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Abstract This paper focuses on the US Billion-dollar Weather/Climate Disaster report

by the National Oceanic and Atmospheric Administration’s National Climatic Data Center.

The current methodology for the production of this loss dataset is described, highlighting

its strengths and limitations including sources of uncertainty and bias. The Insurance

Services Office/Property Claims Service, the US Federal Emergency Management Agen-

cy’s National Flood Insurance Program and the US Department of Agriculture’s crop

insurance program are key sources of quantified disaster loss data, among others. The

methodology uses a factor approach to convert from insured losses to total direct losses,

one potential limitation. An increasing trend in annual aggregate losses is shown to be

primarily attributable to a statistically significant increasing trend of about 5 % per year in

the frequency of billion-dollar disasters. So the question arises of how such trend estimates

are affected by uncertainties and biases in the billion-dollar disaster data. The net effect of

all biases appears to be an underestimation of average loss. In particular, it is shown that

the factor approach can result in a considerable underestimation of average loss of roughly

10–15 %. Because this bias is systematic, any trends in losses from tropical cyclones

appear to be robust to variations in insurance participation rates. Any attribution of the

marked increasing trends in crop losses is complicated by a major expansion of the fed-

erally subsidized crop insurance program, as a consequence encompassing more marginal

land. Recommendations concerning how the current methodology can be improved to

increase the quality of the billion-dollar disaster dataset include refining the factor

approach to more realistically take into account spatial and temporal variations in insur-

ance participation rates.
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1 Introduction

The US Billion-dollar Weather/Climate Disaster report by the National Oceanic and

Atmospheric Administrations’s National Climatic Data Center provides readers with an

aggregated loss perspective for major weather and climate events since 1980 (NCDC

2012). This report quantifies the loss from numerous weather and climate disasters

including: tropical cyclones, floods, droughts/heat waves, severe local storms (e.g., tor-

nado, hail, straight-line wind damage), wildfires, crop freeze events and winter storms.

These loss estimates reflect direct effects of weather and climate events (i.e., not including

indirect effects) and constitute total losses (i.e., both insured and uninsured). The insured

and uninsured direct losses include: physical damage to residential, commercial and

government/municipal buildings, material assets within a building, time element losses

(i.e., time–cost for businesses and hotel-costs for loss of living quarters), vehicles, public

and private infrastructure, and agricultural assets (e.g., buildings, machinery, livestock).

Our disaster loss assessments do not take into account losses to natural capital/assets,

healthcare-related losses, or values associated with loss of life.

Only weather and climate disasters whose losses exceed the billion-dollar threshold, in

US $ for the year 2011 adjusted for inflation using the Consumer Price Index (CPI), are

included in this dataset (Fig. 1). While this threshold is somewhat arbitrary, these billion-

dollar events account for roughly 80 % of the total ($880B out of $1,100B) US losses for

all combined severe weather and climate events (Munich Re 2012; NCDC 2012). This

adjustment does allow some disaster events that have nominal losses less than $1 billion to

be counted, but these events reflect only 19 of 133 total events. The distribution of the

damage and frequency of these disasters across the 1980–2011 period of record is

Fig. 1 US billion-dollar weather and climate disaster time series from 1980–2011 indicates the number of
annual events exceeding $1 billion in direct damages, at the time of the event and also adjusted to 2011
dollars using the consumer price index (CPI)
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dominated by tropical cyclone losses (Table 1), but the frequency and loss totals from

severe local storms increased the most over the last several years.

First, the current methodology for the production of the US billion-dollar disaster loss

dataset is described. The goal is to highlight strengths and limitations of this dataset,

identifying potential sources of uncertainty and bias. Because most of the data sources

provide only insured losses, a ‘‘factor approach’’ (based on approximate average insurance

participate rates) is used for conversion into the corresponding total losses. A number of

studies have concluded that population growth, increased value of property at risk and

demographic shifts are major factors behind the increasing losses from weather and climate

disasters (Pielke et al. 2008; Downton and Pielke 2005; Brooks and Doswell 2001).

Nevertheless, the billion-dollar disaster dataset is only adjusted for inflation.

Figure 1 suggests apparent increasing trends in both the annual frequency of billion-

dollar events and in the annual aggregate loss from these events. So, another goal of the

paper is to study how any trend estimates are affected by uncertainties and biases in the

billion-dollar disaster data. Particular attention is devoted to the effects of the factor

approach for conversion from insured to total loss. A final goal is to make recommenda-

tions concerning how the current methodology can be improved to increase the quality of

the dataset.

An outline of the paper is as follows. Sources of data for disaster losses are described in

Sect. 2. Next, the current method for estimating total direct loss, focusing on specific

disaster examples, is presented in Sect. 3. The effects of uncertainties and biases on the

detection and attribution of trends in losses are assessed in Sect. 4. Finally, Sect. 5 contains

a discussion and conclusions, including recommendations for how the billion-dollar dataset

can be improved.

2 Data sources

Estimating the total direct economic losses from a natural disaster event is an iterative

process due to the number of datasets, public and private, needed to inform an assessment

(Table 2). Economic loss estimates are often not reliable for several months to years after a

major disaster due to the time it takes to receive, process and verify insurance claims in a

complex post-disaster environment. Sources providing insured loss data following a

Table 1 Damage, percent damage, frequency and percent frequency by disaster type across the 1980–2011
period for all billion-dollar events (adjusted for inflation to 2011 dollars)

Number
of events

Adjusted damages
($ Billions)

Percent
damage

Percent
frequency

Tropical cyclones 31 417.9 47.4 23.3

Droughts/heatwaves 16 210.1 23.8 12.0

Severe local storms 43 94.6 10.7 32.3

Non-tropical floods 16 85.1 9.7 12.0

Winter storms 10 29.3 3.3 7.5

Wildfires 11 22.2 2.5 8.3

Freezes 6 20.5 2.3 4.5

Total 133 881.2 100.0 100.0
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disaster include the Insurance Services Office (ISO) Property Claim Services (PCS),

Federal Emergency Management Agency (FEMA) National Flood Insurance Program

(NFIP) and Presidential Disaster Declaration (PDD) assistance, and the United States

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and

Risk Management Agency (RMA).

Each of these data sources provides unique information as part of the overall disaster

loss assessment. However, there is variance in what information is available for specific

disaster types. Table 2 is partitioned by the data sources we use to quantify the direct losses

resulting from weather and climate disasters and the metadata attributes for each of the

data sources. This includes the data source disaster loss variables, the temporal period and

spatial resolution of the data, report update cycles, changes in recording thresholds and the

collection sources used to develop the data. For example, the ISO/PCS source provides

insurance loss data for tropical cyclones, severe local storms, winter storms and wildfires,

but not drought, crop freeze or flooding, as data for those events are provided by USDA

and FEMA. The loss variables included for each of the data providers are also distinct. PCS

aggregates several sources of insured loss including residential and commercial property,

business interruption losses, vehicles, boats, and inland marine losses, but does not include

losses to agriculture, aviation, ocean marine or losses resulting from flooding. Again, these

categories of insured losses are detailed by USDA and FEMA data. The cost of the

premiums and loss above limits are not traditionally included, which does create an under

bias in losses, but we estimate this into our un(der)insured (i.e., uninsured and underin-

sured) loss adjustments, as discussed in Sect. 3.

There have also been changes in disaster definitions and coverage limits for each of

these data sources. For example, in 1949, when the PCS data collection began, the insured

loss threshold requirement was $1 million in damage within a single state, to be classified

as a ‘disaster.’ This threshold increased to $5 million in January 1982 and then increased to

$25 million in January 1997. The current catastrophe definition is an event causing $25

million or more of insured property damage and having affected a significant number of

policyholders and insurers (ISO 2011). However, these changes do not particularly affect

our analysis due to the relatively high, billion-dollar threshold.

Another example is how the FEMA/NFIP residential and commercial coverage limits

have increased several times, with policy revisions enacted in 1973, 1977, 1994 and 2004

(NFIP 2010). Likewise, participation in USDA crop insurance programs has also increased

through time. The largest rise in crop insurance participation occurred after the Federal

Crop insurance Reform Act of 1994, which introduced the catastrophe risk protection level

of coverage, in which the premiums were completely subsidized and a modest processing

fee was charged for each insured crop. Perhaps most important are the general increases in

insurance participation over time and the rise in value of insured property, with respect to

the reported insured data. Better understanding the un(der)insured losses are a key chal-

lenge given the data.

3 Method for estimating total direct losses

3.1 Insurance data as basis for estimation

To estimate the total loss from disasters, we first consider public and private insurance

coverage. Based on the data available, we employ a simplified factor method, which differs

by disaster type (Table 3).
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3.1.1 FEMA/National flood insurance program

For example, residential and commercial flood insurance is most widely provided and

managed by FEMA’s National Flood Insurance Program. Mortgage lenders require any

residence within FEMA Special Flood Hazard Areas (SFHAs) to purchase flood insurance.

The SFHAs are commonly referenced as those within the 100-year flood plain boundaries.

However, the enforcement and participation is not uniform. The NFIP market is highly

concentrated, as nearly 70 % of policies are in five states—Florida, Texas, Louisiana, New

Jersey and California, while Florida and Texas together represent more than 50 % of the

total NFIP active policies across all states (Kunreuther and Michel-Kerjan 2011). There is

also a bias in NFIP participation depending on the number of single-family houses that

exist in the SFHAs where the mandatory purchase of flood insurance applies. Research by

Dixon et al. (2006) found that the NFIP participation is 16 % in communities with 500 or

fewer homes in the SFHA, 56 % in communities with 501–5,000 homes in the SFHA, and

66 % in communities with [5,000 homes in the SFHA zone.

Given these differences, it is necessary to account for how NFIP participation varies

across states and regions. One study by PricewaterhouseCoopers (1999) found in 1997 that

the nationwide market participation for the NFIP across the United States was estimated at

26 % of eligible parcels. Dixon et al. (2006) found that the chances of purchasing insur-

ance are higher for SFHA communities subject to coastal flooding/storm surge (63 %)

versus communities more at risk to riverine flooding (35 %). Flood insurance coverage

drops off steeply outside of the high-risk flood areas, which is important as 25 % of all

flood insurance claims come from low-to-moderate-risk areas (FEMA 2011). The Dixon

et al. study details how NFIP participation varies regionally inside and outside the SFHAs,

showing high degrees of variability. Participation rates in the SFHAs are relatively low in

the Midwest (22 %) and Northeast (28 %) regions while higher in the South (61 %) and

Table 3 Method for developing billion-dollar disaster event loss calculations by disaster type and data
sources using a factor approach to convert from insured to total losses

Severe Storm or Winter Storm: when \ $1 billion PCS total for each
state = (PCS 9 1.25) ? (FEMA_PDD if [ PCS 9 0.25)a ? (NFIP 9 4.00)c ? (State reportd or
USDA 9 2.00) ? (OTHER)

Severe Storm or Winter Storm: when [ $1 billion PCS total for each
state = (PCS 9 1.42) ? (FEMA_PDD if [ PCS 9 0.42)a ? (NFIP 9 4.00)c ? (State reportd or
USDA 9 2.00) ? (OTHER)

Tropical Cycloneb = (PCS 9 2.00) ? (FEMA_PDD if [ PCS 9 1.00) ? (NFIP 9 1.00)c ? (State
reportd or USDA 9 2.00) ? (OTHER)

Non-tropical flooding = (NFIP 9 4.00)c ? (State reportd or USDA 9 2.00)
? (FEMA_PDD) ? (OTHER)

Drought/Heatwaves = (State reportd or USDA 9 2.00) ? (FEMA_PDD) ? (OTHER)

Wildfire = (PCS 9 2.00) ? (FEMA_PDD if [ PCS 9 1.00) ? (State reportd or
USDA 9 2.00) ? (OTHER)

Freezing Episode = (State reportd or USDA 9 2.00) ? (FEMA_PDD) ? (OTHER)

a Only incorporate the higher factor of PCS or FEMA_PDD in addition to original to represent underinsured
loss b For hurricane wind/water damage, state reports may inform how the PCS to NFIP insurance ratio is
adjusted c NFIP factor adjusted based on available data (i.e., NFIP participation rates, state or river-basin
assessments, etc.) d State reports may supersede USDA crop loss data if it produces a more complete total
agriculture loss estimate
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West (60 %). However, NFIP policy participation outside the SFHAs in all US regions is

very low (\than 10 %), as these reflect low-to-moderate flood risk areas where coverage is

not required. For our own comparison of the spatial variation in NFIP penetration, we have

a county-based NFIP penetration database provided to us by FEMA, but it also reflects

spatial issues as discussed.

It is also important to note that commercial and residential needs for flood insurance

coverage exceeding the limits of NFIP policies can be fulfilled by specialized private sector

flood insurers. We rely on commercial flood losses estimates from Reinsurance companies

to better understand these impacts not reported in the NFIP data. Personal and commercial

vehicle flood damage is part of private comprehensive insurance, as reported by ISO/PCS.

With the exception of some commercial, residential and most all vehicle policies, the NFIP

underwrites US flood risk.

Given the complexity of the data, we use a regional approximation for NFIP coverage

and apply a factor than corresponds with the NFIP participation rate. This seeks to adjust

for total flood damage potential for those properties not covered by NFIP insurance pay-

ments. For example, if a region had approximately 25 % policy protection, we apply a

factor of 4.0 to NFIP flood insurance payment totals for an inland flooding event. However,

this factor is adjusted higher when widespread, prolonged flooding event takes place across

a large area (e.g., 1993 Midwest Flood), in which damage has occurred beyond the SFHAs

where policy coverage is very sparse.

3.1.2 ISO/Property claim services

For severe local storms where high wind and hail cause property damage, we use a

different methodology. The widespread use of homeowners insurance provides coverage

against many natural hazards including wind storm, hail, fire, lightning, snow, sleet,

weight of ice, etc. Several surveys from the Insurance Information Institute (III) and the

National Association of Insurance Commissioners (NAIC) from the early 1980s through

2011 report that 83–95 % of residences obtained covered by multi-peril insurance pol-

icies (e.g., specific to wind, hail, lightning damage). However, lower income residences

often do not have insurance and the 25 % of society that rent largely do not have

insurance for their possessions. Given these caveats, we have approximated that 80 % of

losses will be covered during a typical severe weather outbreak, which PCS indicates is a

good standard (ISO/Gary Kerney personal communication 2012). PCS data reflect the

residential, commercial and vehicle claims for high wind or hail damage. As a result, we

use PCS insured losses 9 1.25 as one adjustment in the equation. However, not all

structures have insurance coverage and others do not have enough coverage to replace

structural, contents, and time element losses, which result during the most severe events.

To better approximate insured losses from the most severe events causing extreme

devastation (e.g., April 25–28, 2011 Southeast Super Outbreak), we approximate that

only 70 % of total losses will be covered by insurance and factor PCS insured los-

ses 9 1.42. This 70 % factor is used when PCS insured loss amounts [$1 billion for a

single state (CPI-adjusted) resulting from an outbreak of severe weather. This is likely a

conservative standard, but reflects the larger number of structures exposed to higher

amounts of loss from the most destructive severe weather outbreaks. This has happened

only rarely when tornadoes or large hail affects large suburban or urban areas (e.g., May

1999 Oklahoma City, OK; May 2011 Joplin, MO).
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3.1.3 USDA/Risk management agency

Our disaster loss methodology also examines USDA/RMA crop insurance data to further

adjust or supplement our total loss calculations. Farmers’ participation in the Federal crop

insurance program is voluntary. RMA has overall responsibility for supervising the Federal

crop insurance program, which it administers in partnership with the private sector.

Insurance policies are sold and completely serviced through approved private insurance

companies, and insurance policies cover losses due only to natural disasters. The producer

selects both the percentage of yield to be covered (i.e., 50–75; 85 % coverage is available

for limited crops and in limited areas) and the percentage of the commodity price

(55–100 %). USDA determines whether to insure a commodity on a crop by crop and

county by county basis, based on the farmer demand for coverage, level of risk associated

with the crop in the region, and if sufficient actuarial data are available. The Federal crop

insurance program is not available for all crops, types and practices. For commodities not

insured under the federal crop insurance programs, USDA administers seven disaster

assistance programs: Emergency assistance for livestock, honey bees and farm-raised fish

(ELAP); Emergency forest restoration program (EFRP); Livestock forage program (LFP);

Livestock indemnity (LIP); Noninsured crop disaster assistance program (NAP); Supple-

mental revenue assistance payments program (SURE); Tree assistance program (TAP).

Since USDA crop insurance indemnity data (loss payments) do not reflect the total

value of crops damaged/destroyed during a disaster event, we have developed a factor

approach. Assuming that on average 70 % of eligible acres are insured and most producers

select 70 % of crop yield to be covered (USDA 2012), we approximate the total crop loss

by applying a 2.0 factor to the RMA crop indemnity data; that is, 1/[(0.7)(0.7)] =

2.04 & 2. However, state-issued reports following a disaster event may supersede USDA

crop indemnity data factorization in our analysis if they provide greater levels of detail. For

example, state agency reports on crop loss events may be more useful as they often detail

USDA data on yields, acres abandoned and market price to estimate a value loss in dollars.

State reports also compare the average crop yields versus lost yield due to a disaster event

(NOAA 2008). States reporting often provides the following crop loss perspective: Esti-

mated (loss $) for each affected crop type = (Expected crop yield/acre) x (market price/

acre) 9 (% of total acres yield loss/by crop)

For long-duration disaster events such as drought, livestock losses are also calculated by

incorporating increased feeding costs, which have an aggregative effect on dairy and meat

market prices. If no detailed state reports are available for a disaster, we then apply the 2.0

factor to the crop losses while also directly totaling additional losses when available (e.g.,

livestock, nurseries, commercial timber, etc.).

3.2 Estimating the loss from a tropical cyclone disaster

3.2.1 Basis for estimation

The first event calculation details how we account for the direct economic losses due to

tropical cyclone damage. The losses are challenging to estimate as damages from wind and

water (e.g., storm surge, inland flooding) are insured by different private and public

entities. For example, PCS provides a reliable assessment of wind-related losses for res-

idential, commercial, vehicle lines of property insurance at the state level. However, a

total, stable PCS loss estimate can range from 6 weeks after an event to more than 1 year

due to the size and complexity of the wind versus water damage and associated litigation.
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State-subsidized ‘wind-pools,’ that act as ‘insurers of last-resort’ when private sector

providers do not provide enough or affordable insurance in hazardous, coastal or riverine

areas, are also part of the PCS state-level loss estimates. Other relevant loss data not

included in PCS totals are FEMA’s Presidential disaster declarations encompassing non-

insured government disaster assistance. This includes public assistance (PA), individual

assistance (IA), housing assistance (HA) and small business assistance (BA) for individ-

uals, families, businesses and municipalities who are un(der)insured for initial recovery

and rebuilding where appropriate (NFIP 2010). Another data source is FEMA flood

insurance payments through the NFIP. However, high value structures can be only insured

up to NFIP coverage limits ($250 k structure, $100 k contents) for residential and ($500 k

structure, $500 k contents) for commercial regardless if the property is located in a special

flood hazard area (SFHA) or not. Other sources of loss information include USDA crop

indemnity payments for crops destroyed by high wind or flooding associated with a tropical

cyclone and offshore infrastructure and marine losses provided by other insurance

reporting such as Munich Re. Given the insurance participation variance and coverage

amounts across data sources, we employ a more general approach for loss analysis.

3.2.2 Data sources and method

This methodology takes into account PCS, USDA, FEMA NFIP and FEMA PDD loss data

using a factor approach modified by state-issued information. State-specific disaster

reports—such as Texas Rebounds regarding Hurricane Ike’s damage to Texas—are useful

in providing guidance to adjust insured versus uninsured properties damage from wind and

water losses provided by PCS and NFIP data, respectively (Texas Governor’s Office 2008).

Each disaster event type is adjusted differently based on approximate insurance partici-

pation and the loss data available.

In September 2008, Hurricane Ike caused widespread losses along the Texas coast and

further inland from considerable storm surge and wind destruction. Severe gasoline

shortages occurred in the southeast states due to damaged oil platforms, storage tanks,

pipelines and off-line refineries. The final PCS insurance payout estimate for Ike was about

$12.5 billion, while the National Flood Insurance Program payout was about $2.5 billion

(Table 4). To better estimate the insured versus uninsured damage for both wind and water

loss, we examine the NFIP coverage percentage for cities and counties in the disaster zone.

The Texas Rebounds report indicates that an average of 27 % of wind damages and 61 %

of flooding damages was uninsured in the Texas declared disaster zone affected by Hur-

ricane Ike. Dividing 100 % by 73 and 39 %, representing wind and flood insured partic-

ipation rates, produces factors of 1.37 and 2.56, respectively. These factors provide some

guidance on how to treat the PCS and NFIP insurance payouts for Texas. We calculate a

total loss of $9.8 billion 9 (1.37) for the 73 % PCS insured wind damage and a total loss

of $2.1 billion 9 (2.56) for the 39 % NFIP insured flood damage, resulting in a combined

subtotal of $18.8 billion.

Independent from FEMA flood insurance coverage for residential and commercial

properties, we also examine FEMA disaster relief coverage for un(der)insured losses to

residential, commercial and public property losses, which by law cannot replicate any other

source of insurance funding (FEMA 2011). We compare FEMA emergency assistance

costs with PCS insured losses for each state impacted by a disaster event to better adjust for

a total loss. For example, if the FEMA public assistance, housing assistance, individual

assistance and business assistance collectively exceed the PCS factor adjustment for a

particular disaster type, then the FEMA total is added to the PCS insured loss total with no
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additional PCS factor adjustment applied. If the FEMA total costs for a state do not exceed

a state’s PCS insured losses, or if a state was not eligible for FEMA disaster assistance

funds, then a PCS factor adjustment is applied to better account for uninsured and

underinsured losses. After examining the reported damages from Hurricane Ike, Louisiana

was the only state in which the FEMA emergency assistance costs exceeded the PCS

insurance loss adjustment factor ($263 million vs. $135 million). We choose to only

incorporate the higher factor of PCS versus FEMA_PDD in addition to original values to

avoid double-counting un(der)insured losses. We also incorporate agriculture, forestry and

fishing losses provided by state agriculture centers ($875 million) and an estimated $2

billion in damage to offshore infrastructure. After examining all the input data sources and

variables using our factor approach, this yields a rough estimate of total damage of about

$27.5 billion. The data uncertainty and bias associated with such losses estimates will be

explored in Sect. 4 of this paper.

3.3 Estimating the loss from a crop freeze disaster

3.3.1 Basis for estimation

A second disaster event example is a multi-day freeze that damaged or destroyed billions in

crop production value across nearly 1,000 US counties. This event occurred April 3–10,

2007 causing widespread sub-freezing temperatures over much of the central Plains,

Midwest and South resulting in significant losses to fruit crops, field crops (particularly

wheat) and the ornamental industry. Temperatures in the teens and 20s (�F) accompanied

by rather high winds nullified most crop-protection systems. About $2.1 billion in losses

was estimated. The most significant impact of this cold wave was related to the timing and

duration of the event in parallel with ongoing crop development (NOAA 2008). Most

affected were the blooming fruits across parts of the Midwest and South, winter wheat crop

across the central Plains and Midwest and the emerging corn in the South.

3.3.2 Data sources and method

The agricultural impact data for the April 2007 freeze event are summarized from official

USDA information, including the Crop Production report, Crop Progress summaries and

state-specific disaster reports. Since each crop type has varying levels of coverage avail-

ability (50–85 %) across specific USDA insurance programs (e.g., SURE, NAP, LIP), the

USDA indemnity payments do not reflect the total crop value lost due to a disaster (USDA,

2012). Moreover, since not all crop types are insured and not all farmers seek coverage for

their crops, the state agency reports on crop loss for the 2007 freeze are more useful as they

detail the percentage of crop yield loss (by crop type) multiplied by respective market price

that were not produced due to damage from the freeze event (Table 5). After examining

many states impacted by this event, we participated in producing a national report to more

closely estimate the total loss to crop production as a result of the freeze. For each state

affected by the April 2007 freeze, we employed the following calculation:

For each crop type, the estimated crop loss = (Expected crop yield/acre) 9 (market

price/acre) 9 (% of total acres yield loss/by crop)

Aggregating the crop losses for each affected crop type across all affected states results

in a total loss of about $2.1 billion (Table 6).

The total crop loss estimation is conservative, as it was based on information available

to state agricultural centers/specialists at the time and is subject to update, which is the case
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for many large-scale, destructive disaster events we analyze. In some instances, these

estimates can deviate from USDA values due to altering assumptions in making the

estimates. In general, only direct losses to the freeze were included, avoiding indirect

losses such as lost jobs from the reduced demand for field workers to harvest crops. Also,

the rise in USDA crop insurance coverage and participation along with the rising crop

production and market values skew the crop loss comparisons over time for different

events. The next section will include the exploration of this issue in more detail for the

major US crops (i.e., corn, soybeans, wheat), which collectively account for over half the

US annual crop production value.

4 Effects of uncertainties and biases on trend analysis of billion-dollar disasters

In this section, we consider the effects of potential uncertainties and biases identified in

Sects. 2 and 3 on the detection and attribution of trends in the annual frequency of (and

annual aggregate loss from) billion-dollar disasters. As background, we first perform a

trend analysis of the billion-dollar disaster dataset.

4.1 Trend analysis of billion-dollar disasters

The probability distribution of losses has a high degree of positive skewness (Jagger et al.

2011; Willoughby 2012), with a few disasters dominating the aggregate loss (e.g., 20 % of

the hurricanes striking the United States have caused nearly 90 % of the total loss; Katz

2012). In part for this reason, it is difficult to distinguish between year-to-year variations

and long-term changes, particularly when only considering billion-dollar disasters. If the

inflation-adjusted losses from all extreme weather and climate events are analyzed instead,

then a marked increasing trend in recent decades in the annual aggregate loss is obvious

(e.g., Gall et al. 2011).

We let N(t) denote the number of billion-dollar events in year t, N(t) = 0, 1, ….

Because the number of such events is relatively small, it is natural to assume that N(t) has a

Poisson distribution (i.e., by the so-called Law of Small Numbers), with mean (or

‘‘expected value’’) E[N(t)] = k(t), k(t) [ 0 possibly depending on the year t. As a model

Table 5 Estimated loss crop valuation example from April 2007 freeze episode

Crop Acres Yield/acre at price Gross
return/acre
($Thousands)

Est. crop
value
($Millions)

Est.
crop
loss(%)

Est. loss from
freeze event
($Millions)

Apple 1,000 400 bu/Acre * $20.50/bu 8.2 8.2 90 7.4

Blackberries 110 4,000 qt * $2.00/qt 8.0 0.9 90 0.8

Blueberries 120 6,800 pt * ($1.25)
1,700 pt * ($1.50)

11.1 1.3 90 1.2

Grapes 400 6.2 Tons/Acre * $0.50/lb 6.2 2.5 60 1.5

Peaches 500 280 bu/Acre * $20.00/bu 5.6 2.8 98 2.8

Pears 30 400 bu/Acre * $20.00/bu 8.0 0.2 100 0.2

Strawberries 210 8,000 lb * $1.75/lb 14.0 2.9 50 1.5

Total 2,370 18.8 15.4
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for the trend in the number of events, a linear trend in the log-transformed mean is

assumed; that is,

lnk tð Þ ¼ k0 þ k1t;

in part to constrain the rate k(t) [ 0. Here k0 and k1 denote unknown parameters to be

estimated from the data. Figure 2 shows the results of fitting this trend model to the annual

frequency of disasters using the statistical technique of Poisson regression (e.g., Katz

2002). The apparent increasing trend of about 4.8 % per year [i.e., an estimate of exp(k1)]

is overwhelmingly statistically significant with a P value \ 10-5, at least in part because of

an unprecedented number of events in 2011 (Table 7).

We let Ln(t) denote the loss from the nth billion-dollar disaster event in year t, n = 1,

…, N(t), assuming N(t) [ 0 (i.e., at least one event occurred). To remove the high degree

of skewness in the distribution of the loss from individual disasters, the loss data are first

log-transformed (because Ln(t) C $1 billion, the transformation ln[Ln(t)–0.9] is actually

used). That is, the losses from individual disasters are assumed to have a lognormal

distribution (Katz 2002; Nordhaus 2010; Willoughby 2012). As a trend model for the

individual losses, a linear trend in the mean of the log-transformed loss is assumed; that is,

E½lnLnðtÞ� ¼ b0 þ b1t

Here b0 and b1 denote unknown parameters to be estimated from the data. As suggested

by Fig. 3, there is no apparent time trend in economic loss from individual disasters. In

fact, a least squares trend analysis estimates a very slight decreasing trend of about 0.5 %

per year. [i.e., an estimate of exp(b1)], with a P value of about 0.74 (Table 7).

Table 6 Economic crop loss totals for North Carolina commodities and total commodity losses for all US
states resulting from the April 2007 freeze episode ($ Millions)

Commodity Acres affected
(Thousands)

Losses
($ Millions)

State Losses
($ Millions)

Barley 24.8 1.2 Alabama 13.4

Corn 243.9 15.2 Arkansas 116.0

Fruit & Vegetables 21.3 31.2 Georgia 400.0

Hay 38.5 1.0 Illinois 152.4

Irish Potatoes 10.0 1.6 Indiana 48.0

Nursery 20.1 40.1 Iowa 4.0

Oats 11.0 0.6 Kansas 66.5

Pasture 71.4 0.3 Kentucky 133.5

Rye 6.7 0.3 Mississippi 29.0

Tobacco 0.2 0.6 Missouri 400.0

Wheat 275.5 13.3 North Carolina 105.4

Ohio 155.0

North Carolina 723.4 105.4 Oklahoma 350.0

South Carolina 39.3

Tennessee 50.0

Total 2,062.5
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The aggregate loss in year t, say L(t), can be expressed as

L tð Þ ¼ L1ðtÞ þ � � � þ LN tð ÞðtÞ; for N tð Þ[ 0:

In other words, it involves a sum whose number of terms is unknown a priori (termed a

‘‘random sum’’; e.g., Jagger et al. 2011; Katz 2002). Variations in aggregate annual loss are

attributable to two sources: (i) variations in loss from one event to another and (ii)
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Fig. 2 Time series of annual
frequency of billion-dollar
disasters (vertical bars), along
with trend (dashed line) fitted by
Poisson regression

Table 7 Trend analysis of bil-
lion-dollar loss data

*Kendall’s tau

Loss component Estimated trend P value for trend test

Frequency 4.81 % per year \10-5

Individual loss -0.50 % per year 0.740

Aggregate loss 0.200* 0.119
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Fig. 3 Time series of log-
transformed loss from individual
disasters versus year, along with
trend fitted by least squares
(dashed line)
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variations in the number of events from one year to another. From this representation of the

aggregate annual loss as a random sum, the increasing trend in the frequency of disasters,

along with the negligible trend in the loss from individual disasters, implies that the annual

aggregate loss should exhibit a net increasing trend as well. For a random sum, a less

obvious consequence of an increase in the frequency of events is an increase in the

variance (or ‘‘volatility’’) of the aggregate loss, even with no increase in the variance of the

loss from individual disasters (Katz 2002).

Figure 4 does indeed suggest the presence of a gradually increasing trend in the annual

aggregate loss, particularly in the two smoothed time series based on loess (a commonly

used scatterplot smoother; Cleveland 1979) and on a more local 5-point binomial filter.

The plot of the unsmoothed time series suggests, perhaps, an increase in volatility as well.

Because the probability distribution of a random sum is complicated (in this case,

involving a combination of the Poisson and lognormal distributions), Kendall’s tau, a

nonparametric test for trend, is applied instead of a parametric trend model (Helsel and

Hirsch 1993; Hollander and Wolfe 1973; Villarini et al. 2009). This test indicates only

borderline statistical significance (P value about 0.12), notwithstanding the unprecedented

aggregate loss in 2005 (Table 7).

4.2 Uncertainties and biases

In this subsection, we focus on the two concrete examples: (i) the nature of the bias from

ignoring variations in the insurance participation rate in the case of PCS and NFIP losses

for tropical cyclones and its effect on trend analysis and (ii) the sources of increasing trends

Table 8 Trend analysis of
observed and simulated PCS log-
transformed loss from individual
tropical cyclones (31 events)

Loss Estimated trend P value for
trend test

Observed 7.48 % per year 0.013

First simulation 7.71 % per year 0.013

Second simulation 7.72 % per year 0.008

1980 1985 1990 1995 2000 2005 2010

0

50

100

150

Year

To
ta

l l
os

s 
(b

ill
io

n 
$)

Fig. 4 Time series of aggregate
annual loss from billion-dollar
disasters (constant 2011 dollars,
vertical bars), along with loess
smoother (red line) and local
smoother based on a 5-point
binomial filter (blue line)
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in USDA insured crop losses. Although it might be anticipated that any systematic bias

would be negligible, it turns out that non-negligible bias can be inadvertently introduced

into the loss data.

4.2.1 Effect of variation in insurance participation rate on estimated losses

4.2.1.1 Uncertainty analysis technique As discussed in Sect. 3, economic loss from an

individual weather or climate disasters are generally based on insured losses. To estimate

the total direct economic loss from a disaster (i.e., both insured and uninsured losses),

insured losses are inflated by a factor representing the reciprocal of the insurance market

participation rate. That is,

LTotal ¼ LInsured=R;

where LTotal denotes the total economic loss from a disaster, LInsured the insured loss, and

R the participation rate, 0 \ R \ 1. Typically, the rate R is assumed constant over an entire

region and the factor 1/R is usually rounded (e.g., to the nearest integer), as in the examples

described in Sect. 3.

From statistical theory, we know that acting as if the participation rated R is fixed

(when, in fact, it varies) will lead to an underestimation of loss on the average. Formally,

because the reciprocal (i.e., 1/R) is a convex function of R, Jensen’s inequality (e.g., Berger

1985, Chapter 1) implies that

1=E Rð Þ\E 1=Rð Þ:
If we further assume that the participation rate R is probabilistically independent of the

insured loss LInsured (a reasonably plausible assumption, at least to a first approximation),

then it follows that this systematic underestimation holds for losses as well; that is,

E LInsuredð Þ 1=E Rð Þ½ �\E LTotalð Þ:
The following examples serve to illustrate the magnitude of this underestimation and its

effects on trend analysis.

4.2.1.2 PCS losses from tropical cyclones In the case of PCS losses from individual

cyclones, the factor of two (i.e., R & 0.5) is typically used (for simplicity and lacking

more specific data) by the National Hurricane Center for approximating hurricane loss (see

Sect. 3). This factor may well be consistent with the average rate of insurance participation

along the portions of the U.S. Gulf and Atlantic coasts most vulnerable to tropical

cyclones. Nevertheless, this rate varies considerably along the coast for a number of

reasons (Major 1999; Vellinga and Mills 2001). We consider the effect of this variation on

the estimated total economic loss from tropical cyclones, including in terms of trend

analysis.

As a crude approximation to the observed variation in participation rate, we assume that

R has a beta distribution on the interval (0.25, 0.75) with both shape parameters p = q = 2

(Chapter 24, Johnson and Kotz 1970). This distribution has a mean E(R) = p/

(p ? q) = 0.5, and with roughly a 50 % chance of R falling between 0.4 and 0.6. Simu-

lated total losses are created through dividing each of the 31 PCS observed insured losses

by a pseudo random value of the participation rate generated from this beta distribution.

Figure 5a shows the log-transformed observed PCS losses (inflated by a factor of two)

from individual tropical cyclones, along with the corresponding synthetic losses from two
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simulations using the beta distribution to take into account uncertainty about the insurance

participation rate. Figure 5b shows the corresponding untransformed losses. On average,

the underestimation of loss when the participation rate is taken to be constant at 0.5 is

roughly about 11 % (estimated from 100,000 simulations from the beta distribution).

Table 8 shows the results of fitting a linear trend to the log-transformed observed losses,

as well as to the two simulated data sets. The three fitted trend lines are included in Fig. 5

as well. The systematic underestimation of loss is too small relative to the variation in

losses to be evident in the figures with only two simulated time series. Moreover, this bias

seems to have hardly any effect on the estimated slope of the trend line or on its statistical

significance. These results about underestimation bias and insensitivity of the trend anal-

ysis are not very sensitive to the particular choice of values of the parameters of the beta

distribution.
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Fig. 5 a Log-transformed
observed and simulated PCS loss
from individual tropical
cyclones, along with fitted linear
trend lines, blue indicating
observed values, red and pink the
two simulations. b Observed and
simulated PCS loss from
individual tropical cyclones,
along with fitted trend curves
(based on linear trends for log-
transformed loss), blue indicating
observed values, red and pink the
two simulations
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4.2.1.3 NFIP losses from tropical cyclones In contrast to PCS data, the participation rate

for NFIP is more variable. As noted in Sect. 3, in practice, the factor is varied depending on

the region where the tropical cyclone strikes, but still rounded off with typical values being

1, 2, 3, 4, 5 or 6 (as inferred from the NFIP loss data for 19 US tropical cyclone events from

1989 to 2008). To approximate the mean factor of about 2.85 over these 19 events, we use

a beta distribution with parameters (p = q = 1.25) on the interval (0.05, 0.95) to represent

the distribution of the corresponding participation rate. We also used a beta distribution

with p = q = 1on the interval (0.05, 0.95) to reflect the actual granularity of NFIP par-

ticipation rate within the region (Michel-Kerjan et al. 2011). These values of the param-

eters of the beta distribution are necessarily smaller than those used for the PCS data (i.e.,

p = q = 2) because of the greater variation in participation rates.

Based on 100,000 simulations from each of the two beta distributions, the results

indicate a loss underestimation of about 5.2 % from rounding participation rates. Further

underestimation of about 9.7 % results from ignoring variation in participation rates within

regions. Combining these two sources of bias yields a total loss underestimation of

approximately 15.4 %. This underestimation bias can again be explained by repeated

application of Jensen’s inequality. It appears to have only a small effect on trend estimation

of NFIP losses (Fig. 6a, b; Table 9). Again, these results are not sensitive to the exact form

of beta distribution.

4.2.2 Sources of increasing trends in insured crop loss

As described in Sect. 2, USDA crop insurance loss data have many complicating factors

including increasing policy participation, insured acreage, value of crops, number of

insurable crop types, changing policy structures, etc. (USDA 2011). This complexity is

inherent in the top three most valuable US crops (i.e., corn, soybeans, wheat), which

constitute over 50 % of the annual US crop value production. Rather than limiting our

analysis to billion-dollar disasters, we analyze all of the available crop loss data to better

quantify trends. It is anticipated that similar trends would arise as well (but be more

difficult to detect) if attention were restricted to only crop losses associated with billion-

dollar disasters.

Each of these crops shows an increasing trend in the total annual insured crop loss

payments, especially rapid for corn and wheat (Fig. 7). However, if crop losses are

measured relative to crop insurance liability, the annual loss trend apparently goes away

(Fig. 8). Liability reflects the total insured risk value underwritten by policy. Dividing

liability by the reported insured crop loss ($) per year is a commonly used measurement to

analyze the temporal fluctuations of agriculture loss (Changnon and Hewings 2001). Using

Kendall’s tau to test for trend in the relative crop loss time series (as applied in Table 7 to

other loss data), the P values are about 0.794, 1, and 0.294 for the relative loss of corn,

soybeans, and wheat, respectively. So, at least for these three major crops, the trends in

losses are comparable in magnitude to the trends in liability.

The yield per acre production statistics for each of these crops also has a positive trend

(by far the most rapid for corn) since the end of World War II, much of which is attrib-

utable to technological innovation (e.g., Johnson 2012). Although it might be possible in

principle to adjust crop losses for such trends (e.g., Lobell and Asner 2003), Mearns (1988)

found difficulty in distinguishing between variations in wheat yields attributable to vari-

ations in weather and climate and those attributable to technology. Another complicating

factor is the variation in crop pricing over time, affected by changes in demand (e.g., due to
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the recent increased use of corn to produce ethanol) as well as the influence of weather and

climate variations on crop production in other regions of the world. The combined effect of

the identified sources contributing to increasing insured crop losses makes any attribution

to weather or climate, especially for billion-dollar disasters, difficult.

Table 9 Trend analysis of
observed and simulated NFIP
log-transformed loss from indi-
vidual tropical cyclones (19
events)

Loss Estimated trend P value for
trend test

Observed 1.85 % per year 0.782

First simulation 3.17 % per year 0.610

Second simulation 2.83 % per year 0.623
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Fig. 6 a Log-transformed
observed and simulated NFIP
loss from individual tropical
cyclones, along with fitted linear
trend lines, blue indicating
observed values, red and pink the
two simulations. b Observed and
simulated NFIP loss from
individual tropical cyclones,
along with fitted trend curves
(based on linear trends for log-
transformed loss), blue indicating
observed values, red and pink the
two simulations
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soybeans (top right) and wheat (bottom), along with loess smoother (red line) and local smoother based on a
5-point binomial filter (blue line)
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5 Discussion and conclusions

This paper details the data sources and methods we currently use to develop a total direct

loss estimate for several types of weather and climate events, focusing on billion-dollar

disasters in the United States to our knowledge, this dataset is the most comprehensive

government loss accounting effort for a variety of the most damaging US weather and

climate events from 1980 to present. Being primarily based on insured losses, these loss

data sources vary in quality for a variety of reasons such as increasing insurance partici-

pation, insurance liability and policy structure changes. We use a factor approach to

convert insured losses into total direct losses. Potential sources of bias and uncertainty,

including those associated with the factor approach, are identified.

The net effect of all biases appears to be an underestimation of average loss. As one

example of the quantification of bias in loss estimation, we have shown that the historical

precedent of doubling PCS losses for tropical cyclones is conservative, with an average

underestimate of about 10 % for total wind-driven losses attributable to ignoring the

variation in insurance participation rates. The more complicated factor adjustment process

for the NFIP loss data is similarly conservative, with an average loss underestimation of

about 5 % from rounding participation rates and an additional average underestimation of

about 10 % resulted from ignoring variation in participation rates within regions (for a total

average loss underestimation of approximately 15 %). Nevertheless, these systematic

underestimations appear to have only a negligible effect on trend estimation. This

underestimation of loss on average should hold, at least qualitatively, when the factor

approach is applied to other loss data. Consequently, one recommendation concerning how

the current methodology can be improved to increase the quality of the billion-dollar

disaster dataset would be to refine the factor approach to more realistically take into

account spatial and temporal variations in insurance participation rates.

USDA crop indemnity payments are another principal data source. However, this

dataset has numerous complicating factors over time and space. Given resource limitations,

we currently either apply a factor approach to the USDA crop indemnity payments or use

published state reports, which provide a more detailed analysis on the lost value of

commodities due to a natural disaster. For the major crops of corn, soybeans and wheat,

increasing trends in insured losses (i.e., for all losses, not just those associated with billion-

dollar disasters) are shown to be comparable in magnitude to those in liability. Given the

increasing trends in yields attributable to technological innovation and given fluctuations in

price, it is difficult to attribute any part of the trends in losses to climate variations or

change, especially in the case of billion-dollar disasters. For the USDA crop insurance

program, as well as for the FEMA NFIP, it would greatly improve the usefulness of the loss

data if future insurance premiums were tied more closely to risk (Michel-Kerjan et al.

2011).

We have shown that an increasing trend in annual aggregate losses is primarily

attributable to a statistically significant increasing trend of about 5 % per year in the

frequency of billion-dollar disasters. But the billion-dollar dataset is only adjusted for the

CPI over time, not currently incorporating any changes in exposure (e.g., as reflected by

shifts in wealth or population). Normalization techniques for exposure have been limited

by the lack of data on a relevant spatial scale. Yet, a number of studies have concluded that

population growth, increased value of property at risk and demographic shifts are major

factors behind the increasing losses from specific types of natural hazards (Downton and

Pielke 2005; Brooks and Doswell 2001). The magnitude of such increasing trends is

greatly diminished when applied to data normalized for exposure (Pielke et al. 2008).
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Apparent increasing trends in normalized losses, aggregated across all types of weather

and climate disasters have not always been tested for statistical significance (Cummins

et al. 2010; Gall et al. 2011). Nevertheless, statistically significant trends are starting to

emerge in some cases. For instance, at least borderline statistically significant trends in the

aggregate annual loss from tropical cyclones (Barthel and Neumayer 2012), as well as in

the frequency of damaging events (Katz 2010) and in the loss from individual storms

(Nordhaus 2010), have been obtained. The development and implementation of normali-

zation techniques for the billion-dollar dataset would be a challenging topic for future

research.
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