONMENT AND	

pwworkinglomald1679863\C-501.dwg, PLOT, 4/21/2015 11:55:14 AM, yarmen

orking/oma/d1679863/C-502.dwg, PLOT, 4/21/2015 11:57:01 AM, yarmenta

Appendix A: Hydrologic Calculations

hdrinc.com

3200 E. Camelback Road, Suite 350 Phoenix, AZ 85018 602.522.7700

SNWA River Mountains Solar Rainfall Calculations 4/21/2015

Step 1:

Rainfall Depths (Fig. 501-512)

Return Period (yr)	6-Hr Depth(in)	24-Hr Depth(in)
2	1.00	1.20
5	1.20	1.60
10	1.50	2.00
25	1.85	2.40
50	2.10	2.80
100	2.20	3.00

Step 2:

1 Hr. Depths (Eq. 501-502)	Depth (in)
Y2 (2 year, 1 hr)	0.77
Y100 (100 year, 1 hour))	1.71

Step 3:

Adjusted Depths (Table 501), 1 hour depths taken from Standard Form 3

Return Period (yr)	1-Hr Depth(in)	Adjustment Factor (table 501)	Adjusted 1- hr Depth (in)
2	0.77	1.00	0.77
5	1.00	1.16	1.16
10	1.15	1.24	1.43
25	1.35	1.33	1.80
50	1.55	1.39	2.15
100	1.71	1.43	2.45

Table 504		
Duration (min)	Ratio to 1-hour	
5		0.29
10		0.45
15		0.57
30		0.79

Step 4:

Durations less than 1 hour (Using Table 504)

		Duration (min)							
		5		10		15		3	0
Return Period (yr)	Adjusted 1-Hr	Depth (1) (in)	Intensity	Depth (1)	Intensity	Depth (1) (in)	Intensity	Depth (1)	Intensity
Ketuin Periou (yr)	Depth(in)	Depth (1) (iii)	(in/hr)	(in)	(in/hr)	Deptil (1) (iii)	(in/hr)	(in)	(in/hr)
2	0.77	0.22	2.68	0.35	2.08	0.44	1.76	0.61	1.22
5	1.16	0.34	4.04	0.52	3.13	0.66	2.64	0.92	1.83
10	1.43	0.41	4.96	0.64	3.85	0.81	3.25	1.13	2.25
25	1.80	0.52	6.25	0.81	4.85	1.02	4.09	1.42	2.84
50	2.15	0.62	7.50	0.97	5.82	1.23	4.91	1.70	3.40
100	2.45	0.71	8.51	1.10	6.60	1.39	5.58	1.93	3.86

(1) Depths determined using "Table 504 - Factor for Durations of Less Than One-hour"

(2) Rainfall depths utilize Figures 501-512 centered on the the Site.

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

PRECIPITATION ADJUSTMENT RATIOS

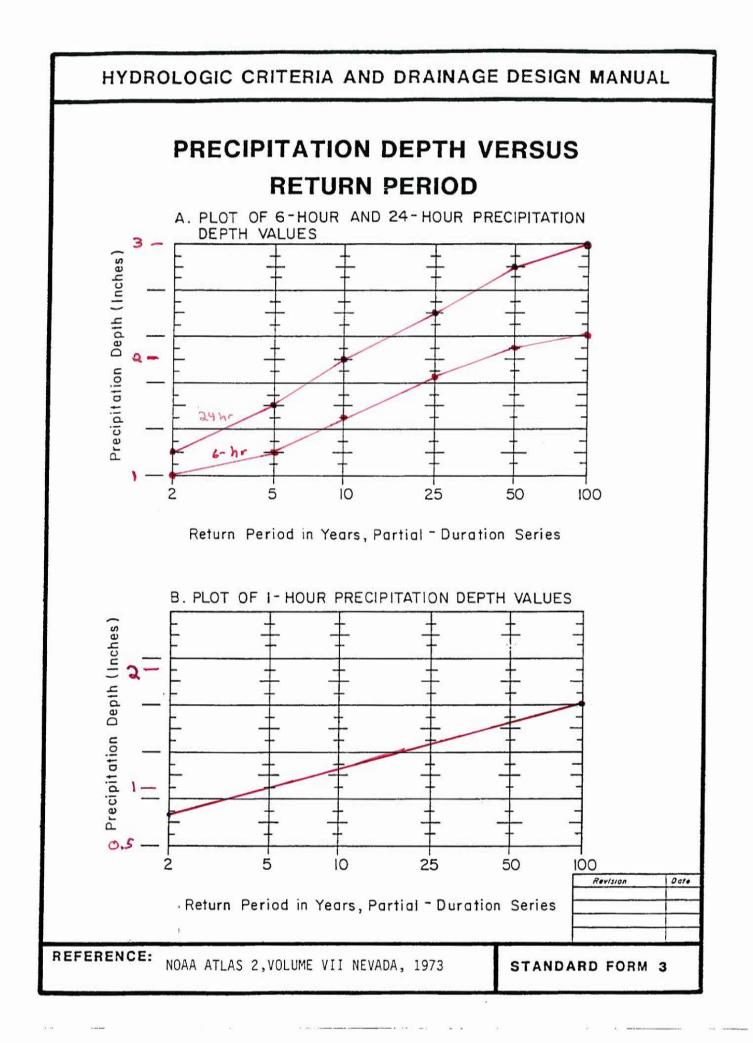
Recurrence Interval	Ratio to NOAA Atlas 2
2-year	1.00
5-year	1.16
10-year	1.24
25-year	1.33
50-year	1.39
100-year	1.43

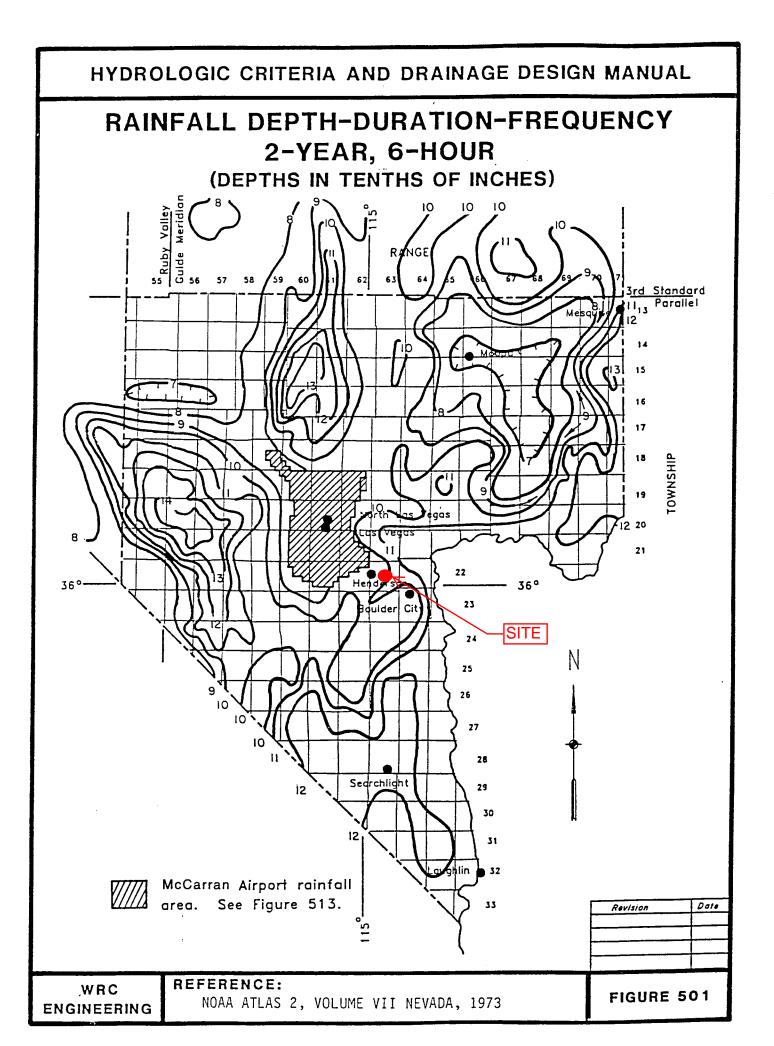
NOTE:	1.	Multiply	the	valu	les	obtained	from	the	NOAA	Atlas	2 by	the	above
		ratios to	obt	ain	the	adjusted	l prec	cipit	tatior	ı value	es.		

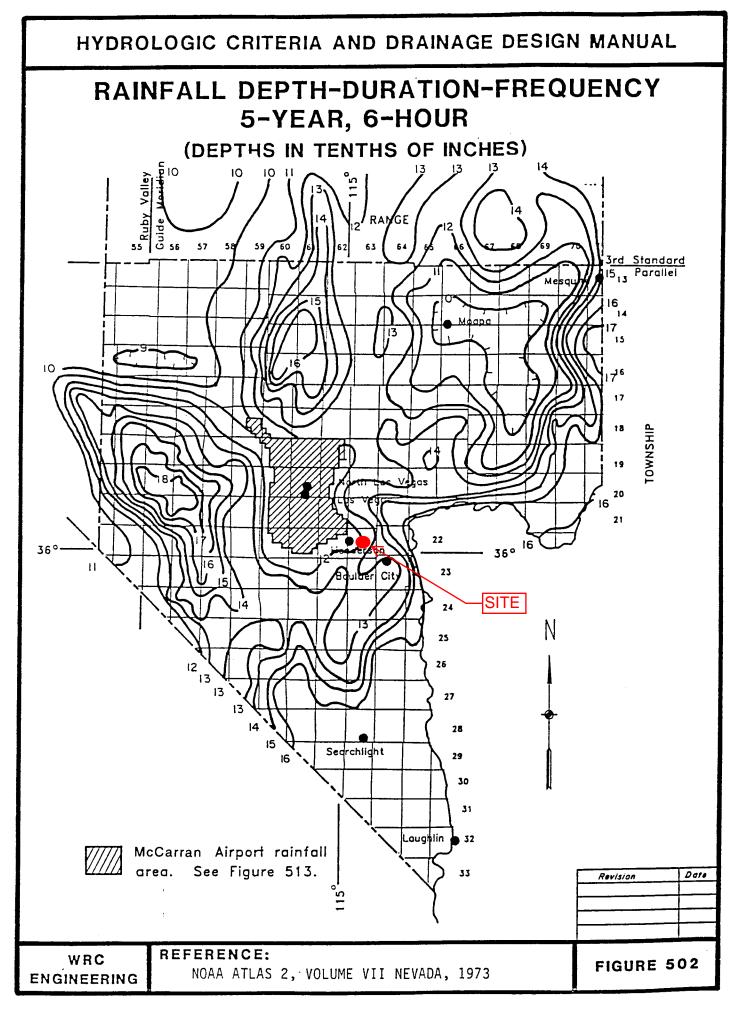
2. NOAA Atlas 2 values for use with TR-55 shall not be adjusted by the above ratios.

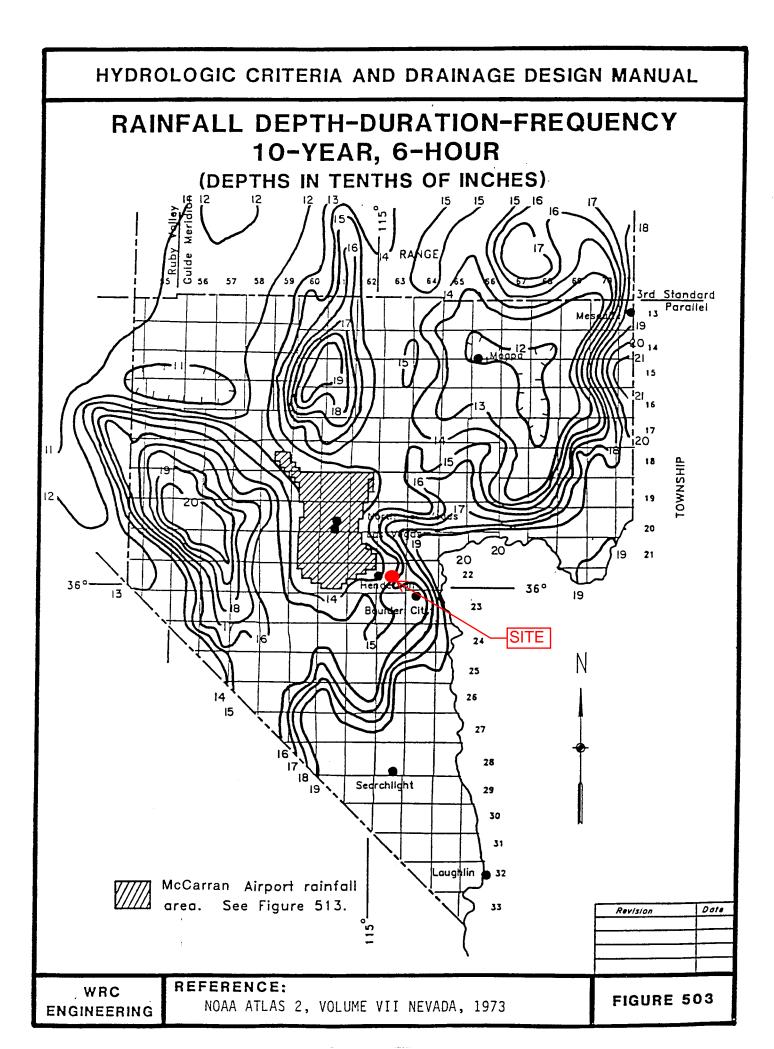
3. Tables 505 and 506 require no adjustments.

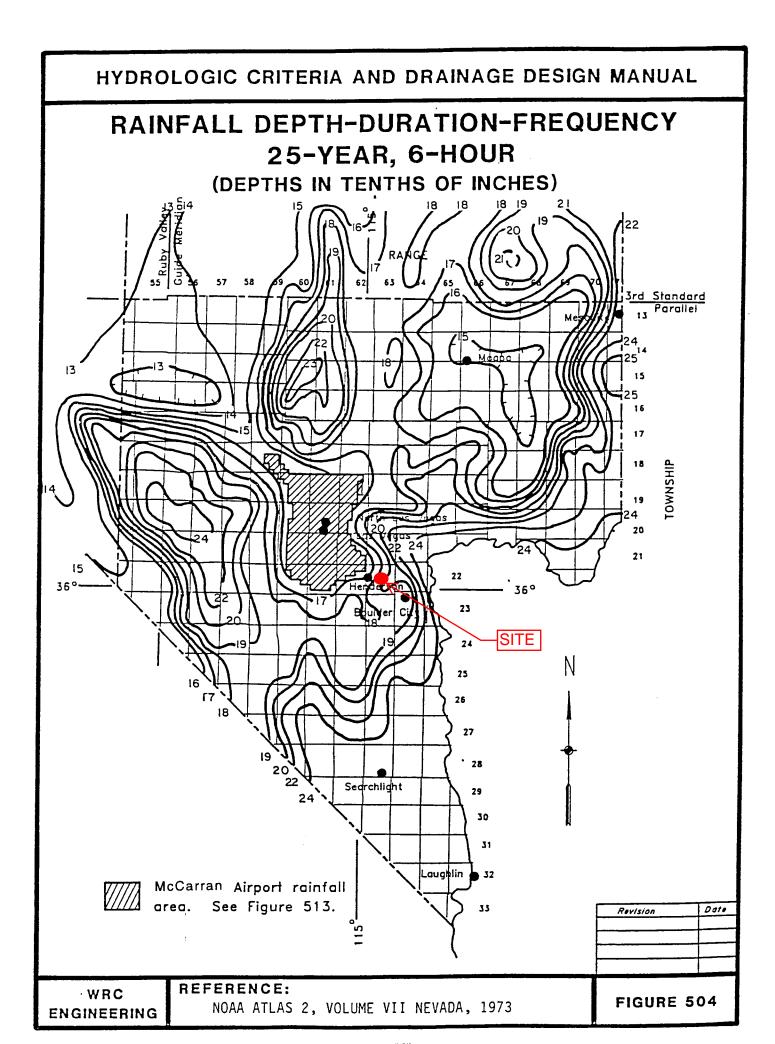
		Revision	Date
e.			
WRC ENGINEERING	REFERENCE: USACE, Los Angeles District, 1988	TABLE 5	501

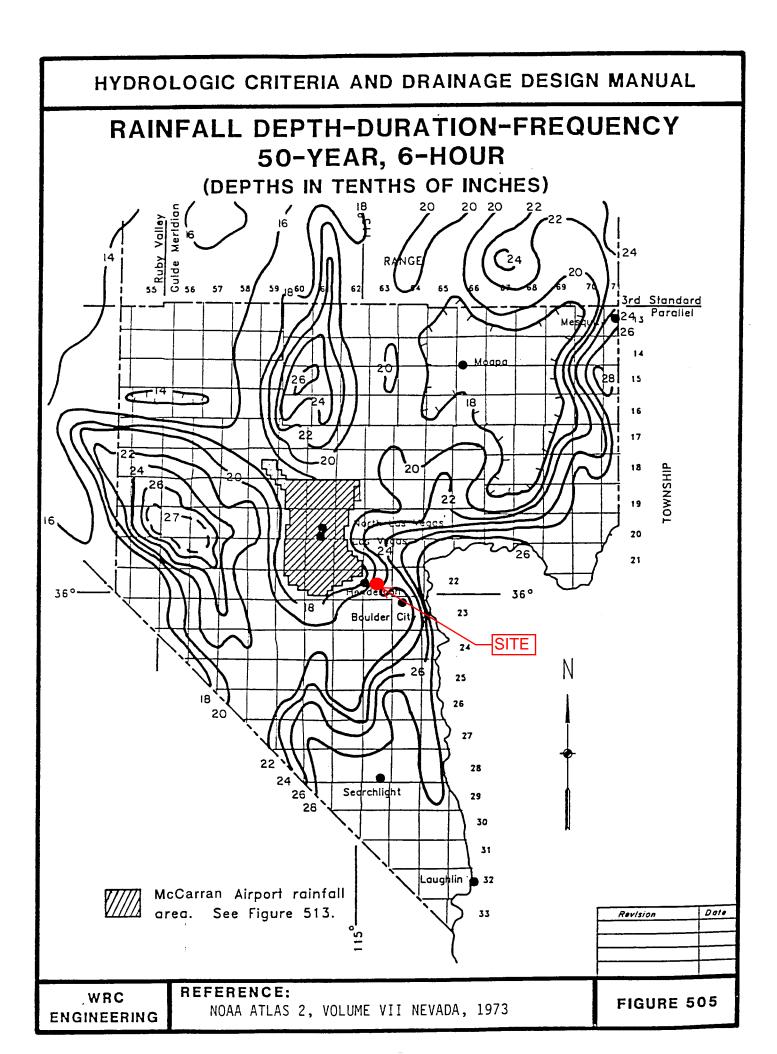

HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

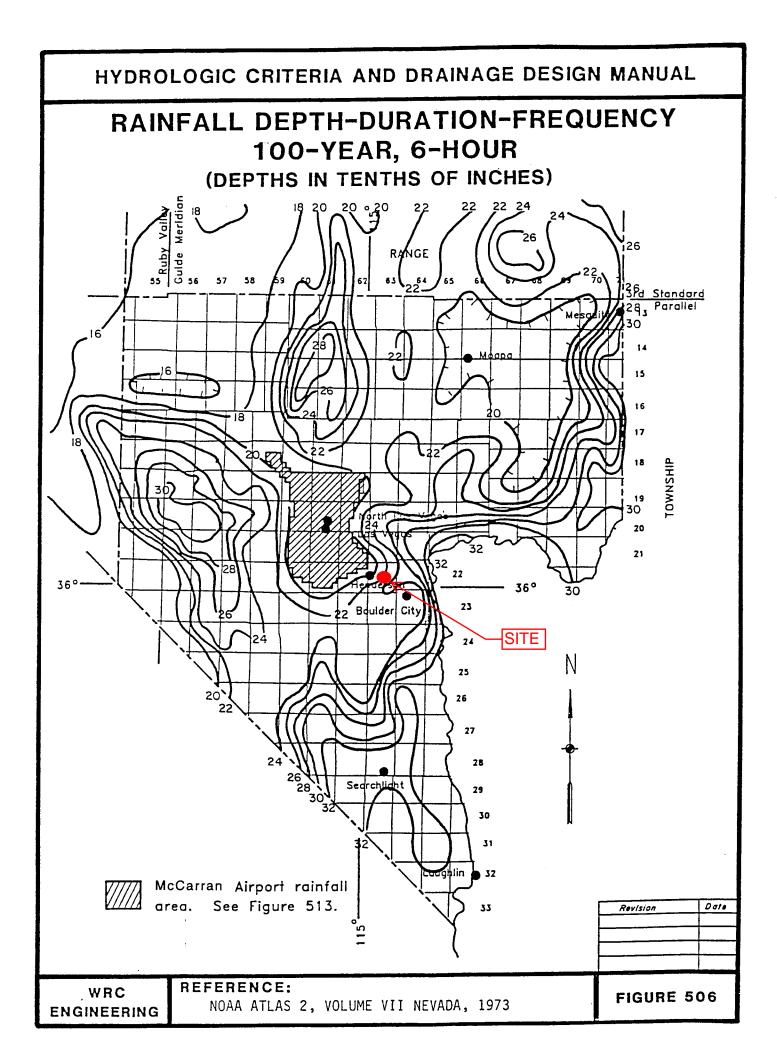

FACTORS FOR DURATIONS OF LESS THAN ONE-HOUR

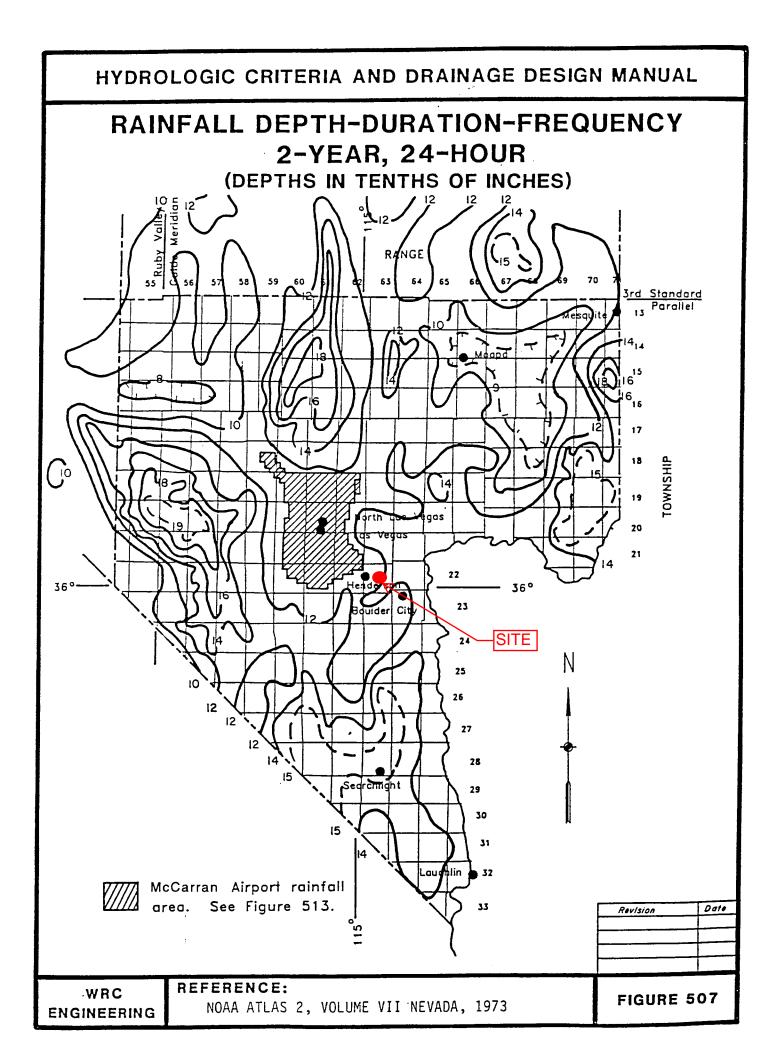

Duration (min)	5	10	15	30
			42	
Ratio to 1-hour	0.29	0.45	0.57	0.79

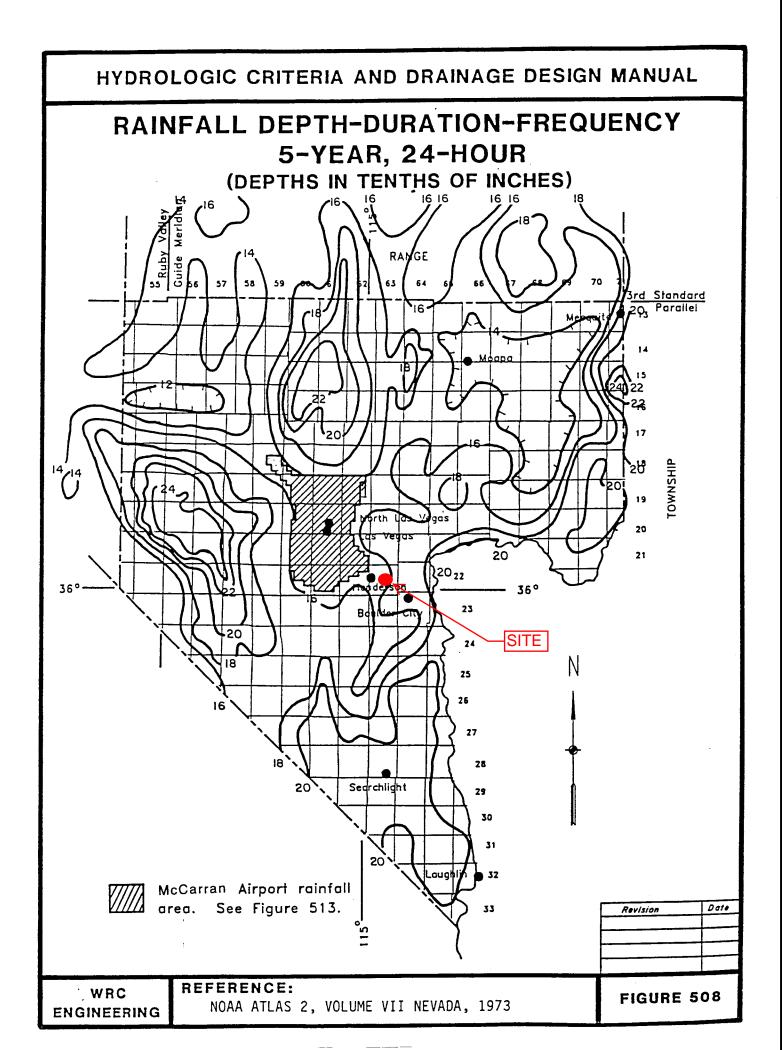

NOTE: 1. Multiply the 1-hour precipitation depths by the above ratios to obtain the precipitation depths for storm durations of less than 1-hour.

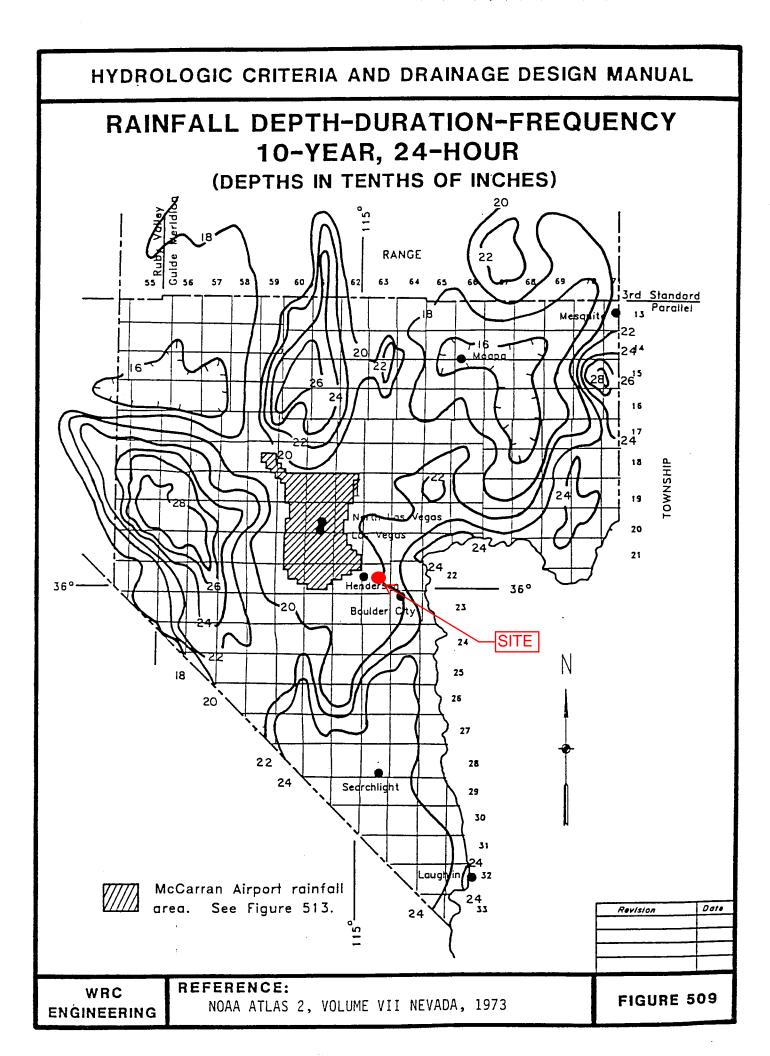

	·	Revision	Date
WRC Engineering	REFERENCE: NOAA Atlas 2, 1973	TABLE	504

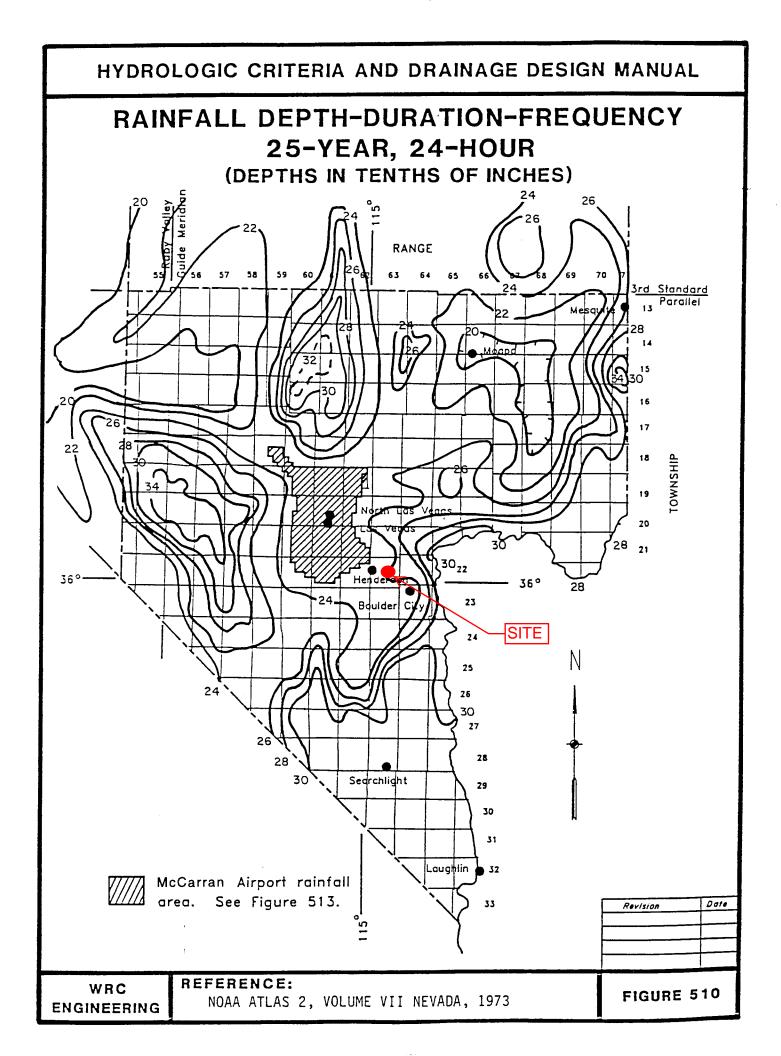


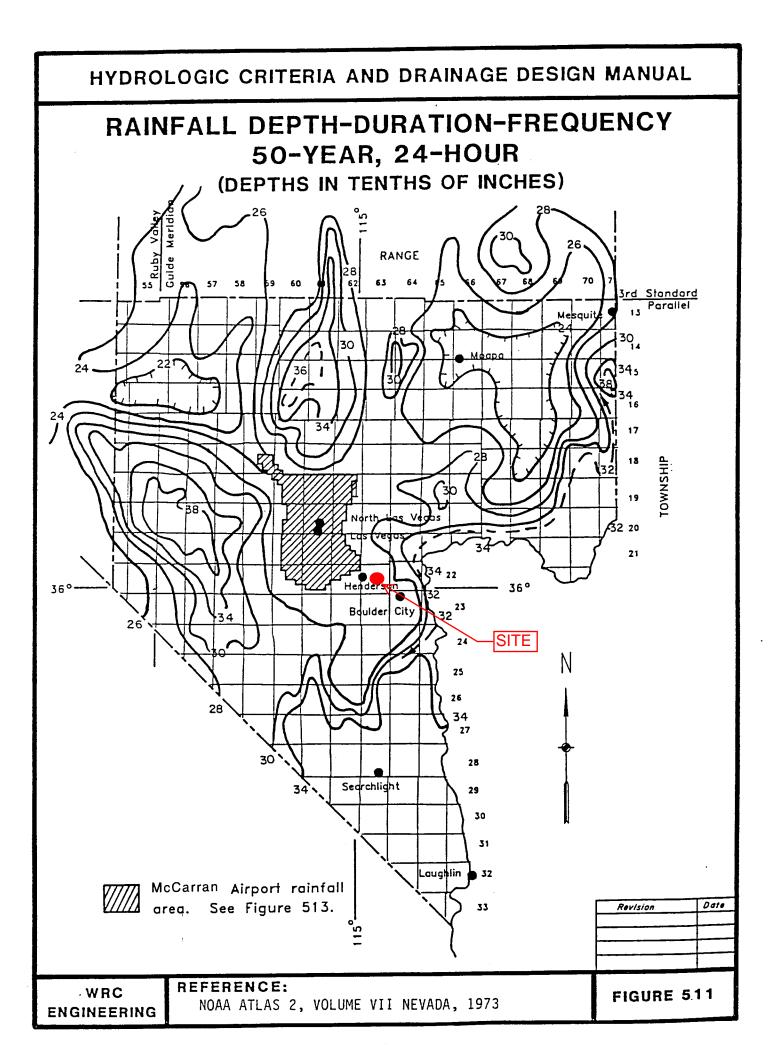


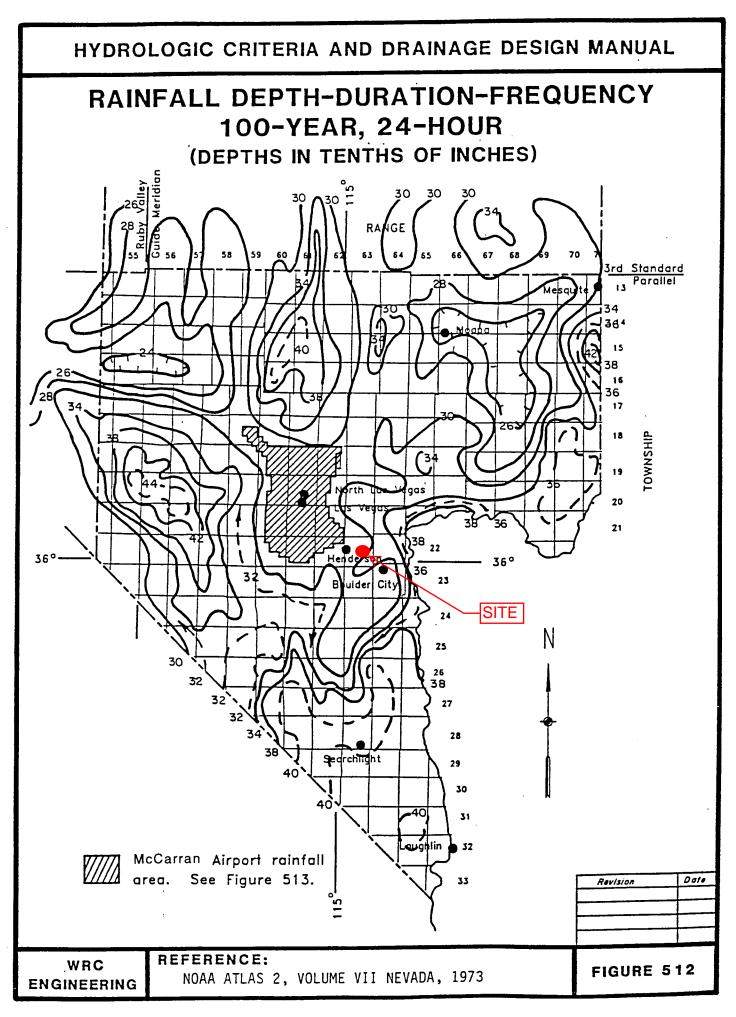


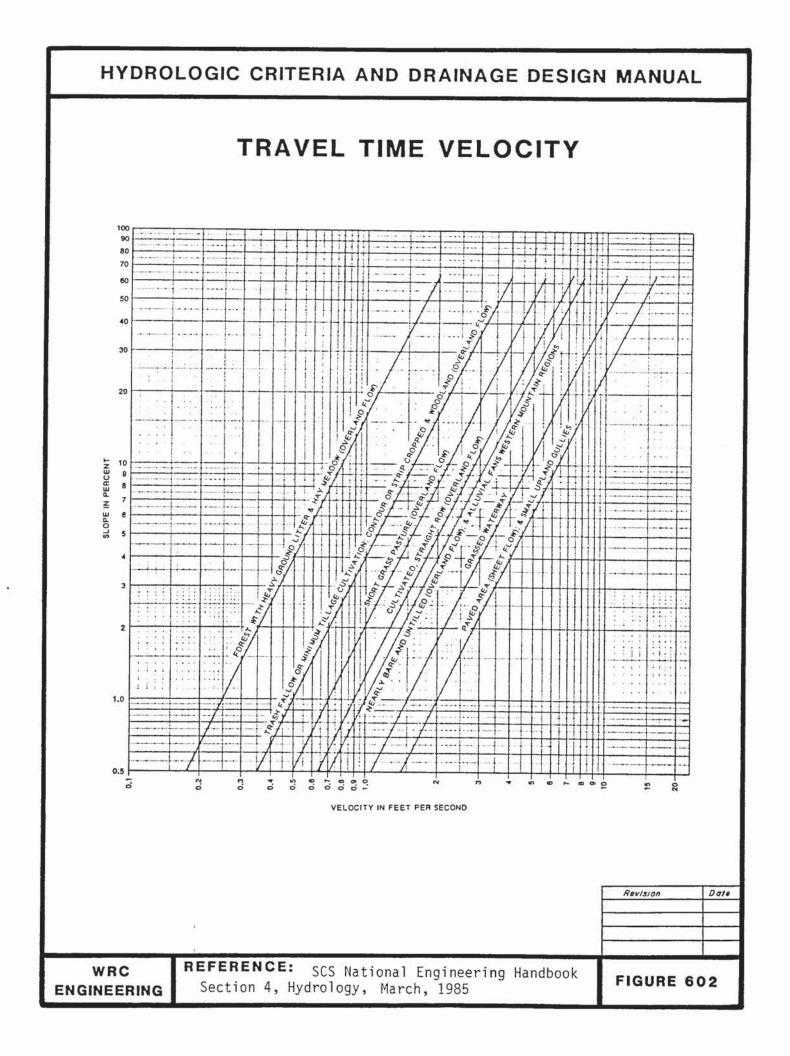










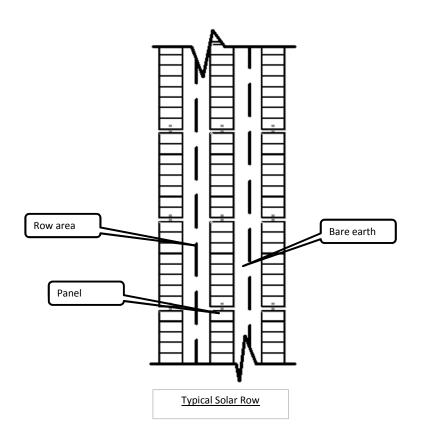


HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

RATIONAL FORMULA METHOD RUNOFF COEFFICIENTS AND AVERAGE PERCENT IMPERVIOUS AREA

LAND USE OR SURFACE CHARACTERISTICS	AVERAGE PERCENT IMPERVIOUS AREA	RUNOFF COEFFICIENTS 10-YEAR 100-YEAR						
		GRASS ¹	DESERT ²	GRASS ¹	DESERT ²			
Business and Commercial: Downtown Areas Neighborhood Areas	95 70	.88 .70	.88 .75	.89 .80	.89 .83			
Residential (Average Lot Size):	·. *							
1/8 Acre or less (Multi-Unit) 1/4 Acre 1/3 Acre 1/2 Acre 1 Acre 1 Acre	65 38 30 25 20	.68 .55 .50 .45 .40	.73 .62 .57 .53 .49	.78 .65 .60 .55 .50	.80 .74 .70 .67 .64			
2 Acre Industrial:	12 72	.35 .72	.45 .76	.40 .82	.60 .84			
Open Space: (Lawns, Parks, Golf Courses		.10	-	.30	-			
Undeveloped Areas: (Natural Vegetation)	0		.25	-	.50			
Streets and Roads: Paved Gravel	100 20		. 90 . 40		93 50			
Drives and Walks:	95		.88		.89			
Roofs:	90	3	.85		.87			
Notes: ¹ Grass - Grassed Landscap ² Desert - Desert Landscap	ing or Irrigated Veg ing or Natural Veget	etation ation	1. 2010/10/07 12:08:00/07:07:02					
				Revis	lan L			
WRC REFEREN	CE: USDCM, DRCOG, 196	9 (with m	odification		BLE 60			

SNWA River Mountains Solar Weighted 'C' Value Calculations 4/21/2015


		Dese	ert	Par	nels		
Solar Row	Total Area (sf)	Area (sf)	C100	Area (sf)	C100	Composite C100	Composite C10 (1)
Average impervious over 24 hours	3705	2233	0.5	1472	0.95	0.68	0.54

Average Panel Area Calculation

Panel angle to horizontal (degrees)	Panel Area (sf)	Average time at angle (2)	
0	2089	4	
30	1806	8	
60 (night)	1043	12	
	1472	weighted aver	age of panel area over time (sf)

(1) Using a C100 and Table 601 to find a comparable C10

(2) Assumes a standard 12-hour day

SNWA River Mountains Solar

Subbasin Values 4/21/2015

4/21/2015				Overlar	nd (1)	т	t (1)		
Basin	Area (sf)	Area (ac)	Total Length	Length	Slope	Up Elev	Down Elev	C10	C100
A-1	29899	0.7	231			-	2156	0.54	0.68
A-10	33699	0.8	876	-		-	2165	0.54	0.68
A-11	39143	0.9	1035	0	-	-	2195	0.54	0.68
A-6-N	29596	0.7	421	0	-	-	2164	0.54	0.68
A-6-S	500683	11.5	1378	500	3.51	2167	2165	0.54	0.68
A-7-N	28221	0.6	472	0		-	2180	0.54	0.68
A-7-S	242594	5.6	957	447	3.51	2184	2181	0.54	0.68
A-8-N	32326	0.7	473	0	-	-	2196	0.54	0.68
A-8-S	466427	10.7	1608	500	3.35	2201	2196	0.54	0.68
A-9-N	37616	0.9	532	500	3.35	2234	2210	0.54	0.68
A-9-S	477166	11.0	1356	500	3.35	2218	2213	0.54	0.68
B-2-N	70117	1.6	409	0	-	-	2150	0.54	0.68
B-2-S	360083	8.3	1127	470	3.72	2163	2154	0.54	0.68
B-3-N	39406	0.9	458	0	-	-	2168	0.54	0.68
B-3-S	385930	8.9	1152	495	3.75	2178	2169	0.54	0.68
B-4-N	58503	1.3	515	443	3.4	2185	2184	0.54	0.68
B-4-S	369436	8.5	1142	500	3.4	2193	2184	0.54	0.68
D-1-N	112961	2.6	624	500	3.4	2220	2191	0.54	0.68
D-1-S	383904	8.8	1148	500	3.4	2207	2199	0.54	0.68
OFF-A4-S	752122	17.3	3384	150	3.7	2339	2237	0.25	0.5
OFF-A1-S	488564	11.2	611	0	-	-	2143	0.25	0.5
OFF-A2	69042	1.6	1387	0	-	-	2165	0.25	0.5
OFF-A3	258127	5.9	1005	0	-	-	2199	0.25	0.5
OFF-A5-N	143873	3.3	1537	150	3.7	2274	2228	0.25	0.5
OFF-A5-S	493160	11.3	1667	150	3.7	2288	2229	0.25	0.5
OFF-B1	48341	1.1	122	0	-	-	2140	0.25	0.5
OFF-B2	61637	1.4	83	0	-	-	2146	0.25	0.5
OFF-C1	24656	0.6	381	50	6	2183	2168	0.25	0.5
OFF-D1	39427	0.9	335	0	-	-	2180	0.25	0.5
OFF-D2	28004	0.6	685	0	-	-	2197	0.25	0.5
OFF-D3	979504	22.5	3512	150	4.1	2336	2216	0.25	0.5
OFF-E	4392	0.1	112	50	2.8	2209	2208	0.25	0.5
OFF-F	1041571	23.9	4120	150	2.5	2340	2206	0.25	0.5
P-E1	41722	1.0	456	150	4.1	2222	2203	0.25	0.5
P-E2	34083	0.8	533	150	4.1	2225	2202	0.25	0.5
P-A4	752122	17.3	3384	150		2339	2237	0.25	0.50
P-A3	1010249	23.2	4389	150		2339	2199	0.25	0.50
P-A2	1079291	24.8	5776			2339	2165	0.25	0.50
P-A5	637033	14.6	1667	150		2288	2229	0.25	0.50
P-A9	1151815	26.4	2199	150		2288	2229	0.38	0.58
P-A8	1650568	37.9	2672	150		2288	2196	0.43	0.61
P-A7	1921383	44.1	3144			2288	2180	0.44	0.62
P-A6	2451662	56.3	3565			2288	2164	0.46	0.63
P-A1	2451662		3796			2288			
P-A	4095322	94.0	4407			2288	2143	0.38	
P-OFF-D2	1007508		4197			2336	2197	0.25	0.50
P-D1	536008		1148			2207	2199	0.54	0.68
P-D	1582943	36.3	4532			2336	2180	0.35	0.56
P-B4	427939	9.8				2193	2184	0.54	0.68
P-B3	886974	20.4	1600			2193	2168	0.54	0.68
P-B2	1317174		2009			2193	2150		0.68
P-OFF-B2	1378811	31.7	2092			2193	2146		0.67
P-B	1427152	32.8	2214	500	3.4	2193	2140	0.52	0.66

(1) Overland values and upper elevations only provided for upstream subbasins (2) "Ex" designates existing subbasin or concentration point.

SNWA River Mountains Solar Time of Concentration(Standard Form 4) and Flow Calculations 4/21/2015

	JUD-Das	in Data		Initial/0	Overland	(ti)		Travel Time	e (tt)			tc Check		Final tc			Modified Ration	nal Runoff Calcul	lations		
Concentration	16 640	A ()	A						Velocity		1. (50.001)	Total Length	1.(50.604)	(64.00	1100 (in/hr)	K (Local adjustment		I10 (in/hr)	64.0	010(-(-)
Point	K=C10	Area (ac)	Area (sq mi)	Length (ft)	Slope	ti (min)	Length (ft)	Slope (%) (1)	(fps) (2)	tt (min)	tc (EQ 601)	(ft)	tc(EQ 604)	(min)	C100	(3)	factor)	Q100 (cfs)	(3)	C10	Q10(cfs)
Ex A	0.25	93	0.145	150	2.5	13.8	5723	3.4	3.7	25.8	40	5873	43	40	0.5	3.44	0.5	80	2.00	0.25	23
Ex B	0.25	35	0.054	150	2.5	13.8	4058	3.6	3.8	17.8	32	4208	33	32	0.5	3.82	0.5	33	2.23	0.25	10
Ex C	0.25	5	0.008	150	2.5	13.8	1295	4.2	4.05	5.3	19	1445	18	18	0.5	5.23	0.5	7	3.05	0.25	2
Ex D	0.25	31	0.049	150	2.5	13.8	3274	3.6	3.8	14.4	28	3424	29	28	0.5	4.09	0.5	32	2.39	0.25	9
Ex E	0.25	0.33	0.001	20	2.5	5.1	139	5.8	4.85	0.5	6	159	11	6	0.5	8.51	0.5	1	4.96	0.25	1
Ex F	0.25	24.08	0.038	150	2.5	13.8	3940	3.4	3.65	18.0	32	4090	33	32	0.5	3.82	0.5	23	2.23	0.25	7
A-6-S	0.54	11.49	0.018	500	3.51	14.9	878	0.2	0.56	26.1	41	1378	18	18	0.68	5.35	0.5	21	3.12	0.54	10
A-7-S	0.54	5.57	0.009	447	3.51	14.1	510	0.6	1.4	6.1	20	957	15	15	0.68	5.58	0.5	11	3.25	0.54	5
A-8-S	0.54	10.71	0.017	500	3.35	15.1	1108	0.5	1.12	16.5	32	1608	19	19	0.68	5.23	0.5	19	3.05	0.54	9
A-9-S	0.54	10.95	0.017	500	3.35	15.1	856	0.6	1.4	10.2	25	1356	18	18	0.68	5.35	0.5	20	3.12	0.54	9
B-2-S	0.54	8.27	0.013	470	3.72	14.2	657	1.4	2.27	4.8	19	1127	16	16	0.68	5.46	0.5	15	3.18	0.54	7
B-3-S	0.54	8.86	0.014	495	3.75	14.5	657	1.4	2.27	4.8	19	1152	16	16	0.68	5.46	0.5	16	3.18	0.54	8
B-4-N	0.54	1.34	0.002	443	3.4	14.2	72	1.4	2.27	0.5	15	515	13	13	0.68	6.19	0.5	3	3.61	0.54	1
B-4-S	0.54	8.48	0.013	500	3.4	15.1	642	1.4	2.36	4.5	20	1142	16	16	0.68	5.46	0.5	16	3.18	0.54	7
D-1-N	0.54	2.59	0.004	500	3.4	15.1	124	3.0	3.44	0.6	16	624	13	13	0.68	5.99	0.5	5	3.49	0.54	2
D-1-S	0.54	8.81	0.014	500	3.4	15.1	648	1.2	2.18	5.0	20	1148	16	16	0.68	5.46	0.5	16	3.18	0.54	8
OFF-A4-S	0.25	17.27	0.027	150	3.7	12.2	3234	3.2	3.55	15.2	27	3384	29	27	0.50	4.21	0.5	18	2.45	0.25	5
OFF-A5-N	0.25	3.30	0.005	150	3.7	12.2	1387	3.3	3.65	6.3	19	1537	19	19	0.50	5.23	0.5	4	3.05	0.25	1
OFF-A5-S	0.25	11.32	0.018	150	3.7	12.2	1517	3.9	3.9	6.5	19	1667	19	19	0.50	5.23	0.5	15	3.05	0.25	4
OFF-C1	0.25	0.57	0.001	50	6	6.0	331	4.5	4.25	1.3	7	381	12	7	0.50	7.75	0.5	1	4.52	0.25	1
OFF-D3	0.25	22.49	0.035	150	4.1	11.8	3362	3.6	3.75	14.9	27	3512	30	27	0.50	4.32	0.5	24	2.52	0.25	7
OFF-E	0.25	0.10	0.000	50	2.8	7.7	62	1.6	2.54	0.4	8	112	11	8	0.50	7.37	0.5	1	4.30	0.25	1
OFF-F	0.25	23.91	0.037	150	2.5	13.8	3970	3.4	3.65	18.1	32	4120	33	32	0.50	3.82	0.5	23	2.23	0.25	7
P-E1	0.25	0.96	0.001	150	4.1	11.8	306	6.2	5.04	1.0	13	456	13	13	0.50	6.19	0.5	1	3.61	0.25	1
P-E2	0.25	0.78	0.001	150	4.1	11.8	383	6.0	5	1.3	13	533	13	13	0.50	6.19	0.5	1	3.61	0.25	1
P-A4	0.25	17.27	0.027	150	3.7	12.2	3234	3.2	3.55	15.2	27	3384	29	27	0.50	4.21	0.5	18	2.45	0.25	5
P-A3	0.25	23.19	0.036	150	3.7	12.2	4239	3.3	3.65	19.4	32	4389	34	32	0.50	3.82	0.5	22	2.23	0.25	6
P-A2	0.25	24.78	0.039	150	3.7	12.2	5626	3.1	3.5	26.8	39	5776	42	39	0.50	3.49	0.5	22	2.03	0.25	6
P-A5	0.25	14.62	0.023	150	3.7	12.2	1517	3.9	3.9	6.5	19	1667	19	19	0.50	5.23	0.5	19	3.05	0.25	6
A-9-N	0.54	0.86	0.001	500	3.35	15.1	32	4.0	3.95	0.1	15	532	13	13	0.68	6.19	0.5	2	3.61	0.54	1
P-A8	0.43	37.89	0.059	150	3.7	9.6	2522	3.6	3.8	11.1	21	2672	25	21	0.61	5.00	0.5	58	2.92	0.43	24
P-A7	0.44	44.11	0.069	150	3.7	9.4	2994	3.6	3.8	13.1	23	3144	27	23	0.62	4.78	0.5	65	2.79	0.44	27
P-A6	0.46	56.28	0.088	150	3.7	9.1	3415	3.6	3.8	15.0	24	3565	30	24	0.63	4.55	0.5	81	2.65	0.46	35
P-A1	0.46	56.28	0.088	150	3.7	9.1	3646	3.6	3.8	16.0	25	3796	31	25	0.63	4.43	0.5	79	2.59	0.46	34
P-A	0.38	94.02	0.147	150	3.7	10.3	4257	3.4	3.7	19.2	30	4407	34	30	0.58	3.98	0.5	108	2.32	0.38	41
P-OFF-D2	0.25	23.13	0.036	150	4.1	11.8	4047	3.4	3.7	18.2	30	4197	33	30	0.50	3.98	0.5	23	2.32	0.25	7
P-D1	0.54	12.31	0.019	500	3.4	15.1	648	1.2	2.18	5.0	20	1148	16	16	0.68	5.46	0.5	23	3.18	0.54	11
P-D	0.35	36.34	0.057	150	4.1	10.4	4382	3.6	3.75	19.5	30	4532	35	30	0.56	3.98	0.5	41	2.32	0.35	15
P-B4	0.54	9.82	0.015	500	3.4	15.1	642	1.4	2.36	4.5	20	1142	16	16	0.68	5.46	0.5	18	3.18	0.54	8
P-B3	0.54	20.36	0.032	500	3.4	15.1	1100	2.3	3.02	6.1	21	1600	19	19	0.68	5.23	0.5	36	3.05	0.54	17
P-B2	0.54	30.24	0.047	500	3.4	15.1	1509	2.8	3.38	7.4	22	2009	21	21	0.68	4.89	0.5	50	2.85	0.54	23
P-OFF-B2	0.53	31.65	0.049	500	3.4	15.4	1592	3.0	3.44	7.7	23	2092	22	22	0.67	4.89	0.5	52	2.85	0.53	24
P-B	0.52	32.76	0.051	500	3.4	15.7	1714	3.1	3.5	8.2	24	2214	22	22	0.66	4.78	0.5	52	2.79	0.52	24

(1) Slope calculated as S = High Elev - Low Elev / Length

(2) Velocity taken from CCRFCD HCDDM Figure 602 for Paved Area and Small Upland Gullies

(3) Utilitizes Table 506 from HCDDM

(4) "Ex" designates existing subbasin or concentration point.

(1) Ex designates existing subbasin of co									
Flow Summary	100-year (cfs)								
Discharge Point	Existing	Proposed							
A	80	108							
DS-A	18	19							
В	33	52							
DS-B	95	141							
С	7	1							
D	32	41							
E	1	1							
F	23	23							

FX

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Clark County Area, Nevada; and Las Vegas Valley Area, Nevada, Part of Clark County

SNWA Soil Classification

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

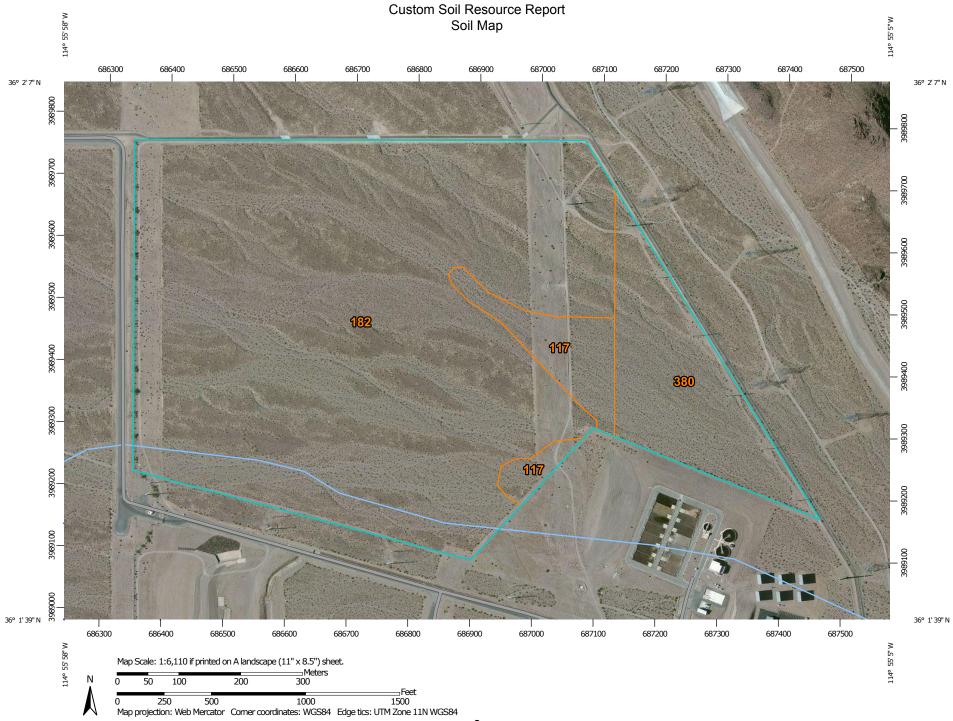
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.


The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	5
Soil Map	
Legend	
Map Unit Legend	8
Map Unit Descriptions	8
Clark County Area, Nevada	
380—Tonopah-Arizo association	10
Las Vegas Valley Area, Nevada, Part of Clark County	13
117—Arizo very gravelly fine sandy loam, 2 to 8 percent slopes	13
182—Caliza-Pittman-Arizo complex, 0 to 8 percent slopes	14

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Interest (A	AOI) of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000
Soils	ninerest (AOI)	۵ ۵	Stony Spot Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	ap Unit Polygons ap Unit Lines	Ŷ	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
	ap Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil lir placement. The maps do not show the small areas of contrasting
Special Point Fe	eatures	-	Special Line Features	soils that could have been shown at a more detailed scale.
 Blowo 	ut	Water Fea		
Borrow	w Pit	Transport	Streams and Canals tation	Please rely on the bar scale on each map sheet for map measurements.
💥 🛛 Clay S	Spot	+++	Rails	Course of Many Matural Decourses Concernation Consist
~	d Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
💥 Grave	l Pit	~	US Routes	Coordinate System: Web Mercator (EPSG:3857)
	lly Spot	~	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator
🔇 Landfi	П	~	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
👠 🛛 Lava F	Flow	Backgrou	Ind	Albers equal-area conic projection, should be used if more accura
-	or swamp	Maria	Aerial Photography	calculations of distance or area are required.
🙊 Mine d	or Quarry			This product is generated from the USDA-NRCS certified data as
Miscel	llaneous Water			the version date(s) listed below.
O Peren	nial Water			Soil Survey Area: Clark County Area, Nevada
V Rock 🤇	Outcrop			Survey Area Data: Version 10, Aug 22, 2014
🕂 Saline	Spot			Soil Survey Area: Las Vegas Valley Area, Nevada, Part of Cla
Sandy	r Spot			County
Severe Severe	ely Eroded Spot			Survey Area Data: Version 10, Aug 22, 2014
Sinkho	ole			Your area of interest (AOI) includes more than one soil survey are
Slide of the second	or Slip			These survey areas may have been mapped at different scales, w
ø Sodic	Spot			a different land use in mind, at different times, or at different leve of detail. This may result in map unit symbols, soil properties, ar interpretations that do not completely agree across soil survey ar boundaries.
				Soil map units are labeled (as space allows) for map scales 1:50,0 or larger.

Date(s) aerial images were photographed: Apr 26, 2011—Jun 2, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting

Map Unit Legend

	Clark County Are	a, Nevada (NV755)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
380	Tonopah-Arizo association	16.6	12.7%
Subtotals for Soil Survey Area		16.6	12.7%
Totals for Area of Interest		130.1	100.0%

	Las Vegas Valley Area, Nevada	a, Part of Clark County (NV788)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
117	Arizo very gravelly fine sandy loam, 2 to 8 percent slopes	7.4	5.7%
182	Caliza-Pittman-Arizo complex, 0 to 8 percent slopes	106.1	81.6%
Subtotals for Soil Survey Area	·	113.5	87.3%
Totals for Area of Interest		130.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially

where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Clark County Area, Nevada

380—Tonopah-Arizo association

Map Unit Setting

National map unit symbol: hqwy Elevation: 1,710 to 4,360 feet Mean annual precipitation: 5 to 7 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 300 days Farmland classification: Not prime farmland

Map Unit Composition

Tonopah and similar soils: 45 percent Arizo and similar soils: 40 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonopah

Setting

Landform: Fan remnants Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Parent material: Alluvium derived from mixed sources

Typical profile

H1 - 0 to 1 inches: extremely gravelly sandy loam
H2 - 1 to 9 inches: very gravelly sandy loam
H3 - 9 to 60 inches: extremely gravelly sand

Properties and qualities

Slope: 2 to 8 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Very rare Frequency of ponding: None Calcium carbonate, maximum in profile: 40 percent Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 12.0 Available water storage in profile: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Limy 5-7 p.z. (R030XB005NV) Other vegetative classification: Limy 5-7 p.z. (030XB005NV_3)

Description of Arizo

Setting

Landform: Fan aprons Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Parent material: Alluvium derived from mixed sources

Typical profile

H1 - 0 to 2 inches: very gravelly loamy sand

- H2 2 to 6 inches: sand
- H3 6 to 60 inches: stratified very gravelly coarse sand to extremely gravelly sand

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Very rare
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 5.0
Available water storage in profile: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: Limy 5-7 p.z. (R030XB005NV) Other vegetative classification: Limy 5-7 p.z. (030XB005NV_3)

Minor Components

Typic haplodurids

Percent of map unit: 8 percent Landform: Fan remnants Down-slope shape: Linear Across-slope shape: Convex Ecological site: Limy 5-7 p.z. (R030XB005NV) Other vegetative classification: Limy 5-7 p.z. (030XB005NV 3)

Arizo

Percent of map unit: 5 percent Landform: Drainageways Down-slope shape: Linear Across-slope shape: Concave Ecological site: Valley wash (R030XB028NV)

Typic torriorthents

Percent of map unit: 2 percent Landform: Fan skirts

Custom Soil Resource Report

Down-slope shape: Linear Across-slope shape: Convex Ecological site: Limy 5-7 p.z. (R030XB005NV) Other vegetative classification: Limy 5-7 p.z. (030XB005NV_3)

Las Vegas Valley Area, Nevada, Part of Clark County

117—Arizo very gravelly fine sandy loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: hr9g Elevation: 1,500 to 4,500 feet Mean annual precipitation: 4 to 8 inches Mean annual air temperature: 64 to 70 degrees F Frost-free period: 220 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Arizo and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Arizo

Setting

Landform: Inset fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 6 inches: very gravelly fine sandy loam *H2 - 6 to 60 inches:* stratified cobbly coarse sand to extremely gravelly loamy sand

Properties and qualities

Slope: 2 to 8 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 10 percent Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 12.0 Available water storage in profile: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Other vegetative classification: LIMY 3-5" P.Z. (030XB019NV_3)

182—Caliza-Pittman-Arizo complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: hr9z Elevation: 750 to 4,000 feet Mean annual precipitation: 4 to 10 inches Mean annual air temperature: 57 to 68 degrees F Frost-free period: 180 to 300 days Farmland classification: Not prime farmland

Map Unit Composition

Caliza and similar soils: 60 percent Pittman and similar soils: 20 percent Arizo and similar soils: 15 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Caliza

Setting

Landform: Fan remnants Down-slope shape: Linear Across-slope shape: Convex Parent material: Mixed alluvium

Typical profile

H1 - 0 to 2 inches: extremely cobbly fine sandy loam

H2 - 2 to 14 inches: very gravelly sandy loam

H3 - 14 to 60 inches: stratified extremely gravelly coarse sand to very gravelly loamy sand

Properties and qualities

Slope: 2 to 8 percent Percent of area covered with surface fragments: 5.0 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 10 percent Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 5.0 Available water storage in profile: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Other vegetative classification: LIMY 3-5" P.Z. (030XB019NV_3)

Description of Pittman

Setting

Landform: Fan remnants Down-slope shape: Linear Across-slope shape: Convex Parent material: Mixed alluvium

Typical profile

- H1 0 to 2 inches: extremely cobbly fine sandy loam
- H2 2 to 23 inches: stratified extremely gravelly coarse sand to gravelly loam
- H3 23 to 32 inches: indurated
- H4 32 to 50 inches: cemented
- H5 50 to 60 inches: extremely gravelly sand

Properties and qualities

Slope: 2 to 8 percent
Percent of area covered with surface fragments: 2.0 percent
Depth to restrictive feature: 20 to 30 inches to petrocalcic; 28 to 60 inches to cemented horizon
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 12.0
Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Other vegetative classification: LIMY 3-5" P.Z. (030XB019NV_3)

Description of Arizo

Setting

Landform: Channels Down-slope shape: Linear Across-slope shape: Concave Parent material: Mixed alluvium

Typical profile

H1 - 0 to 8 inches: very gravelly loamy sand *H2 - 8 to 60 inches:* stratified cobbly coarse sand to extremely gravelly sand

Properties and qualities

Slope: 0 to 4 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None Calcium carbonate, maximum in profile: 5 percent Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 12.0 Available water storage in profile: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: Valley wash (R030XB028NV)

Minor Components

Nickel

Percent of map unit: 5 percent Landform: Pediments Down-slope shape: Convex Across-slope shape: Convex Other vegetative classification: LIMY 3-5" P.Z. (030XB019NV_3)

Appendix B: Hydraulic Calculations

3200 E. Camelback Road, Suite 350 Phoenix, AZ 85018 602.522.7700

SNWA River Mountains Solar Channel Summary 4/21/2015

Riprap 'n' value = 0.035

earthen 'n' value =

0.022

Concentration Point	Q100 (cfs)	Slope (ft/ft)	BW (ft)	Left Side Slope (H:V)	Right Side Slope (H:V)	Surface	'n' value	Flow Depth (ft)	Velocity (fps)	Channel Depth (ft)	Note
Ex A	80	0.0160	2	25	8	Earth	0.022	0.9	5.2	1.1	*Ex road side ditch
P-A	108	0.0160	2	25	8	Earth	0.022	1.0	5.6	1.1	*Ex road side ditch
EX-DS-A	18	0.0500	4	4	4	Earth	0.022	0.4	7.2	2	*Ex wash downstream of Ex Culvert A
DS-A	19	0.0500	4	4	4	Earth	0.022	0.5	7.3	2	*Ex wash downstream of Ex Culvert A
EX-DS-B	95	0.0510	10	8	4	Earth	0.022	0.7	9.9	3	*Ex wash downstream of Ex Culvert B
DS-B	141	0.0510	10	8	4	Earth	0.022	0.8	11.2	3	*Ex wash downstream of Ex Culvert B
A-6-S	21	0.0065	0	4	30	Earth	0.022	0.7	2.7	1	
A-7-S	11	0.0065	0	4	30	Earth	0.022	0.5	2.3	1	
A-8-S	19	0.0057	0	4	30	Earth	0.022	0.7	2.5	1	
A-9-S	20	0.0057	0	4	30	Earth	0.022	0.7	2.5	1	
B-2-S	15	0.0141	0	4	30	Earth	0.022	0.5	3.3	1	
B-3-S	16	0.0140	0	4	30	Earth	0.022	0.5	3.3	1	
B-4-S	16	0.0150	0	4	30	Earth	0.022	0.5	3.4	1	
D-1-N	5	0.0304	0	4	4	Earth	0.022	0.5	4.7	1.2	
D-1-S	16	0.0150	0	4	30	Earth	0.022	0.5	3.4	1	
OFF-A5-N	4	0.0064	0	25	4	Earth	0.022	0.4	1.8	2	
OFF-A5-S	15	0.0303	0	4	25	Riprap	0.035	0.6	3.2	2	
OFF-D3	24	0.0208	0	4	25	Riprap	0.035	0.7	3.1	2	
P-A4	18	0.0050	0	4	4	Earth	0.022	1.2	3.3	2	
P-A3	22	0.0400	0	4	4	Riprap	0.035	1.0	5.3	2.5	
P-A2	22	0.0050	4	4	4	Riprap	0.035	1.1	2.4	2.5	
A-9-N	2	0.0408	0	4	4	Earth	0.022	0.4	4.2	2	
P-A8	58	0.0303	0	4	4	Riprap	0.035	1.5	6.1	2	
P-A7	65	0.0343	0	4	4	Riprap	0.035	1.6	6.6	2	
P-A6	81	0.0343	0	4	4	Riprap	0.035	1.7	6.9	2	
P-OFF-D2	23	0.0313	0	4	4	Riprap	0.035	1.1	4.9	2	
P-B4	18	0.0167	0	4	4	Riprap	0.035	1.1	3.6	2.5	
P-B3	36	0.0207	0	4	4	Riprap	0.035	1.4	4.7	2.5	
P-B2	50	0.0557	0	4	4	Riprap	0.035	1.3	7.4	2.5	

(1) "Ex" designates existing subbasin or concentration point.

Trapezoidal Channel (Channel Calcs.fm8) Report

Label	Friction Method	Roughness Coefficient	Channel Slope (ft/ft)	Normal Depth (ft)	Left Side Slope (ft/ft (H:V))	Right Side Slope (ft/ft (H:V))	Bottom Width (ft)	Discharge (ft³/s)
A-6-S	Manning Formula	0.022	0.00650	0.68	4.00	30.00	0.00	21.00
A-7-S	Manning Formula	0.022	0.00650	0.54	4.00	30.00	0.00	11.00
A-8-S	Manning Formula	0.022	0.00570	0.67	4.00	30.00	0.00	19.00
A-9-S	Manning Formula	0.022	0.00570	0.69	4.00	30.00	0.00	20.00
B-2-S	Manning Formula	0.022	0.01400	0.52	4.00	30.00	0.00	15.00
B-3-S	Manning Formula	0.022	0.01400	0.53	4.00	30.00	0.00	16.00
B-4-S	Manning Formula	0.022	0.01500	0.53	4.00	30.00	0.00	16.00
D-1-N	Manning Formula	0.022	0.03000	0.52	4.00	4.00	0.00	5.00
D-1-S	Manning Formula	0.022	0.01500	0.53	4.00	30.00	0.00	16.00
OFF-A5-N	Manning Formula	0.022	0.00640	0.39	25.00	4.00	0.00	4.00
OFF-A5-S	Manning Formula	0.035	0.03000	0.57	4.00	25.00	0.00	15.00
OFF-D3	Manning Formula	0.035	0.02100	0.73	4.00	25.00	0.00	24.00
P-A4	Manning Formula	0.022	0.00500	1.17	4.00	4.00	0.00	18.00
P-A3	Manning Formula	0.035	0.04000	1.02	4.00	4.00	0.00	22.00
P-A2	Manning Formula	0.035	0.00500	1.10	4.00	4.00	4.00	22.00
A-9-N	Manning Formula	0.022	0.04080	0.35	4.00	4.00	0.00	2.00
P-A8	Manning Formula	0.035	0.03030	1.54	4.00	4.00	0.00	58.00
P-A7	Manning Formula	0.035	0.03430	1.57	4.00	4.00	0.00	65.00
P-A6	Manning Formula	0.035	0.03430	1.71	4.00	4.00	0.00	81.00
P-OFF-D2	Manning Formula	0.035	0.03130	1.08	4.00	4.00	0.00	23.00
P-B4	Manning Formula	0.035	0.01670	1.11	4.00	4.00	0.00	18.00
P-B3	Manning Formula	0.035	0.02070	1.39	4.00	4.00	0.00	36.00
P-B2	Manning Formula	0.035	0.05570	1.30	4.00	4.00	0.00	50.00
EX-P-A	Manning Formula	0.022	0.01600	0.90	25.00	8.00	2.00	80.00
P-A	Manning Formula	0.022	0.01600	1.02	25.00	8.00	2.00	108.00
EX-DS-A	Manning Formula	0.022	0.05000	0.44	4.00	4.00	4.00	18.00
DS-A	Manning Formula	0.022	0.05000	0.45	4.00	4.00	4.00	19.00
EX-DS-B	Manning Formula	0.022	0.05100	0.68	8.00	4.00	10.00	95.00
DS-B	Manning Formula	0.022	0.05100	0.84	8.00	4.00	10.00	141.00

Velocity (ft/s)	Froude Number	Flow Type
2.65	0.80	Subcritical
2.26	0.77	Subcritical
2.46	0.75	Subcritical
2.49	0.75	Subcritical
3.25	1.12	Supercritical
3.30	1.13	Supercritical
3.39	1.16	Supercritical
4.66	1.61	Supercritical
3.39	1.16	Supercritical
1.81	0.72	Subcritical
3.18	1.05	Supercritical
3.13	0.91	Subcritical
3.28	0.75	Subcritical
5.31	1.31	Supercritical
2.38	0.49	Subcritical
4.15	1.76	Supercritical
6.09	1.22	Supercritical
6.57	1.31	Supercritical
6.94	1.32	Supercritical
4.90	1.17	Supercritical
3.64	0.86	Subcritical
4.69	0.99	Subcritical
7.38	1.61	Supercritical
5.23	1.33	Supercritical
5.64	1.36	Supercritical
7.20	2.20	Supercritical
7.32	2.21	Supercritical
9.91	2.41	Supercritical
11.15	2.48	Supercritical

SNWA River Mountains Solar Culvert Summary 4/21/2015

Culvert Location	Q100 (cfs)	INV Up	INV Down	L (ft)	Туре	Size (in)	Barrels	Outlet Velocity (fps) (2)	Minimum D50 Riprap Size (in)	Length of outlet protection (ft) (1)	HWE (ft)	Headwater Depth (ft)	Allowable headwater depth	
EX A	80	2142.0	2140	83	СМР	24	1	7.0	-	-	2145.1	3.1	2.5	Existing dischar year 7
P-A	108	2142.0	2140	83	СМР	24	1	7.2	-	-	2145.26	3.3	2.5	Existin dischai 24cfs v
EX B	95	2140.0	2138	75	СМР	24	1	8.2	-	-	2144.16	4.2	3.5	Ex-DS-E Culvert overto
P-B	141	2140.0	2138	75	СМР	24	1	8.5	-	-	2144.41	4.4	3.5	DS-B Q Culvert overto
P-A3	22	2201.5	2198	70	HDPE	36	1	13.9	Grouted Riprap	9	2203.9	2.4	2.5	
P-A4	18	2236.0	2235.5	50	HDPE	36	1	7.7	6	9	2238.14	2.1	2.5	
P-A5	19	2228.5	2225	71	HDPE	36	1	16.2	Grouted Riprap	9	2230.71	2.2	2.5	
P-A6	81	2162.0	2156	108	HDPE	36	2	17.4	Grouted Riprap	9	2165.48	3.5	3.5	
P-A8	58	2194.0	2192	60	HDPE	36	2	4.7	6	9	2196.82	2.8	3	
P-B2	50	2149.3	2146	103	HDPE	36	2	12.8	Grouted Riprap	9	2151.88	2.6	2.7	
P-B4	18	2182.9	2182	71	HDPE	36	1	8.4	6	9	2185.04	2.1	2.6	
P-D1	23	2189.0	2186	121	HDPE	24	1	11.9	6	6	2192.45	3.4	3.5	part of
P-E1	1	2200.0	2198.5	61	HDPE	18	1	5.2	6	4.5	2200.57	0.6	2	
P-E2	1	2201.5	2200	47	HDPE	18	1	5.9	6	4.5	2202.16	0.7	2	
Drain B2	(3)	2146.0	2145.9	20	HDPE	18	1	(3)	6	4.5	(3)	(3)	(3)	Drain p
Drain A1	(3)	2156.0	2154.5	26	HDPE	18	1	(3)	6	4.5	(3)	(3)	(3)	Drain p
Drain A2	(3)	2157.0	2156.9	23	HDPE	18	1	(3)	6	4.5	(3)	(3)	(3)	

(1) Length of outlet protection is 3*D (36" and less) and 4*D (42" and greater) per HCDDM Figure 712

(2) Per FHWA "Hydraulic Deisgn of Energy Dissapators for Culverts and Channels" Sept. 1983, Figure II-C-1. D50=6" < 8.5 fps, D50=12" < 12.5 fps, Grouted Riprap > 12.5 fps

FJS

Note

ing culvert is undersized for Q100. 62 cfs overtops and narges to Existing Culvert B. Q100=18 cfs to EX-DS-A. In 10-7 cfs weirs to Existing Culvert B with Q10=16 cfs to EX-DS-A.

ing culvert is undersized for Q100. 89 cfs overtops and narges to Existing Culvert B. Q100=19 cfs to DS-A. In 10-year s weirs to Existing Culvert B with Q10=17cfs to DS-A.

S-B Q100=95 cfs includes 62 cfs from the overtopping of EX ert A. In 10-year Ex-DS-B Q10=17 cfs includes 7 cfs from the topping of Existing Culvert A.

B Q100=141cfs includes 89 cfs from the overtopping of EX ert A. In 10-year DS-B Q10=48cfs includes 24cfs from the topping of EX Culvert A.

of existing washbank protection

n pipe - riprap part of existing weir riprap n pipe - riprap part of existing weir riprap

Culvert Analysis Report EX A

Comments: q100= 80 cfs goes to existing Culvert A. q100=18 cfs through the pipe and 62 cfs weir to existing culvert B.

Analysis Cor	mponent					
Storm Event	:	Design	Di	scharge		80.00 cfs
Peak Discha	rge Method: User-Specified	1				
Design Disch	harge	80.00 c	rfs Ch	eck Discharge		80.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,140.00 f	t			
Name	Description	C	Discharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		18.27 cfs	2,145.10 ft	7.04 ft/s	
Weir	Broad Crested		61.80 cfs	2,145.10 ft	N/A	
Total			80.07 cfs	2,145.10 ft	N/A	

Culvert Analysis Report EX A

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,145.10	ft	Discharge	18.27	cfs
Inlet Control HW Elev.	2,145.10	ft	Tailwater Elevation	2,140.00	ft
Outlet Control HW Elev.	2,144.68	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.55				
Grades					
Upstream Invert	2,142.00	ft	Downstream Invert	2,140.00	ft
Length	83.00	ft	Constructed Slope	0.024096	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.54	ft
Slope Type	Mild		Normal Depth	1.57	ft
Flow Regime	Subcritical		Critical Depth	1.54	ft
Velocity Downstream	7.04	ft/s	Critical Slope	0.025210	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,144.68	ft	Upstream Velocity Head	0.74	ft
Ke	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,145.10	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Y	0.75000				

Culvert Analysis Report EX A

Component:Weir

ad Crested		
61.80 cfs	Allowable HW Elevation	2,145.10 ft
3.33 US	Length	40.00 ft
2,144.50 ft	Headwater Elevation	2,145.10 ft
	61.80 cfs 3.33 US	61.80 cfsAllowable HW Elevation3.33 USLength

Culvert Analysis Report EX A 10-yr

Comments: q10= 23 cfs goes to existing Culvert A. q10=16 cfs through the pipe and 7 cfs weir to existing culvert B.

Analysis Con	nponent					
Storm Event		Design		Discharge		23.00 cfs
Peak Dischai	rge Method: User-Specified	1				
Design Disch	narge	23.00	cfs	Check Discharge		23.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,140.00	ft			
Name	Description		Discharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		16.52 c	fs 2,144.63 ft	6.82 ft/s	
Weir	Broad Crested		6.50 c	fs 2,144.63 ft	N/A	
Total			23.02 c	fs 2,144.63 ft	N/A	

Culvert Analysis Report EX A 10-yr

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,144.63	ft	Discharge	16.52	cfs
Inlet Control HW Elev.	2,144.63	ft	Tailwater Elevation	2,140.00	ft
Outlet Control HW Elev.	2,144.51	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.32				
Grades					
Upstream Invert	2,142.00	ft	Downstream Invert	2,140.00	ft
Length	83.00	ft	Constructed Slope	0.024096	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.44	ft
Slope Type	Steep		Normal Depth	1.44	ft
Flow Regime	Supercritical		Critical Depth	1.47	ft
Velocity Downstream	6.82	ft/s	Critical Slope	0.023111	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,144.51	ft	Upstream Velocity Head	0.70	ft
Ke	0.50		Entrance Loss	0.35	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,144.63	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Y	0.75000		•		

Culvert Analysis Report EX A 10-yr

Component:Weir

Hydraulic Component(s): Bro	ad Crested		
Discharge	6.50 cfs	Allowable HW Elevation	2,144.63 ft
Weir Coefficient	3.33 US	Length	40.00 ft
Crest Elevation	2,144.50 ft	Headwater Elevation	2,144.63 ft

Culvert Analysis Report EX B

Comments: q100=95 cfs to existing Culvert B. Includes additional 62 cfs from Existing Culvert A weir.

Analysis Cor	mponent					
Storm Event		Design	[Discharge		95.00 cfs
Peak Discha	rge Method: User-Specified	1				
Design Disch	harge	95.00	cfs (Check Discharge		95.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,138.00	ft			
Name	Description		Discharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		23.64 cfs	s 2,144.16 ft	8.21 ft/s	
Weir	Broad Crested		71.41 cfs	s 2,144.16 ft	N/A	
Total			95.05 cfs	s 2,144.16 ft	N/A	

Culvert Analysis Report EX B

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,144.16	ft	Discharge	23.64	cfs
Inlet Control HW Elev.	2,144.16	ft	Tailwater Elevation	2,138.00	ft
Outlet Control HW Elev.	2,143.94	ft	Control Type	Inlet Control	
Headwater Depth/Height	2.08				
Grades					
Upstream Invert	2,140.00	ft	Downstream Invert	2,138.00	ft
Length	75.00	ft	Constructed Slope	0.026667	ft/ft
Hydraulic Profile					
Profile CompositeN	12PressureProfile		Depth, Downstream	1.73	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.73	ft
Velocity Downstream	8.21	ft/s	Critical Slope	0.034341	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,143.94	ft	Upstream Velocity Head	0.88	ft
Ke	0.50		Entrance Loss	0.44	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,144.16	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	-
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Y	0.75000				

Culvert Analysis Report EX B

Component:Weir

Hydraulic Component(s): Broad Crested					
Discharge	71.41 cfs	Allowable HW Elevation	2,144.16 ft		
Weir Coefficient	3.33 US	Length	40.00 ft		
Crest Elevation	2,143.50 ft	Headwater Elevation	2,144.16 ft		

Culvert Analysis Report EX B 10-yr

Comments: q10=17 cfs to existing Culvert B. Includes additional 7 cfs from Existing Culvert A weir.

Analysis Cor	mponent					
Storm Event	t	Design		Discharge		17.00 cfs
Peak Discha	rge Method: User-Specified	1				
Design Disch	harge	17.00	cfs	Check Discharge		17.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,138.00	ft			
Name	Description		Discharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		17.00 cf	s 2,142.78 ft	7.15 ft/s	
Weir	Broad Crested		0.00 cf	s 2,142.78 ft	N/A	
Total			17.00 cf	s 2,142.78 ft	N/A	

Culvert Analysis Report EX B 10-yr

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,142.78	ft	Discharge	17.00	cfs
Inlet Control HW Elev.	2,142.78	ft	Tailwater Elevation	2,138.00	ft
Outlet Control HW Elev.	2,142.56	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.39				
Grades					
Upstream Invert	2,140.00	ft	Downstream Invert	2,138.00	ft
Length	75.00	ft	Constructed Slope	0.026667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.42	ft
Slope Type	Steep		Normal Depth	1.42	ft
Flow Regime	Supercritical		Critical Depth	1.49	ft
Velocity Downstream	7.15	ft/s	Critical Slope	0.023637	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,142.56	ft	Upstream Velocity Head	0.72	ft
Ke	0.50		Entrance Loss	0.36	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,142.78	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
C	0.04630		Equation Form	- 1	
Ŷ	0.75000				

Page 11

Culvert Analysis Report EX B 10-yr

Component:Weir

ad Crested		
0.00 cfs	Allowable HW Elevation	2,142.78 ft
3.33 US	Length	40.00 ft
2,143.50 ft	Headwater Elevation	N/A ft
	0.00 cfs 3.33 US	0.00 cfsAllowable HW Elevation3.33 USLength

Culvert Analysis Report P-A

Comments: q100= 108 cfs goes to existing Culvert A. q100=19 cfs through the pipe and 89 cfs weir to existing culvert B.

Analysis Con	nponent					
Storm Event		Design		Discharge		108.00 cfs
Peak Dischar	rge Method: User-Specified	Ł				
Design Disch	narge	108.00	cfs	Check Discharge		108.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,140.00	ft			
Name	Description		Discharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		19.21 c	fs 2,145.26 ft	7.23 ft/s	
Weir	Broad Crested		88.96 c	fs 2,145.26 ft	N/A	
Total			108.17 c	fs 2,145.26 ft	N/A	

Culvert Analysis Report P-A

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,145.26	ft	Discharge	19.21	cfs
Inlet Control HW Elev.	2,145.26	ft	Tailwater Elevation	2,140.00	ft
Outlet Control HW Elev.	2,144.77	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.63				
Grades					
Upstream Invert	2,142.00	ft	Downstream Invert	2,140.00	ft
Length	83.00	ft	Constructed Slope	0.024096	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.58	ft
Slope Type	Mild		Normal Depth	1.66	ft
Flow Regime	Subcritical		Critical Depth	1.58	ft
Velocity Downstream	7.23	ft/s	Critical Slope	0.026493	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,144.77	ft	Upstream Velocity Head	0.74	ft
Ке	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,145.26	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
К	0.02100		HDS 5 Chart	2	
Μ	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Y	0.75000				

Culvert Analysis Report P-A

Component:Weir

Hydraulic Component(s): Broad Crested					
Discharge	88.96 cfs	Allowable HW Elevation	2,145.26 ft		
Weir Coefficient	3.33 US	Length	40.00 ft		
Crest Elevation	2,144.50 ft	Headwater Elevation	2,145.26 ft		

Culvert Analysis Report P-A 10-yr

Comments: q10= 41 cfs goes to existing Culvert A. q10=17 cfs through the pipe and 24 cfs weir to existing culvert B.

Analysis Cor	mponent					
Storm Event	t	Design	Dis	charge		41.00 cfs
Peak Discha	rge Method: User-Specified	1				
Design Discl	harge	41.00 cfs	s Che	eck Discharge		41.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,140.00 ft				
Name	Description	Dis	scharge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular		17.13 cfs	2,144.82 ft	6.85 ft/s	
Weir	Broad Crested		23.93 cfs	2,144.82 ft	N/A	
Total			41.06 cfs	2,144.82 ft	N/A	

Culvert Analysis Report P-A 10-yr

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,144.82 ft	t	Discharge	17.13	cfs
Inlet Control HW Elev.	2,144.82 ft	t	Tailwater Elevation	2,140.00	ft
Outlet Control HW Elev.	2,144.57 ft	t	Control Type	Inlet Control	
Headwater Depth/Height	1.41				
Grades					
Upstream Invert	2,142.00 ft	t	Downstream Invert	2,140.00	ft
Length	83.00 ft	t	Constructed Slope	0.024096	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.48	ft
Slope Type	Steep		Normal Depth	1.48	ft
Flow Regime	Supercritical		Critical Depth	1.49	ft
Velocity Downstream	6.85 ft	t/s	Critical Slope	0.023789	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,144.57 ff	t	Upstream Velocity Head	0.72	ft
Ke	0.50		Entrance Loss	0.36	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,144.82 ft	+	Flow Control	N/A	
		ι	Area Full	N/A 3.1	ft2
Inlet Type K	Mitered to slope 0.02100		HDS 5 Chart	3.1	11-
M	1.33000		HDS 5 Chart HDS 5 Scale	2	
C	0.04630		Equation Form	1	
Y Y	0.75000			1	

Culvert Analysis Report P-A 10-yr

Component:Weir

ad Crested		
23.93 cfs	Allowable HW Elevation	2,144.82 ft
3.33 US	Length	40.00 ft
2,144.50 ft	Headwater Elevation	2,144.82 ft
	3.33 US	23.93 cfsAllowable HW Elevation3.33 USLength

Culvert Design Report P-A3

Peak Discharge					
Design Dischar	ge	22.00 cfs	Check Discharge	22.00 c	cfs
Grades Model: I	nverts				
Invert Upstream	า	2,201.50 ft	Invert Downstream	2,198.00 f	it
Length		70.00 ft	Slope	0.050000 f	it/ft
Drop		3.50 ft			
Headwater Mode	el: Unspecified				_
Tailwater proper	ties: Triangular Channe				
Tailwater proper	ties: Triangular Channel				
	ties: Triangular Channe				
		22.00 cfs	Bottom Elevation	2,198.00 f	
Tailwater condit			Bottom Elevation Velocity	2,198.00 f 4.98 f	
Tailwater condit Discharge Depth	ions for Design Storm.	22.00 cfs		,	
Tailwater condit Discharge Depth Tailwater condit		22.00 cfs 1.05 ft	Velocity	4.98 f	ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	22.00 cfs 1.05 ft 22.00 cfs	Velocity Bottom Elevation	4.98 f 2,198.00 f	ft/s
Tailwater condit Discharge Depth Tailwater condit	ions for Design Storm.	22.00 cfs 1.05 ft	Velocity	4.98 f	ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	22.00 cfs 1.05 ft 22.00 cfs	Velocity Bottom Elevation Velocity	4.98 f 2,198.00 f	ft/s

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,203.90	ft	Discharge	22.00	cfs
Headwater Depth/Height	0.80		Tailwater Elevation	2,199.05	ft
Inlet Control HW Elev.	2,203.62	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,203.90	ft			
Grades					
Upstream Invert	2,201.50	ft	Downstream Invert	2,198.00	ft
Length	70.00	ft	Constructed Slope	0.050000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.83	ft
Slope Type	Steep		Normal Depth	0.78	ft
Flow Regime	Supercritical		Critical Depth	1.51	ft
Velocity Downstream	13.86	ft/s	Critical Slope	0.004268	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Materabrrugated HDPE	(Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,203.90	ft	Upstream Velocity Head	0.59	ft
Ke	0.50		Entrance Loss	0.30	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,203.62	ft	Flow Control	N/A	
	edge w/headwall	-	Area Full	7.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

	Method: User-Specified	1		
Design Dischar	ge	18.00 cfs	Check Discharge	18.00 cfs
Grades Model: I	Inverts			
Invert Upstream	n	2,236.00 ft	Invert Downstream	2,235.50 ft
Length		50.00 ft	Slope	0.010000 ft/ft
Drop		0.50 ft		
Headwater Mod	el: Unspecified			
Tailwater proper	rties: Triangular Channel			
Tailwater condit	ions for Design Storm.			
Tailwater condit Discharge	ions for Design Storm.	18.00 cfs	Bottom Elevation	2,235.50 ft
	ions for Design Storm.	18.00 cfs 0.92 ft	Bottom Elevation Velocity	2,235.50 ft 5.27 ft/s
Discharge Depth				
Discharge Depth Tailwater condit	ions for Design Storm.	0.92 ft	Velocity	5.27 ft/s
Discharge Depth Tailwater condit Discharge		0.92 ft 18.00 cfs	Velocity Bottom Elevation	5.27 ft/s 2,235.50 ft
Discharge Depth Tailwater condit		0.92 ft	Velocity	5.27 ft/s
Discharge Depth Tailwater condit Discharge		0.92 ft 18.00 cfs	Velocity Bottom Elevation	5.27 ft/s 2,235.50 ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,238.14	ft	Discharge	18.00	cfs
Headwater Depth/Height	0.71		Tailwater Elevation	2,236.42	ft
Inlet Control HW Elev.	2,237.93	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,238.14	ft			
Grades					
Upstream Invert	2,236.00	ft	Downstream Invert	2,235.50	ft
Length	50.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.10	ft
Slope Type	Steep		Normal Depth	1.06	ft
Flow Regime	Supercritical		Critical Depth	1.36	ft
Velocity Downstream	7.65	ft/s	Critical Slope	0.004111	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@orrugated HDPE (Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,238.14	ft	Upstream Velocity Head	0.52	ft
Ке	0.50		Entrance Loss	0.26	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,237.93	ft	Flow Control	N/A	
	edge w/headwall	-	Area Full	7.1	ft²
K	0.00980		HDS 5 Chart	1	
М	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Peak Discharge				
Design Dischar	ge	19.00 cfs	Check Discharge	19.00 cfs
Grades Model: I	nverts			
Invert Upstream	1	2,228.50 ft	Invert Downstream	2,225.00 ft
Length		18.00 ft	Slope	0.194444 ft/ft
Drop		3.50 ft		
Headwater Mode	el: Unspecified			
Tailwater proper	ties: Triangular Channe			
Tailwater proper	ties: Triangular Channel			
	ties: Triangular Channe			
		19.00 cfs	Bottom Elevation	2,224.00 ft
Tailwater condit			Bottom Elevation Velocity	2,224.00 ft 4.97 ft/s
Tailwater condit Discharge Depth	ions for Design Storm.	19.00 cfs		,
Tailwater condit Discharge Depth Tailwater condit		19.00 cfs 0.98 ft	Velocity	4.97 ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	19.00 cfs 0.98 ft 19.00 cfs	Velocity Bottom Elevation	4.97 ft/s 2,224.00 ft
Tailwater condit Discharge Depth Tailwater condit	ions for Design Storm.	19.00 cfs 0.98 ft	Velocity	4.97 ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	19.00 cfs 0.98 ft 19.00 cfs	Velocity Bottom Elevation	4.97 ft/s 2,224.00 ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,230.71	ft	Discharge	19.00	cfs
Headwater Depth/Height	0.74		Tailwater Elevation	2,224.98	ft
Inlet Control HW Elev.	2,230.22	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,230.71	ft			
Grades					
Upstream Invert	2,228.50	ft	Downstream Invert	2,225.00	ft
Length	18.00	ft	Constructed Slope	0.194444	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.67	ft
Slope Type	Steep		Normal Depth	0.52	ft
Flow Regime	Supercritical		Critical Depth	1.40	ft
Velocity Downstream	16.21	ft/s	Critical Slope	0.004144	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@orrugated HDPE	(Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,230.71	ft	Upstream Velocity Head	0.54	ft
Ke	0.50		Entrance Loss	0.27	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,230.22	ft	Flow Control	N/A	
	edge w/headwall		Area Full	7.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Design Dischar	.00	81.00 cfs	Check Disch	arde	81.00 cfs
Design Dischar	ge	01.00 CIS	CHECK DISCH	aiye	01.00 013
Grades Model:	Inverts				
Invert Upstrear	n	2,162.00 ft	Invert Downs	stream	2,156.00 ft
Length		108.00 ft	Slope		0.055556 ft/f
Drop		6.00 ft			
Headwater Mod	el: Unspecified				
	el: Unspecified tions: Constant Tailwater				
	tions: Constant Tailwater	2,157.00 ft			
Tailwater Condi	tions: Constant Tailwater		HW Elev.	Velocity	

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,165.48	ft	Discharge	81.00	cfs
Headwater Depth/Height	1.16		Tailwater Elevation	2,157.00	ft
Inlet Control HW Elev.	2,165.25	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,165.48	ft			
Grades					
Upstream Invert	2,162.00	ft	Downstream Invert	2,156.00	ft
Length	108.00	ft	Constructed Slope	0.055556	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.09	ft
Slope Type	Steep		Normal Depth	1.04	ft
Flow Regime	Supercritical		Critical Depth	2.07	ft
Velocity Downstream	17.37	ft/s	Critical Slope	0.005447	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section MaterCabrrugated HDPE	(Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	2,165.48	ft	Upstream Velocity Head	0.94	ft
Ke	0.50		Entrance Loss	0.47	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,165.25	ft	Flow Control	N/A	
	edge w/headwall	-	Area Full	14.1	ft²
K	0.00980		HDS 5 Chart	1	-
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000		-		

Grades Model: Inverts Invert Upstream 2,194.00 ft Invert Downstream 2,192.00 ft Length 60.00 ft Slope 0.03333 ft Drop 2.00 ft Headwater Model: Unspecified Tailwater properties: Triangular Channel Tailwater conditions for Design Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Depth 1.47 ft Velocity 6.67 ft Name Description Discharge HW Elev. Velocity	Feak Dischary	e Method: User-Specified			
Invert Upstream 2,194.00 ft Invert Downstream 2,192.00 ft Length 60.00 ft Slope 0.03333 ft 2.00 ft Headwater Model: Unspecified Tailwater properties: Triangular Channel Tailwater conditions for Design Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft 1.47 ft Velocity 6.67 ft Depth 1.47 ft Velocity 6.67 ft	Design Discha	arge	58.00 cfs	Check Discharge	58.00 cfs
Length 60.00 ft Slope 0.033333 ft Drop 2.00 ft 1 1 Headwater Model: Unspecified	Grades Model:	Inverts			
Drop 2.00 ft Headwater Model: Unspecified	Invert Upstrea	m	2,194.00 ft	Invert Downstream	2,192.00 ft
Headwater Model: Unspecified Tailwater properties: Triangular Channel Tailwater conditions for Design Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. 2,193.00 ft 1.47 ft Velocity 6.67 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Name Description Discharge HW Elev. Velocity	Length		60.00 ft	Slope	0.033333 ft/ft
Tailwater properties: Triangular Channel Tailwater conditions for Design Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. Discharge Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Name Description Discharge HW Elev. Velocity	Drop		2.00 ft		
Tailwater conditions for Design Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Name Description Discharge HW Elev. Velocity	Headwater Mod	del: Unspecified			
Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. 2 1 Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Name Description Discharge HW Elev. Velocity	Tailwater prope	erties: Triangular Channel			
Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm. 2 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Name Description Discharge HW Elev. Velocity					
Depth 1.47 ft Velocity 6.67 ft Tailwater conditions for Check Storm.					
Tailwater conditions for Check Storm. Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Name Description Discharge HW Elev. Velocity	Tailwater condi	itions for Design Storm.			
Discharge 58.00 cfs Bottom Elevation 2,193.00 ft Depth 1.47 ft Velocity 6.67 ft Name Description Discharge HW Elev. Velocity		itions for Design Storm.	58.00 cfs	Bottom Elevation	2,193.00 ft
Depth 1.47 ft Velocity 6.67 ft Name Description Discharge HW Elev. Velocity	Discharge	itions for Design Storm.			2,193.00 ft 6.67 ft/s
Name Description Discharge HW Elev. Velocity	Discharge Depth				,
	Discharge Depth Tailwater condi		1.47 ft	Velocity	,
	Discharge Depth Tailwater condi Discharge		58.00 cfs	Velocity Bottom Elevation	6.67 ft/s
x Trial-1 2-36 inch Circular 58.00 cfs 2,196.82 ft 4.65 ft/s	Discharge Depth Tailwater condi Discharge Depth	itions for Check Storm.	1.47 ft 58.00 cfs 1.47 ft	Velocity Bottom Elevation Velocity	6.67 ft/s

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevat	ion 2,196.82	ft	Discharge	58.00	cfs
Headwater Depth/Height	0.94		Tailwater Elevation	2,194.47	ft
Inlet Control HW Elev.	2,196.58	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,196.82	ft			
Grades					
Upstream Invert	2,194.00	ft	Downstream Invert	2,192.00	ft
Length	60.00	ft	Constructed Slope	0.033333	ft/ft
Hydraulic Profile					
Profile	CompositeS1S2		Depth, Downstream	2.47	ft
Slope Type	Steep		Normal Depth	1.00	ft
Flow Regime	N/A		Critical Depth	1.74	ft
Velocity Downstream	4.65	ft/s	Critical Slope	0.004624	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@brrugated HD	PE (Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	2,196.82	ft	Upstream Velocity Head	0.72	ft
Ке	0.50		Entrance Loss	0.36	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,196.58	ft	Flow Control	N/A	
Inlet Type Squ	are edge w/headwall		Area Full	14.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Culvert Analysis Report P-B

Comments: q100=141 cfs to existing Culvert B. Includes 89 cfs from Existing Culvert A in proposed condition.

Analysis Cor	mponent					
Storm Event		Design	Disc	charge		141.00 cfs
Peak Discha	rge Method: User-Specified	1				
Design Disch	harge	141.00 cfs	Che	ck Discharge		141.00 cfs
Tailwater Cor	nditions: Constant Tailwater					
Tailwater Ele	evation	2,138.00 ft				
Name	Description	Dischar	ge	HW Elev.	Velocity	
Culvert-1	1-24 inch Circular	24.7	6 cfs	2,144.41 ft	8.47 ft/s	
Weir	Broad Crested	116.3	9 cfs	2,144.41 ft	N/A	
Total		141.10	6 cfs	2,144.41 ft	N/A	

Culvert Analysis Report P-B

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,144.41	ft	Discharge	24.76	cfs
Inlet Control HW Elev.	2,144.41	ft	Tailwater Elevation	2,138.00	ft
Outlet Control HW Elev.	2,144.38	ft	Control Type	Inlet Control	
Headwater Depth/Height	2.21				
Grades					
Upstream Invert	2,140.00	ft	Downstream Invert	2,138.00	ft
Length	75.00	ft	Constructed Slope	0.026667	ft/ft
Hydraulic Profile					
Profile CompositeN	2PressureProfile		Depth, Downstream	1.76	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.76	ft
Velocity Downstream	8.47	ft/s	Critical Slope	0.036855	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,144.38	ft	Upstream Velocity Head	0.97	ft
Ke	0.50		Entrance Loss	0.48	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,144.41	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	-
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Y	0.75000		-		

Culvert Analysis Report P-B

Component:Weir

Hydraulic Component(s): Broad Crested					
116.39 cfs	Allowable HW Elevation	2,144.41 ft			
3.33 US	Length	40.00 ft			
2,143.50 ft	Headwater Elevation	2,144.41 ft			
	116.39 cfs 3.33 US	116.39 cfsAllowable HW Elevation3.33 USLength			

Culvert Analysis Report P-B 10-yr

Comments: q10=48 cfs to existing Culvert B. Includes 24 cfs from existing Culvert A in proposed condition.

Analysis Cor	mponent				
Storm Event	t	Design	Discharge		48.00 cfs
Peak Discha	rge Method: User-Specified	I			
Design Disc	harge	48.00 cfs	Check Discharge		48.00 cfs
Tailwater Co	nditions: Constant Tailwater				
Tailwater Ele	evation	2,138.00 ft			
Name	Description	Discharg	je HW Elev.	Velocity	
Culvert-1	1-24 inch Circular	22.14	cfs 2,143.84 ft	7.86 ft/s	
Weir	Broad Crested	25.92	2 cfs 2,143.84 ft	N/A	
Total		48.06	6 cfs 2,143.84 ft	N/A	

Culvert Analysis Report P-B 10-yr

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	2,143.84	ft	Discharge	22.14	cfs
Inlet Control HW Elev.	2,143.84	ft	Tailwater Elevation	2,138.00	ft
Outlet Control HW Elev.	2,143.28	ft	Control Type	Inlet Control	
Headwater Depth/Height	1.92				
Grades					
Upstream Invert	2,140.00	ft	Downstream Invert	2,138.00	ft
Length	75.00	ft	Constructed Slope	0.026667	ft/ft
Hydraulic Profile					
Profile CompositeN	12PressureProfile		Depth, Downstream	1.68	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.68	ft
Velocity Downstream	7.86	ft/s	Critical Slope	0.031313	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,143.28	ft	Upstream Velocity Head	0.77	ft
Ke	0.50		Entrance Loss	0.39	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,143.84	ft	Flow Control	Submerged	
Inlet Type	Mitered to slope		Area Full	3.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
C	0.04630		Equation Form	- 1	
Ŷ	0.75000				

Culvert Analysis Report P-B 10-yr

Component:Weir

Hydraulic Component(s): Bro	ad Crested		
Discharge	25.92 cfs	Allowable HW Elevation	2,143.84 ft
Weir Coefficient	3.33 US	Length	40.00 ft
Crest Elevation	2,143.50 ft	Headwater Elevation	2,143.84 ft

	e Method: User-Specified			
Design Discha	rge	50.00 cfs	Check Discharge	50.00 cfs
Grades Model:	Inverts			
Invert Upstrear	n	2,149.30 ft	Invert Downstream	2,146.00 ft
Length		103.00 ft	Slope	0.032039 ft/ft
Drop		3.30 ft		
Headwater Mod	el: Unspecified			
	el: Unspecified tions: Constant Tailwater			
	tions: Constant Tailwater	2,147.00 ft		
Tailwater Condi	tions: Constant Tailwater		HW Elev. Velocity	

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,151.88	ft	Discharge	50.00	cfs
Headwater Depth/Height	0.86		Tailwater Elevation	2,147.00	ft
Inlet Control HW Elev.	2,151.64	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,151.88	ft			
Grades					
Upstream Invert	2,149.30	ft	Downstream Invert	2,146.00	ft
Length	103.00	ft	Constructed Slope	0.032039	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.96	ft
Slope Type	Steep		Normal Depth	0.93	ft
Flow Regime	Supercritical		Critical Depth	1.61	ft
Velocity Downstream	12.81	ft/s	Critical Slope	0.004409	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@orrugated HDPE	(Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	2,151.88	ft	Upstream Velocity Head	0.65	ft
Ke	0.50		Entrance Loss	0.32	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,151.64	ft	Flow Control	N/A	
Inlet Type Square	edge w/headwall		Area Full	14.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Desire Dissbar		40.00 sta	Oh e els Die els ense	10.00 -6-
Design Dischar	ge	18.00 cfs	Check Discharge	18.00 cfs
Grades Model: I	nverts			
Invert Upstream	า	2,182.90 ft	Invert Downstream	2,182.00 ft
Length		71.00 ft	Slope	0.012676 ft/ft
Drop		0.90 ft		
Headwater Mode	el: Unspecified			
Tailwatar propa	ties: Triangular Channel			
ranwaler proper	ues. mangulai onamie			
	Ū.			
Tailwater condit	ions for Design Storm.		Dottom Flourition	2482.00 #
Tailwater condit	Ū.	18.00 cfs	Bottom Elevation	2,182.00 ft
Tailwater condit	Ū.		Bottom Elevation Velocity	2,182.00 ft 4.68 ft/s
Tailwater condit Discharge Depth	Ū.	18.00 cfs		,
Tailwater condit Discharge Depth	ions for Design Storm.	18.00 cfs		
Tailwater condit Discharge Depth Tailwater condit	ions for Design Storm.	18.00 cfs 0.98 ft	Velocity	4.68 ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge Depth	ions for Design Storm.	18.00 cfs 0.98 ft 18.00 cfs 0.98 ft	Velocity Bottom Elevation Velocity	4.68 ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	18.00 cfs 0.98 ft 18.00 cfs	Velocity Bottom Elevation	4.68 ft/s

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,185.04	ft	Discharge	18.00	cfs
Headwater Depth/Height	0.71		Tailwater Elevation	2,182.98	ft
Inlet Control HW Elev.	2,184.82	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,185.04	ft			
Grades					
Upstream Invert	2,182.90	ft	Downstream Invert	2,182.00	ft
Length	71.00	ft	Constructed Slope	0.012676	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.03	ft
Slope Type	Steep		Normal Depth	1.00	ft
Flow Regime	Supercritical		Critical Depth	1.36	ft
Velocity Downstream	8.41	ft/s	Critical Slope	0.004111	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Materatorrugated HDPE	(Smooth Interior)		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,185.04	ft	Upstream Velocity Head	0.52	ft
Ке	0.50		Entrance Loss	0.26	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,184.82	ft	Flow Control	N/A	
	edge w/headwall		Area Full	7.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

	e Method: User-Specified	1		
Design Dischar	rge	23.00 cfs	Check Discharge	23.00 cf
Grades Model:	Inverts			
Invert Upstream	n	2,189.00 ft	Invert Downstream	2,186.00 ft
Length		121.00 ft	Slope	0.024793 ft/
Drop		3.00 ft		
Headwater Mod	el: Unspecified			
Tailwater prope	rties: Triangular Channe			
Tailwater condit	ions for Design Storm.			
Tailwater condit Discharge	ions for Design Storm.	23.00 cfs	Bottom Elevation	2,186.00 ft
	ions for Design Storm.	23.00 cfs 0.99 ft	Bottom Elevation Velocity	2,186.00 ft 5.86 ft
Discharge Depth				,
Discharge Depth Tailwater condit	ions for Design Storm.	0.99 ft	Velocity	5.86 ft
Discharge Depth Tailwater condit Discharge		0.99 ft	Velocity Bottom Elevation	2,186.00 ft
Discharge Depth Tailwater condit		0.99 ft	Velocity	5.86 ft
Discharge Depth Tailwater condit Discharge		0.99 ft	Velocity Bottom Elevation Velocity	2,186.00 ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	2,192.45	ft	Discharge	23.00	cfs
Headwater Depth/Height	1.72		Tailwater Elevation	2,186.99	ft
Inlet Control HW Elev.	2,192.45	ft	Control Type	Inlet Control	
Outlet Control HW Elev.	2,192.22	ft			
Grades					
Upstream Invert	2,189.00	ft	Downstream Invert	2,186.00	ft
Length	121.00	ft	Constructed Slope	0.024793	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.18	ft
Slope Type	Steep		Normal Depth	1.17	ft
Flow Regime	Supercritical		Critical Depth	1.71	ft
Velocity Downstream	11.87	ft/s	Critical Slope	0.009682	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Materadbrrugated HDPE	(Smooth Interior)		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,192.22	ft	Upstream Velocity Head	1.01	ft
Ke	0.50		Entrance Loss	0.50	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,192.45	ft	Flow Control	N/A	
Inlet Type Square	edge w/headwall		Area Full	3.1	ft²
К	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Design Dischar	a 0	1.00 cfs	Check Discharge	1.00 cfs
Design Dischar	ye	1.00 CIS	Check Discharge	1.00 CIS
Grades Model: I	nverts			
Invert Upstream	า	2,200.00 ft	Invert Downstream	2,198.50 ft
Length		61.00 ft	Slope	0.024590 ft/f
Drop		1.50 ft		
Headwater Mode	el: Unspecified			
Telluster preper	tion: Triongular Chappa	1		
ranwater proper	ties: Triangular Channe	1		
Tanwater proper		I		
Tailwater condit	ions for Design Storm.			
Tailwater condit		1.00 cfs	Bottom Elevation	2,198.50 ft
Tailwater condit			Bottom Elevation Velocity	2,198.50 ft 2.78 ft/s
Tailwater condit Discharge Depth		1.00 cfs		
Tailwater condit Discharge Depth Tailwater condit	ions for Design Storm.	1.00 cfs		
Tailwater condit Discharge Depth	ions for Design Storm.	1.00 cfs 0.30 ft	Velocity	2.78 ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	1.00 cfs 0.30 ft 1.00 cfs	Velocity Bottom Elevation	2.78 ft/s 2,198.50 ft
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	1.00 cfs 0.30 ft 1.00 cfs	Velocity Bottom Elevation Velocity	2.78 ft/s 2,198.50 ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	n 2,200.57	ft	Discharge	1.00	cfs
Headwater Depth/Height	0.38		Tailwater Elevation	2,198.80	ft
Inlet Control HW Elev.	2,200.49	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,200.57	ft			
Grades					
Upstream Invert	2,200.00	ft	Downstream Invert	2,198.50	ft
Length	61.00	ft	Constructed Slope	0.024590	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.25	ft
Slope Type	Steep		Normal Depth	0.25	ft
Flow Regime	Supercritical		Critical Depth	0.37	ft
Velocity Downstream	5.15	ft/s	Critical Slope	0.004937	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@orrugated HDPE	E (Smooth Interior)		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,200.57	ft	Upstream Velocity Head	0.13	ft
Ке	0.50		Entrance Loss	0.07	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,200.49	ft	Flow Control	N/A	
	e edge w/headwall		Area Full	1.8	ft²
К	0.00980		HDS 5 Chart	1	
М	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Design Dischar	ge	1.00 cf	fs (Check Discharge		1.00	cfs
Grades Model: I	nverts						
Invert Upstrean	1	2,201.50 ft		nvert Downstrear	n	2,200.00	ft
Length		47.00 ft	5	Slope		0.031915	ft/ft
Drop		1.50 ft					
Headwater Mode	el: Unspecified						
Tailwater proper	ties: Triangular Channe						
Tailwater proper	ties: Triangular Channe						
		1					
	ties: Triangular Channe						
Tailwater condit Discharge		1.00 cf		Bottom Elevation		2,200.00	
Tailwater condit				Bottom Elevation		2,200.00 2.78	
Tailwater condit Discharge Depth	ions for Design Storm.	1.00 cf				,	
Tailwater condit Discharge Depth Tailwater condit		1.00 cf 0.30 ft		/elocity		2.78	ft/s
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	1.00 cf 0.30 ft 1.00 cf	fs E	/elocity Bottom Elevation		2.78	ft/s ft
Tailwater condit Discharge Depth Tailwater condit	ions for Design Storm.	1.00 cf 0.30 ft	fs E	/elocity		2.78	ft/s ft
Tailwater condit Discharge Depth Tailwater condit Discharge	ions for Design Storm.	1.00 cf 0.30 ft 1.00 cf	fs E	/elocity Bottom Elevation		2.78	ft/s ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elev	vation 2,202.16	ft	Discharge	1.00	cfs
Headwater Depth/Height	0.66		Tailwater Elevation	2,200.30	ft
Inlet Control HW Elev.	2,202.08	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	2,202.16	ft			
Grades					
Upstream Invert	2,201.50	ft	Downstream Invert	2,200.00	ft
Length	47.00	ft	Constructed Slope	0.031915	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	0.27	ft
Slope Type	Steep		Normal Depth	0.27	ft
Flow Regime	Supercritical		Critical Depth	0.42	ft
Velocity Downstream	5.91	ft/s	Critical Slope	0.005821	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Mater@brrugated I	HDPE (Smooth Interior)		Span	1.00	ft
Section Size	12 inch		Rise	1.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	2,202.16	ft	Upstream Velocity Head	0.16	ft
Ке	0.50		Entrance Loss	0.08	ft
Inlet Control Properties					
Inlet Control HW Elev.	2,202.08	ft	Flow Control	N/A	
	quare edge w/headwall	-	Area Full	0.8	ft²
K	0.00980		HDS 5 Chart	1	
Μ	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

SNWA River Mountains Solar Weir Summary 4/21/2015

Concentration Point	Q100 (cfs)	Number of weirs	Discharge per weir (cfs) (1)	Crest length (ft)	Crest breadth (ft)	Discharge per length (cfs/ft)	D50 Riprap Size for spillways (2)	•	Weir depth (ft)
P-A1	79	2	39	40	8	1.0	18	0.51	1
P-A2	22	2	11	40	8	0.3	18	0.22	1
P-OFF-B2	52	2	26	40	8	0.6	18	0.39	1
EX C	7	1	7	45	18	-	-	0.15	1
OFF-C1	1	1	1	45	18	-	-	0.04	1
EX D	32	1	32	40	8	-	-	0.32	1
P-D	41	1	41	40	8	-	-	0.38	1
EX E	1	1	1	40	8	-	-	0.06	1
OFF-E	1	1	1	40	8	-	-	0.06	1
EX F	23	1	23	40	8	-	-	0.39	1
OFF-F	23	1	23	40	8	-	-	0.39	1

(1) Assumes that flow is evenly distributed between weirs of same elevation.

(2) Per Table 1102 of the HCDDM and Uniform Standard Specification Section 610.02.04 of the Region Transportation Commission of Southern Nevada.

(3) "Ex" designates existing subbasin or concentration point.

Broad Crested Weir (Channel Calcs.fm8) Report

Label	Discharge (ft³/s)	Headwater Elevation (ft)	Crest Elevation (ft)	Tailwater Elevation (ft)	Crest Surface Type	Crest Breadth (ft)	Crest Length (ft)	Headwater Height Above Crest (ft)	Tailwater Height Above Crest (ft)	Weir Coefficient (US)	Submergence Factor
Weir P-A1	39.00	2158.51	2158.00	0.00	Gravel	8.00	40.00	0.51	-2158.00	2.70	1.00
Weir P-A2	11.00	2166.22	2166.00	0.00	Gravel	8.00	40.00	0.22	-2166.00	2.60	1.00
Weir P-OFF-B2	26.00	2147.39	2147.00	0.00	Gravel	8.00	40.00	0.39	-2147.00	2.66	1.00
Weir EX C	7.00	2168.15	2168.00	2167.00	Gravel	18.00	45.00	0.15	-1.00	2.57	1.00
Weir OFF-C1	1.00	2168.04	2168.00	2167.00	Gravel	18.00	45.00	0.04	-1.00	2.52	1.00
Weir EX D	32.00	2179.32	2179.00	2178.00	Gravel	18.00	66.00	0.32	-1.00	2.63	1.00
Weir P-D	41.00	2179.38	2179.00	2178.00	Gravel	18.00	66.00	0.38	-1.00	2.65	1.00
Weir EX E	1.00	2208.06	2208.00	2207.00	Gravel	18.00	30.00	0.06	-1.00	2.53	1.00
Weir OFF-E	1.00	2208.06	2208.00	2207.00	Gravel	18.00	30.00	0.06	-1.00	2.53	1.00
Weir EX F	23.00	2206.39	2206.00	2205.00	Gravel	18.00	35.00	0.39	-1.00	2.66	1.00
Weir OFF-F	23.00	2206.39	2206.00	2205.00	Gravel	18.00	35.00	0.39	-1.00	2.66	1.00

Adjusted Weir Coefficient (US)	Flow Area (ft²)	Velocity (ft/s)	Wetted Perimeter (ft)	Top Width (ft)
2.70	20.31	1.92	41.02	40.00
2.60	8.96	1.23	40.45	40.00
2.66	15.65	1.66	40.78	40.00
2.57	6.94	1.01	45.31	45.00
2.52	1.92	0.52	45.09	45.00
2.63	21.36	1.50	66.65	66.00
2.65	25.07	1.64	66.76	66.00
2.53	1.68	0.60	30.11	30.00
2.53	1.68	0.60	30.11	30.00
2.66	13.79	1.67	35.79	35.00
2.66	13.79	1.67	35.79	35.00

MANNING'S ROUGHNESS COEFFICIENTS FOR CHANNEL LINING TYPES

	Roughness Coef	fficient (n)
Channel Material	Normal	Maximum
Corrugated Metal	0.025	0.030
Concrete**		
1) Trowel finish	0.013	0.015
2) Float finish	0.015	0.016
3) Unfinished	0.017	0.020
4) Shotcrete, Good section	0.019	0.023
5) Shotcrete, wavy section	0.122	0.025
Asphalt (use maximum value when cars are present)	0.016	0.020
Soil-Cement	0.020	0.025
Constructed channels with earth or sand bottom, sides of	3	
1) Clean earth; straight	0.022	0.025
2) Earth with grass and weeds	0.025	0.030
3) Earth with trees and shrubs	0.032	0.040
4) Shotcrete	0.022	0.025
5) Soil-cement	0.025	0.028
6) Concrete	0.020	0.024
7) Dry rubble or riprap	0.033	0.036
Natural channels with sand bottom, sides		
of	0.035	0.045
 Trees and shrubs Rock 	0.032	0.040
Natural channel with rock bottom	0.060	0.090
Overbank floodplains		
1) Desert brush, normal density	0.060	0.080
2) Dense vegetation	0.100	0.160
Adapted from Chow (1959) and Aldridge an		Revision D
* Manning's Coefficients for Clear Water Only		
City of Tucson Standards Manual for Draina	ge Design	
REFERENCE:		
AEFENERGE.		TABLE 702

MAXIMUM PERMISSIBLE MEAN CHANNEL VELOCITIES

Material / Lining

Maximum Permissible Mean Velocity (fps)

Natural and Improved Unlined Channels

Fine sand,colloidal1Sandy loam,noncolloidal1Silt loam,noncolloidal2Alluvial silts,noncolloidal2Ordinary firm loam2Volcanic ash2Stiff clay,vary colloidal3Alluvial silts,colloidal3Shales and hardpans6Fine gravel2Graded loam to cobbles when noncolloidal3Graded silts to cobbles when colloidal4Cobbles and shingles5Sandy silt2Silty clay2Clay3Fully Lined Channels10	.75 .00 .50 .50 .75 .75 .00 .50 .75 .00 .00 .00 .00 .00 .00 .00
Unreinforced vegetation	0.0 5.0 5.0 5.0
 NOTES: 1. For composite lined channels, use the lowest of the maximum mean velocities for the materials used in the composite lining. 2. Deviations from the above values are only allowed with appropriate engineering analysis and/or suitable agreements for maintenance responsibilities. 	Revision Date
WRC ENGINEERING REFERENCE: Natural-Fortier and Scobey, 1926 Fully Lined-Various Sources	TABLE 703

HYDRAULIC DATA FOR CULVERTS

(A) Manning's n-values for Corrugated Steel Pipe

	Annular				Helical			
Corrugations	235" x 55"	11/2" x 1/4"11. 13		23 × 12"				
•	All Diam.	8"	10"	12"	18	24"	36"	48"
Unpaved 25% Paved Fully Paved	.024 .021 .012	.012	.014	.011	.014	.016 .015 .012	.019 .017 .012	.020 .020 .012

Corrugations	Annular 3" x 1"			Helical—	-3" x 1"		
	All Diam.	36"	48"	54"	60"	66"	72"
Unpaved 25% Paved Fully Paved	027 .023 .012	.021 .019 .012	.023 .020 .012	.023 .020 .012	.024 .021 .012	.025 .022 .012	.026 .022 .012

(B) Manning's n-values for Structural Plate Metal Pipe

Corrugations		Diam	neters	
6" x 2"	5 ft	7 ft	10 ft	15 ft
Plain—unpaved 25% Paved	.033 .028	.032 .027	.030 .026	.028 .024

(C) Manning's n-values for Concrete Pipe/Culvert

WRC Engineering	REFERENCE: Handbook of Steel Highway Construction Products, A (with modifications)		TABLE 1 OF	
	<u>TYPE</u> Pre-Cast Cast-in-Place With Steel Forms With Wood Forms	0.012 0.013 0.015	Revision	Date

HYDRAULIC DATA FOR CULVERTS (D) CULVERT ENTRANCE LOSSES

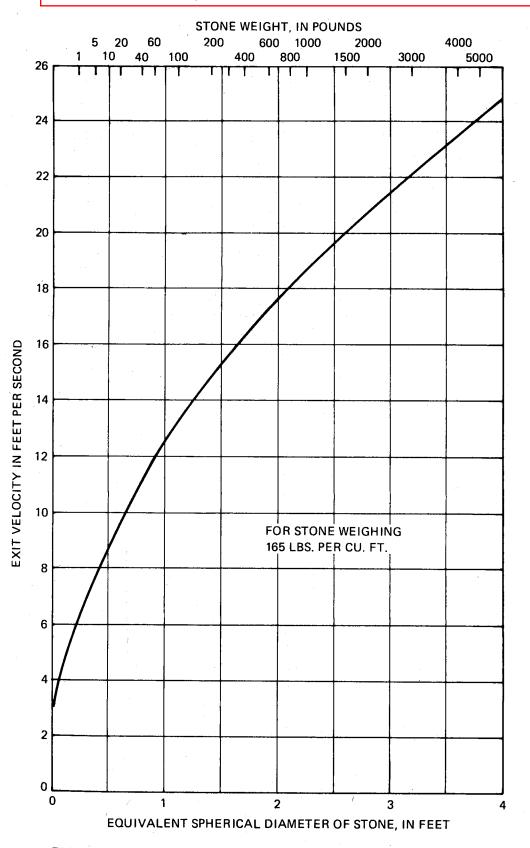
Entrance Coefficient, Ke Type of Entrance Pipe Headwall 0.20 Grooved edge 0.15 Rounded edge (0.15D radius) 0.10 Rounded edge (0.25D radius Square edge (cut concrete and CMP) 0.40 Headwall & 45° Wingwall 0.20 Grooved edge 0.35 Square edge Headwall with Parallel Wingwalls Spaced 1.25D apart 0.30 Grooved edge 0.40 Square edge 0.25 Beveled edge Projecting Entrance 0.25 Grooved edge (RCP) 0.50 Square edge (RCP) 0.90 Sharp edge, thin wall (CMP) Sloping Entrance 0.70 Mitered to conform to slope 0.50 Flared-end Section Box, Reinforced Concrete Headwall Parallel to Embankment (no wingwalls) 0.50 Square edge on 3 edges Rounded on 3 edges to radius of 1/12 barrel dimension 0.20 Wingwalls at 30° to 75° to barrel 0.40 Square edged at crown Crown edge rounded to radius of 1/12 barrel dimension 0.20 Wingwalls at 10° to 30° to barrel 0.50 Square edged at crown Wingwalls parallel (extension of sides) 0.70 Square edged at crown NOTE: The entrance loss coefficients are used to evaluate the culvert or sewer capacity operating under outlet control. **TABLE 1001 REFERENCE:** WRC USDCM, DRCOG, 1969

ENGINEERING

SLOPING RIPRAP CHANNEL DROP DESIGN CHART

MAXIMUM UNIT DISCHARGE	ALLOW FOR E	LENGTH OF DOWNSTREAM APRON Lb		
(cfs/ft)	Regular Riprap			(ft)
0 - 15	Not Allowed	0 to 7:1	7:1 to 4:1	15
15.1 - 20	Not Allowed	0 to 8:1	8:1 to 5:1	20
20.1 - 25	Not Allowed	0 to 10:1	10:1 to 6:1	20
25.1 - 30	Not Allowed	0 to 12:1	12:1 to 7:1	25
31.1 - 35	Not Allowed	0 to 13:1	13:1 to 8:1	25
> 35	Not Allowed	Not Allowed	Not • Allowed	Not Allowed
Dr (V≤5fps)	Not Allowed	1.75'	2.6'	
Dr (V>5fps)	Not Allowed	2.0'	3.0'	
Drw	Not Allowed	1.5 x Dr	1.25 x Dr	

NOTES:


- 1. See Figure 1102 for definition of symbols.
- q = Unit discharge = YnYn, where Vn = average channel velocity and Yn = normal depth of the upstream channel.
- So = Longitudinal channel slope expressed in feet horizontal per foot vertical.
- 4. Dr = Depth of riprap blanket in feet.
- Drw = Depth of riprap blanket at the downstream face of the crest wall and in upstream apron.
- Rock size, Dr, and Drw shall be the same throughout the drop structure.
- Chute and channel side slopes shall not be steeper than 4:1.
- 8. Maximum allowable drop = 3.0'
- 9. See Section 700 for riprap gradation, classification and bedding requirements.
- This chart is for ordinary riprap structures only. Other types of drop structures require their own hydraulic analysis.
- 11. See Table 1104 to calculate P.

WRC
ENGINEERING

REFERENCE: USDM, DRCOG, 1969 (with modifications) Revision Date

TABLE 1102

HEC-14 - Hydraulic Design of Energy Dissipators for Culverts and Channels, FHWA, Sept. 1983

II-9

С

Appendix C: River Mountain Water Treatment Facility Technical Drainage Study Excerpts

FACILITY IDENTIFIER	DESCRIPTION				~~~
1A CHANN	2' B X 2:1 SIDE SLOPE	HILLE .			
1B CHANN	2' B X 2:1 SIDE SLOPE				
2A CHANN	2' B X 2:1 SIDE SLOPE	-	202		
2B CHANN	2' B X 2:1 SIDE SLOPE	JTHERN NEVADA TER AUTHORIT FLAMINGO ROAD SUITE 1 VEGAS, NEVADA 89119 (702) 862-3400 REVEADA 89119			NN
3A CHANN	4' B X 4:1 SIDE SLOPE				
3B CHANN	5' B X 4:1 SIDE SLOPE				
5A CHANN	5' B X 4:1 SIDE SLOPE	Z	A P C	NE/	ZJ 00
5B CHANN	20' B X 3:1 SIDE SLOPE	里	YIN NIN	GAS	ECT LA
6 CHANN	5' B X 4:1 SIDE SLOPE	L.	A F	N N	PROJ
8 CHANN	4' B X 1:1 SIDE SLOPE	So	× 00	LA	,
1B CULV	24" RCP		-		
1A-8 CULV	(2) 23"x14" ELLIPTICAL RCP	SCALE	Π		HALF
1B-3 CULV	36" RCP		~	PRESE	N ORIG
2A,B,C CULV	18" RCP	VERIFY	°-	ave se	NE ME
2-4 CULV	24" RCP	1×	Ser 1		.95 20
4-6 CULV	(2) 30"x19" ELLIPTICAL RCP	~		SCALE	1-400
8-7 CULV	(2) 3'x2' RCB			-	-
5B CULV	30" RCP	FAC		+	-
CIIT 0246	8.5' ROCK LEVEE	L			ea.dgr
CIIT 0492	EAST C-1 DETENTION BASIN	MEN-		-	aub_ar
78" OF	78" PLANT OVERFLOW	FREA	z		Irolog/
96" OF	96" PLANT OVERFLOW	1	PLA		trNhyd
	CCIT 0492	RIVER MOUNTAINS WATER	DRAINAGE PLAN		C2-DEC-1997 09:55 0.\sinwa'rmwfrhydrolog\sub_oreo.don
		Ľ.		<	1 2
		MWHill A Joint Venture west constleston BLVD. EckS, NEVNDA BS102-1344		CHK:	APVD:
Ì			3014 V	DSGN:	DR:
Caller .		CONTRACT NO.			
		DRAWING NO. FIGURE 3-1 SHEET OF			

100 YEAR STORM EVENT WITH OVERFLOW

HEC-1 MODEL

1****	********	*******
*	*	* *
*	FLOOD HYDROGRAPH PACKAGE (HEC-1) *	* U.S. ARMY CORPS OF ENGINEERS *
*	MAY 1991 *	* HYDROLOGIC ENGINEERING CENTER *
*	VERSION 4.0.1E *	* 609 SECOND STREET *
*	*	* DAVIS, CALIFORNIA 95616 *
* F	UN DATE 08/06/1997 TIME 13:21:56 *	* (916) 551-1748 *
*	*	* *
****	******	********

х	х	XXXXXXX	XXX	XXX		х
х	х	х	x	х		xx
х	х	х	х			х
XXXXXXX		XXXX	x		XXXXX	х
х	х	х	х			х
х	х	х	х	х		х
х	х	XXXXXXX	XXX	xxx		xxx

M A C I N T O S H Ø 2 0 0 0 T I M E S T E P V E R S I O N : 4.0.1E

· · · · · · · · ·

1

Hydrotech Microsystems P.O. Box 40184 Portland, OR 97240-0184 (503) 257-6926

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HECIDB, AND HECIKW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

	HEC-1 INPUT PAGE 1	
LINE	ID12	
	* RMTFOFLOW.DAT changes the oriface coefficient at detention basin from 0.7 * to 0.65 - MW, 8/97 *	
	* Revised detention basin volumes; spillway at 2186' - MW, 7/18/97 *	
	 Revised to include sediment volume at bottom of basin; set spillway at 2185' and low-level outlet to include sed - MW, 6/6/97 	
	* Revised 5/28/97 to include new detention basin storage curve - MW, 5/28/97	

-- 1

* This model (RMTP.DAT) includes the areas south of the NPC Powerline

* Corridor only (southeast portion of the River Mtns site), plus an area near

* the solids drying beds and overflows from the treatment plant and is used to

* size the onsite detention basin. A low-level outlet is used at the detention

* basin. Downstream pipe flow should not exceed 500 cfs; try one 48-inch * diameter pipe.

. .

* This file is for the SNWA River Mountains On-Site hydrology and is a

* revision to a previous preliminary analysis performed in 12/95. Changes

* to onsite subareas reflect the current/latest (2/97) site layout. It also

* includes two offsite subareas from the Newport Electrical Substation offsite

* analysis. This analysis assumes a berm will be constructed to protect the

* site from these offsite flows from the east. Therefore, the two offsite areas

* are combined together, but not with onsite subareas. This model assumes * that subareas 1A through 8 are tributary to an onsite detention basin.

* The 100-yr, 6-hr recipitation depth is 3.22-inches per CCRFCD 1991 MPU

* C-1 Channel hydrology for subareas C4B and C3B2 which encompass nearly the

* entire Strawman Site. This depth includes the 1.43 NOAA 100-yr adjustment

* factor - MW, 2/97

*DIAGRAM

12

13

14

15

LINE

*** FREE ***

Pandidai				
ID	SNWA R	iver Mountains	Water Treatment 1	Facility
ID	ONSITE	RUNOFF PLUS TR	EATMENT PLANT OVI	ERFLOW
ID	FILE:	RMTP.DAT		
ID	Prepar	ed by MONTGOMER	Y WATSON - 3/97	
ID				
ID	Ratio	Subareas	Area (sq mi)	DARF
ID				
ID	1	individual	0.05 - 0.09	1.00
ID	2		0.5	0.98
ID	3		1.0	0.97
ID				
	-			

IT 5 0 0 150 тο 5 n n IN 5 0 0 1.00 0.98 0.97 JR PREC

•

* The first portion of this data file models rainfall/runoff from the project * site; the second portion includes an overflow from the treatment plant. Both * are tributary to the onsite detention basin which is modeled at the end of * this data file.

* Begin the runoff portion of the model

HEC-1 INPUT

PAGE 2

16 KK 1A RUNOFF FROM SUBAREA 1A

* assume 47% open, 53% industrial/high; all A soil 17 КM This subarea is at the east property line of the site at the drying beds BA 0.0581 18 19 PB 3.22 * Use SDN#3 for areas less than 10 sq mi 20 PC .000 .020 .057 .070 .087 .108 .124 .130 .130 .130 .172 .181 21 PC .130 .130 .130 .133 .140 ,142 .148 .158 22 PC .190 .197 .199 .200 .201 .204 .214 .229 .241 .249 23 PC .251 .256 .270 .278 .281 .283 .295 .322 .352 -409 .710 24 PC .499 . 59.0 .744 .781 .812 .819 .835 .851 .856 25 PC .860 .868 .876 .888 .910 .926 .937 .950 .970 .976 26 PC .982 . 985 .987 .989 .990 .993 .993 .994 .995 27 PC . 998 . 999 1.00 * 28 LS 0 78 29 UD 0.219

30 KK 1B RUNOFF FROM SUBAREA 1B * assume 43% open, 57% industrial/high; all A soil 31 BA 0.0335

32	LS 0 79	
33	UD 0.174	
55	*	
34	KK 1BSPLIT	
35	KM Assume that 50% goes to subarea 3 and 50% goes to subarea 8	
36	DT 1BSPLIT	
37	DI 0. 10. 1000.	
38	DQ 0. 5. 50. 5000.	
	•	
39		
	KK 1B_R ROUTE REMAINING 50% OF SUBAREA 1B TO SUBAREA 1A AND 8 IN A CHANNEL	
40	RK 1700 0.0050 0.025 0 TRAP 10 2	
	•	
41	KK 1A_CCOMBINE ROUTED SUBAREA 1B RUNOFF WITH SUBAREA 1A HYDROGRAPH	
42	HC 2	
	*	
43	KK 1R ROUTE SUBAREA 1A TO THE WEST ALONG THE N-SIDE OF THE ROAD TO SUBAREA 8	
44	RK 1250 0.040 0.030 0 TRAP 10 2	
33	* 1250 0.000 0.050 0 TRE 10 2	
45	KK 8 RUNOFF FROM SUBAREA 8	
46	KM This hydrograph enters the north end of the detention basin	
47	BA 0.1199	
48	LS 0 79	
49	UD 0.502	
	*	
	HEC-1 INPUT PAGE 3	
TAND		
LINE	ID1	
50	KK 8C COMBINE SUBAREA 8 RUNOFF WITH ROUTED SUBAREA 1A HYDROGRAPH	
51	HC 2	
	*	
	* This ends the portion of the onsite runoff that drains to the detention basin	
	* through subarea 8	
	*	
	* ***********	
	•	
52	KK 2 RUNOFF FROM SUBAREA 2	
53	KM This subarea is one-half open, one-half industrial	
54	BA 0.0265	
55	LS 0 77	
56	UD 0.194	
	•	
57	KK 2R ROUTE COMBINED SUBAREA 2 TO THE SOUTH & WEST TO SUBAREA 4 IN A CHANNEL	
58	RK 1400 0.0214 0.030 0 TRAP 10 2	
	*	
59	KK 4 RUNOFF FROM SUBAREA 4	
60	KM This subarea is 30% open, 70% industrial	
61	BA 0.0271	
62	LS 0 83	
63	UD 0.194	
	*	
64	KK 4C COMBINE ROUTED SUBAREA 2 + SUBAREA 4	
65	HC 2	
	4	
66	KK 4R ROUTE COMBINED SUBAREA 4 TO SUBAREA 6 IN A CHANNEL	
67	RK 950 0.0347 0.030 0 TRAP 10 2	
	*	
68	KK 6 RUNOFF FROM SUBAREA 6	
69	KM This subarea is 40% open and 60% buried reservoir (use industrial/low for	
	-	
70	KM the reservoir portion, to be conservative)	

1

71 BA 0.0546 72 LS 0 77 UD 0.216 73 * 74 KK 6C COMBINE ROUTED SUBAREA 4 + SUBAREA 6 KМ This hydrograph enters the detention basin 75 * HC 76 2 * \star This ends the portion of the onsite runoff that drains to the detention basin * through subarea 6 * **** HEC-1 INPUT PAGE 4 LINE 77 KK 1BSPLIT KM RECALL DIVERTED FLOW FROM SUBAREA 1B 78 79 DR 1BSPLIT * 80 KK 1B_R ROUTE 50% OF SUBAREA 1B TO SUBAREA 3 IN A CHANNEL RK 1700 0.0050 0.025 0 TRAP 10 2 81 * 82 кк 3 RUNOFF FROM SUBAREA 3 BA 0.0356 83 * assume 1/2 open, 1/2 industrial/high; all A soil LS 0 77 UD 0.322 84 85 * 86 кк 3C COMBINE SUBAREA 3 + ROUTED SUBAREA 1B 87 HC 2 * 88 кк 3R ROUTE COMBINED SUBAREA 3 TO THE WEST IN A CHANNEL ALONG THE PROPOSED RO 89 KМ TO SUBAREA 5 1900 0.Ö211 0.O30 0 TRAP 10 2 90 RK * 91 KK 5 RUNOFF FROM SUBAREA 5 92 BA 0.0541 93 LS 0 80 UD 0.185 94 * 95 кк 5C COMBINE SUBAREA 5 + ROUTED SUBAREA 3 96 KM This hydrograph enters the south end of the detention basin 97 HC 2 * This ends the portion of the onsite runoff that drains to the detention basin * through subarea 5 -* * ******** * 98 KK 7 RUNOFF FROM SUBAREA 7 KM This is the detention basin itself 99 100 BA 0.0301 101 LS 0 65 102 UD 0.108 * PAGE 5 HEC-1 INPUT LINE

103	KK INFLOW COMBINE SUBAREAS 5, 6, 7 & 8 AS TOTAL RUNOFF INFLOW TO THE DET . BASIN
104	KO 1
105	HC 4
	•
	* ************************
	•
	* The following is the model for the treatment plant overflow
	•
	t Trank the suspician hudrosuper, as includences and the source subfigure from the
	* Input the overflow hydrograph; assume an instantaneous outflow of 800 mgd
	* (or 1,238 cfs) continues for 1 hour, then tapers off to zero in 5 min; to
	* do this, leave time interval for input data at 5 minutes; note that this
	* scenario is much more serious than a 100-year event (100-year runoff plus a
	* failure at the treatment plant).
106	KKOVERFLOW
107	KO 1
108	BA 0.0
109	QI 1238 1238 1238 1238 1238 1238 1238 1238
105	
	-
	* *************************************
	•
110	KK COMBINE
111	KM Combine runoff portion of the model with the treatment plant overflow;
112	KM this is the total inflow to the detention basin.
113	HC 2
	•
	* *************************************
	•
	-
114	KK DET
115	KM This is the onsite detention basin with inflow only from both onsite
116	KM runoff and the treatment plant overflow; maximum stage should be less
117	KM than 2183 ft.
118	KO 1 _
	* Starting condition (field 3 of RS card) is 0 ac-ft of storage:
119	RS 1 STOR 0.1
	* SV 0 0.03 0.15 0.47 1.20 2.49 4.81 8.49 13.65 20.
	* SV 29.05 39.31 51.53 66.34 83.81 104.22 128.06
	* SV 0 0 0 0 0 0 0 2.32 6.00 11.16 18.
	* SV 26.56 36.82 49.04 63.85 81.32 101.73 125.57
120	sv 0 0.42 1.37 3.45 7.10 12.49 19.56 28.52 39.13 51.40
121	SV 65.19 80.13 96.63 114.02
122	SE 2177 .2178 2179 2180 2181 2182 2183 2184 2185 2186
123	SE 2187 2188 2189 2190
	* Try one 48-in diameter outlet pipe; use oriface coefficient of 0.65
	* SL2177.5 12.57 0.7 0.5
124	SL 2177.5 12.57 0.65 0.5
	* SS2185.0 100 3.3 1.5
125	SS 2186.0 200 3.3 1.5
	*
	* *************************************
	•
	* The last two subareas are not tributary to the detention basin and are not
	* developed as part of Phase 1 of the RMTP facilities; therefore, the following
	 * data are for existing conditions at subareas 9 and 10; both subareas sheet
	* flow to the western property line and are left as individual subareas (not
	* combined with other areas):
	*
	HEC-1 INPUT PAGE 6
LINE	ID1
11.1111 11.1111	
126	KK 9 RUNOFF FROM SUBAREA 9
	* This subarea is the southwest portion of the site that does not enter the
	* detention basin.
127	KM This subarea is all open/A soil
128	BA 0.0790
	* use CN for A soil/open (63)
129	
129	LS 0 63

1

.....

1	0145	22	1.	*	1	0455	60	107.	*	1	0805	98	ο.	*	-1	1115	136	0
1	0150	23	1.	*	1	0500	61	102.	*	1	0810	99	0.	٠	1	1120	137	0
1	0155	24	1.	*	1	0505	62	93.	*	1	0815	100	Ο.	*	1	1125	138	0
1	0200	25	1.	. *	1	0510	63	80.	*	1	0820	101	Ο.	*	1	1130	139	0
1	0205	26	1.	*	1	0515	64	66.	*	1	0825	102	Ο.	*	l	1135	140	0
1	0210	27	1.	*	1	- 0520	65	54.	*	1	0830	103	0.	*	1	1140	141	0
1	0215	28	2.	*	1	0525	66	44.	*	1	0835	104	Ο.	*	1	1145	142	0
1	0220	29	4.	*	1	0530	67	37.	* .	1	0840	105	0.	*	1	.1150	143	0
1	0225	30	6.	*	1	0535	68	30.	*	1	0845	106	ο.	*	1	1155	144	c
1	0230	31	7.	*	1_	0540	69	24.	*	1	0850	107	٥.	*	î	1200	145	c
1	0235	32	8.	*	1	0545	70	21.	*	1	0855	108	0.	*	1	1205	146	c
1	0240	33	8.	*	1	0550	71	18.	*	1	0900	109	0.	*	1	1210	147	c
1	0245	34	10.	*	ı	0555	72	16.	*	1	0905	110	ο.	*	1	1215	148	c
1	0250	35	11.	*	1.	0600	73	14.	*	1	0910	111	ο.	*	1	1220	149	c
1	0255	36	12.	*	1	0605	74	12.	*	1	0915	112	ο.	*	1	1225	150	c
l	0300	37	12.	*	1	0610	75	10.	*	1	0920	113	ο.	*				
1	0305	38	14.	*	1	0615	76	8.	*	1	0925	114	ο.	*				
				*					*					*				

1	PEAK FLOW	TIME		MAXIMUM AVERAGE FLOW										
				6-HR	24-HR	72-HR	12.42-HR							
+	(CFS)	(HR)												
			(CFS)											
+	327.	3.67		59.	28.	28.	28.							
			(INCHES)	1.238	1.239	1.239	1.239							
			(AC-FT)	29.	29.	29.	29.							
+	327.	3.67	(INCHES)	1.238	1.239	1.239	1.239							

CUMULATIVE AREA = 0.44 SQ MI

*** ***

110 KO OUTPUT CONTROL VARIABLES IPRNT 1 PRINT CONTROL

IPLOT 0 PLOT CONTROL

0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

QSCAL

111 RS	STORAGE ROUT	ING										
	NSTPS	1	NUMBER	OF SUBREAC	HES							
	ITYP	STOR	TYPE OF	INITIAL C	ONDITION							
	RSVRIC	0.10	INITIAL	CONDITION								
	x	0.00	WORKING	R AND D CO	EFFICIENT							
112 SV	STORAGE	0.0	0.4	1.4	3.5	7.1	12.5	19.6	28.5	39.1	51.4	
		65.2	80.1	96.6	114.0							
114 SE	ELEVATION	2177.00	2178.00	2179.00	2180.00	2181.00	2182.00	2183.00	2184.00	2185.00	2186.00	
		2187.00	2188.00	2189.00	2190.00							
116 SL	LOW-LEVEL OUT	TET										
	ELEVL	2177.50	ELEVATI	ON AT CENT	ER OF OUTL	ET						
	CAREA	12.57	CROSS-S	ECTIONAL A	REA							
	COQL	0.65	COEFFIC	IENT								
	EXPL	0.50	EXPONEN	F OF HEAD								
117 SS	SPILLWAY											
	CREL	2186.00	- SPILLWA	Y CREST EL	EVATION							
	SPWID	200.00	SPILLWA	Y WIDTH								
	COQW	3.30	WEIR CO	EFFICIENT								
	EXPW	1.50	EXPONEN	F OF HEAD								

COMPUTED OUTFLOW-ELEVATION DATA

OUTFLOW	0.00	0.00	91.55	98.91	107.56	117.86	130.34	145.78	165.37	191.04	
ELEVATION	2177.00	2177.50	2179.45	2179.78	2180.19	2180.74	2181.46	2182.45	2183.87	2186.00	
OUTFLOW	197.67	238.05	343.47	544.80	873.48	1360.19	2036.22	2933.06	4081.06	5511.67	
ELEVATION	2186.04	2186.17	2186.37	2186.65	2187.01	2187.45	2187.97	2188.57	2189.24	2190.00	
			COMPUT	ED STORAGE	-OUTFLOW-E	LEVATION D	ATA				
STORAGE	0.00	0.21	0.42	1.37	2.31	2.99	3.45	4.16	6.13	7.10	
OUTFLOW	0.00	0.00	46.33	80.25	91.55	98.91	103.61	107.56	117.86	122.59	
ELEVATION	2177.00	2177.50	2178.00	2179.00	2179.45	2179.78	2180.00	2180.19	2180.74	2181.00	
STORAGE	9.56	12.49	15.67	19.56	27.35	28.52	39.13	51.40	52.01	53.71	
OUTFLOW	130.34	139.00	145.78	153.68	165.37	167.06	179.45	191.04	197.67	238.05	
ELEVATION	2181.46	2182.00	2182.45	2183.00	2183.87	2184.00	2185.00	2186.00	2186.04	2186.17	
STORAGE	56.50	60.38	65.19	65.36	71.93	79.67	80.13	89.49	96.63	100.88	
OUTFLOW	343.47	544.8Ö	861.97	873.48	1360.19	2036.22	2079.09	2933.06	3651.68	4081.06	
ELEVATION	2186.37	2186.65	2187.00	2187.01	2187.45	2187.97	2188.00	2188.57	2189.00	2189.24	
STORAGE	114.02										
OUTFLOW	5511.67	-									

ELEVATION 2190.00

- 5

HYDROGRAPH AT STATION DET PLAN 1, RATIO = 0.98

***	******	****	******	******	******	**1	*****	*****	****	******	******	*******	***	******	****	*******	******	******
						*						*						
DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE		DA MON	HRMN	ORD	OUTFLOW	STORAGE		DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE
						*						*						
1		1	0.	0.1	2177.2			0410	51	130.	9.4	2181.4 *				- 0.		2177.5
1	-		0.		2177.2			0415	52	130.	9.5	2181.4 *				0.		2177.5
1			0.		2177.2			0420	53	130.	9.5	2181.4 *				0.		2177.5
1		4	0.		2177.2 2177.2			0425	54	129.	9.3	2181.4 *				0.		2177.5
1		5	0. 0.		2177.2			0430 0435	55 56	129. 128.	9.0 8.8	2181.4 *		- 0840		0. 0.		2177.5 2177.5
1		7	0. 0.		2177.2			0433	57	128.	8.6	2181.3 *				0. 0.		2177.5
1		8	0. 0.		2177.2			0445	58	127.	8.4	2181.2 *				0.		2177.5
1			0. 0.	0.1	2177.2			0450	59	127.	8.3	2181.2 *				o.	0.2	2177.5
1		-	o.	0.1	2177.2			0455	60	126.	8.2	2181.2 *				o. o.	0.2	2177.5
1			0.	0.1	2177.2			0500	61	125.	8.0	2181.2 *				0.	0.2	2177.5
1			0.	0.1	2177.2			0505	62	125.	7.8	2181.1 *				0.	0.2	2177.5
1	0100		ο.	0.1	2177.2	*	1	0510	63	124.	7.6	2181.1 *	1			0.	0.2	2177.5
1	0105		0.	0.1	2177.2	*	1	0515	64	123.	7.2	2181.0 *	1			0.	0.2	2177.5
1	0110	15	٥.	0.1	2177.2	*	1	0520	65	121.	6.8	2180.9 *	1	0930	115	с.	0.2	2177.5
1	0115	16	0.	0.1	2177.2	*	1	0525	66	119.	6.3	2180.8 *	1	0935	116	0.	0.2	2177.5
1	0120	17	ο.	0.1	2177.2	*	1	0530	67	116.	5.8	2180.6 *	1	0940	117	- 0.	0.2	2177.5
1	0125	18	Ο.	0.1	2177.2	*	1	0535	68	113.	5.2	2180.5 *	1	0945	118	0.	0.2	2177.5
1	0130	19	0.	0.1	2177.2	*	1	0540	69	110.	4.6	2180.3 *	1	0950	119	0.	0.2	2177.5
1	0135	20	Ο.	0.1	2177.2	*	1	0545	70	107.	-4.0	2180.2 *	1	0955	120	ο.	0.2	2177.5
1	0140	21	٥.	0.1	2177.2	*	1	0550	71	104.	3.4	2180.0 *	1	1000	121	0.	0.2	2177.5
1	0145	22	0.	0.1	2177.3	*	1	0555	72	98.	2.9	2179.7 *	1	1005	122	0.	0.2	2177.5
1	0150	23	ο.	0.1	2177.3	*	1	0600	73	92.	2.3	2179.5 *	1	1010	123	0.	0.2	2177.5
1	0155	24	0.	0.1	2177.3	*	1	0605	74	85.	1.8	2179.2 *	1	1015	124	0.	0.2	2177.5
1	0200	25	0.	0.1	2177.3	*	1	0610	75	78.	1.3	2178.9 *	1	1020	125	0.	0.2	2177.5
1	0205	26	Ο.	0.1	2177.4	*	1	0615	76	63.	0.9	2178.5 *	1	1025	126	Ο.	0.2	2177.5
1	0210	27	0.	0.2	2177.4	*	1	0620	77	51.	0.5	2178.1 *	1	1030	127	0.	0.2	2177.5
1	0215	28	0.	0.2	2177.4	*	1	0625	78	26.	0.3	2177.8 *	1	1035	128	- 0.	0.2	2177.5
1	0220	29	0.	0.2	2177.4	*	1	0630	79	8.	0.2	2177.6 *	1	1040	129	0.	0.2	2177.5
1	0225	30	1.	0.2	2177.5	*	1	0635	80	4.	0.2	2177.5 *	1	1045	130	0.	0.2	2177.5
1	0230	31	6.	0.2	2177.6	*	1	0640	81	3.	0.2	2177.5 *	1	1050	131	0.	0.2	2177.5
1	0235	32	7.	0.2	2177.6	*	1	0645	82	2.	0.2	2177.5 *	1	1055	132	0.	0.2	2177.5
1	0240	33	8.	0.2	2177.6	*	1	0650	83	2.	0.2	2177.5 *	1	1100	133	0.	0.2	2177.5

	1	0245	34	9.	0.3	2177.6 *	1	0655	84	1.	0.2	2177.5 *	1.	1105 134	0.	0.2	2177.5
	1	0250	35	10.	0.3	2177.6 *	1	0700	85	1	0.2	2177.5 *	1	1110 135	0.	0.2	2177.5
	1	0255	36	11.	0.3	2177.6 *	1	0705	86	1.	0.2	2177.5 *	1	1115 136 -	0.	0.2	2177.5
	1	0300	37	12.	0.3	2177.6 *	1	0710	87	1.	0.2	2177.5 *	1	1120 137	Ο.	0.2	2177.5
	1	0305	38	13.	0.3	2177.6 *	1	0715	88	Ο.	0.2	2177.5 *	1	1125 138	0.	0.2	2177.5
-	1	0310	39	16.	0.3	2177.7 *	1	0720	89	0.	0.2	2177.5 *	1	1130 139	0.	0.2	2177.5
	1	0315	40	26.	0.3	2177.8 *	1	0725	90	0.	0.2	2177.5 *	1	1135 140	0.	0.2	2177.5
	1	0320	41	46.	0.4	2178.0 *	1	0730	91	0.	0.2	2177.5 *	1	1140 141	0.	0.2	2177.5
	1	0325	42	56.	0.7	2178.3 *	1	0735	92	ο.	0.2	2177.5 *	1	1145 142	ο.	0.2	2177.5
	ı	0330	43	79.	1.3	2179.0 *	1	0740	93	0.	0.2	2177.5 *	1	1150 143	0.	0.2	2177.5
	1	0335	44	93.	2.4	2179.5 *	1	0745	94	0.	0.2	2177.5 *	1	1155 144	Ο.	0.2	2177.5
	1	0340	45	106.	3.9	2180.1 *	1	0750	95	ο.	0.2	2177.5 *	1	1200 145	σ.	0.2	2177.5
	1	0345	46	114.	5.4	2180.5 *	1	0755	96	0.	0.2	2177.5 *	1	1205 146	Ο.	0.2	2177.5
	ı	0350	47	121.	6.7	2180.9 *	1.	0800	97	0.	0.2	2177.5 *	1	1210 147	0.	0.2	2177.5
	1	0355	48	125.	7.8	2181.1 *	1	0805	98	0.	0.2	2177.5 *	1	1215 148	0.	0.2	2177.5
	1	0400	49	127.	8.6	2181.3 *	1	0810	99	ο.	0.2	2177.5 *	1	1220 149	0.	0.2	2177.5
	1	0405	50	129.	9.1	2181.4 *	1	0815	100	0.	0.2	2177.5 *	1	1225 150	0.	0.2	2177.5
						*						*					

....

PEAK FLOW	TIME			MAXIMUM AVI	ERAGE FLOW	
			6-HR	24-HR	72-HR	12.42-HR
+ (CFS)	(HR)					
		(CFS)				
+ 130.	4.25		58.	28.	28.	28.
		(INCHES)	1.234	1.234	1.234	1.234
		(AC-FT)	29.	29.	29.	29.
PEAK STORAGE	TIME			MAXIMUM AVE	RAGE STORAGE	
			6-HR	24-HR	72-HR	12.42-HR
+ (AC-FT)	(HR)					
10.	4.25		з.	2.	2.	2.
PEAK STAGE	TIME			MAXIMUM AVE	ERAGE STAGE	
			6-HR	24-HR	72-HR	12.42-HR
+ (FEET)	(HR)					
2181.45	4.25		2179.02	2178.19	2178.19	2178.19

CUMULATIVE AREA = 0.44 SQ MI

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES

TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	plan	RATIOS APPLIED TO PRECIPITA RATIO 1 0.98	TION
HYDROGRAPH AT +	1A	0.06	1 FLOW TIME	54. 3.67	
HYDRÖGRAPH AT +	18	0.03	1 FLOW TIME	35. 3.58	
DIVERSION TO +	1BSPLIT	0.03	1 FLOW TIME	18. 3.58	
HYDROGRAPH AT +	1BSPLIT	0.03	1 FLOW TIME	18. 3.58	
ROUTED TO +	1B_R	0.03	1 FLOW TIME	18. 3.67	

2 COMBINED AT

· ·

+		1A_C	0.09	1.	FLOW	71.				
					TIME	3.67				
I	ROUTED TO				-		-		-	
+		lR	0.09	1	FLOW	69.			-	
					TIME	3.67				
_										
1	HYDROGRAPH AT									
+		8	0.12	1	FLOW	77.				
•					TIME	4.00				
	2 COMBINED AT									
+		8C	0.21	l	FLOW	130.				
					TIME	3.83				
	HYDROGRAPH AT									
+	AIDROGRAPH AI	2	0.03	1	FLOW	24.				
		2	0.05	-	TIME	3.67				
					1146	5.07				
	ROUTED TO									
+		2R	0.03	1	FLOW	24.				
ŀ			0.00	-	TIME	3.67				
F	IYDROGRAPH AT									
+		4	0.03	1	FLOW	33.				
					TIME	3.58				
	2 COMBINED AT									
+		4C	0.05	1	FLOW	56.				
					TIME	3.67				
P	ROUTED TO									
+		4R	0.05	1	FLOW	55.				
					TIME	3.67				
	IYDROGRAPH AT	_								
+		6	0.05	1	FLOW	48.				
					TIME	3.67		•		
_	2 COMBINED AT									
+		6C	0.11	1	FLOW	104.				
				_	TIME	3.67				
-										
H	IYDROGRAPH AT									
+		1BSPLIT	0.00	1	FLOW	18.				
					TIME	3.58				
R	OUTED TO									
+		1B_R	0.00	1	FLOW	18.				
ł					TIME	3.67				
	IYDROGRAPH AT									
+		3	0.04	1	FLOW	26.				
ł					TIME	3.75				
	2 COMBINED AT			-						
+		3C	0.04	1	FLOW	43.				
					TIME	3.75				
-										
	OUTED TO	-	• • • •	.		**				
+		3R	0.04	1 -	FLOW	42.				
					TIME	3.75				
	YDROGRAPH AT	_								
+		5	0.05	1	FLOW	58.				
					TIME	3.58				
	2 0000000000000000000000000000000000000									
	2 COMBINED AT	50	0.00	-	ET ON	0.2				
+		5C	0.09	Ŧ	FLOW	93.				
1					TIME	3.67				

HYDROGRAPH AT

		7	0.03	1	FLOW TIME	16. 3.58							
4 COMBIN	IED AT												
		NFLOW	0.44	ī	FLOW	327.							
					TIME	3.67							
ROUTED TO)												
		DET	0.44	1	FLOW TIME	130. 4.25							
					THE	4.25							
				**	PEAK ST	AGES IN FEET	**						
				1	STAGE	2181.45							
					TIME	4.25							
HYDROGRAP	ህ አጥ												
		9	0.08	1	FLOW	33.							
					TIME	3.58							
HYDROGRAP	та н			_									
		10	0.13	1	FLOW TIME	169.							
					TIME	3.58							
					SUMMAR	Y OF KINEMAT	IC WAVE -	MUSKINGUM	-CUNGE ROUT	ING			
					(F	LOW IS DIREC	T RUNOFF W	ITHOUT BA	SE FLOW)				
									INTERPOI				
	ISTAQ	ELEMENT	DT		PEAK	TIME TO	VOLUME	DT	COMPUTATION PEAK	I INTERVAL TIME TO	VOLUME		
	ISIAQ	ELEMENI	DI		FEAR	PEAK	VOBOME	DI	FLAR	PEAK	VOLOME		
			(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR PLAN	= 1 RATI	0.98										
00100100000	18_R	MANE	2.4		17.73	219.98	0.65	5.00	17.73	220.00	0.66	-	
CONTINUIT	1B_R Y SUMMARY	MANE (AC-FT) -	2.4								0.66 ⁻ 2090E-04 PERCEI	NT ERROR=	-0
CONTINUIT	1B_R Y SUMMARY FOR PLAN	MANE	2.4	0.11								NT ERROR=	-0
	1B_R TY SUMMARY FOR PLAN 1R	MANE (AC-FT) - = 1 RATI MANE	2.4 INFLOW= 0.98 0.6	0.11) - 7	64E+01 E 71.15	XCESS=0.0000 221.54	E+00 OUTFL 1.03	OW=0.1168 5.00	E+01 BASIN 69.40	STORAGE=0.2	2090E-04 PERCE		
	1B_R Y SUMMARY FOR PLAN IR Y SUMMARY FOR PLAN	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI	2.4: · INFLOW=: :0= 0.98 0.6: · INFLOW=: 0= 0.98	0.110	64E+01 E 71.15 18E+01 E	XCESS=0.0000 221.54 XCESS=0.0000	E+00 OUTFL 1.03 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022	E+01 BASIN 69.40 E+01 BASIN	STORAGE=0.2 220.00 STORAGE=0.2	2090E-04 PERCE 1.03 2476E-04 PERCE		
	1B_R Y SUMMARY FOR PLAN IR Y SUMMARY FOR PLAN	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI	2.4: · INFLOW=: :0= 0.98 0.6: · INFLOW=: 0= 0.98	0.110	64E+01 E 71.15 18E+01 E	XCESS=0.0000 221.54	E+00 OUTFL 1.03 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022	E+01 BASIN 69.40 E+01 BASIN	STORAGE=0.2	2090E-04 PERCE 1.03 2476E-04 PERCE		
CONTINUIT	1B_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 2R	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE	2.4: INFLOW=(0.98 0.6; INFLOW=(0= 0.98 1.3(0.110 7 0.50	64E+01 E 71.15 18E+01 E 23.95	XCESS=0.0000 221.54 XCESS=0.0000 221.78	E+00 OUTFL 1.03 E+00 OUTFL 1.18	0₩=0.1168 5.00 0₩=0.5022 5.00	E+01 BASIN 69.40 E+01 BASIN 23.88	STORAGE=0.2 220.00 STORAGE=0.2 220.00	2090E-04 PERCE 1.03 2476E-04 PERCE	NT ERROR=	-0
CONTINUIT	1B_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 2R	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE	2.4: INFLOW=(0.98 0.6; INFLOW=(0.98 1.3(0.110 7 0.50	64E+01 E 71.15 18E+01 E 23.95	XCESS=0.0000 221.54 XCESS=0.0000 221.78	E+00 OUTFL 1.03 E+00 OUTFL 1.18	0₩=0.1168 5.00 0₩=0.5022 5.00	E+01 BASIN 69.40 E+01 BASIN 23.88	STORAGE=0.2 220.00 STORAGE=0.2 220.00	2090E-04 PERCE 1.03 2476E-04 PERCE 1.18	NT ERROR=	-0
CONTINUIT	1B_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 2R Y SUMMARY	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) -	2.4: INFLOW=: 0= 0.98 INFLOW=: 0= 0.98 1.3: INFLOW=:	0.110 7 0.503 6	64E+01 E 71.15 18E+01 E 23.95	XCESS=0.0000 221.54 XCESS=0.0000 221.78	E+00 OUTFL 1.03 E+00 OUTFL 1.18	0₩=0.1168 5.00 0₩=0.5022 5.00	E+01 BASIN 69.40 E+01 BASIN 23.88	STORAGE=0.2 220.00 STORAGE=0.2 220.00	2090E-04 PERCE 1.03 2476E-04 PERCE 1.18	NT ERROR=	` −0
CONTINUIT	1B_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN FOR PLAN	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI</pre>	2.4: · INFLOW=: · O= 0.98 · INFLOW=: 0= 0.98 I.3: INFLOW=: 0= 0.98	0.11 7 6 0.16	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022 5.00 OW=0.1670	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN	STORAGE=0 220.00 STORAGE=0 220.00 STORAGE=0	2090E-04 PERCE 1.03 2476E-04 PERCE 1.18 5310E-05 PERCE	NT ERROR=	-0
CONTINUIT	1B_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN FOR PLAN	MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) -	2.4: INFLOW=: 0= 0.98 INFLOW=: 0= 0.98 1.3: INFLOW=:	0.11 7 6 0.16	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022 5.00 OW=0.1670	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN	STORAGE=0.2 220.00 STORAGE=0.2 220.00	2090E-04 PERCE 1.03 2476E-04 PERCE 1.18 5310E-05 PERCE	NT ERROR=	-0
CONTINUIT	LB_R PY SUMMARY FOR PLAN PY SUMMARY FOR PLAN FOR PLAN 4R	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE</pre>	2.4: · INFLOW=: (O= 0.98 0.6' · INFLOW=: (O= 0.98 1.3: INFLOW=: (O= 0.98 0.5:	0.11(7 0.50 0.16(9	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38	0₩=0.1168 5.00 0₩=0.5022 5.00 0₩=0.1670 5.00	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00	2090E-04 PERCE 1.03 2476E-04 PERCE 1.18 5310E-05 PERCE	NT ERROR=	-0 -0
CONTINUIT	LB_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 4R Y SUMMARY	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE</pre>	2.4: · INFLOW=: ()= 0.98 0.6' · INFLOW=: ()= 0.98 1.3: INFLOW=: 0= 0.98 0.5: INFLOW=:	0.110 7 6 0.50 6 0.166	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38	0₩=0.1168 5.00 0₩=0.5022 5.00 0₩=0.1670 5.00	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00	2090E-04 PERCEI 1.03 2476E-04 PERCEI 1.18 5310E-05 PERCEI 1.38	NT ERROR=	-0 -0
CONTINUIT	LB_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 4R Y SUMMARY FOR PLAN	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI</pre>	2.4: · INFLOW=: (O= 0.98 0.6' INFLOW=: 0= 0.98 1.3: INFLOW=: 0= 0.98 0.5: INFLOW=: 0= 0.98	0.110 7 6 0.50 6	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022 5.00 OW=0.1670 5.00 OW=0.3943	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35 E+01 BASIN	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00	2090E-04 PERCEI 1.03 2476E-04 PERCEI 1.18 5310E-05 PERCEI 1.38 6175E-05 PERCEI	NT ERROR=	-0 -0
CONTINUIT	LB_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 4R Y SUMMARY FOR PLAN	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI</pre>	2.4: · INFLOW=: (O= 0.98 0.6' INFLOW=: 0= 0.98 1.3: INFLOW=: 0= 0.98 0.5: INFLOW=: 0= 0.98	0.110 7 6 0.50 6	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89 XCESS=0.0000	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022 5.00 OW=0.1670 5.00 OW=0.3943	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35 E+01 BASIN	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.:	2090E-04 PERCEI 1.03 2476E-04 PERCEI 1.18 5310E-05 PERCEI 1.38 6175E-05 PERCEI	NT ERROR=	-0 -0
CONTINUIT	LB_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN 4R Y SUMMARY FOR PLAN 4R Y SUMMARY FOR PLAN LB_R	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI</pre>	2.4: · INFLOW=(· INFLOW=(· INFLOW=(0= 0.98 1.3(INFLOW=(0= 0.98 0.5; INFLOW=(0= 0.98 2.4;	0.110 7 0.50 6 0.166 9 0.394	64E+01 E 71.15 18E+01 E 23.95 58E+01 E	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89 XCESS=0.0000	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38 E+00 OUTFL	OW=0.1168 5.00 OW=0.5022 5.00 OW=0.1670 5.00 OW=0.3943	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35 E+01 BASIN	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.:	2090E-04 PERCEI 1.03 2476E-04 PERCEI 1.18 5310E-05 PERCEI 1.38 6175E-05 PERCEI	NT ERROR=	-0 -0
CONTINUIT	LB_R Y SUMMARY FOR PLAN Y SUMMARY FOR PLAN FOR PLAN FOR PLAN LB_R FOR PLAN	<pre>MANE (AC-FT) - = 1 RATI MANE (AC-FT) - = 1 RATI MANE</pre>	2.4: · INFLOW=: · INFLOW=: · INFLOW=: (0= 0.98 1.3: INFLOW=: 0= 0.98 0.5: INFLOW=: 0= 0.98 2.4: 0= 0.98	0.110 7 0.50 6 0.166 9 0.394 8	64E+01 E 71.15 18E+01 E 23.95 58E+01 E 55.77 41E+01 E 17.73	XCESS=0.0000 221.54 XCESS=0.0000 221.78 XCESS=0.0000 220.89 XCESS=0.0000	E+00 OUTFL 1.03 E+00 OUTFL 1.18 E+00 OUTFL 1.38 E+00 OUTFL -1.00	0W=0.1168 5.00 0W=0.5022 5.00 0W=0.1670 5.00 0W=0.3943	E+01 BASIN 69.40 E+01 BASIN 23.88 E+01 BASIN 55.35 E+01 BASIN 17.73	STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.: 220.00 STORAGE=0.:	2090E-04 PERCEI 1.03 2476E-04 PERCEI 1.18 5310E-05 PERCEI 1.38 6175E-05 PERCEI -1.00	NT ERROR=	-0 -0

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3414E+01 EXCESS=0.0000E+00 OUTFLOW=0.3416E+01 BASIN STORAGE=0.5772E-04 PERCENT ERROR= -0.1

. . .

*** NORMAL END OF HEC-1 ***

Total job elapsed time = 00 min 29 sec

1.1.2

-

..

	130	UD 0.	.128							
		ŕ								
	131	ĸĸ	10 RUNOFF FROM SUBA				-			
	120		subarea is the north ;	portion of the	site					
	132 133	BA 0.1	0 84							
	134		.179							
		*								
1	135	22								
	SCHEM	MATIC DIAGRA	AM OF STREAM NETWORK							
INPUT										
LINE	(V) ROUTIN	1G	(>) DIVERSION OR P	JMP FLOW						
NO.	(.) CONNEC	TOR	(<) RETURN OF DIVE	RTED OR PUMPED	FLOW					
16	1A									
30	•	18								
	•									
36	•		> 1BSPLIT							
34	•	1BSPLIT								
	•	v								
39	•	V 1B_R								
4-		•				-				
41	TA_C, V									
	v									
43	1R									
	•									
45		8								
	•	•								
50	8C	•				-	*		 	
	•									
52	•	2								
52		v								
	•	v								
57	•	2R								
59		•	4							
	•	•								
64	•	4C	• • • • • • • • • •							
		v								
66	•	V 4R								
00		-								
	•	•								
68		•	6							
		•	•							
74		6C								
		•								
79		•	.< 1BS	PLIT						
77			lbsplit							
	•	•	V							
80	•	•	V 1B_R		,					
-	•									
82	•	•	. 3							
	•	•								
								•		

Š

Ĵ

ľ

.

		•		•
86	•	•	3C.	
			v	
			v	
88			3R	
91			•	5
		•	-	-
	•	•		•
95	•	•	5C.	• • • • • • • • • • • •
	•		•	
	•	•	•	
98	•			7
	-		•	
103	INFLOW.			
	•			
	•			
106	•	OVERFLOW		
	•	•		
	•	•		
110	COMBINE.			
	v			
	v			
114	DET			
	<u>.</u>			

126 . 9 131 . . 10

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION 1*****

*					*
*	FLOOD HY	DROGRAPH PAG	KAGE	(HEC-1)	*
*		MAY 19	991		*
*		VERSION 4.).1E		*
*					*
*	RUN DATE	08/06/1997	TIME	13:21:56	*
*					*
**	******	*****	*****	*******	**

SNWA River Mountains Water Treatment Facility ONSITE RUNOFF PLUS TREATMENT PLANT OVERFLOW FILE: RMTP.DAT

Prepared by MONTGOMERY WATSON - 3/97 .

Ratio	Subareas	Area (sq mi)	DARF
			÷
1	individual	0.05 - 0.09	1.00
2		0.5	0.98
3		1.0	0.97

13	IO	OUTPUT CONTROL	VARIA	BLES	
		IPRNT		5	PRINT CONTROL
		IPLOT		0	PLOT CONTROL
		QSCAL		0.	HYDROGRAPH PLOT SCALE
	IT	HYDROGRAPH TIM	e data		
		NMIN		5	MINUTES IN COMPUTATION INTERVAL
		IDATE	1	0	STARTING DATE

IDATE	1 0	STARTING DATE
ITIME	0000	STARTING TIME
NQ	150	NUMBER OF HYDROGRAPH ORDINATES
NDDATE	1 0	ENDING DATE
NDTIME	1225	ENDING TIME

****	*****	***
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 551-1748	*
*		*
;	***	***

ŧ- 2. .

- -

		ICENT	19) CENTUR	RY MARK	¢										
	СОМ	PUTATION I TOTAL TI			HOURS HOURS											
1	ENGLISH UNIT	-														
	DRAINAG	E AREA TATION DEP		JARE MILE CHES	S											
		ELEVATION														
	FLOW	000111200		SIC FEET	PER SE	COND										
	STORAGE	VOLUME		RE-FEET												
	SURFACE	AREA	ACF	RES												
	TEMPERA	TURE	DEG	REES FAH	IRENHEI	Ŧ										
JP	MULTI	-PLAN OPTI NPLAN		. NUMBER	OF PL	ANS										
JR	MILTOT	-RATIO OPT	17.0NI													
U.		ATIOS OF P		TION												
	1.		98	0.97												
*** *** ***	* *** *** **	* *** ***	*** ***	*** ***	*** **	* *** ***	***	*** *	** *** *	** ***	*** *** *	**	*** ***	*** **	* *** *	*** *** ***
	*****	* * * *														
100	*	*														
103 KK	* INFLO	₩ * *	COMBINE	SUBAREA	.55,6), 7 & 8 A	S TO	TAL RU	NOFF INF	LOW TO	THE DET .	BA	SIN			
	******	****														
104 KO	OUTPU	T CONTROL	VARIABLE	s												
		IPRNT		PRINT	CONTRO	L										
		IPLOT	C) PLOT C	ONTROL											
		QSCAL	0.	HYDROG	RAPH P	LOT SCALE										
105 HC	HYDRO	GRAPH COMB	INATION													
		ICOMP	4	NUMBER	OF HY	DROGRAPHS	то	COMBIN	E							

********	*******	*******	******	******	*****	******	****	*****	******	*****	********	***	******	*****	*****	*****
					HYDR	OGRAPH AT	STA	FION	INFLOW							
						SUM OF										
						PLAN 1,	RAT	IO =	1.00							
*******	*****	******	******	*****	*****	******	****	*****	******	*****	******	***	*****	*****	*****	* * * * * * * * * * *
			*				*					*				
DA MON H	IRMN ORD	FLÖW	* DA M *	ION HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW
1 0	000 1	0.	* 1.	0310	39	21.	*	1	0620	77	7.	*	1	0930	115	0.
1 0	005 2	٥.	* 1	0315	40	36.	*	1	0625	78	5.	*	1	0935	116	0.
1 0	010 3	0.	* 1	0320	41	69.	*	1	0630	79	4.	*	1	0940	117	Ο.
	015 4	••	* 1	0325	42	127.	*	1	0635	80	3.	*	l	0945		0.
	020 5		* 1	0330	43	212.	*	1	0640	81	2.	*	1	0950		0.
	025 6	υ.	* 1	0335	44	299.	*	1	0645	82	2.	*	1	0955		0.
	030 7	•••	* 1 * 1_	0340 - 0345	45 46	339. 337.	*	1 1	0650 0655	83 84	1.	*	1 1		121	0. 0.
	035 8		* 1	0345	40 47	337. 308.	*	1	0655	84 85	1.	*	1	1005 1010		0.
	045 10		* 1	0355	48	268.	*	1	0705	86	1.	*	1	1015		0.
	050 11		* 1	0400	49	230.	*	1	0710	87	1.	*	1	1020		0.
1 0	055 12	ο.	* 1	0405	50	197.	*	1	0715	88	٥.	*	1	1025	126	0.
1 0	100 13	0.	* 1	0410	51	166.	*	1	0720	89	0.	*	1	1030	127	0.
	105 14	0.	* 1	0415	52	137.	*	1	0725	90	0.	*	1	1035	128	0.
	110 15	• ·	* 1	0420	53	114.	*	1	0730	91	0.	*	l	1040		0.
	115 16	•••	* 1	0425	54	100.	*	1	0735	92	0.	*	1	1045		0.
	120 <u>1</u> 7	0.	* 1 * 1	0430	55	95.	*	1 1	0740 0745	93 94	0.	*	1	1050		0.
	125 18	0.	* 1	0435	56	99.	-	E E	11/45	34	0.	*	1	1055	4 ک ل	Ο.
	130 10	Δ.	* 1				*					*	1			^
	130 19 135 20	•••	* 1 * 1	0440 0445	57 58	105. 107.	*	1 1	0750 0755	95 96	0. 0.	* *	1 1	1100 1105	133	0. 0.

.

ļ

Í

Î

1	0140	21	1.	*	1	0450	59	109.	*	1	0800	97	٥.	*	1	1110	135	Ο.
1	0145	22	1.	*	1	0455	60	110.	*	1	0805	98	0.	*	1	1115	136	0.
1	0150	23	2.	*	1	0500	61	105.	*	1	0810	99	0.	*	1	1120	137	0.
1	0155	24	2.	*	1	0505	62	95.	*	1	0815	100	Ο.	*	1	1125	138	0.
1	0200	25	2.	*	1	0510	63	82.	*	1	0820	101	0.	*	1	1130	139	Ο.
1	0205	26	2.	*	1	0515	64	68.	*	1	0825	102	Ο.	*	1	1135	140	٥.
1	0210	27	2.	*	1	0520	65	56.	*	1	0830	103	0.	*	1	1140	141	Ο.
1	0215	28	2.	*	1	0525	66	46.	*	1	0835	104	ο.	*	1	1145	142	0.
1	0220	29	4.	*	l	0530	67	38.	*	1	0840	105	٥.	*	1	1150	143	٥.
1	0225	30	6.	*	1	0535	68	31.	*	1	0845	106	0.	*	1	1155	144	0.
1	0230	31	8.	*	1	0540	69	25.	*	1	0850	107	0.	*	1	1200	145	ο.
1	0235	32	8.	*	1	0545	70	21.	*	1	0855	108	0.	*	1	1205	146	٥.
1	0240	33	9.	*	1	0550	71	19.	*	1	0900	109	0.	*	1	1210	147	0.
1	0245	34	11.	*	1	0555	72	16.	*	1	0905	110	0.	*	1	1215	148	0.
l	0250	35	12.	*	1	0600	73	14.	*	1	0910	111	0.	*	1	1220	149	Ο.
1	0255	36	13.	*	1	0605	74	12.	*	1	0915	112	0.	*	1	1225	150	0.
1	0300	37	13.	*	1	0610	75	11.	*	1	0920	113	0.	*				
1	0305	38	15.	*	1	0615	76	9.	*	1	0925	114	0.	*				
				*					*					*				

ľ	E	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
					6-HR	24-HR	72-HR	12.42-HR
	+	(CFS)	(HR)					
				(CFS)				
	+	339.	3.67		61.	29.	29.	29.
				(INCHES)	1,285	1.285	1.285	1.285
				(AC-FT)	30.	30.	30.	30.

CUMULATIVE AREA = 0.44 SQ MI

HYDROGRAPH AT STATION INFLOW SUM OF 4 HYDROGRAPHS PLAN 1, RATIO = 0.98

*****	******	****	********	* * *	****	******	*****	******	****	*****	******	*****	********	***	*****	******	****	*****
17. N	ION HRMN	ORD	FLOW	*	53	MON HRMI	I ORD	FLOW	*	777 1	ION HRMN	ORD	FLOW	*		ON HRMN	ORD	FLOW
DAT		OND	PDOM	*	DA	HOIV HIGH	UND	LIOM	*	DAR	ION HREAN	ORD	FLOW	*	DA H	JN FIRM	OKD	FLOW
1	0000	1	0.	*	1	0310) 39	20.	*	1	0620	77	7.	*	1	0930	115	0.
1	0005	2	0.	*	1	031		34.	*	1	0625	78	5.	*	1	0935	116	0.
1	0010	3	0.	*	1	0320) 41	65.	*	1	0630	79	4.	*	1	0940	117	0.
1	0015	4	0.	*	1	0325	5 42	120.	*	1	0635	80	3.	*	1	0945	118	0.
1	0020	5	ο.	*	l	0330	43	203.	*	1	0640	81	2.	*	1	0950	119	0.
1	0025	6	0.	*	1	0335	44	287.	*	1	0645	82	2.	*	1	0955	120	0.
1	0030	7	0.	*	1	0340	45	327.	*	1	0650	83	1.	*	1	1000	121	0.
1	0035	8	Ο.	*	1	0345	4 6	326.	*	1	0655	84	1.	*	1	1005	122	0.
1	0040	9	0.	*	1	0350	47	297.	*	1	0700	85	1.	*	1	1010	123	0.
1	0045	10	0.	*	1	0355	5 48	259.	*	1	0705	86	1.	*	1	1015	124	0.
1	0050	11	0.	*	1	0400	49	223.	*	1	0710	87	Ο.	*	1	1020	125	0.
1	0055	12	0.	*	1	0405	50	190.	*	1	0715	88	0.	*	1	1025	126	0.
1	0100	13	0.	*	1	- 0410) 51	160.	*	1	0720	89	Ο.	*	1	1030	127	- O .
1	0105	14	0.	*	. 1	0415	52	133.	*	1	0725	90	0.	*	1	1035	128	0.
1	0110	15	0.	*	1	0420	53	111.	*	1	0730	91	0.	*	1	1040	129	0.
1	0115	16	0.	*	1	0425	54	97.	. *	1	0735	92	0.	*	1	1045	130	0.
1	0120	17	0.	*	1	0430) 55	92.	*	1	0740	93	٥.	*	1	1050	131	0.
1	0125	18	0.	*	1	0435	56	96.	*	1	0745	94	0.	*	1	1055	132	0.
1	0130	19	0.	*	1	0440) 57	102.	*	1	0750	95	0.	*	1	1100	133	0.
1	0135	20	٥.	*	1	044	58	104.	*	1	0755	96	0.	*	1	1105	134	0.
1	0140	21	1.	*	1	0450	59	106.	*	1	0800	97	0.	*	1	1110	135	0.
1	0145	22	1.	*	1	0455	60	107.	*	1	0805	98	0.	*	1	1115	136	0.
1	0150	23	1.	*	1	0500	61	102.	*	1	0810	99	0.	*	1	1120	137	0.
1	0155	24	1.	*	1	0505	62	93.	*	1	0815	100	0.	*	1	1125	138	0.
1	0200	25	1.	*	1	0510	63	80.	*	1	0820	101	0.	*	1	1130	139	0.
1	0205	26	1.	*	1	0515	64	66.	*	1	0825	102	0.	*	1	1135	140	0.
1	0210	27	1.	*	1	0520	65	54.	*	1	0830	103	0.	*	1	1140	141	0.
l	0215	28	2.	*	1	0525		44.	*	1	0835	104	0.	*	1	1145	142	0.
1	0220	29	4.	*	1	0530	67	37.	*	1	0840	105	0.	*	1	1150	143	0.
1	0225	30	6.	*	1	0535	68	30.	*	1	0845	106	0.	*	1	1155	144	٥.

1 1	0230 0235	31 32	7. 8.	*	1 1	0540 0545	69 70	24. 21.	*	1 1		107 108	0. 0.	*	1 1	1200 [°] 1205	145 146	0.
1	0235	33	8.	*	1 -	0550	71	18.	*	1		100	0. 0.		1	1210		0.
1	0245	34	10.	*	1	0555	72	16.	*	1		110	0.		1		148	0.
1	0250	35	11.	*	1	0600	73	14.	*	1		111	ο.	*	1	1220	149	0
1	0255	36	12.	*	1	0605	74	12.	*	1	0915	112	0.	*	1	1225	150	0
1	0300	37	12.	*	1	0610	75	10.	*	1	0920	113	ο.	*				
1	0305	38	14.	*	1	0615	76	8.	*	1	0925	114	0.	*				
******	******	*****	********	*	******	*****	*****	*******	*	*****	* * * * * * * *	******	*******	*	*****	******	******	*****
PEAK F	LOW	TIME			6 110			AVERAGE FL		• •	40 JWD							
+ (CFS)	(HR)			6-HR		24-HR	72-1	пк	12.4	42-HR							
	_		(CFS)		~~				~									
+ 32	7.	3.67			59.		28.		B.		28.							
			(INCHES)		1.238		1.239				1.239						,	
			(AC-FT)		29.		29.	2.	9.		29.							
*****	******	*****	CUMULAT	IVE	AREA =	0.4	4 SQ 1	MI	* * * * *	****	******	******	******	****	* * * * * * *	* * * * * * * *	*****	*****
							HYD	ROGRAPH AT	STAT	TON	INFLOW							
							1110	SUM OF										
								PLAN 1,	RATI	.0 = 0	0.97							
*****	******	*****	******	****	******	*****	*****	********	****	****	******	******	******	****	*****	******	******	*****
DA M	ON HRMN	ORD	FLOW	*	DA MON	I HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLO
1	0000	1	0.	*	1 -	0310	39	19.	*	1	0620	77	7.	*	i	0930	115	0
1	0005	2	٥.	*	1	0315	40	33.	*	l	0625	. 78	5.	*	1	0935	116	0
1	0010	3	0.	*	1	0320	41	63.	*	1	0630	79	4.	*	. 1	0940	117	0
1	0015	4	0.	*	1.	0325	42	117.	*	1	0635	80	з.	*	1	0945	118	0
1	0020	5	0.	*	1	0330	43	198.	*	1	0640	81	2.	*	1	0950	119	0
1	0025	6	0.	*	1	0335	44	280.	*	1	0645	82	2.	*	1	0955	120	0
1	0030	7	٥.	*	1	0340	45	320.	*	1	0650	83	1.	*	1	1000	121	0
1	0035	8	0.	*	1	0345	46	319.	*	1	0655	84	1.	*	1	1005	122	0
1	0040	9	0.	*	1	0350	47	292.	*	1	0700	85	1.	*	1	1010	123	0
1	0045	10	0.	*	1	0355	48	254.	*	1	0705	86	1.	*	1	1015	124	0
1	0050	11	0.	*	1_	0400	49	219.	*	1	0710	87	0.	*	1	1020		0
1	0055	12	0.	*	1	0405	50	187.	*	1	0715	88	0.	*	1	1025		0
1	0100	13	0.		1	0410	51	158.	*	1	0720	89	0.	*	1	1030		0
1 1	0105	14	0.	*	1 1	0415	52	130.	÷	1	0725	90	0.		1		128	0
1	0110 0115	15 16	0. 0.	*	1	0420 0425	53 54	109. 95.	*	1 1	0730	91 92	0. 0.	*	1 1	1040	129	0 0
1	0120	17	o.	*	1	0425	55	95. 91.	*	1	0735 0740	92 93	0.	*	1	1045 1050		0
1	0125	18	o.	*	1	0435		95.	*	1	0740	94	0.	*	1			0
T	0125	18	0. 0.	*	ı	0435	56 57	95. 100.	*	1	0745	94 95	U. 0.	*	1	1055 1100		- - 0
n	0130	20	0. 0.	*	1	0445	58	100.	*	1	0755	96	0.	*	1	1100		0
1		21	1.	*	1	0450	59	102.	*	1	0800	97	0.	*	1	1110		0
1	0140		1.	*	1	0455	60	101.	*	1	0805	98	0.	*	1	1115		0
1 1	0140 0145	22			-		61	100.	*	1	0810	99	0.	*	1	1120		0
1	0140 0145 0150	22 23	1.	*	1	0500					0815	100	0.	*	1	1125		0
1 1 1	0145			*	1 1	0500 0505	62	91.	*	1								0
1 1 1 1	0145 0150	23	1.					91. 78.	*	1 1	0820	101	0.	*	1	1130		0
1 1 1 1	0145 0150 0155	23 24	1. 1.	*	1	0505	62					101 102	0. 0.	*	1	1130 1135		
1 1 1 1 1	0145 0150 0155 0200	23 24 25	1. 1. 1.	*	1 1	0505 0510	62 63	78.	*	1	0820						140	0
1 1 1 1 1 1	0145 0150 0155 0200 0205	23 24 25 26	1. 1. 1. 1.	* *	1 1 1	0505 0510 0515	62 63 64	78. 65.	* *	1 1	0820 0825	102	0.	*	1	1135	140 141	
1 1 1 1 1 1 1	0145 0150 0155 0200 0205 0210	23 24 25 26 27	1. 1. 1. 1.	* * *	1 1 1 1	0505 0510 0515 0520	62 63 64 65	78. 65. 53.	* * *	1 1 1	0820 0825 0830	102 103	0. 0.	*	1 1	1135 1140	140 141 142	0
1 1 1 1 1 1 1	0145 0150 0155 0200 0205 0210 0215	23 24 25 26 27 28	1. 1. 1. 1. 2.	* * * *	1 1 1 1	0505 0510 0515 0520 0525	62 63 64 65 66	78. 65. 53. 44.	* * *	1 1 1 1	0820 0825 0830 0835	102 103 104	0. 0. 0.	* * *	1 1 1	1135 1140 1145	140 141 142 143	0 0
1 1 1 1 1 1 1 1 1	0145 0150 0155 0200 0205 0210 0215 0220	23 24 25 26 27 28 29	1. 1. 1. 1. 2. 3.	* * * * *	1	0505 0510 0515 0520 0525 0530	62 63 64 65 66 67	78. 65. 53. 44. 36.	* * * *	1 1 1 1	0820 0825 0830 0835 0840	102 103 104 105	0. 0. 0.	* * *	1 1 1 1	1135 1140 1145 1150	140 141 142 143 144	0 0 0
1 1 1 1 1 1 1 1 1 1	0145 0150 0155 0200 0205 0210 0215 0220 0225	23 24 25 26 27 28 29 30	1. 1. 1. 1. 2. 3. 5.	* * * * * *	1	0505 0510 0515 0520 0525 0530 0535	62 63 64 65 66 67 68	78. 65. 53. 44. 36. 29.	* * * * *	1 1 1 1 1	0820 0825 0830 0835 0840 0845	102 103 104 105 106	0. 0. 0. 0.	* * * *	1 1 1 1	1135 1140 1145 1150 1155	140 141 142 143 144 145	0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1	0145 0150 0200 0205 0210 0215 0220 0225 0230	23 24 25 26 27 28 29 30 31	1. 1. 1. 2. 3. 5. 7.	* * * * * * *	1	0505 0510 0515 0520 0525 0530 0535 0540	62 63 64 65 66 67 68 69	78. 65. 53. 44. 36. 29. 24.	* * * * *	1 1 1 1 1 1	0820 0825 0830 0835 0840 0845 0850	102 103 104 105 106 107	0. 0. 0. 0. 0.	* * * * *	1 1 1 1 1	1135 1140 1145 1150 1155 1200	140 141 142 143 144 145 146	0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1	0145 0150 0200 0205 0210 0215 0220 0225 0230 0235	23 24 25 26 27 28 29 30 31 32	1. 1. 1. 1. 2. 3. 5. 7. 7.	* * * * * * * *	1	0505 0510 0515 0520 0525 0530 0535 0540 0545	62 63 64 65 66 67 68 69 70	 78. 65. 53. 44. 36. 29. 24. 20. 	* * * * * *	1 1 1 1 1 1 1 1	0820 0825 0830 0835 0840 0845 0850 0855	102 103 104 105 106 107 108	0. 0. 0. 0. 0.	* * * * *	1 1 1 1 1	1135 1140 1145 1150 1155 1200 1205	140 141 142 143 144 145 146	0 0 0 0 0
	0145 0155 0200 0205 0210 0215 0220 0225 0230 0235 0235	23 24 25 26 27 28 29 30 31 32 33	1. 1. 1. 2. 3. 5. 7. 7. 8.	* * * * * * * * *	1	0505 0510 0515 0520 0525 0530 0535 0540 0545 -0550	62 63 64 65 66 67 68 69 70 71	 78. 65. 53. 44. 36. 29. 24. 20. 18. 	* * * * * * *	1 1 1 1 1 1 1 1 1	0820 0825 0830 0835 0840 0845 0850 0855 0855	102 103 104 105 106 107 108 109	0. 0. 0. 0. 0. 0.	* * * * * *	1 1 1 1 1 1 1	1135 1140 1145 1150 1155 1200 1205 1210	140 141 142 143 144 145 146 147	0 0 0 0 0 0
	0145 0150 0205 0210 0215 0220 0225 0230 0235 0230 0235 0240 0245	23 24 25 26 27 28 29 30 31 32 33 33	1. 1. 1. 2. 3. 5. 7. 7. 8. 9.	* * * * * * * * *	1	0505 0510 0515 0520 0530 0530 0535 0540 0545 -0550 0555	62 63 64 65 66 67 68 69 70 71 72	 78. 65. 53. 44. 36. 29. 24. 20. 18. 16. 	* * * * * * * *	1 1 1 1 1 1 1 1 1	0820 0825 0830 0835 0840 0845 0855 0900 0905 0910	102 103 104 105 106 107 108 109 110	0. 0. 0. 0. 0. 0. 0.	* * * * * * *	1 1 1 1 1 1 1 1	1135 1140 1145 1150 1155 1200 1205 1210 1215	140 141 142 143 144 145 146 147 148 149	0 0 0 0 0 0 0
	0145 0150 0205 0210 0215 0220 0225 0230 0235 0240 0245 0250	23 24 25 26 27 28 29 30 31 32 33 34 35	1. 1. 1. 2. 3. 5. 7. 7. 8. 9. 11.	* * * * * * * * * *	1	0505 0510 0525 0520 0530 0535 0540 0545 0550 0555 0600	62 63 64 65 66 67 68 69 70 71 72 73	 78. 65. 53. 44. 36. 29. 24. 20. 18. 16. 14. 	* * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0820 0835 0835 0840 0845 0850 0855 0900 0905 0910 0915	102 103 104 105 106 107 108 109 110 111	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * *	1 1 1 1 1 1 1 1 1	1135 1140 1145 1150 1155 1200 1205 1210 1215 1220	140 141 142 143 144 145 146 147 148 149	
	0145 0150 0205 0210 0215 0220 0225 0230 0235 0240 0245 0250	23 24 25 26 27 28 29 30 31 32 33 34 35 36	1. 1. 1. 2. 3. 5. 7. 7. 8. 9. 11. 11.	* * * * * * * * * * * *	1 1 1 1 1 1 1 1	0505 0510 0520 0525 0530 0535 0540 0545 0550 0555 0600 0605 0610	62 63 64 65 66 67 68 69 70 71 72 73 74	 78. 65. 53. 44. 36. 29. 24. 20. 18. 16. 14. 12. 	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0820 0825 0830 0835 0840 0845 0850 0855 0900 0905 0910 0915	102 103 104 105 106 107 108 109 110 111 112 113	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1	1135 1140 1145 1150 1155 1200 1205 1210 1215 1220	140 141 142 143 144 145 146 147 148 149	

PEAK FLO	W	TIME			-			ERAGE FLC										
		/ T T = `			6-HR		24-HR	72-H	R	12.42-	HR							
(CFS)		(HR)																
320.		3.67	(CFS)	,	57.		28.	28		-	8.							
320.		3.07	(INCHES)	`	1.215		28.	1.21		1.2								
			(AC-FT)		28.		28.	28										
			CUMULA	rive	AREA =	0.4	4 SQ MI											
** *** *	** ***	*** *:	** *** **;	* **	* *** *	** ***	*** ***	*** ***	***	*** ***	*** *	** ***	*** *** *	** *	*** *** :	*** **	* *** 1	** ***
	***	*****	****															
	*		*															
106 KK	*	OVERFLO	* WC															
	*		*															
	***	*****	****															
107 ко		OUTPU	JT CONTROL	S VA	RIABLES													
			IPRNT				CONTROL											
			IPLOT		-0.	PLOT C	ONTROL											
			QSCAL		0.	HYDROG	RAPH PL	OT SCALE										
14 IN		TIME	DATA FOR	INP	UT TIME	SERTES	:											
			JXMIN					IN MINUT	ES									
			JXDATE				NG DATE											
			JXTIME				NG TIME											
		SUBBASI	IN RUNOFF	DAT	A													
108 BA		SUBBA	ASIN CHARA	ACTE														
			TAREA		0.00	SUBBAS	IN AREA											

******	*****	*****	*******	***	******	*****	*****	******	****	*******	****	*****	*****	***1	*****	*****	*****	******
							HYDRO	GRAPH AT	STAT	TION OVER	RFLOW							
******	*****	*****	*******	***	******	******	******	******	****	*******	****	*****	******	****	******	*****	*****	******
DA MON	HRMN	ORD	FLOW	*	DA MO	N HRMIN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW
-	0000	-	1030	*	-	~~ ~~	20	~	*	7	0.000		~	*		0000	115	•
1	0000	1	1238.	*	1	0310	39	0.	*	1	0620	77	0.	*	1.	0930	115	0.
1	0005	2	1238.	*	1	0315	40	0.	*	1 1	0625	78 79	0.	*	1	0935	116	ο.
	0010	2			,	0222	47	^	*								117	
1	0010	3	1238.	*	1	0320	41	0. 0	*		0630		0.	*	1	0940		0.
1 1	0015	4	1238. 1238.	*	1	0325	42	Ο.	*	1	0635	80	0.	*	1	0945	118	0. 0.
1 1 1	0015 0020	4 5	1238. 1238. 1238.	* * *	1 1	0325 0330	42 43	0. 0.	* *	1 1	0635 0640	80 81	0. 0.	*	1 1	0945 0950	118 119	0. 0. 0.
1 1 1 1	0015 0020 0025	4 5 6	1238. 1238. 1238. 1238.	*	1 1 1	0325 0330 0335	42 43 44	0. 0. 0.	* * *	1 1 1	0635 0640 0645	80 81 82	0. 0. 0.	*	1 1 1	0945 0950 0955	118 119 120	0. 0. 0.
1 1 1 1	0015 0020 0025 0030	4 5 6 7	1238. 1238. 1238. 1238. 1238.	* * *	1 1 1	0325 0330 0335 0340	42 43 44 45	0. 0. 0.	* *	1 1 1 1	0635 0640 0645 0650	80 81 82 83	0. 0. 0.	* * *	1 1 1	0945 0950 0955 1000	118 119 120 121	0. 0. 0. 0.
1 1 1 1 1	0015 0020 0025 0030 0035	4 5 6 7 8	1238. 1238. 1238. 1238. 1238. 0.	* * * *	1 1 1 1 . 1	0325 0330 0335 0340 0345	42 43 44 45 46	0. 0. 0. 0.	* * * *	1 1 1 1	0635 0640 0645 0650 0655	80 81 82 83 84	0. 0. 0. 0.	* * *	1 1 1 1	0945 0950 0955 1000 1005	118 119 120 121 122	0. 0. 0. 0. 0.
1 1 1 1 1	0015 0020 0025 0030 0035 0040	4 5 7 8 9	1238. 1238. 1238. 1238. 1238. 0.	* * * * *	1 1 1 1 1	0325 0330 0335 0340 0345 0350	42 43 44 45 46 47	0. 0. 0. 0. 0.	* * * *	1 1 1 1 1	0635 0640 0645 0650 0655 0700	80 81 82 83 84 85	0. 0. 0. 0. 0.	* * * * *	1 1 1 1 1	0945 0950 0955 1000 1005 1010	118 119 120 121 122 123	0. 0. 0. 0. 0.
1 1 1 1 1 1	0015 0020 0025 0030 0035 0040 0045	4 5 7 8 9 10	1238. 1238. 1238. 1238. 1238. 0. 0. 0.	* * * * * *	1 1 1 . 1 1 1	0325 0330 0335 0340 0345 0350 0355	42 43 44 45 46 47 48	0. 0. 0. 0. 0. 0.	* * * *	1 1 1 1 1 1	0635 0640 0645 0650 0655 0700 0705	80 81 82 83 84 85 86	0. 0. 0. 0. 0. 0.	* * * * * *	1 1 1 1 1 1	0945 0950 0955 1000 1005 1010 1015	118 119 120 121 122 123 124	0. 0. 0. 0. 0. 0.
1 1 1 1 1 1 1	0015 0020 0025 0030 0035 0040 0045 0050	4 5 7 8 9 10 11	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1 1	0325 0330 0335 0340 0345 0350 0355 0400	42 43 44 45 46 47 48 49	0. 0. 0. 0. 0. 0. 0.	* * * * * *	1 1 1 1 1 1 1	0635 0640 0645 0650 0655 0700 0705 0710	80 81 82 83 84 85 86 86	0. 0. 0. 0. 0. 0. 0.	* * * * * *	1 1 1 1 1 1 1	0945 0950 0955 1000 1005 1010 1015 1020	118 119 120 121 122 123 124 125	0. 0. 0. 0. 0. 0. 0.
1 1 1 1 1 1 1 1	0015 0020 0025 0030 0035 0040 0045 0055	4 5 7 8 9 10 11 12	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1	0325 0330 0335 0340 0345 0350 0355 0400	42 43 44 45 46 47 48 49 50	0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * *	1 1 1 1 1 1 1 1 1	0635 0640 0645 0650 0655 0700 0705 0710 0715	80 81 82 83 84 85 86 86 87 88	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1	0945 0950 0955 1000 1005 1010 1015 1020 1025	118 119 120 121 122 123 124 125 126	0. 0. 0. 0. 0. 0. 0. 0. 0.
1 1 1 1 1 1 1 1 1	0015 0020 0025 0030 0035 0040 0045 0055 0055	4 5 7 8 9 10 11 12 13	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1	0325 0330 0335 0340 0345 0350 0355 0400 0405 0410	42 43 44 45 46 47 48 49 50 51	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1 1 1	0635 0640 0645 0655 0700 0705 0710 0715 0720	80 81 82 83 84 85 86 87 88 89	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1	0945 0950 0955 1000 1005 1010 1015 1020 1025 1030	118 119 120 121 122 123 124 125 126 127	0. 0. 0. 0. 0. 0. 0. 0. 0.
1 1 1 1 1 1 1 1 1	0015 0020 0025 0030 0035 0040 0045 0055 0100 0105	4 5 7 8 9 10 11 12 13 14	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0325 0330 0335 0340 0355 0350 0355 0400 0405 0410 0415	42 43 44 45 46 47 48 49 50 51 52	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1 1	0635 0640 0655 0655 0700 0705 0710 0715 0720	80 81 82 83 84 85 86 87 88 89 90	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1	0945 0950 0955 1000 1005 1010 1015 1020 1025 1030 1035	118 119 120 121 122 123 124 125 126 127 128	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	0015 0020 0025 0030 0035 0040 0045 0055 0100 0105 0100	4 5 7 8 9 10 11 12 13 14 15	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0325 0330 0340 0345 0350 0355 0400 0405 0410 0415 0420	42 43 44 45 46 47 48 49 50 51 52 53	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0635 0640 0655 0700 0705 0710 0715 0720 0725 0720	80 81 82 83 84 85 86 87 88 89 90 91	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0945 0950 1000 1005 1010 1015 1020 1025 1030 1035 1040	118 119 120 121 122 123 124 125 126 127 128 129	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	0015 0020 0030 0035 0040 0045 0055 0100 0105 0100 0105	4 5 7 8 9 10 11 12 13 14 15 16	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0325 0330 0340 0345 0350 0355 0400 0405 0410 0415 0420 0425	42 43 44 45 46 47 48 49 50 51 52 53 54	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0635 0640 0655 0700 0705 0710 0715 0720 0725 0730 0735	80 81 82 83 84 85 86 87 88 89 90 91 92	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0945 0950 0955 1000 1015 1010 1015 1020 1025 1030 1035 1040 1045	118 119 120 121 122 123 124 125 126 127 128 129 130	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
	0015 0020 0025 0030 0035 0040 0045 0055 0100 0105 0100	4 5 7 8 9 10 11 12 13 14 15	1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0325 0330 0340 0345 0350 0355 0400 0405 0410 0415 0420	42 43 44 45 46 47 48 49 50 51 52 53	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0635 0640 0655 0700 0705 0710 0715 0720 0725 0720	80 81 82 83 84 85 86 87 88 89 90 91	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0945 0950 1000 1005 1010 1015 1020 1025 1030 1035 1040	118 119 120 121 122 123 124 125 126 127 128 129 130 131	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

58 ο. * 1 0755 96 * 0. 59 1 0800 97 0. * 0805 98 60 1 0. * 1 0500 61 0810 99 0. * 0505 62 1 0815 100

1

0750

95

ο. *

Ο.

Ο.

ο. * 1

1

1

1

*

0. * 1 0. * 1

*

1100 133

1105 134

1110 135

1115 136

1120 137

1125 138

٥.

٥.

0.

Ο.

0.

Ο.

*

*

0. * 1

*

1

1

1

1

0.

0. * 1

Ο.

٥.

0. *

0440

0445

0450

0455

57

0130 19

0150 23

0155 24

20

21

0135

0140

0145 22

1

1

1

1

1

1

0. *

1	0200	25	0.	*	1	0510	63	0.	*	1		101	0.	*	1	1130		0.
1 1	0205 0210	26 27	0. 0.	*	1 ⁻ 1	0515 0520	64 65	0. 0.	*	1 1		102 103	0. 0.	*	1 1	1135 1140	140 141	0. 0.
1	0210	28	0.	*	1	0525	66	0. 0.	*	1	0835		0. 0.	*	1		142	o.
1	0220	29	0.	*	1	0530	67	0.	*	1	0840		0.	٠	1	1150	143	0.
1	0225	30	0.	*	1	0535	68	0.	*	1	0845	106	Ο.	*	1	1155	144	0.
1	0230	31	0.	*	1	0540	69	Ο.	*	1	0850	107	0.	*	1	1200	145	0.
1	0235	32	٥.	*	1	0545	70	٥.	*	1	0855	108	0.	*	1	1205	146	٥.
1	0240	33	0.	*	1	0550	71	0.	*	1	0900	109	0.	*	1	1210	147	0.
1	0245	34	0.	*	1	0555	72	0.	*	1	0905		0.	*	1	1215	148	0.
1	0250	35	0.	*	1	0600	73	ο.	*	1	0910		0.	*	1	1220	149	0.
1	0255	36	0.	*	1	0605	74	0.	*	1	0915		0.	*	1	1225	150	0.
1 1	0300 0305	37 38	0. 0.	*	1 1	0610 0615	75 76	0. 0.	*	1 1	0920 0925	113 114	0. 0.	*				
******	*****	*****	******	*	******	*****	*****	*****	*	*****	******	******	*****	*	******	*****	******	******
PEAK FL	ow	TIME				маз	KIMUM AV	ERAGE FLO	OW									
+ (CFS)		(HR)			6-HR		24-HR	72-1	HR	12.	42-HR							
+ 1238		0.08	(CFS))	112.		54.	5	4.		54.							
+ 1250	•	0.06	(INCHES)	`	0.000		0.000	0.0			0.000							
			(AC-FT)		55.		55.		5.		55.							
			CUMULAT	FIVE	AREA =	0.0	00 SQ MI											
*****	*****	*****	*****	* * * *	******	*****	******	*****	****	*****	* * * * * * * *	*****	******	****	*****	*****	*****	*****
								GRAPH AT LAN 1,		TION O								
							-		IGTT.	10 -	1.00							
******	*****	******	******	****	******	*****	*****	*****	****	*****	* * * * * * * * *	******	*******	****	******	*****	******	******
********* DA MOI	******* N HRMN	******* ORD	FLOW	* * * *	******** Da mon	******	ORD	******** FLOW	* * * *	***** DA M	******** ON HRMN	ORD	********* FLOW	*	DA MON	******	ORD	******* FLO
******** DA MOI 1	******** N HRMN 0000	******* ORD 1	FLOW 1238.	**** * * *	DA MON	• ****** I HRMN 0310	0RD 39	******** FLOW 0.	* * * * * * *	****** DA M 1	********* ON HRMN 0620	ORD 77	********* FLOW 0.	*****	DA MON	****** HRMN 0930	ORD 115	
									**** * * *					***** * * *				0
1	0000	1	1238.	*	1.	0310	39	0.	*	1	0620	77	0.	*	1	0930	115	0 0
1 1	0000 0005	1 2	1238. 1238.	*	1.	0310 0315	39 40	0. 0.	* *	1 1	0620 0625	77 78	0. 0.	* *	1 1	0930 0935	115 116	0
1 1 1 1	0000 0005 0010 0015 0020	1 2 3	1238. 1238. 1238. 1238. 1238.	*	1 . 1 1 1	0310 0315 0320 0325 0330	39 40 41	0. 0. 0.	* * *	1 1 1	0620 0625 0630	77 78 79	0. 0. 0.	* *	1 1 1	0930 0935 0940	115 116 117 118 119	0. 0. 0.
1 1 1 1 1	0000 0005 0010 0015 0020 0025	1 2 3 4 5 6	1238. 1238. 1238. 1238. 1238. 1238.	* * * * *	1 . 1 1 1 1	0310 0315 0320 0325 0330 0335	39 40 41 42 43 44	0. 0. 0. 0.	* * *	1 1 1 1 1	0620 0625 0630 0635 0640 0645	77 78 79 80 81 82	0. 0. 0. 0.	* * * * *	1 1 1 1	0930 0935 0940 0945 0950 0955	115 116 117 118 119 120	0 0 0 0 0
1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030	1 2 3 4 5 6 7	1238. 1238. 1238. 1238. 1238. 1238. 1238.	*	1 . 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340	39 40 41 42 43 44 45	0. 0. 0. 0. 0. 0.	* * *	1 1 1 1 1 1	0620 0625 0630 0635 0640 0645 0650	77 78 79 80 81 82 83	0. 0. 0. 0. 0.	* * * * * * *	1 1 1 1 1	0930 0935 0940 0945 0950 0955 1000	115 116 117 118 119 120 121	
1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030 0035	1 2 4 5 6 7 8	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0.	* * * * *	1 . 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345	39 40 41 42 43 44 45 46	0. 0. 0. 0. 0. 0. 0.	* * *	1 1 1 1 1 1	0620 0635 0635 0640 0645 0650 0655	77 78 79 80 81 82 83 83	0. 0. 0. 0. 0. 0.	* * * * * * *	1 1 1 1 1 1	0930 0935 0940 0945 0950 0955 1000 1005	115 116 117 118 119 120 121 122	
1 1 1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030 0035 0040	1 2 3 4 5 6 7 8 9	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0.	* * * * * * * *	1 . 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345 0350	39 40 41 42 43 44 45 46 47	0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1	0620 0625 0630 0635 0640 0645 0650 0655 0700	77 78 79 80 81 82 83 84 85	0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1	0930 0935 0940 0945 0950 0955 1000 1005 1010	115 116 117 118 119 120 121 122 123	
1 1 1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030 0035 0040 0045	1 2 3 4 5 6 7 8 9 10	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0.	* * * * * * * * *	1 . 1 1 1 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345 0350 0355	39 40 41 42 43 44 45 46 47 48	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1	0620 0625 0630 0635 0640 0645 0655 0655 0700	77 78 79 80 81 82 83 84 85 86	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1	0930 0935 0940 0950 0955 1000 1005 1010 1015	115 116 117 118 119 120 121 122 123 124	
1 1 1 1 1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030 0035 0040 0045 0050	1 2 3 4 5 6 7 8 9 10 11	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345 0350 0355 0400	39 40 41 42 43 44 45 46 47 48 49	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * *	1 1 1 1 1 1 1 1 1	0620 0635 0635 0640 0645 0650 0655 0700 0705 0710	77 78 79 80 81 82 83 84 85 86 85	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0950 0955 1000 1005 1010 1015 1020	115 116 117 118 119 120 121 122 123 124 125	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1	0000 0015 0015 0020 0025 0030 0035 0040 0045 0050	1 2 3 4 5 6 7 8 9 10 11 12	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345 0355 0400 0405	39 40 41 42 43 44 45 46 47 48 49 50	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * *	1 1 1 1 1 1 1 1 1	0620 0635 0630 0640 0645 0650 0655 0700 0705 0710 0715	77 78 79 80 81 82 83 84 85 86 87 88	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0950 0955 1000 1005 1010 1015 1020 1025	115 116 117 118 119 120 121 122 123 124 125 126	0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
1 1 1 1 1 1 1 1 1 1	0000 0005 0010 0015 0020 0025 0030 0035 0040 0045 0050	1 2 3 4 5 6 7 8 9 10 11	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0335 0340 0345 0350 0355 0400	39 40 41 42 43 44 45 46 47 48 49	0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1	0620 0635 0635 0640 0645 0650 0655 0700 0705 0710	77 78 79 80 81 82 83 84 85 86 85	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0950 0955 1000 1005 1010 1015 1020	115 116 117 118 119 120 121 122 123 124 125	
1 1 1 1 1 1 1 1 1 1 1 1 1	0000 0015 0015 0020 0025 0030 0035 0040 0045 0050 0055 0100	1 2 3 4 5 6 7 8 9 10 11 12 13	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * *		0310 0315 0320 0325 0330 0335 0340 0345 0355 0400 0405 0410	39 40 41 42 43 44 45 46 47 48 49 50 51	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0645 0655 0700 0705 0710 0715 0720	77 78 79 80 81 82 83 84 85 86 87 88 89	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0955 1000 1005 1010 1015 1020 1025 1030	115 116 117 118 119 120 121 122 123 124 125 126 127	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000 0015 0020 0025 0030 0035 0040 0045 0050 0055 0100 0105	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0345 0350 0355 0400 0405 0410 0415	39 40 41 42 43 44 45 46 47 48 49 50 51 52	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0640 0645 0655 0700 0705 0710 0715 0720 0725	77 78 79 80 81 82 83 84 85 86 87 88 89 90	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0955 1000 1005 1010 1015 1020 1025 1030 1035	115 116 117 118 119 120 121 122 123 124 125 126 127 128	
	0000 0015 0020 0025 0030 0035 0040 0045 0050 0055 0100 0105 0110	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0345 0350 0355 0400 0405 0410 0415 0420	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0930 0935 0940 0955 1000 1005 1010 1015 1020 1025 1030 1035 1040	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0000 0015 0020 0025 0030 0045 0050 0055 0100 0105 0110	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * *	1 . 1 1 1 1 1 1 1 1 1 1 1 1 1	0310 0315 0320 0325 0330 0340 0345 0350 0355 0400 0405 0410 0415 0420 0425 0430	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0635 0640 0645 0750 0705 0710 0715 0720 0725 0730	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	
	0000 0015 0020 0025 0030 0045 0050 0055 0100 0105 0110 0115 0120	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0420 0425 0420 0425 0430	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730 0735	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	
	0000 0015 0020 0025 0030 0035 0040 0045 0100 0105 0100 0115 0120 0125	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0420 0415 0420 0425 0430 0425	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0655 0700 0705 0715 0720 0725 0730 0725 0730 0735	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * *		0930 0935 0940 0945 0955 1000 1005 1025 1035 1035 1035 1040 1045 1055 1100	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	
	0000 0015 0020 0025 0030 0035 0040 0055 0100 0155 0110 0115 0120 0125 0130 0135 0140	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0420 0425 0420 0425 0430 0435 0440	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0755 0800	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 0955 1000 1005 1010 1025 1030 1035 1040 1045 1055 1100 1105 1100	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	
	0000 0015 0020 0025 0030 0035 0040 0045 0055 0100 0155 0110 0115 0120 0125 0130 0135 0140 0145	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0415 0420 0425 0420 0425 0430 0435 0440	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0800 0805	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1025 1030 1035 1040 1045 1100 1105 1100 1115	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	
	0000 0015 0020 0025 0030 0035 0040 0045 0105 0100 0115 0120 0125 0130 0135 0140 0145 0150	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0420 0425 0430 0425 0430 0425 0440	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0750 0755 0800 0805 0810	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1025 1030 1045 1040 1045 1100 1105 1110 1115	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	
	0000 0015 0020 0025 0030 0035 0040 0045 0100 0105 0100 0115 0120 0125 0130 0135 0140 0145 0150	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0400 0415 0420 0425 0430 0425 0430 0435 0440 0425 0430 0455 0450 0455	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0750 0755 0800 0805 0810	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 92 93	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1020 1025 1030 1040 1045 1100 1105 1110 1115 1120	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	
	0000 0015 0020 0025 0030 0035 0040 0045 0105 0105 0105 0120 0125 0120 0125 0130 0135 0140 0145 0150 0155 0200	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0425 0430 0425 0430 0435 0440 0425 0430 0455 0450 0455 0450	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0645 0650 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0800 0805 0810 0815	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100 101	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1010 1025 1030 1045 1040 1045 1100 1105 1110 1115 1120 1125 1120	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	
	0000 0015 0020 0025 0030 0035 0040 0045 0105 0105 0105 0125 0120 0125 0130 0135 0140 0145 0150 0155 0200 0205	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0405 0410 0415 0425 0430 0425 0430 0435 0440 0435 0440 0455 0450 0455 0500 0515	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0640 0645 0650 0700 0705 0710 0715 0720 0725 0730 0735 0735 0740 0745 0750 0755 0800 0805 0810 0815 0820	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100 101	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1010 1025 1030 1045 1040 1045 1100 1105 1110 1115 1120 1125 1120	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	
	0000 0015 0020 0025 0030 0035 0040 0045 0105 0105 0105 0110 0115 0120 0135 0130 0135 0140 0145 0150 0155 0200 0205 0210	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0400 0415 0420 0425 0440 0425 0440 0435 0440 0435 0440 0455 0450 0455 0510 0515 0520	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0640 0645 0650 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0800 0805 0805 0815 0820 0825 0830	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1010 1025 1030 1045 1040 1045 1100 1115 1120 1115 1120 1125 1120	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	
	0000 0015 0020 0025 0030 0035 0040 0045 0100 0105 0100 0115 0120 0135 0130 0135 0140 0145 0150 0155 0200 0205 0210	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	1238. 1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0400 0405 0410 0425 0440 0425 0440 0435 0440 0435 0440 0435 0440 0435 0440 0455 0500 0555 0510 0515 0520 0525	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0700 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0740 0755 0750 0755 0800 0805 0810 0815 0820 0825 0830	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1010 1025 1030 1040 1045 1100 1105 1110 1115 1120 1125 1120 1125 1130 1125 1130	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	
	0000 0015 0020 0025 0030 0035 0040 0045 0100 0155 0100 0115 0120 0125 0130 0135 0140 0145 0150 0155 0200 0205 0210 0215 0220	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1238. 1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0400 0405 0410 0425 0440 0425 0440 0435 0440 0435 0440 0435 0440 0435 0440 0455 0500 0515 0520 0515 0520 0525 0530	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0655 0700 0705 0710 0715 0720 0725 0730 0745 0730 0745 0750 0745 0750 0755 0800 0805 0810 0815 0820 0825 0830	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0945 1000 1005 1000 1025 1030 1035 1040 1045 1100 1155 1100 1115 1120 1125 1130 1135 1140	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0000 0015 0020 0025 0030 0045 0050 0055 0100 0105 0100 0115 0120 0125 0130 0135 0140 0135 0140 0155 0150 0155 0200 0225	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1238. 1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0340 0345 0350 0400 0405 0410 0425 0440 0425 0440 0435 0440 0435 0440 0435 0440 0435 0440 0455 0500 0515 0500 0515 0520 0525 0530 0535	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0620 0625 0630 0640 0645 0650 0705 0710 0715 0720 0725 0730 0745 0730 0745 0750 0755 0800 0805 0800 0815 0820 0835 0830 0835	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1020 1025 1030 1035 1040 1045 1050 1100 1115 1110 1115 1120 1125 1130 1125 1130	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	
	0000 0015 0020 0025 0030 0045 0050 0055 0100 0105 0100 0115 0120 0125 0130 0135 0140 0145 0155 0120 0155 0120 0155 0120 0155 0200 0215 0220 0225 0230	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0355 0400 0405 0400 0415 0420 0425 0430 0425 0430 0435 0440 0435 0440 0455 0505 0510 0515 0520 0515 0520 0535 0540	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0640 0645 0650 0705 0710 0715 0720 0725 0730 0735 0740 0745 0750 0755 0800 0805 0815 0820 0815 0820 0835 0830	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1020 1025 1030 1035 1040 1045 1050 1105 1110 1115 1120 1115 1120 1135 1130	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	
	0000 0015 0020 0025 0030 0035 0045 0050 0105 0100 0115 0120 0125 0130 0135 0140 0135 0140 0145 0150 0155 0200 0215 0220 0225 0220	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0355 0400 0405 0410 0415 0420 0425 0430 0425 0430 0425 0430 0435 0440 0455 0505 0510 0515 0520 0515 0520 0535 0540 0545	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0700 0705 0710 0725 0730 0745 0730 0745 0750 0755 0800 0805 0810 0815 0820 0825	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1025 1020 1035 1040 1045 1050 1105 1100 1115 1120 1125 1130 1135 1140 1135 1140 1135 1140	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	FLOV FLOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	0000 0015 0020 0025 0030 0035 0045 0050 0105 0100 0105 0100 0115 0120 0125 0130 0135 0140 0135 0140 0155 0200 0215 0200 0215 0220 0225 0220	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0355 0400 0405 0410 0415 0420 0425 0430 0425 0430 0425 0440 0455 0440 0455 0550 0515 0550	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0700 0705 0710 0725 0730 0745 0730 0745 0750 0745 0750 0755 0800 0805 0810 0815 0810 0825 0830 0835	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1025 1020 1025 1030 1045 1040 1045 1100 1105 1110 1115 1120 1125 1130 1135 1140 1135 1140	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	
	0000 0015 0020 0025 0030 0035 0045 0050 0105 0100 0115 0120 0125 0130 0135 0140 0135 0140 0145 0150 0155 0200 0215 0220 0225 0220	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	1238. 1238. 1238. 1238. 1238. 1238. 1238. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	* * * * * * * * * * * * * * * * * * * *		0310 0315 0320 0325 0330 0340 0355 0400 0405 0410 0415 0420 0425 0430 0425 0430 0425 0430 0435 0440 0455 0505 0510 0515 0520 0515 0520 0535 0540 0545	39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0620 0625 0630 0645 0650 0700 0705 0710 0725 0730 0745 0730 0745 0750 0755 0800 0805 0810 0815 0820 0825	77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	* * * * * * * * * * * * * * * * * * * *		0930 0935 0940 0955 1000 1005 1025 1020 1035 1040 1045 1050 1105 1100 1115 1120 1125 1130 1135 1140 1135 1140 1135 1140	115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	

-

0. * 1 - 0605 74 0. * 1 - 0610 75 0. * 1 ^{- 0615} 76 1 0255 36 0. * 1 0915 112 0. * .1 1225 150 Ο. * 1 0300 37 Ο. 1 0920 113. ο. * * * 1 0305 38 Ο. 1 0925 114 Ο. * * *

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW		
				6-HR	24-HP.	72-HR	12.42-HR	
+	(CFS)	(HR)						
			(CFS)					
+	1238.	0.08		112.	54.	54.	54.	
			(INCHES)	0.000	0.000	0.000	0.000	-
			(AC-FT)	55.	55.	55.	- <u>.</u> 55.	

CUMULATIVE AREA = 0.00 SQ MI

1238.

0.08

112.

54.

54.

54.

HYDROGRAPH AT STATION OVERFLOW

PLAN 1, RATIO = 0.98

DA MON HERM ORD FLOW * DA MON HERM ORD * 1 0050 115 * 0 000 1 1228 * 1 0315 40 0. * 1 0623 77 . 0. * 1 0935 116 1 0010 3 1238. * 1 - 0320 41 0. * 1 0630 79 0. * 1 0940 117 1 0015 4 1238. * 1 - 0320 42 0. * 1 0633 80 0. * 1 0945 118 1 0025 6 1238. * 1 - 0320 42 0. * 1 0645 120 0. * 1 0945 118 1 0025 6 1238. * 1 - 0325 44 0. * 1 0645 92 0. * 1 0955 120 119 1 0025 6 1238. * 1 - 0325 44 0. * 1 0645 92 0. * 1 0955 120 121 1 0035 8 0. * 1 0330 43 0. * 1 0650 83 0 * 1000 121 1 0035 8 0. * 1 0330 47 0. * 1 0655 84 0. * 1 0655 84 0. * 1 1055 122 1 0045 10 0. * 1 0355 48 0. * 1 0705 86 0. * 1 1022 125 1 0045 10 0. * 1 0355 48 0. * 1 0705 86 0. * 1 1022 125 1 0055 12 0. * 1 0407 49 0. * 1 0715 87 0. * 1 1022 125 1 0055 12 0. * 1 0405 50 0. * 1 0715 86 0. * 1 1022 126 1 0010 13 0. * 1 - 0410 51 0. * 1 0725 90 0. * 1 1030 12 120 12 10010 13 0. * 1 0405 53 0. * 1 0715 87 0. * 1 1020 123 12 0. * 1 0425 54 0. * 1 0713 92 0. * 1 1030 12 120 12 10 015 14 0. * 1 0425 54 0. * 1 0713 92 0. * 1 1030 12 120 12 10 015 14 0. * 1 0425 54 0. * 1 0713 92 0. * 1 1030 12 120 12 10 015 16 0. * 1 0445 55 0. * 1 0774 93 0. * 1 1055 132 1 0135 12 0. * 1 0440 55 0. * 1 0774 93 0. * 1 1055 132 1 0135 12 0. * 1 0445 56 0. * 1 0774 93 0. * 1 1055 132 1 0135 12 0. * 1 0445 56 0. * 1 0774 94 0. * 1 1105 134 10 013 1 0145 12 0. * 1 0455 56 0. * 1 0774 93 0. * 1 1105 134 10 013 1 0145 22 0. * 1 0455 56 0. * 1 0774 93 0. * 1 1105 134 10 013 1 0145 22 0. * 1 0555 67 0. * 1 0745 94 0. * 1 11055 132 1 0135 10 0. * 1 0555 56 0. * 1 0774 93 0. * 1 1115 136 130 139 0. * 1 1105 134 10 135 10 0. * 1 1055 132 10 0. * 1 1055 132 10 0. * 1 0555 130 0. * 1 0050 97 0. * 1 1115 136 140 11 0155 24 0. * 1 0555 66 0. * 1 0055 97 0. * 1 1115 136 140 11 0155 140 0. * 1 0555 67 0. * 1 0055 100 0. * 1 1115 136 140 11 0255 36 0. * 1 0055 100 0. * 1 1115 136 141 1025 34 0. * 1 0555 67 0. * 1 0055 100 0. * 1 11155 144 11 0250 31 0. * 1 0555 72 0. * 1 0055 100 0. * 1 11155 1	RMN ORD FLOW * DAMON HRMN ORD FLOW * DAMON HRMN ORD FLOW *		
1 0005 2 1238. • 1 0312 41 0. • 1 0630 79 0. • 1 0935 115 1 0010 3 1238. • 1 0325 42 0. • 1 0630 79 0. • 1 0940 117 1 0020 5 1238. • 1 0335 43 0. • 1 0640 81 0. • 1 0955 10. 1 0955 10. 0. • 1 0055 83 0. • 1 1005 122 1 1005 11 015 12. 10. 1 1005 12 10. 1 1005 12 11 1015 12 11 1010 12. 11 1015 12 11 1015 12 11 1015 12 11 1010 12. 12. 11 1015 12 11 1010 12. 11 1010 12. <td></td> <td>DA MON HRMN</td> <td>ORD FI</td>		DA MON HRMN	ORD FI
1 0010 3 1238. • 1 0202 41 0. • 1 0620 79 0. • 1 0940 117 1 0015 4 1238. • 1 0233 43 0. • 1 0640 81 0 • 1 0945 18 1 0025 6 1238. • 1 0334 46 0. • 1 0655 83 0 • 1 1005 122 1 1005 122 1 1005 12 0 • 1 1005 12 0 • 1 1005 12 0 • 1 1005 12 1 1005 12 1 1005 11 1015 1.0 1 0720 87 0 • 1 1010 1.1 1010 1.1 1010 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td>000 1 1238. * 1 .0310 39 0. * 1 0620 77 . 0. *</td> <td>1 0930</td> <td>115</td>	000 1 1238. * 1 .0310 39 0. * 1 0620 77 . 0. *	1 0930	115
1 0015 4 1236. • 1 0025 80 0. • 1 0640 81 0. • 1 0640 81 0. • 1 0640 81 0. • 1 0640 81 0. • 1 0645 82 0. • 1 0645 82 0. • 1 0605 12 0.0 • 1 0605 83 0. • 1 0005 12 000 12 1 0005 10 0. • 1 0355 48 0. • 1 0015 12 0.0 • 1 0355 48 0. • 1 0010 12 10 10 1010 12 0.0 • 1 0010 12 0.0 • 1 0105 12 0.0 • 1 0105 12 10 1 0105 12 10 10 10 10 10 10 10 10 10 10 10 </td <td>005 2 1238. * 1 0315 40 0. * 1 0625 78 0. *</td> <td>1 0935</td> <td>116</td>	005 2 1238. * 1 0315 40 0. * 1 0625 78 0. *	1 0935	116
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	010 3 1238. * 1 - 0320 41 0. * 1 0630 79 0. *	1 0940	117
1 0020 5 1238. * 1 -0330 43 0. * 1 0640 81 0. * 1 0645 82 0. * 1 0650 83 0. * 1 0655 84 0. * 1 0655 84 0. * 1 1005 122 1 0040 9 0. * 1 1005 83 0. * 1 1005 100 12. 1000 12. 1 0045 10 0. * 1 0355 48 0. * 1 1005 86 0. * 1 1005 122 1 1015 122 1 1010 123 1. 1010 123 1. 1 1010 123 1. 1 1010 123 1. 1 1010 1. 1010 1. 1010 1. 1010 1. 1010 1. 1010 1. 1010 1. 1. 1. 1010 1.	015 4 1238. * 1 0325 42 0. * 1 0635 80 0. *	1 0945	118
1 0025 6 1238. • 1 0335 44 0. • 1 0645 62 0. • 1 0955 120 1 10010 7 1238. • 1 0335 46 0. • 1 0655 84 0. • 1 1005 122 1 1000 121 1005 1 1005 85 0. • 1 1005 122 1 0045 10 0. • 1 0355 46 0. • 1 0700 85 0. • 1 1010 122 1 0045 10 0.5 1 0405 50 0. • 1 0705 86 0. • 1 1020 17 10 122 1 10715 88 0. • 1 1030 123 1 01010 15 0. • 1 0430 55 0. • 1 0735 92 0. •	020 5 1238. * 1 - 0330 43 0. * 1 .0640 81 0. *	1 0950	119
1 0035 8 0. • 1 0345 46 0. • 1 0665 84 0. • 1 1005 122 1 0040 9 0. • 1 0355 47 0. • 1 0700 85 0. • 1 1005 122 1 1005 124 1 1005 124 1 1005 12 0. • 1 0400 49 0. • 1 0705 86 0. • 1 1010 127 1 1010 12 0. • 1 0415 52 0. • 1 0735 92 0. • 1 1035 1010 127 1 1040 129 11 10410 129 11 1043 1010 1010 1010 1010 1010 1010 1010 11 1043 11 1043 11 1045 11 1043 11 1010 13 11 1010 13 11 <td></td> <td></td> <td></td>			
1 0040 9 0. • 1 0350 47 0. • 1 0700 85 0. • 1 0101 123 1 0045 10 0. • 1 0355 48 0. • 1 0710 87 0. • 1 1020 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1020 12 1 1 1020 12 12 1 1 1020 1 1040 12 1 1 1040 12 1 1 1040 1 1 1 1040 1 1 1 1 1 1 1 1 1 1 1 1	030 7 1238. * 1 0340 45 0. * 1 0650 83 0 *.		121
1 0045 10 0. * 1 0035 48 0. * 1 0705 86 0. * 1 1015 124 1 0050 11 0. * 1 0405 50 0. * 1 0715 88 0. * 1 1025 126 1 1025 126 1 1025 12 0. * 1 0415 52 0. * 1 0725 90 0. * 1 1035 128 1 0110 15 0. * 1 0425 54 0. * 1 0735 92 0. * 1 1040 129 1 0120 17 0. * 1 0425 56 0. * 1 0755 95 0. * 1 10105 131 1 0130 10 0. * 1 0445 58 0. * 1 0755 96 0. <td< td=""><td>035 8 0. * 1 0345 46 0. * 1 0655 84 0. *</td><td>1 1005</td><td>122</td></td<>	035 8 0. * 1 0345 46 0. * 1 0655 84 0. *	1 1005	122
1 0050 11 0. 0. 1 0710 87 0. 0. 1 1020 125 1 0055 12 0. 1 0405 50 0. 1 0715 88 0. 0. 1 1020 125 1 0100 13 0. 1 0410 51 0. 1 0720 89 0. 0. 1 1030 127 1 0115 16 0. 1 0425 54 0. 1 0735 92 0. 0. 1 10405 13 1 0125 18 0. 1 0435 56 0. 1 0745 94 0. 1 1015 134 1 0135 10 0. 1 0440 57 0. 1 0755 96 0. 1 1100 133 1 0145 22 0. 1 0455 50 0. 1 11010 135 1	040 9 0. * 1 0350 47 0. * 1 0700 85 0. *	1 1010	123
1 0055 12 0. 1 0405 50 0. 1 0715 88 0. 1 1 1025 12 1 1033 1 1 0410 51 0. 1 0725 99 0. 1 1035 128 1 0105 14 0. 1 0425 53 0. 1 0735 91 0. 1 1045 130 1 0110 15 0. 1 0425 54 0. 1 0735 92 0. 1 10455 130 1 0120 17 0. 1 0425 56 0. 1 0745 94 0. 1 1105 131 1 0130 19 0. 1 0445 58 0. 1 0750 95 0. 1 11010 133 1 0133 20 0. 1 0445 58 0. 1 0800 97 0. 1 1110 135 </td <td>045 10 0. * 1 0355 48 0. * 1 0705 86 0. *</td> <td>1 1015</td> <td>124</td>	045 10 0. * 1 0355 48 0. * 1 0705 86 0. *	1 1015	124
1 0.000 1.3 0. • 1 0.010 51 0. • 1 0.025 1.4 0. • 1 0.425 52 0. • 1 0.072 89 0. • 1 1.030 1.27 1 0.100 1.5 0. • 1 0.425 53 0. • 1 0.035 92 0. • 1 1.045 1.041 1.0420 1.010 1.041 1.041 1.010 1.010 1.010 1.0420 1.010 1.041 1.041 1.010 1.010 1.010 1.041 1.010 1.010 1.041 1.0100 1.010	050 11 0. * 1 0400 49 0. * 1 0710 87 0. *	1 1020	125
1 0105 14 0. * 1 0415 52 0. * 1 0725 90 0. * 1 1040 129 1 0115 16 0. * 1 0425 53 0. * 1 0735 92 0. * 1 1043 130 1 0120 17 0. * 1 0430 55 0. * 1 0740 93 0. * 1 1055 132 1 0135 20 0. * 1 0445 57 0. * 1 0175 96 0. * 1 1005 134 1 0140 21 0. * 1 0455 59 0. * 1 0800 97 0. * 1 1105 144 141 1101 135 1 0145 22 0. * 1 0450 62 0. * 1 1103 139	055 12 0. * 1 0405 50 0. * 1 0715 88 0. *	1. 1025	126
1 0110 15 0. • 1 0730 91 0. • 1 1040 129 1 0115 16 0. • 1 0425 53 0. • 1 0735 92 0. • 1 1040 129 1 0120 17 0. • 1 0430 55 0. • 1 0740 93 0. • 1 1050 131 1 0130 19 0. • 1 0440 57 0. • 1 0750 95 0. • 1 1000 133 1 0140 21 0. • 1 0445 59 0. • 1 0805 98 0. • 1 1101 135 1 0150 23 0. • 1 0455 62 0. • 1 0110 0. • 1 1101 135 1 0150 63 <t< td=""><td>100 13 0. * 1 0410 51 0. * 1 0720 89 0. *</td><td>1 1030</td><td>127</td></t<>	100 13 0. * 1 0410 51 0. * 1 0720 89 0. *	1 1030	127
1 0110 15 0. • 1 0730 91 0. • 1 1040 129 1 0115 16 0. • 1 0425 53 0. • 1 0735 92 0. • 1 1040 129 1 0120 17 0. • 1 0430 55 0. • 1 0740 93 0. • 1 1050 131 1 0130 19 0. • 1 0440 57 0. • 1 0750 95 0. • 1 1005 131 1 0140 21 0. • 1 0445 58 0. • 1 0805 98 0. • 1 1101 135 1 0150 23 0. • 1 0505 62 0. • 1 0815 100 0. • 1 1102 137 1 055 <t< td=""><td></td><td></td><td></td></t<>			
1 0115 16 0. • 1 0735 92 0. • 1. 1045 130 1 0120 17 0. • 1 0430 55 0. • 1 0740 93 0. • 1 1055 131 1 0125 18 0. • 1 0445 55 0. • 1 0745 94 0. • 1 1055 132 1 0135 20 0. • 1 0445 58 0. • 1 0755 95 0. • 1 1105 134 1 0145 22 0. • 1 0450 59 0. • 1 0805 98 0. • 1 11015 134 1 0155 24 0. • 1 0505 62 0. • 1 0815 100 0. • 1 1125 138 1 0200	110 15 0. * 1 0420 53 0. * 1 0730 91 0. *	1 1040	129
1 0120 17 0. • 1 0430 55 0. • 1 0740 93 0. • 1 1050 131 1 0125 18 0. • 1 0435 56 0. • 1 0745 94 0. • 1 1055 132 1 0130 19 0. • 1 0445 58 0. • 1 0755 96 0. • 1 1105 134 1 0140 21 0. • 1 0455 60 0. • 1 0805 98 0. • 1 1105 134 1 0155 24 0. • 1 0505 62 0. • 1 0815 100 0. • 1 1120 137 1 0155 24 0. • 1 0515 64 0. • 1 0130 0. • 1 1130	115 16 0. * 1 0425 54 0. * 1 0735 92 0. *	- 1 - 1045	130
1 0130 19 0. • 1 0440 57 0. • 1 0750 95 0. • 1 100 133 1 0135 20 0. • 1 0445 58 0. • 1 0755 96 0. • 1 110 133 1 0140 21 0. • 1 0455 60 0. • 1 0800 97 0. • 1 110 135 1 0155 23 0. • 1 0505 62 0. • 1 0815 100 0. • 1 1125 138 1 0200 25 0. • 1 0515 64 0. • 1 0820 101 0. • 1 1125 138 1 0210 27 0. • 1 0520 65 0. • 1 0815 104 0. • 1 114	120 17 0. * 1 0430 55 0. * 1 0740 93 0. *	1 1050	131
1 0130 19 0. * 1 0440 57 0. * 1 0750 95 0. * 1 100 133 1 0135 20 0. * 1 0445 58 0. * 1 0755 96 0. * 1 100 133 1 0140 21 0. * 1 0455 59 0. * 1 0800 97 0. * 1 110 135 1 0145 22 0. * 1 0455 60 0. * 1 0815 100 0. * 1 1120 137 1 0155 24 0. * 1 0505 62 0. * 1 0130 10. 1 1120 137 1 0205 26 0. * 1 0515 64 0. * 1 0815 100 0. * 1 1105 144 <td< td=""><td>125 18 0. * 1 0435 56 0. * 1 0745 94 0. *</td><td>1 1055</td><td>132</td></td<>	125 18 0. * 1 0435 56 0. * 1 0745 94 0. *	1 1055	132
1 0140 21 0. * 1 0450 59 0. * 1 0800 97 0. * 1 1110 135 1 0145 22 0. * 1 0455 60 0. * 1 0805 98 0. * 1 1110 135 1 0150 23 0. * 1 0505 62 0. * 1 0810 99 0. * 1 1120 137 1 0155 24 0. * 1 0515 64 0. * 1 0110 0. * 1 1135 140 1 0210 27 0. * 1 0520 65 0. * 1 0835 104 0. * 1 1140 141 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 <td< td=""><td>130 19 0. * 1 0440 57 0. * 1 0750 95 0. *</td><td></td><td>133</td></td<>	130 19 0. * 1 0440 57 0. * 1 0750 95 0. *		133
1 0140 21 0. * 1 0450 59 0. * 1 0800 97 0. * 1 1110 135 1 0145 22 0. * 1 0455 60 0. * 1 0805 98 0. * 1 1110 135 1 0150 23 0. * 1 0505 62 0. * 1 0810 99 0. * 1 1120 137 1 0155 24 0. * 1 0515 64 0. * 1 0110 0. * 1 1135 140 1 0210 27 0. * 1 0520 65 0. * 1 0835 104 0. * 1 1140 141 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 <td< td=""><td></td><td></td><td></td></td<>			
1 0150 23 0. * 1 0500 61 0. * 1 0810 99 0. * 1 1120 137 1 0155 24 0. * 1 0505 62 0. * 1 0815 100 0. * 1 1125 138 1 0200 25 0. * 1 0515 64 0. * 1 0825 102 0. * 1 1135 140 1 0210 27 0. * 1 0525 65 0. * 1 0835 103 0. * 1 1140 141 1 0210 27 0. * 1 0525 66 0. * 1 0835 103 0. * 1 1140 141 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 <t< td=""><td></td><td></td><td>135</td></t<>			135
1 0150 23 0. * 1 0500 61 0. * 1 0810 99 0. * 1 1120 137 1 0155 24 0. * 1 0505 62 0. * 1 0815 100 0. * 1 1125 138 1 0200 25 0. * 1 0515 64 0. * 1 0825 102 0. * 1 1135 140 1 0210 27 0. * 1 0525 65 0. * 1 0835 103 0. * 1 1140 141 1 0210 27 0. * 1 0525 66 0. * 1 0835 103 0. * 1 1140 141 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 <t< td=""><td>145 22 0. * 1 0455 60 0. * 1 0805 98 0. *</td><td>1 1115</td><td>136</td></t<>	145 22 0. * 1 0455 60 0. * 1 0805 98 0. *	1 1115	136
1 0155 24 0. * 1 0505 62 0. * 1 0815 100 0. * 1 1125 138 1 0200 25 0. * 1 0510 63 0. * 1 0820 101 0. * 1 1130 139 1 0205 26 0. * 1 0515 64 0. * 1 0825 102 0. * 1 1135 140 1 0210 27 0. * 1 0525 66 0. * 1 0835 104 0. * 1 1145 142 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 144 1 0230 31 0. * 1 0545 70 0. * 1 0845 106 0. * 1 <			
1 0200 25 0. * 1 0510 63 0. * 1 0820 101 0. * 1 1130 139 1 0205 26 0. * 1 0515 64 0. * 1 0825 102 0. * 1 1135 140 1 0215 28 0. * 1 0525 66 0. * 1 0835 104 0. * 1 1140 141 1 0220 29 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1200 145 1 0230 31 0. * 1 0550 70 0. * 1 0855 108 0. * 1 1210 147 1 0240 33 0. * 1 0555 72 0. * 1 0905 110 0. * 1 <			
1 0205 26 0. * 1 0515 64 0. * 1 0825 102 0. * 1 1135 140 1 0210 27 0. * 1 0520 65 0. * 1 0830 103 0. * 1 1140 141 1 0215 28 0. * 1 0525 66 0. * 1 0835 104 0. * 1 1145 142 1 0220 29 0. * 1 0530 67 0. * 1 0845 106 0. * 1 143 143 1 0225 30 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1200 145 1 0235 32 0. * 1 0557 72 0. * 1 0901 109 0. * 1 <t< td=""><td></td><td></td><td></td></t<>			
1 0210 27 0. * 1 0520 65 0. * 1 0830 103 0 * 1 140 141 1 0215 28 0. * 1 0525 66 0. * 1 0835 104 0. * 1 145 142 1 0220 29 0. * 1 0530 67 0. * 1 0845 106 0. * 1 1155 143 1 0225 30 0. * 1 0545 69 0. * 1 0855 106 0. * 1 1200 145 1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1200 145 1 0240 33 0. * 1 0555 72 0. * 1 0901 109 0. * 1 <t< td=""><td></td><td></td><td></td></t<>			
1 0215 28 0. * 1 0525 66 0. * 1 0835 104 0. * 1 1145 142 1 0220 29 0. * 1 0530 67 0. * 1 0840 105 0. * 1 1155 143 1 0225 30 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 144 1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1205 146 1 0240 33 0. * 1 0555 72 0. * 1 0900 109 0. * 1 1210 147 1 0250 35 0. * 1 0555 72 0. * 1 0910 111 0. * 1 <			
1 0220 29 0. * 1 0530 67 0. * 1 0840 105 0. * 1 1150 143 1 0225 30 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 144 1 0230 31 0. * 1 0540 69 0. * 1 0855 106 0. * 1 1200 145 1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1200 145 1 0240 33 0. * 1 0555 72 0. * 1 0900 109 0. * 1 1210 147 1 0250 35 0. * 1 0905 110 0. * 1 1220 149 1 0255			
1 0225 30 0. * 1 0535 68 0. * 1 0845 106 0. * 1 1155 144 1 0230 31 0. * 1 0540 69 0. * 1 0855 107 0. * 1 1200 145 1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1200 145 1 0240 33 0. * 1 0555 72 0. * 1 0900 109 0. * 1 1210 147 1 0250 35 0. * 1 0555 72 0. * 1 0905 110 0. * 1 1220 149 1 0255 36 0. * 1 0915 112 0. * 1 1225 150 1 0305			
1 0230 31 0. * 1 0540 69 0. * 1 0850 107 0. * 1 1200 145 1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1200 145 1 0240 33 0. * 1 0550 71 0. * 1 0900 109 0. * 1 1210 147 1 0245 34 0. * 1 0555 72 0. * 1 0905 110 0. * 1 1210 147 1 0250 35 0. * 1 0600 73 0. * 1 0910 111 0. * 1 1220 149 1 0300 37 0. * 1 0915 112 0. * 1 1225 150			
1 0235 32 0. * 1 0545 70 0. * 1 0855 108 0. * 1 1205 146 1 0240 33 0. * 1 0550 71 0. * 1 0900 109 0. * 1 1210 147 1 0245 34 0. * 1 0555 72 0. * 1 0905 110 0. * 1 1210 147 1 0250 35 0. * 1 0505 72 0. * 1 0905 110 0. * 1 1210 146 1 0250 35 0. * 1 0600 73 0. * 1 0910 111 0. * 1 1220 149 1 0300 37 0. * 1 0915 112 0. * 1 1225 150			
1 0240 33 0. * 1 0550 71 0. * 1 0900 109 0. * 1 1210 147 1 0245 34 0. * 1 0555 72 0. * 1 0905 110 0. * 1 1215 148 1 0250 35 0. * 1 0600 73 0. * 1 0910 111 0. * 1 1220 149 1 0255 36 0. * 1 0605 74 0. * 1 0915 112 0. * 1 1225 150 1 0300 37 0. * 1 0615 76 0. * 1 0925 114 0. *			
1 0245 34 0. * 1 0555 72 0. * 1 0905 110 0. * 1 1215 148 1 0250 35 0. * 1 0600 73 0. * 1 0910 111 0. * 1 1220 149 1 0255 36 0. * 1 0605 74 0. * 1 0915 112 0. * 1 1225 150 1 0300 37 0. * 1 0610 75 0. * 1 0920 113 .0. * 1 1225 150 1 0305 38 0. * 1 0615 76 0. * 1 0925 114 0. * *			
1 0250 35 0. * 1 0600 73 0. * 1 0910 111 0. * 1 1220 149 1 0255 36 0. * 1 0605 74 0. * 1 0915 112 0. * 1 1225 150 1 0300 37 0. * 1 0610 75 0. * 1 0920 113 0. * * 1 0305 38 0. * 1 0615 76 0. * 1 0925 114 0. * * * * * * * * * * * * * * * * * * * * * *			
1 0255 36 0. * 1 0605 74 0. * 1 0915 112 0. * 1 1225 150 1 0300 37 0. * 1 0610 75 0. * 1 0920 1130. * 1 0305 38 0. * 1 0615 76 0. * 1 0925 114 0. * * * * * * *			
1 0300 37 0. * 1 0610 75 0. * 1 0920 1130. * 1 0305 38 0. * 1 0615 76 0. * 1 0925 114 0. * * * * * * *			
1 0305 38 0. * 1 0615 76 0. * 1 0925 114 0. * * * * * * * EAK FLOW TIME MAXIMUM AVERAGE FLOW			
* * * *			
eak flow time maximum average flow			
	*****	*****	*******
6-HR 24-HR 72-HR 12.42-HR			
(CFS) (HR)			

(INCHES)	0.000	0.000	0.000	0.000
(AC-FT)	55.	55.	55.	55.

CUMULATIVE AREA = 0.00 SQ MI

.....

HYDROGRAPH AT STATION OVERFLOW PLAN 1, RATIO = 0.97

				*					*					*				
DA M	ON HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLOW	*	DA M	ON HRMN	ORD	FLOW	*	DA MON	HRMN	ORD	FLO
1	0000	1	1238,	*	1	0310	39	0.	*	1	0620	77	Ο.	*	1	0930	115	(
1	0005	2	1238.	*	1	0315	40	0.	*	1	0625	78	0.	*	1	0935	116	
1	0010	3	1238.	*	1	0320	41	Ο.	*	1	0630	79	0.	*	1	0940	117	
1	0015	4	1238.	*	1	0325	42	0.	*	1	0635	80	0.	*	1	0945	118	(
1	0020	5	1238.	*	1	0330	43	0.	*	1	0640	81	0.	*	1	0950	119	
1	0025	6	1238.	*	1	0335	44	0.	*	1	0645	82	ο.	*	1 .	0955	120	
1	0030	7	1238.	*	1	0340	45	0.	*	1	0650	83	0.	*	1	1000	121	
1	0035	8	0.	*	1	0345	46	0.	*	1	0655	84	0.	*	1	1005	122	(
1	0040	9	0.	*	1	0350	47	ο.	*	1	0700	85	ο.	*	1	1010	123	(
1	0045	10	0.	*	1	0355	48	٥.	*	1	0705	86	0.	*	1	1015	124	(
I	0050	11	0.	*	1	0400	49	0.	*	1	0710	87	٥.	*	1	1020	125	(
ı	0055	12	0.	*	1	0405	50	0.	*	1	0715	88	0.	*	1	1025	126	
1	0100	13	0.	*	1	0410	51	0.	*	1	0720	89	0.	*	1	1030	127	
1	0105	14	ο.	*	1	0415	52	0.	*	1	0725	90	0.	*	1	1035	128	
1	0110	15	0.	*	1	0420	53	0.	*	1	0730	91	0.	*	1	1040	129	
1	0115	16	0.	*	1	0425	54	ο.	*	1	0735	92	0.	*	1	1045	130	
1	0120	17	ο.	*	1	0430	55	0.	*	1	0740	93	ο.	*	1	1050	131	
1	0125	18	ο.	*	1	0435	56	ο.	*	1	0745	94	ο.	*	1	1055	132	
1	0130	19	0.	*	1	0440	57	0.	*	1	0750	95	0.	*	1	1100	133	
1	0135	20	ο.	*	1	0445	58	0.	*	1	0755	96	0.	*	1	1105	134	
l	0140	21	0.	*	1	0450	59	Ο.	*	1	0800	97	0.	*	l	1110	135	
1	0145	22	0.	*	1	0455	60	ο.	*	1	0805	98	0.	*	1	1115	136	
1	0150	23	Ο.	*	1	0500	61	0.	*	1	0810	99	0.	*	1	1120	137	
1	0155	24	0.	*	1	0505	62	0.	*	1	0815	100	Ο.	*	1	1125	138	
1	0200	25	Ο.	*	1	0510	63	٥.	*	1	0820	101	ο.	*	1	1130	139	
1	0205	26	0.	*	1	0515	64	ο.	*	1	0825	102	ο.	*	1	1135	140	
1	0210	27	ο.	*	1	0520	65	ο.	*	1	0830	103	0.	*	1	1140	141	
1	0215	28	٥.	*	1	0525	66	0.	*	1	0835	104	0.	*	1	1145	142	
1	0220	29	0.	*	l	0530	67	0.	*	l	0840	105	0.	*	1	1150	143	
1	0225	30	٥.	*	1	0535	68	Ο.	*	1	0845	106	0.	*	1	1155	144	
1	0230	31	٥.	*	1	0540	69	0.	*	1	0850	107	Ο.	*	1	1200	145	
1	0235	32	0.	*	1_	0545	70	Ο.	*	1	0855	108	Ο.	*	1	1205	146	
1	0240	33	0.	*	1	0550	71	ο.	*	1	0900	109	Ο.	*	1	1210	147	
1	0245	34	Ο.	*	1	0555	72	ο.	*	. 1	0905	110	0.	*	. 1	1215	148	
1	0250	35	٥.	*	1	0600	73	Ο.	*	1	0910	111	Ο.	*	1	1220	149	
1	0255	36	Ο.	*	1	0605	74	Ο.	*	1	0915	112	٥.	*	1	1225	150	
1	0300	37	0.	*	1	0610	75	٥.	*	1	0920	113	Ο.	*				
1	0305	38	Ο.	*	1	0615	76	٥.	*	1	0925	114	Ο.	*				
				*					*					*				

1	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR	72-HR	12.42-HR
+	(CFS)	(HR)					
			(CFS)				
+	1238.	0.08		112.	54.	54.	54.
			(INCHES)	0.000	0.000	0.000	0.000
			(AC-FT)	55.	55.	55.	55.

CUMULATIVE AREA = 0.00 SQ MI

*** ***

•

	*******	*****										
	*	*										
114 KK	* I	DET *										
	*	*										
	*******	*****										
118 ко	OUTI	PUT CONTRO	L VARIABLE	s								
		IPRNT	1	PRINT CO	NTROL							
		IPLOT	0	PLOT CON	ITROL							
		QSCAL	0.	HYDROGRA	APH PLOT SC	ALE						
	HYDROC	SRAPH ROUT	ING DATA									
119 RS	STOP	RAGE ROUTI	NG									
	5101	NSTPS		NUMBER (F SUBREACH	ES						
		ITYP			INITIAL CO							
		RSVRIC			CONDITION							
		x			R AND D COE	FFICIENT						
120 SV	SI	FORAGE	0.0 65.2	0.4 80.1	1.4 96.6	3.5 114.0	7.1	12.5	19.6	28.5	39.1	51.4
			63.2	80.1	96.6	114.0						
122 SE	ELEV	ATION	2177.00	2178.00	2179.00	2180.00	2181.00	2182.00	2183.00	2184.00	2185.00	2186.0
			2187.00	2188.00	2189.00	2190.00						
154 61	1.014											
124 SL	LOM-	LEVEL OUT		ELEVATIO	ON AT CENTE	R OF OUTLE	T					
		CAREA			ECTIONAL AR		-					
		COQL		COEFFICI								
		EXPL		EXPONENT								
125 SS	SPII	LLWAY CREL	2196 00	COTLINAS	CREST ELE	TA TT ON						
		SPWID				WAITON						
		COQW		SPILLWAY WEIR CON								
		EXPW		EXPONENT								

				c	COMPUTED OU	TFLOW-ELEV	VATION DATA	L				
	OUTFLOW	0.00	0.00	91.55	5 98.91	107.56	5 117.86	130.34	145.78	165.37	191.0	4
	ELEVATION	2177.00	2177.50	2179.45	5 2179.78	2180.19	2180.74	2181.46	5 2182.45	2183.87	2186.0	0
	OT MET OF	107 67	220 67	343.47	544.80	873.48	1200 10	2036.22	2022.20	1001 00	6F11 C	~
	OUTFLOW ELEVATION	197.67 2186.04										
												-
				COMPL	JTED STORAG	E-OUTFLOW-	ELEVATION	DATA				
	STORAGE	0.00	0.21	0.42	2 1.37	2.31	2.99	3.45	5 4.16	6.13	7.1	0
	OUTFLOW	0.00									-	
	ELEVATION	2177.00									2181.0	
	STORAGE	9.56										
	OUTFLOW	130.34										
	ELEVATION	2181.46	2182.00	2182.45	5 2183.00	2183.87	2184.00	2185.00	2186.00	2186.04	2186.1	7
	STORAGE	56.50	60.38	65.19	65.36	71.93	79.67	80.13	89.49	96.63	1,00.8	8
	OUTFLOW	343.47								-	-	
	EL EUDOTON	2106 27	2196 CE	- 2107 00		2107 46						

114.02 STORAGE OUTFLOW 5511.67 ELEVATION 2190.00

ELEVATION 2186.37 2186.65. 2187.00 2187.01 2187.45 2187.97 2188.00 2188.57 2189.00 2189.24

HYDROGRAPH AT STATION DET PLAN 1, RATIO = 1.00

DA MON	HPMN	ORD (OUTFLOW	STORAGE	STAGE	* * DA 14	ion hrmin	ORD	OUTFLOW	STORAGE	* STAGE *	, DA M	ON HRMN	ORD	OUTFLOW	STORAGE	ST
1	0000	1	0.	0.1	2177.2	* * 1	0410	51	152.	18.9	* 2182.9	• 1	0820	101	Ο.	0.2	217
1	0005	2	126.	8.2	2181.2		0410	52	152.		2182.9 *		0825		. 0.	0.2	217
1	0010	3	146.	15.8	2182.5		0420	53	152.		2182.9 *		0830		0.	0.2	217
1	0015	4	159.		2183.4		0425	54	151.		2182.8 *		0835		0.	0.2	217
1	0020	5	170.	30.7	2184.2		0430	55	151.		2182.8 *		0840		0.	0.2	213
1	0025	6	178.	38.0	2184.9		0435	56	150.		2182.7 *		0845		0.	0.2	21'
1	0030	7	185.	45.3	2185.5		0440	57	149.		2182.7 *		0850	107	0.	0.2	21
1	0035	8	188.	48.2	2185.7		0445	58	149.		2182.6 *		0855	108	0.	0.2	21
1	0040	9	187.	46.9	2185.6		0450	59	148.		2182.6 *		0900	109	٥.	0.2	21
1		10	186.	45.7	2185.5		0455	60	147.		2182.6 *		0905		0.	0.2	21
1	0050	11	184.	44.4	2185.4		0500	61	147.		2182.5 *		0910		0.	0.2	21
1		12	183.	43.1	2185.3		0505	62	146.		2182.5 *		0915		0.	0.2	21
1	0100	13	182.	41.9	2185.2		0510	63	145.		2182.4 *		0920		0.	0.2	21
1		14	181.	40.6	2185.1		0515	64	144.		2182.4 *		0925		0.	0.2	21
1	0110	15	180.	39.4	2185.0		0520	65	143.		2182.3 *		0930		0.	0.2	21
							0525	66	142.		2182.2 *		0935		0. 0.	0.2	21
1		16	178.	38.1	2184.9											0.2	21
1	0120	17	177.	36,9	2184.8		0530	67	140.		2182.1 *		0940		0.		21
1	0125	18	175.	35.7	2184.7		0535	68	139.			-	0945		0.	0.2	
1	0130	19	174.	34.5	2184.6		0540	69	137.		2181.9 *		0950		0.	0.2	21
1		20	173.	33.3	2184.5		0545	70	134.		2181.7 *		0955		0.	0.2	21
1	0140	21	171.	32.1	2184.3		0550	71	132.		2181.6 *		1000		0.	0.2	21
1	0145	22	170.	31.0	2184.2		0555	72	130.		2181.4 *		1005		0.	0.2	21
ı	0150	23	169.	29.8	2184.1	* 1	0600	73	127.	8.6	2181.3 *	* 1	1010		0.	0.2	21
1	0155	24	167.	28.7	2184.0	* 1	0605	74	125.	7.8	2181.1 *	* 1	1015		0.	0.2	21
1	0200	25	166.	27.5	2183.9	* 1	0610	75	122.	7.0	2181.0 *	* 1	1020	125	0.	0.2	21
1	0205	26	164.	26.4	2183.8	* 1	0615	76	118.	6.3	2180.8 *	* 1	1025	126	0.	0.2	21
1	0210	27	162.	25.3	2183.6	* 1	0620	77	115.	5.5	2180.6 *	* 1	1030	127	0.	0.2	21
1	0215	28	161.	24.2	2183.5	* 1	0625	78	111.	4.8	2180.4 *	* 1	1035	128	0.	0.2	21
1	0220	29	159.	23.1	2183.4	* 1	0630	79	107.	4.1	2180.2 *	* 1	1040	129	٥.	0.2	21
1	0225	30	157.	22.1	2183.3	* 1	0635	80	103.	3.4	2180.0 *	* 1	1045	130	Ο.	0.2	21
1	0230	31	156.	21.0	2183.2	* 1	0640	81	96.	2.7	2179.6 *	* 1	1050	131	0.	0.2	21
1	0235	32	154.	20.0	2183.1	* 1	0645	82	89.	2.1	2179.3 *	* 1	1055	132	0.	0.2	21
1	0240	33	153.	19.0	2182.9	* 1	0650	83	82.	1.5	2179.1 *	* 1	1100	133	ο.	0.2	21
1	0245	34	151.	18.0	2182.8	* 1	0655	84	67.	1.0	2178.6 *	• 1	1105	134	0.	0.2	21
1	0250	35	149.	17.1	2182.7	• 1	0700	85	53.	0.6	2178.2 *	* 1	1110	135	0.	0.2	21
1	0255	36	147.	16.2	2182.5	• 1	0705	86	26.	. 0.3	2177.8 *	* 1	1115	136	٥.	0.2	21
1	0300	37	145.	15.2	2182.4	• 1	0710	87	4.	0.2	2177.5 *	* 1	1120	137	ο.	0.2	21
1	0305	38	143.	14.3	2182.3	• 1	0715	88	1.	0.2	2177.5 *	* 1	1125	138	Ο.	0.2	21
1	0310	39	141.	13.5	2182.1	1	0720	89	ο.	0.2	2177.5 *	* 1	1130	139	0.	0.2	21
1	0315	40	140.	12.7	2182.0	• 1	0725	90	0.	0.2	2177.5 *	* 1	1135	140	Ο.	0.2	21
1	0320	41	138.	12.1	2181.9	• 1	0730	91	٥.	0.2	2177.5 *	• 1	1140	141	0.	0.2	21
1	0325	42	137.	11.9	2181.9	• 1	0735	92	0.	0.2	2177.5 *	* 1	1145	142	0.	0.2	21
1	0330	43	138.	12.1	2181.9		0740	93	٥.	0.2	2177.5 *	* 1	1150	143	0.	0.2	21
1	0335		140.		2182.1		0745		0.		2177.5 *		1155		0.	0.2	
1	0340		142.		2182.2		0750		0.		2177.5 *		1200		0.	0.2	
1	0345		142.		2182.4		0755		o.		2177.5 *		1205			0.2	
1	0345		145.		2182.6		0800		o. o.		2177.5 *		1210			0.2	
1	0350		148.		2182.7		0805		0. 0.		2177.5 *		1215			0.2	
	0355						0810		0. 0.							0.2	
1			151.		2182.8						2177.5 * 2177.5 *		1220				
1	0405	30	152.	78.1	2182.9	· 1	0815	T00	0.	0.2	AT11.3 "	*	1225	100	0.	0.2	21
******	******	****	******	* * * * * * * * *	*******	*****	******	*****	******	*****	*******	*****	******	****	******	******	* * * *
,																	
PEAK FI	JOW	TIME			6-HR		MUM AVEI 4-HR		FLOW 2~HR	12.42-HR							
(CFS)	1	(HR)				-			-								
				(CFS)													
188	3.	0.58			155.		83.		83.	83.			-				
			(IN	CHES)	3.286	3	.645	3.	.645	3.645							
			(A)	C-FT)	77.		85.		85.	85.							
																	
PEAK STO	DRAGE	TIME					UM AVERA										
					6-HR	2	4-HR	72	2-HR	12.42-HR							
(AC-FI	r)	(HR)															
48	3.	0.58			23.		11.		11.	11.							
	AGE	TIME				MAXT	MUM AVEI	RAGE S	STAGE								
PEAK CO																	
PEAK ST					6-HP	2	4-HR	72	2-HR	12.42-HP							
PEAK ST		(HR)			6-HR	2	4-HR	72	2-HR	12.42-HR							

2183.19 2180.44 2180.44 2180.44

CUMULATIVE AREA = 0.44 SQ MI

HYDROGRAPH AT STATION DET PLAN 1, RATIO = 0.98

	******	* * * * * *	****	******	******	********	****	******	****	*****	******	******	***	*****	*****	****	******	******	******
	da mon	HRMN	ORD	OUTFLOW	STORAGE	STAGE *	DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* I	da mon	HRMN	ORD	OUTFLOW	STORAGE	STAGE
	1	0000	1	0.	0.0	* 2177.0 *	1	0410	51	151.	18.2	2182.8	*	1	0820	101	0.	0.2	2177.5
	1	0005	2	126.	8.1	2181.2 *	1	0415	52	151.	18.2	2182.8	*	1	0825	102	Ο.	0.2	2177.5
	1	0010	3	146.	15.7	2182.5 *	1	0420	53	150.	18.0	2182.8	*	1	0830	103	0.	0.2	2177.5
	1	0015	4	159.	23.2	2183.4 *	l	0425	54	150.	17.6	2182.7	*	1	0835	104	٥.	0.2	2177.5
	1	0020	5	169.		2184.2 *		0430	55	149.		2182.7		1	0840	105	0.		2177.5
	1	0025	6	178.		2184.9 *		0435	56	148.		2182.6		1	0845		0.		2177.5
	1	0030	7	185.		2185.5 *		0440	57	148.		2182.6		1	0850		0.		2177.5
	1	0035	8	188.	48.1	2185.7 *		0445	58	147.		2182.5			0855		0.		2177.5
	1 1	0040	9	187.		2185.6 * 2185.5 *		0450	59	146.		2182.5		1	0900		0.		2177.5
	1	0045 0050	10 11	186. 184.	45.6 44.3	2185.4 *		0455 0500	60 61	146. 145.		2182.5 2182.4		1 1	0905 0910		0. 0.		2177.5 2177.5
	1	0055	12	183.	44.5	2185.3 *		0505	62	145.		2182.4		1	0915		0.		2177.5
	1	0100	13	182.		2185.2 *		0510	63	144.		2182.3		1	0920		0.		2177.5
	1	0105	14	181.		2185.1 *		0515	64	143.		2182.2		1	0925		0.		2177.5
	1	0110	15	180.	39.3	2185.0 *		0520	65	141.		2182.2		1	0930		0.		2177.5
	1	0115	16	178.	38.0	2184.9 *	1	0525	66	140.	13.0	2182.1	*	1	0935	116	ο.	0.2	2177.5
	1	0120	17	177.	36.8	2184.8 *	1	0530	67	138.	12.3	2182.0	*	1	0940	117	0.	0.2	2177.5
	1	0125	18	175.	35.6	2184.7 *	1	0535	68	136.	11.6	2181.8	*	1	0945	118	ο.	0.2	2177.5
	1	0130	19	174.	34.4	2184.6 *	1	0540	69	134.	10.9	2181.7	*	l	0950	119	0.	0.2	2177.5
	1	0135	20	173.	33.2	2184.4 *	1	0545	70	132.	10.1	2181.6	*	1	0955	120	٥.	0.2	2177.5
	1	0140	21	171.	32.0	2184.3 *	1	0550	71	130.	9.3	2181.4	*	1	1000	121	٥.	0.2	2177.5
	1	0145	22	170.	30.9	2184.2 *		0555	72	127.	8.6	2181.3		1	1005		0.		2177.5
	1	0150	23	168.		2184.1 *		0600	73	125.		2181.1		1	1010		0.		2177.5
	1	0155	24	167.		2184.0 *		0605	74	122.	7.0	2181.0		1	1015		0.		2177.5
	1	0200	25	165.	27.4	2183.9 *		0610	75	119.	6.3	2180.8		1	1020		0.		2177.5
	1 1	0205 0210	26 27	164. 162.		2183.8 * 2183.6 *		0615 0620	76 77	115. 111.	5.5 4.8	2180.6 2180.4		1 1	1025 1030		0. 0.		2177.5 2177.5
	1		28	162.		2183.5 *		0625	78	107.		2180.4			1035		0. 0.		2177.5
	1	0220	29	159.		2183.4 *	1	0630	79	103.		2180.0		1	1040		0.		2177.5
	1	0225	30	157.		2183.3 *	_	0635	80	96.	2.7	2179.7		1	1045		0.		2177.5
	1	0230	31	156.	20.9	2183.2 *	1	0640	81	89.	2.1	2179.4	*	1	1050	131	0.		2177.5
	1	0235	32	154.	19.9	2183.0 *	1	0645	82	82.	1.6	2179.1	*	1	1055	132	ο.	0.2	2177.5
	1	0240	33	152.	18.9	2182.9 *	1	0650	83	69.	1.0	2178.7	*	1	1100	133	0.	0.2	2177.5
	1	0245	34	150.	17.9	2182.8 *	1	0655	84	54.	0.6	2178.2	*	1	1105	134	0.	0.2	2177.5
	1	0250	35	148.	17.0	2182.6 *	1	0700	85	30.	0.3	2177.8	*	1	1110	135	0.	0.2	2177.5
	1	0255	36	147.	16.0	2182.5 *	1	0705	86	5.	0.2	2177.6	*	1	1115	136	0.	0.2	2177.5
	1	0300	37	145.		2182.4 *		0710	87	1.	0.2	2177.5		1	1120		0.	0.2	2177.5
	1	0305		143.		2182.2 *		0715	88	1.		2177.5		1	1125		0.		2177.5
	1	0310	39	141.		2182.1 *	1	0720	89	0.	0.2	2177.5		1	1130		0.		2177.5
	1	0315	40	139.		2182.0 *		0725	90 91	0.	0.2	2177.5		1	1135		0.	0.2	2177.5
	1 1	0320	41 42	137. 137.	12.0 11.7	2181.9 *	1	0730 0735	91 92	0. 0.	0.2 0.2	2177.5 2177.5		1 1	1140		0. 0.	0.2	2177.5 2177.5
	1			137. 137.		2181.8 * 2181.9 *	_	0735		0. 0.		2177.5		_	1145 1150		0. 0.		2177.5 2177.5
	1	0330 0335		137.		2181.9 *		0740		0.		2177.5			1155		0. 0.		2177.5
	1	0340		142.		2182.2 *		0745		0.		2177.5			1200		o.		2177.5
	1	0345		142.		2182.3 *		0755		0.		2177.5			1205		0. 0.		2177.5
	1	0350		147.		2182.5 *		0800		0.		2177.5			1210		0.		2177.5
	1	0355		148.		2182.6 *		0805		0.		2177.5			1215		0.		2177.5
	1	0400		150.		2182.7 *		0810				2177.5			1220				2177.5
	1	0405		151.		2182.8 *		0815				2177.5			1225				2177.5
	******	*****	****	*******	******	*	****	******	****	*****	*****	******	*	*****	*****	* * * * *	*****	*****	******
	PEAK FI	LOW	TI	Æ			MAY	IMUM AVEF	AGE	FLOW									
	Lant F		17.1			6-HR		24-HR			12.42-HR							·	
4	CFS)	(HI			m.			,										
					(CFS)														
-	- 18	8.	0.5	58		155.		82.		82.	82.								

Ŧ

				CHES) C-FT)	3.269 77.		3.594 84.	-	.594 84.	3.594 84.							
PEAK ST	TORAGE	TIM	ſE		c		MUM AVER			10 40					-		
(AC-I	FT)	(HF	2)		6-HR		24-HR	.,	2-HP.	12.42-HR							
4	18.	0.5	8		22.		11.		11.	11.				-	-		
PEAK S	STAGE	TIM	1E		-	MAX	IMUM AVE	RAGE	STAGE	,							
(FEE	ET)	(HR	1)		6-HR		24-HP.	7	2-HR	12.42-HR							
2185.	73	0.5			2183.13	21	80.39	218	0.39	2180.39	-			-			
			CU	MULATIVE	AREA =	0.4	4 SQ MI										
*****	*****	****	******	******	*******	****	******	****	******	*******	******	****	******	****	******	******	*****
								RAPH AN 1,	AT STATIC RATIO	DN DE = 0.97	T						
*****	*****	****	*****	******	******	****	*****	****	*****	******	******	* * * * *	*******	****	*****	*****	*****
DA MON	I HRMN	ORD	OUTFLOW	STORAGE	STAGE	• DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* * DA	MON HRMN	ORD	OUTFLOW	STORAGE	STAGE
1	0000	ı	0.	0.0	2177.0	• 1	0410	51	150.	17.9	2182.8	* * 1	0820	1 0ī	ο.	0.2	2177.5
1	0005	2	126.	8.1	2181.2 '	1	0415		150.		2182.8		0825		0.	0.2	2177.5
1	0010	3	146.		2182.5		0420	53	150.		2182.7		0830		0.		2177.5
1 1	0015 0020	4 5	159. 169.		2183.4		0425 0430	54 55	149. 148.		2182.7 2182.6		0835 0840		Ō. 0.		2177.5 2177.5
1	0025	6	178.		2184.9		0435	56	147.		2182.6		- 0845		0.		2177.5
1	0030	7	185.	45.2	2185.5	• 1	0440	57	147.	16.2	2182.5	* 1	0850	107	ο.	0.2	2177.5
1	0035	8	188.		2185.7		0445	58	146.	15.9	2182.5	* 1	0855	108	٥.	0.2	2177.5
1	0040	9	187.		2185.6		0450	59	146.		2182.4		0900		0.		2177.5
1 1	0045 0050		186. 184.		2185.5 * 2185.4 *		0455 0500	60 61	145. 144.		2182.4 2182.4		0905 0910		0. 0.		2177.5 2177.5
1	0055		183.		2185.3		0505	62	144.		2182.3		0915		0.		2177.5
1	0100		182.		2185.2 *		0510	63	143.		2182.2		0920		0.		2177.5
1	0105	14	181.	40.5	2185.1 *	• 1	0515	64	142.	-13.8	2182.2	* 1	0925	114	٥.	0.2	2177.5
1	0110		180.		2185.0		0520	65	141.		2182.1		0930		0.		2177.5
1 1	0115 0120		178. 177.		2184.9 * 2184.8 *		0525 0530	66 67	139. 137.		2182.0 2181.9		0935 0940		0.		2177.5 2177.5
1	0125		175.		2184.7		0535	68	137.		2181.9		0945		0. 0.		2177.5
1	0130		174.		2184.6		0540		133.		2181.6		0950		0.		2177.5
1	0135	20	173.	33.2	2184.4	- 1	0545	70	131.	9.7	2181.5	* 1	0955	120	ο.	0.2	2177.5
1	0140		171.		2184.3 *		0550		128.		2181.3		1000		0.		2177.5
1	0145		170.		2184.2 *		0555		126.		2181.2		1005		0.		2177.5
1 1	0150 0155		168. 167.		2184.1		0600 0605	73 74	124. 120.	7.4 6.7	2181.1 2180.9		1010 1015		0. 0.		2177.5 2177.5
1	0200	25	165.		2183.9		0610	75	120.		2180.9		1013		ō.		2177.5
1	0205		164.		2183.8		0615		113.	5.2		-	1025		0.		2177.5
1	0210		162.		2183.6 *		0620	77	109.		2180.3		1030		0.		2177.5
1	0215		160.		2183.5 *		0625	78	105.		2180.1		1035		0.		2177.5
1 1	0220 0225	29 30	159. 157.		2183.4 *		0630 0635	79 80	100. 93.		2179.8 2179.5		-1040 1045		0. 0.		2177.5 2177.5
1	0230		156.		2183.2 *		0640	81	86.	1.9	2179.2		1045		0.		2177.5
1	0235		154.		2183.0 *		0645	82	78.		2178.9		1055		0.		2177.5
1	0240		152.		2182.9 *		0650	83	61.		2178.4		1100	133	0.		2177.5
1	0245		150.		2182.8 *		0655	84	48.		2178.1		1105		0.		2177.5
1	0250 0255		148. 146.		2182.6 * 2182.5 *		0700 0705	85 86	13. 2.		2177.6 2177.5		1110		0.		2177.5
1 1	0255		146. 145.		2182.5		0705	86 87	1.		2177.5		1115 1120		0. 0.		2177.5 2177.5
1	0305		143.		2182.2 *		0715	88	0.		2177.5		1120		0.		2177.5
1	0310		141.		2182.1 *		0720	89	0.		2177.5		1130		0.		2177.5
1	0315		139.		2182.0 *		0725	90	0.		2177.5		1135	140	0.	0.2	2177.5
1	0320		137.		2181.9 *		0730	91	0.		2177.5		1140		0.	0.2	2177.5
1	0325		136.		2181.8 *		0735	92	0.		2177.5		1145		0.		2177.5
1	0330 0335		137. 139.		2181.9 * 2182.0 *		0740 0745	93 94	0. 0.		2177.5 2177.5		1150 1155		- 0. 0.		2177.5 2177.5
1			139.		2182.0 *		0745	94 95	0. 0.		2177.5		1200		0. 0.		2177.5
1 1	0340	40				-						-		-	*.		
1 1 1	0340 0345		144.		2182.3 *	1	0755	96	0.	0.2	2177.5	* 1	1205	146	0.	0.2	2177.5

1	0355	48	148.	16.7	2182.6 *	1	0805	98	0.	0.2	2177.5 *	1	1215 148	0.	0.2	2177.5		
1	0400	49	149.	17.3	2182.7 *	1_	0810	99	0.	0.2	2177.5 *	1	1220 149	0.	0.2	2177.5	-	
1	0405	50	150.	17.7	2182.7 *	1	0815	100	0.	0.2	2177.5 *	1	1225 150	ο.'	0.2	2177.5		
					*						*							

PEAK I	FLOW TIME			MAXIMUM AVE	RAGE FLOW	
			6-HR	24-HR	72-HR	12.42-HR
+ (CFS	5) (HR)					
		(CFS)				
+ 18	38. 0.58		154.	82.	82.	82.
		(INCHES)	3.261	3.571	3.571	3.571
		(AC-FT)	76.	84.	84.	84.
PEAK ST	forage time			MAXIMUM AVER	AGE STORAGE	
			6-HR	24-HR	72-HR	12.42-HR
+ (AC-I	T) (HR)					
4	18. 0.58		22.	11.	11.	11.
PEAK S	STAGE TIME			MAXIMUM AVE	RAGE STAGE	
			6-HR	24-HR	72-HR	12.42-HR
+ (FEE	ET) (HR)					
2185.	73 0.58		2183.11-	2180.37	2180.37	2180.37
		CUMULATI	VE AREA =	0.44 SQ MI		

1

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

							CIPITATION
OPERATION	STATION	AREA	PLAN		RATIO 2		
				1.00	0.98	0.97	
HYDROGRAPH AT							
+	1A	0.06	1 FLOW	56.	54.	. 53.	
			TIME	3.67	3.67	3.67	<u> </u>
HYDROGRAPH AT							
+	1B	0.03	1 FLOW	37.	35.	35.	
			TIME	3.58	3.58	3.58	
DIVERSION TO							
+	1BSPLIT	0.03	1 FLOW	18.	18.	. 17.	
			TIME	3.58	3.58	3.58	
1							
HYDROGRAPH AT							
+	1BSPLIT	0.03	1 FLOW	18.	18.	17.	
			TIME	3.58	3.58	3.58	
ROUTED TO							
+	1B_R	0.03	1 FLOW	18.	18.	17.	
	10_11	0.05	TIME	3.67	3.67	3.67	
2 COMBINED AT							_
, +	1A_C	0.09	1 FLOW	74.	71.	70.	
			TIME	3.67	3.67	3.67	· · · ·
ROUTED TO							
+	1R	0.09	1 FLOW	72.	69.	68.	
k.			TIME	3.67	3.67	3.67	· · · · · · · · · · · · · · · · · · ·
HYDROGRAPH AT							
+	8	0.12	1 FLOW	80.	77.	76.	
		-	TIME	4.00	4.00	4.00	
2 COMBINED AT							
+	8C	0.21	1 FLOW	134.	130.	127.	-
			TIME	3.83	3.83	383	- ,
1							

HYDROGRAPH AT							
+	2	0.03	1	FLOW	25.	24.	24.
				TIME	3.67	3.67	3.67
ROUTED TO							
+	2R	0.03	1	FLOW	25.	24.	23.
				TIME	3.67	3.67	3.67
HYDROGRAPH AT							
+	4	0.03	1	FLOW TIME	34. 3.58	33.	32.
				1105	5.36	3.58	3.58
2 COMBINED AT							
+	4C	0.05	1	FLOW TIME	58. 3.67	56. 3.67	55. 3.67
ROUTED TO	4R	0.05	1 -	FLOW	57.	55.	54.
		0.00	-	TIME	3.67	3.67	3.67
HYDROGRAPH AT							
+	б	0.05	1	FLOW	50.	48.	47.
				TIME	3.67	3.67	3.67
2 COMBINED AT	2						
+	6C	0.11	1	FLOW	107.	104.	102.
				TIME	3.67	3.67	3.67
HYDROGRAPH AT							
+	1BSPLIT	0.00	1	FLOW TIME	18.	18.	17.
				TIME	3.58	3.58	3.58
ROUTED TO							
+	1B_R	0.00	1.	FLOW TIME	18. 3.67	18. 3.67	17. 3.67
HYDROGRAPH AT +	3	0.04	1	FLOW	27.	26.	26.
			-	TIME	3.75	3.75	3.75
2 COMBINED AT							
+	3C	0.04	1	FLOW	45.	43.	42.
				TIME	3.75	3.75	3.75
ROUTED TO							
+	3R	0.04	1		44.	42.	41.
				TIME	3.75	3.75	3.75
HYDROGRAPH AT							
+	5	0.05	1	FLOW TIME	60. 3.58	58. 3.58	57. 3.58
				11112	5.50	3.50	5.58
2 COMBINED AT		0.00					
+	5C	0.09	1.	_ FLOW TIME	96. 3.67	93. 3.67	91. 3.67
HYDROGRAPH AT +	7	0.03	1	FLOW	17.	16.	15.
•				TIME	3.58	3.58	3.58
4 COMBINED AT							
+	INFLOW	0.44	1	FLOW	339.	327.	320.
L				TIME	3.67	3.67	3.67
HYDROGRAPH AT							
+	OVERFLOW	0.00	1 .	FLOW	1238.	1238.	1238.
n.				TIME	0.08	0.08	0.08
2 COMBINED AT							
+	COMBINE	0.44	1	FLOW	1238.	1238.	1238.
ł				TIME	0.08	0.08	0.08

-· · · · · · · · · · ·

. .-

÷-

ROUTED TO 0.44 1 FLOW 188. 188. 188. DET TIME 0.58 0.58 0.58 ** PEAK STAGES IN FEET ** 1 STAGE 2185.74 2185.73 2185.73 TIME 0.58 0.58 0.58 HYDROGRAPH AT 9 0.08 1 FLOW 35. 33. 32. TIME 3.58 3.58 3.58 HYDROGRAPH AT 1 FLOW 174. 10 0.13 169. 166. TIME 3.58 3.58 3.58 SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING (FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW) INTERPOLATED TO COMPUTATION INTERVAL ISTAQ ELEMENT DT PEAK TIME TO VOLUME PEAK TIME TO DT VOLUME PEAK PEAK (MIN) (CFS) (MIN) (IN) (MIN) (CFS) (MIN) (IN) FOR PLAN = 1 RATIO= 1.00 17.81 220.00 1B_R MANE 2.52 18.16 221.09 0.68 5.00 0.68 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1208E+01 EXCESS=0.0000E+00 OUTFLOW=0.1211E+01 BASIN STORAGE=0.2093E-04 PERCENT ERROR= -0.3 FOR PLAN = 1 RATIO= 0.98 1B_R MANE 2.48 17.73 219.98 0.65 5.00 17.73 220.00 0.66 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1164E+01 EXCESS=0.0000E+00 OUTFLOW=0.1168E+01 BASIN STORAGE=0.2090E-04 PERCENT ERROR= -0.3 FOR PLAN = 1 RATIO= 0.97 1B_R MANE 2.55 17.26 220.79 0.64 5.00 16.92 220.00 0.64 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1143E+01 EXCESS=0.0000E+00 OUTFLOW=0.1145E+01 BASIN STORAGE=0.2768E-04 PERCENT ERROR= -0.2 FOR PLAN = 1 RATIO= 1.00 1R MANE 0.80 73.01 221.32 1.07 5.00 71.58 220.00 1.07 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5201E+01 EXCESS=0.0000E+00 OUTFLOW=0.5204E+01 BASIN STORAGE=0.2421E-04 PERCENT ERROR= 0.0 FOR PLAN = 1 RATIO= 0.98 1R MANE 0.67 71.15 221.54 1.03 5.00 69.40 220.00 1.03 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5018E+01 EXCESS=0.0000E+00 OUTFLOW=0.5022E+01 BASIN STORAGE=0.2476E-04 PERCENT ERROR= -0.1 FOR PLAN = 1 RATIO= 0.97 1R MANE 0.67 69.22 221.68 1.01 5.00 67.67 220.00 1.01 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4917E+01 EXCESS=0.0000E+00 OUTFLOW=0.4920E+01 BASIN STORAGE=0.2372E-04 PERCENT ERROR= -0.1 FOR PLAN = 1 RATIO= 1.00 1.34 24.88 221.17 1.23 5.00 2R MANE 24.82 220.00 1.23

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1733E+01 EXCESS=0.0000E+00 OUTFLOW=0.1735E+01 BASIN STORAGE=0.4188E-05 PERCENT ERRORE -0.1
        FOR PLAN = 1 RATIO= 0.98
             2R MANE 1.36 23.95 221.78 1.18 5.00 23.88 220.00 1.18
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1668E+01 EXCESS=0.0000E+00 OUTFLOW=0.1670E+01 BASIN STORAGE=0.5310E-05 PERCENT ERROR= -0.1
        FOR PLAN = 1 RATIO= 0.97
             2R MANE 1.34 23.50 222.46 1.16 5.00 23.42 220.00
                                                                                  1.16
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1636E+01 EXCESS=0.0000E+00 OUTFLOW=0.1638E+01 BASIN STORAGE=0.4904E-05 PERCENT ERROR= -0.1
        FOR PLAN = 1 RATIO= 1.00
            4R MANE 0.61 57.76 221.15 1.43 5.00 57.32 220.00
                                                                                  1.43
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4083E+01 EXCESS=0.0000E+00 OUTFLOW=0.4085E+01 BASIN STORAGE=0.6394E-05 PERCENT ERROR= -0.1
        FOR PLAN = 1 RATIO= 0.98
            4R MANE 0.59 55.77 220.89 1.38 5.00 55.35 220.00 .1.38.
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3941E+01 EXCESS=0.0000E+00 OUTFLOW=0.3943E+01 BASIN STORAGE=0.6175E-05 PERCENT ERROR= -0.1
        FOR PLAN = 1 RATIO = 0.97
             54.36 220.00 ...1.36
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3871E+01 EXCESS=0.0000E+00 OUTFLOW=0.3873E+01 BASIN STORAGE=0.6091E-05 PERCENT ERROR= 0.0
        FOR PLAN = 1 RATIO= 1.00
          1B_R MANE 2.52 18.16 221.09 -1.00 5.00 17.81 220.00 -1.00
        FOR PLAN = 1 RATIO= 0.98
                              _ ....
          1B_R MANE 2.48 17.73 219.98 -1.00 5.00 17.73 220.00
                                                                                  -1.00
        FOR PLAN = 1 RATIO= 0.97
           1B_R MANE 2.55 17.26 220.79 -1.00
                                                          5.00
                                                                 16.92 220.00
                                                                                  --1.00
        FOR PLAN = 1 RATIO= 1.00
            3R MANE 1.52 44.40 227.97 1.87 5.00
                                                                43.55 225.00
                                                                                  1.86
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3538E+01 EXCESS=0.0000E+00 OUTFLOW=0.3541E+01 BASIN STORAGE=0.5828E-04 PERCENT ERROR= -0.1
        FOR PLAN = 1 RATIO= 0.98
                               42.98 228.05 1.80 5.00 42.32 225.00
            3R MANE 1.54
                                                                                  1.80
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3414E+01 EXCESS=0.0000E+00 OUTFLOW=0.3416E+01 BASIN STORAGE=0.5772E-04 PERCENT ERROR= -0.1
       FOR PLAN = 1 RATIO= 0.97
            3R MANE 1.52 41.95 227.61 1.76 5.00
                                                                41.15 225.00
                                                                                  1.76
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3342E+01 EXCESS=0.0000E+00 OUTFLOW=0.3345E+01 BASIN STORAGE=0.5323E-04 PERCENT ERROR= -0.1
```

*** NORMAL END OF HEC-1 ***

Total job elapsed time = 01 min 17 sec.

. .

hdrinc.com 3200 E. Camelback Road, Suite 350 Phoenix, AZ 85018 602.522.7700