Quiet Wing

EMSL’s Quiet Wing supports a wide range of research areas, including climate, biological, environmental and energy systems, of importance to the Department of Energy. It is among the most advanced quiet laboratories in the world for high-resolution imaging capabilities.

The Quiet Wing is a unique research environment housing a suite of ultrasensitive microscopy and scanning instruments. It was designed to help accelerate critical science by allowing state-of-the-art ultrasensitive microscopy equipment to operate at optimal resolution. A temperature-controlled facility, the wing’s design eliminates or reduces to a minimum the vibrations, acoustics and electromagnetic noise that can interfere with the resolution of ultrasensitive scientific instrumentation.

The 9,500-square-foot facility features eight quiet laboratory cells and a sample preparation area. The wing currently houses seven microscopy instruments and has room for one more. These microscopes are just a few of the extensive suite of microscopy instruments at EMSL available for scientific inquiry.

EMSL's microscopy capabilities, including those in the Quiet Wing, are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Learn more about becoming an EMSL user.

Learn more about each instrument and the science it advances on EMSL's YouTube channel and watch the video below on the Quiet Wing.

A new DTEM – Dynamic Transmission Electron Microscope – is under development at EMSL in collaboration with scientific colleagues at Pacific Northwest National Laboratory. It will be housed in the Quiet Wing. To learn more about this system, the science it will advance and its historical development, visit the DTEM page.

Related information:

EMSL’s Quiet Wing supports a wide range of research areas, including climate, biological, environmental and energy systems, of importance to the Department of Energy. It is among the most advanced quiet laboratories in the world for high-resolution imaging capabilities.

The Quiet Wing is a unique research environment housing a suite of ultrasensitive microscopy and scanning instruments. It was designed to help accelerate critical science by allowing state-of-the-art ultrasensitive microscopy equipment to operate at optimal resolution. A temperature-controlled facility, the wing’s design eliminates or reduces to a minimum the vibrations, acoustics and electromagnetic noise that can interfere with the resolution of ultrasensitive scientific instrumentation.

The 9,500-square-foot facility features eight quiet laboratory cells and a sample preparation area. The wing currently houses seven microscopy instruments and has room for one more. These microscopes are just a few of the extensive suite of microscopy instruments at EMSL available for scientific inquiry.

EMSL's microscopy capabilities, including those in the Quiet Wing, are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Learn more about becoming an EMSL user.

Learn more about each instrument and the science it advances on EMSL's YouTube channel and watch the video below on the Quiet Wing.

A new DTEM – Dynamic Transmission Electron Microscope – is under development at EMSL in collaboration with scientific colleagues at Pacific Northwest National Laboratory. It will be housed in the Quiet Wing. To learn more about this system, the science it will advance and its historical development, visit the DTEM page.

Related information:

Vapor phase ketonization of acetic acid on ceria based metal oxides.

Abstract: 

The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

Citation: 
Liu C, AM Karim, VMC Lebarbier, D Mei, and Y Wang.2013."Vapor phase ketonization of acetic acid on ceria based metal oxides."Topics in Catalysis 56(18-20):1782-1789. doi:10.1007/s11244-013-0114-2
Authors: 
Wang Yong
Liu C
AM Karim
VMC Lebarbier
D Mei
Y Wang
Facility: 
Instruments: 
Volume: 
56
Issue: 
Pages: 
1782-1789
Publication year: 
2013

Pages

Instruments

EMSL's environmental transmission electron microscope (ETEM) is a state-of-the-art, Cs-corrected field emission gun (FEG) scanning transmission...
Custodian(s): Libor Kovarik
Type of Instrument:
Microscope
The Helium Ion Microscope promises to advance biological, geochemical, biogeochemical, and surface/interface studies using its combined surface...
The JEOL JEM-3000SFF was designed for high-resolution cryogenic transmission electron microscopy (cryo-EM) of biological samples and expands EMSL/...
EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface...
Custodian(s): Igor Lyubinetsky
EMSL's aberration-corrected Titan 80-300™ scanning/transmission electron microscope (S/TEM) provides high-resolution imaging with sub-angstrom...
Custodian(s): Chongmin Wang, Scott Lea

Science Highlights

Posted: June 08, 2016
Zeolites are promising catalysts for turning biomass into transportation fuels, but their stability in hot water is difficult to understand and...
Posted: May 10, 2016
A team of scientists from University of Pittsburgh, EMSL, Pacific Northwest National Laboratory, University of Electronic Science and Technology of...
Posted: May 03, 2016
A team of scientists at EMSL, the Advanced Light Source, Lawrence Berkeley National Laboratory and University of Massachusetts found up to 60...
Posted: April 22, 2016
Scientists at Pacific Northwest National Laboratory, or PNNL, EMSL and the University of Washington collaborated to study rechargeable zinc-...
Posted: December 29, 2015
The Science A wide variety of microbes thrive at high temperatures such as those found in hot springs of Yellowstone National Park. Archaeal...

Instruments

There are no related projects at this time.

Related Videos