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ABSTRACT

Autonomous CTD profiling floats are free-moving floats that report vertical profiles of salinity, temperature,
and pressure at regular time intervals. The Argo program plans to deploy 3000 such floats to observe the upper
2000 m of the global ocean. These floats give good measurements of temperature and pressure, but salinity
measurements may experience significant sensor drifts with time. The moving nature of these floats means that
it is too expensive to retrieve them regularly for physical calibrations. Thus a system has been set up to correct
the drift in these profiling float salinity data by using historical hydrographic data. An objective mapping technique
is used to estimate the background climatological salinity field on u surfaces from nearby historical data. Temporal
variations in water mass properties are accounted for in the objective estimate. The float salinity data are fitted
to the background climatology in potential conductivity space by weighted least squares with a time-varying
slope. The error associated with estimating the background climatology is carried through in the weighted least
squares calculations. The result is a set of calibrated salinity data with error estimates. Because of the need to
accumulate a time series for calculating a stable slope correction term, this system is a delayed-mode quality
control system, with reliable calibrations available a few months after float data are obtained. However, con-
temporary ship-based measurements are essential in determining whether a measured trend is due to sensor drift
or due to natural variability.

1. Introduction

Autonomous CTD profiling floats are instruments that
move freely with the ocean current at fixed parking
depths and cycle from a profiling depth to the sea surface
at regular time intervals. While rising to the surface,
these autonomous floats take profiles of conductivity
(C) and temperature (T) versus pressure through the
water column. From these variables, depth (D), salinity,
density, and other derived quantities can be calculated.
The data are sent to various data centers via satellites,
before the floats sink back to their prescribed parking
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depths to continue their drifts. The Argo program (in-
formation available online at http://argo.jcommops.org)
plans to deploy 3000 such autonomous CTD profiling
floats with a target profiling depth of 2000 m to observe
temperature and salinity within the upper layers of the
global ocean, and currents at the parking depths.

These profiling floats have an expected mean lifespan
of about 4 yr at present, and are anticipated to give good
measurements of temperature and pressure over this
span. However, salinity measurements may experience
sensor drifts owing to biofouling and a variety of other
problems. Unlike traditional CTD casts, where in situ
bottle data standardized to the International Association
for the Physical Sciences of the Ocean’s (IAPSO) stan-
dard seawater are obtained for salinity calibration,
‘‘ground truth’’ salinity data are not usually available
for these floats. The moving nature of these floats also
means that only a few can be retrieved for examination
and postdeployment laboratory salinity calibrations. We
here discuss a system for calibrating the salinity mea-
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surements from these autonomous CTD profiling floats
with regional temperature–salinity relationships, by us-
ing nearby historical hydrographic data.

2. Salinity calibration by u–S climatology

The two main state variables of the ocean, potential
temperature, u, and salinity, S, are related to each other
by definite patterns that represent the mean character-
istics of a region (e.g., Worthington 1981; Emery and
Dewar 1982). These climatological u–S relationships are
influenced by seasonal and decadal variations, and by
strong isolated vortices, such as the Kuroshio rings or
lenses of Mediterranean water (so-called Meddies).
There can also be high variability in the vicinity of
strong fronts between water masses, for example, across
the Gulf Stream in the Atlantic, or the South Equatorial
Current in the Indian Ocean. However, for most of the
global ocean, mean u–S relationships can be used to
estimate salinity from measurements of temperature and
pressure. The certainty of the estimation will depend on
the degree of spatial and temporal variability in the re-
gion. Estimates of these climatological u–S relationships
and their variability are here used to calibrate the salinity
measurements from the CTD profiling floats.

a. A world u–S climatology database

To establish a u–S climatology for the World Ocean,
historical salinity measurements from a selected subset
of both CTD and bottle data from the World Ocean
Database (Conkright et al. 1998, hereafter WOD98)
have been assembled and interpolated onto a set of po-
tential isotherms, or u surfaces. The float salinity mea-
surements are later compared to the historical salinity
measurements on this set of u surfaces. Potential tem-
perature surfaces are more appropriate than traditional
isobaric surfaces as the coordinate system for calcula-
tions, because isobaric calculations can produce ‘‘anom-
alous anomalies’’ in areas with u–S curvature and ver-
tical excursions (either spatial and/or temporal) of den-
sity surfaces (Lozier et al. 1994). For the purpose of
this calibration, u surfaces are also superior to potential
density surfaces because calculation of density is sen-
sitive to salinity errors. In other words, the two state
variables u and S are kept separate. The float salinity
measurements are essentially calibrated using the more
accurate float measurement, temperature, as the inde-
pendent variable. Temperature and pressure measure-
ments from the CTD sensors on these floats are, in gen-
eral, accurate to 0.0028C and 2.4 db, respectively, with
expected temperature sensor drift of 0.00058C yr21, al-
though at present limited telecommunications band-
width keeps temperature resolution to about 0.0058C (R.
Davis 2002, personal communication).

To capture most of the water column for the World
Ocean, 54 standard u surfaces have been selected be-
tween 218 and 308C. A shape-preserving spline (Ak-

ima 1970) is used to vertically interpolate the histor-
ical bottle salinity data to the standard u surfaces,
while the historical CTD salinity data are subsampled
at the standard u levels. All interpolated salinity data
have been visually inspected for extreme outliers,
which have subsequently been removed. Interpolation
of salinity data has been done from the deepest u
surface to the shallowest. In cases of u inversions,
only salinity on the deepest instance of each isotherm
is used. For most of the world’s oceans, this method
of interpolation will retain the larger and more stable
part of the water column below any shallow temper-
ature inversion layers. The exceptions are on the con-
tinental shelves of Antarctica, Labrador, Greenland,
and in the Arctic Circle, where the water column is
weakly stratified with multiple temperature inver-
sions. However, these exceptions compose a very
small percentage of the world’s oceans.

b. Objective estimates of climatological u–S
relationships at float locations

Climatological values of salinity at the location of the
float profiles are estimated by using the vertically in-
terpolated historical salinity data and an objective map-
ping method. The objective method is based on the
Gauss–Markov theorem. It gives a pointwise estimate
that is linear and unbiased, is optimal in the least squares
sense, and also returns an estimate of the uncertainty
(error variance) that takes into account the distribution
of the data used (Bretherton et al. 1976; McIntosh 1990).
Our procedure, described below, accounts for both the
spatial and temporal variations in the climatological u–
S relationships.

The covariance of the data is assumed to be Gauss-
ian, with the decay scale determined by three scale
parameters: a longitudinal scale, Lx; a latitudinal
scale, Ly; and a temporal scale, t. The spatial scales
are anisotropic, with Lx greater than Ly to reflect the
predominantly zonal currents in the ocean interior. We
use two sets of spatial scales, a set of large scales
(Lx1 , Ly1 ) and a set of small scales (Lx 2 , Ly 2 ), to
estimate the large-scale field and the small-scale field.
Presently, they have been somewhat arbitrarily set at
Lx1 5 208, Ly1 5 108 and Lx 2 5 88, Ly 2 5 48, based
on regional water mass variability scales. The tem-
poral scale is estimated by the ventilation timescale,
which in turn is estimated from apparent ages based
on the partial pressure of chlorofluorocarbon, CFC-
12 (e.g., Doney and Bullister 1992). A global CFC-
12 dataset, obtained from J. Bullister (2001, personal
communication), provides the temporal scale t for the
various u surfaces. The bulk of these data are now
available publicly from the World Ocean Circulation
Experiment (WOCE) Hydrographic Program Office
(http://whpo.ucsd.edu). The production and release of
CFC into the atmosphere began in the 1930s; hence,
the maximum CFC apparent age is about 50 yr. Thus,
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for deep layers in which the actual residence times
are significantly longer, using CFC age will tend to
lower the weights for old historical data compared to
those using the real ventilation timescales. However,
most of the older historical data also have larger mea-
surement errors, so these lower weights are appro-
priate.

For each float profile at (x0, y0, t0) and on every
standard u surface, we select WOD98 data points from
an area enclosed by an ellipse with radii Lx1 and Ly1

(the large spatial scales), with (x0, y0) as the center.
From this initial set, we select 600 ‘‘best’’ historical
data points for objective mapping based on three criteria.
First, we randomly select 200 data points from the initial
elliptical area. This ensures that the large-scale mean is
well represented by measurements around the float pro-
file. Second, from the remaining data points, we select
200 historical points (xi, yi, ti) with the shortest spatial
separation factor relative to the large length scales, (xi

2 x0)2 / 1 (yi 2 y0)2/ . This step ensures that2 2Lx Ly1 1

the objective estimation includes data points with the
best spatial correlations with the float profile. Third,
again from the remaining data points, we select 200
historical points that have the shortest spatial–temporal
separation factor relative to the small length scales and
the temporal scale, (xi 2 x0)2/ 1 (yi 2 y0)2/ 12 2Lx Ly2 2

(ti 2 t0)2/t 2. This step ensures that more contempora-
neous and close-by historical data are included. Choos-
ing data based on these three criteria means that the
choice of historical data is not spatially biased toward
hydrographic lines that have dense station spacings,
while at the same time guaranteeing that the most nearby
(in time and space) measurements are included. The
objective map will therefore contain a good estimate of
the mean u–S relationship and its spatial and temporal
variability in the region. If fewer than 600 historical
points are available within the ellipse, then all available
points are used.

As the float drifts toward the coast, the elliptical area
determined by Lx1 and Ly1 would enclose landmasses,
thus decreasing the area from which historical data can
be chosen. To maximize the choice of data, and to take
into account the shift from interior flow regimes with
predominantly zonal orientation to the coastal regime
where currents tend to parallel the shore, the ellipse is
stretched in the north–south direction to avoid enclosing
any landmasses when a float drifts toward coastal ba-
thymetry that has a north–south component. This is done
by lengthening the longitudinal scale Lx1 and shortening
the latitudinal scale Ly1, but maintaining the same area
as that enclosed by the original ellipse. In other words,
the area from which the ‘‘best’’ spatial historical points
are selected is preserved while the ellipse is deformed.
When the ellipse degenerates into a circle, Lx1 and Ly1

return to their original values, but the longitudinal–lat-
itudinal axes are rotated so that the longer axis becomes
parallel to the continental slope.

The objective estimate of salinity, S9, at each location
and on each standard u surface is given by

S9 5 ^d& 1 v · (d 2^d&), (1)

where d 5 [d1 , . . . , dm] denotes the set of selected
historical data for that standard u surface and ^d& de-
notes the mean value of the set d. In other words, the
a priori estimate is assumed to be ^d&, the mean value
of d. For each historical datum di at (xi , yi , t i), there
is a true signal si , and some random noise h i , that
includes measurement errors and the random processes
and natural variability in the ocean that cause devia-
tions from the climatology. From the relationship di 5
si 1 h i , the signal variance and the noise variance of
the data can be estimated, and are incorporated into
the coefficient matrix v. The signal variance is ap-
proximated by (1/m) S i (di 2 ^d&) 2 , where m is the
number of data points on each u surface. The noise
variance is estimated by (1/2m) S i (di 2 dj) 2 , where
dj is the data point that has the shortest distance from
di on each u surface. This method of estimating the
noise variance assumes that the noise is uncorrelated
over the distance, that it has uniform variance, and that
the signal has a longer correlation distance than the
data separation (Fukumori and Wunsch 1991).

The coefficient matrix (or the weighting matrix) v in
(1) takes the form v 5 Cdg · (Cdd)21, where Cdg de-
notes the data–grid covariance matrix and Cdd denotes
the data–data covariance matrix. As mentioned previ-
ously, the covariance function is assumed to be Gauss-
ian. Building on Roemmich (1983), a two-stage map-
ping is employed. In the first stage, the covariance is a
function of the large-scale spatial separation only, and
the Gaussian decay scale is determined by the large
spatial scales Lx1 and Ly1:

2 2(x 2 x ) (y 2 y )i j i jCdd (x, y) 5 exp 2 1 ,i j 2 25 6[ ]Lx Ly1 1

2 2(x 2 x ) (y 2 y )i 0 i 0Cdg (x, y) 5 exp 2 1 . (2a)i 2 25 6[ ]Lx Ly1 1

By using (1) and (2a), the historical data are mapped
to the location of the float profile, as well as to the
selected historical data points themselves. The differ-
ences between the original values and the estimated val-
ues at the historical data points are called the residuals.
The first-stage estimate at the location of the float pro-
file, , is a large-scale estimate without respect to tem-S91
poral variability or small-scale features.

In the second stage, the residuals from the first stage
are mapped to the float profile location using (1), but
with a covariance that is a function of the temporal
separation and the small-scale spatial separation. The
Gaussian decay scale is determined by the small
spatial scales Lx 2 and Ly 2 , as well as the temporal
scale t :
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Cdd (x, y, t)i j

2 2 2(x 2 x ) (y 2 y ) (t 2 t )i j i j i j
5 exp 2 1 1 ,

2 2 25 6[ ]Lx Ly t2 2

Cdg (x, y, t)i

2 2 2(x 2 x ) (y 2 y ) (t 2 t )i 0 i 0 i 05 exp 2 1 1 .
2 2 25 6[ ]Lx Ly t2 2

(2b)

The second-stage estimate thus resolves the small-S92
scale features and gives decreased weight to the less
contemporaneous data.

The final objective estimate at the float profile loca-
tion is then the sum of the two stages of mapping,S9f

5 1 . Therefore the best objective estimateS9 S9 S9f 1 2

comes from historical data that are not only close to the
float profile location in space (relative to Lx1, Ly1 and
Lx2, Ly2), but are also close to the float profile location
in time (relative to t). When there are historical data
nearby in space and time, the objective estimate will
reflect their values and have small errors. If the time
differences between the historical data and the float mea-
surements exceed t, the second-stage contribution will
be small. In this case, the final estimate will relax back
toward the first-stage map, or the large-scale time-mean
climatological field, and the errors will be larger. If the
float drifts into areas with no chlorofluorocarbon (CFC)
apparent age estimates, such as some of the marginal
seas, the second stage maps the residuals with Lx2 and
Ly2 only.

In the first stage of mapping, Cdg and Cdd are scaled
by the signal variance of the historical data, while in
the second stage of mapping, Cdg and Cdd are scaled
by the signal variance of the residuals. In addition, the
noise variance of the historical data is added to the main
diagonal of Cdd in both stages of mapping. The same
noise variance is used in both stages of mapping be-
cause, as discussed previously, the noise in the data
represents the random oceanic processes that cannot be
measured and so does not change with scales.

The final error variance of the objective estimate of
salinity at the float profile location is taken from the
second-stage map:

2s (S9) 5 signal variance of the residualsmap f

21 T2 Cdg(x, y, t)Cdd(x, y, t) Cdg(x, y, t) .

(3)

The purpose of using a multiple-stage mapping proce-
dure is to resolve features of different spatial and tem-
poral scales, but not to increase the overall error in the
estimate by addition of errors of multiple scales. Hence,
only the error from the second-stage map is taken to be
the error of the final objective estimate, since it real-
istically gives increased error estimates where recent

historical data are not available and/or pCFC apparent
ages are low.

c. Weighted least squares fit for a time-varying slope
in potential conductivity space

Corrections to the float salinity data are obtained by
fitting to the objectively estimated climatological salin-
ity field on the standard u surfaces by weighted least
squares. Sensor calibrations are best applied to measured
quantities, which for the floats is conductivity. However,
direct comparison of conductivity is not ideal, because
conductivity depends on pressure (as well as salinity
and temperature), and the pressures of the historical u
surfaces will not necessarily match those of the floats.
A more suitable parameter is a derived quantity, poten-
tial conductivity, defined as Cu 5 C(S, u, P 5 0). In
other words, it is the conductivity calculated from the
equation of state (Fofonoff and Millard 1983) using the
observed salinity, potential temperature (instead of in
situ temperature) and a pressure of zero instead of the
actual pressure (J. Toole 2000, personal communica-
tion). By using a reference pressure of zero, potential
conductivity eliminates the differences in the pressures
of the standard u surfaces between climatological and
float data. All salinity values from the floats and cli-
matology (and their errors) on the standard u surfaces
are therefore converted to potential conductivity.

Calibration drift of the conductivity sensors on the
floats is mainly due to either biological fouling or ab-
lation of a biocide used to prevent biofouling. The di-
mensional variation from such processes causes the cell
geometry to change and alters the effective volume over
which the conductivity is measured. This in turn causes
the ratio of the measured to true conductivity to change.
Thus, the correction to the conductivities is assumed to
be a multiplicative factor (or a slope term). With tra-
ditional CTD casts that are accompanied by in situ bottle
data, it is often empirically necessary to fit both a slope
and a bias to conductivity in order to obtain a calibration
with small residuals throughout the water column. In
those cases, the presence of accurate in situ bottle data
from the shallow layers to the deeper layers means that
a wide range of conductivity values are available for
the least squares method to obtain a good fitting for a
slope and a bias (an overdetermined system). However,
in our case, estimation of climatology is only accurate
in the deeper layers, which, by using the inverse of the
error variance as weights, effectively means that only a
narrow range of conductivity values are available for
least squares fitting (an underdetermined system). This
situation is crudely analogous to the example of fitting
a straight line through a single data point, where an
infinite number of solutions are possible. To constrain
the solution, we assume a priori that there is no bias
(i.e., the straight line passes through the origin). The
resulting slope term is the preferable choice of model
parameter because its physical interpretation is more
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akin to the expected behavior of the conductivity cell
as its geometry changes.

With accurate contemporary shipboard salinity mea-
surements, Bacon et al. (2001) have demonstrated a
method for calibrating profiling autonomous Lagrangian
circulation explorer (PALACE) float data by using an
additive correction only in salinity space. An additive
salinity correction is roughly equivalent to a multipli-
cative conductivity correction. Thus both our method
and that of Bacon et al. (2001) have effectively chosen
to model only a conductivity slope. However, if suffi-
ciently accurate data were available over a range of
conductivities, it would be preferable to correct for both
a conductivity slope and a conductivity bias.

The model for the correction of potential conductivity
for the ith profile from a float then takes the form

C 9 5 r C 1 « ,i i i i (4)

where Ci is the float potential conductivity, is theC 9i
corrected potential conductivity, ri is the multiplicative
correction term, and «i is the model error. An estimate
of ri is found by using standard weighted least squares
minimization between the potential conductivities from
the float and from climatology. A multiplicative cor-
rection term ri is solved for individual float profiles Fi.
This is because a profile-varying (time-varying) cor-
rection will take into account the gradual evolution of
the changes in the sensor cell geometry. We further
assume that the rate of cell geometry change in a float
is relatively constant over a number of profiles. In other
words, the conductivity cell changes slowly over time
instead of in sudden jumps. Hence for every float profile
Fi, ri is found by minimizing a 2k 1 1 profile series of
differences between the float potential conductivities
and those from the climatology, where k . 0. The series
is comprised of k profiles prior to Fi(Fi2k, . . . , Fi21),
k profiles after Fi(Fi11, . . . , Fi1k), with Fi itself at the
origin, or the center of the profile series. The inclusion
of multiple profiles in the least squares fit serves to
smooth out some of the transient oceanic noise sampled
by individual float profiles, thus giving a more stable
calibration.

The problem can be set up in a linear system:

Gm 1 « 5 D, (5)

where G is the model matrix consisting of the time series
of float potential conductivities Ci, D is the data matrix
consisting of the time series of corresponding estimated
climatological potential conductivities , m are theC9i
model parameters, and « are the model errors. Two pa-
rameters have been built into the system: the multipli-
cative correction term ri, and the time derivative of the
multiplicative correction term ]ri. Hence, for a float
profile Fi with ni number of u levels, the linear system
is of the form

C at u(1) C at u(1) 3 (2k) i2k i2k

_ _
C at u(n ) C at u(n ) 3 (2k)i2k i2k i2k i2k

_ _
C at u(1) C at u(1) 3 0i i  ri_ _  1 2]riC at u(n ) C at u(n ) 3 0i i i i

_ _
C at u(1) C at u(1) 3 (k)i1k i1k

_ _ 
C at u(n ) C at u(n ) 3 (k) i1k i1k i1k i1k

C9 at u(1) i2k

_
C9 at u(n )i2k i2k

_
C9 at u(1)i 

5 _ . 
C9 at u(n )i i

_
C9 at u(1)i1k

_ 
C9 at u(n ) i1k i1k

For profiles taken shortly after the float was deployed
or near the end of the available profiles, the system of
equations is truncated appropriately. Typically we use
k 5 10. So, for example, for the third profile of a float,
the system would include the first 3 1 k 5 13 profiles,
assuming that many profiles exist. This system has
S ni simultaneous equations and two unknowns. Hence
except for the extreme case where only one profile with
only one u level is available, this is formally an over-
determined system.

Since the climatological estimates have varying un-
certainties, they will not provide equal constraints on
the calibration constants. For example, the objective es-
timates of salinity (and then potential conductivity) for
the deeper u surfaces usually have significantly smaller
errors than those at shallower depths. We follow the
standard practice of defining a diagonal weighting ma-
trix, W, of dimension S ni 3 S ni, where the diagonal
elements are chosen to be the reciprocal of the mapping
error variance corresponding to the potential conduc-
tivities in D. That is, W 5 diag[ ], where2Ï1/s (C9)map

(C9) is calculated from ( ) in (3). Weighing2 2s s S9map map f

the calibration model by the inverse of the mapping error
variance means that the u surfaces where the u–S re-
lationships are more stable are used dominantly in the
calibration.

The linear system in (5) becomes

G9m 1 « 5 D9, (6)
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where G9 5 WG and D9 5 WD (Wunsch 1996). The
weighted matrix G9 is decomposed by singularvalue de-
composition to G9 5 USVT, retaining two eigenvalues
(Menke 1989). The least squares solution to the weight-
ed problem in (6) then is

21 Tm 5 (r , ]r ) 5 VS U D9est i i

21 T5 VS U WD. (7)

The calibrated salinity values are obtained from the
corrected potential conductivities in (4) with ri in (7).
There is no significant difference between final values
as to whether one corrects potential conductivity or con-
ductivity before converting back to salinity.

The error variance of the model parameter estimates
in (7) can be calculated as

2 2 T T T21 2 21[« , « ] 5 diag[(VS U W)R (VS U W) ], (8)r ]r

where and are the error variance associated with2 2« «r ]r

ri and ]ri, respectively, and R2 is the error covariance
of the data matrix D. In the case where all the clima-
tological profiles in the time series were independent,
the error covariance matrix R2 would simply be a di-
agonal matrix, where the diagonal elements are the map-
ping errors associated with the climatological potential
conductivity estimates, (C9) as derived from (3), and2smap

zeros as the off-diagonal elements. Such off-diagonal
zeros (which represent the independence) are, of course,
unrealistic, as there is vertical dependence between the
various u levels and lateral dependence between adja-
cent climatological profiles in the time series. A data
covariance matrix, cov D, therefore needs to be con-
structed to give a realistic error estimation.

To estimate the vertical covariance between u levels,
the vertical extents of water masses are used to provide
a measure of the vertical scales. An oceanic water mass
is a body of water with a common formation history,
hence a characteristic u–S combination (Tomczak and
Godfrey 1994). As the water masses spread they mix,
and so at any given point in the ocean, the depth range
that a water mass occupies gives some indication as to
the degree of mixing, or vertical coherence, of the water
column. For example, in the Pacific Ocean, the water
column from the shallow depth to the abyssal layer is
typically occupied by surface waters, subtropical waters,
central waters, mode waters, intermediate waters, deep
waters, and bottom waters, respectively. Surface waters
are separated from bottom waters by about 4000 m in
the vertical and about 4000 km in distance between their
respective formation regions, and so these two water
masses obviously are independent from each other. To
estimate the vertical covariance between u levels, a set
of u boundaries are established to delimit the generic
vertical water mass structure of a typical ocean basin.
The u boundaries are set at 308, 248, 188, 128, 88, 48,
2.58, 18, and 08C. The vertical covariance function be-
tween two levels up and uq is given by

2 2Cu 5 exp{2[(u 2 u ) /Lu ]},pq p q

where Lu is the vertical water mass scale determined
by the differences between u boundaries.

Similarly, the lateral covariance between climatolog-
ical profiles in the data matrix is estimated using the
Gaussian function Cddij(x, y) from (2b), with the small
spatial scales but with ti 2 tj 5 0. This means that the
lateral covariance between profiles depends only on
their spatial separation relative to the small spatial
scales. The mean ages of the climatological profiles are
assumed to be similar; hence, their temporal separations
are not taken into account and are therefore set to zero.

A data covariance matrix cov D is then constructed
using the vertical covariance matrix Cu and the lateral
covariance function Cddij; cov D consists of (2k 1 1)
3 (2k 1 1) tilings of copies of Cu (less than 2k 1 1
for a truncated profile series). Each tile Cuij is of di-
mension ni 3 nj, where ni is the number of available u
levels for the ith profile in the 2k 1 1 (or the truncated)
profile series. Each tile Cuij is then scaled by Cddij, the
lateral covariance between the ith and jth profiles.
Hence, for example, the tiles along the main diagonal
of cov D are simply Cuii, because Cddii 5 1. That is,
the diagonal tiles of cov D represent the covariance of
each profile with itself, so they simply have 1 as their
diagonal elements, and Cupq as their off-diagonal ele-
ments.

The error covariance matrix R2 is then calculated as
22R 5 diag[s (C9)]cov D.map (9)

If the instrumental error k associated with a float is
known, it can be incorporated into R2 by adding diag(k2)
to (9). The error variance [ , ] of the calibration terms2 2« «r ]r

[ri, ]ri] for the ith profile can then be estimated by
substituting R2 into (8). In this way, the errors associated
with estimating the background climatology are carried
through to the weighted least squares calculations. Note
that (8) assumes that the ith profile is at the center of
the 2k 1 1 profile series. At the beginning and end of
a float’s lifetime, the series will be truncated, and so the
ith profile will not be at the center. In those cases, 2«r

(the error variance associated with the slope correction
term ri) needs to be increased by adding d2 3 , where2«]r

d is the distance between i and the midpoint of the
truncated series (e.g., for i 5 2 in a seven-profile series,
d 5 3.5 2 2 5 1.5), and is the error variance as-2«]r

sociated with the time derivative term ]ri.
Due to the need to accumulate a time series of float

profiles to calculate a stable time-varying slope correc-
tion term, this is a delayed-mode calibration system (k
. 0). The second parameter, ]ri, is not used explicitly
in the calibration procedure since the parameters are
calculated using each profile as the origin, and ri gives
the correction for the profile of interest. However, ]ri

can be used to project the correction trend, so that the
corrected salinity values for a profile can be estimated
in real time. In other words, ]ri can be used for a sub-
optimal real-time salinity adjustment estimation in ad-
vance of the delayed-mode procedure described here.
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FIG. 1. Profile locations (1) of three autonomous CTD profiling
floats equipped with two different kinds of conductivity sensors in
10 months of operation: (a) CORC 1118 with an FSI sensor, (b) COOE
21070 with an SBE sensor, and (c) UW 453, also with an SBE sensor.
Distribution of nearby historical hydrographic data from WOD98 is
also shown ( · ).

The main feature of this calibration system is that the
uncertainties from each stage of the process are prop-
agated to the end. The result is a set of calibrated float
salinity data with rigorous error estimates. In the fol-
lowing section, we provide several examples to illustrate
the workings of this calibration system.

3. Examples

Biological fouling has a large potential to affect con-
ductivity measurement stability in autonomous CTD
profiling floats. As examples we present two types of
conductivity sensors, both of which are designed to min-
imize the effects of biofouling, but which still experi-
ence calibration drifts. The Falmouth Scientific Instru-
ments (FSI) conductivity sensors use inductive cells
with external electrical fields, which can be distorted by
marine growth. To minimize biological fouling, the cells
are sometimes coated with a toxic antifouling agent, but
the agent itself distorts the external fields and causes
changes in the cell geometry. As the antifouling agent
ablates, the cell size is altered and the salinity mea-
surements tend to drift toward artificially high values.
The Sea-Bird Electronics (SBE) sensors use electrode
cells with internal fields. Small amounts of antifouling
material placed at the external ends of the cell (entrance
and exit) work to minimize internal biofouling without
altering the cell geometry. The SBE sensor is housed
inside a pumped system, so that when not sampling, the
cell plumbing keeps the cell filled with poisoned water.
The antifouling agents are expected to remain effective
over several years. Some SBE sensors have apparently
had biocide leakage into the conductivity cells after lab-
oratory calibrations had been performed that altered cell
dimensions and led to artificially low salinity measure-
ments at the beginning of the float lifetimes. However,
the biocide apparently washed off and the salinity mea-
surements returned nearer to expected values after a few
months.

Ten months of data from three floats with different
sensors are presented here to show the different behavior
of the two kinds of conductivity sensors, and to illustrate
the workings of our calibration system. The first float
was equipped with an antifouling-coated FSI sensor,
Consortium on the Ocean’s Role in Climate (CORC)
float 1118 (R. Davis 2000, personal communication).
This float was deployed in the eastern tropical Pacific,
in a region with a fair amount of historical data from
WOD98 (Fig. 1a). Between November 1998 and August
1999, it moved westward from about 1108 to 1158W
between 88 and 108N. The second float was equipped
with a SBE sensor, Cooperative Ocean Observing Ex-
periment (COOE) float 21070 (S. Wijffels 2001, per-
sonal communication). This float was deployed in the
eastern tropical Indian Ocean northwest of Australia,
in a region with relatively sparse historical data (Fig.
1b). It moved southeastward from about 128S, 1068E
to 148S, 1088E, between October 1999 and July 2000.

The third float was also equipped with an SBE sensor,
University of Washington (UW) float 453 (S. Riser
2002, personal communication). This float was de-
ployed in the equatorial Atlantic where historical data
distribution is dense. From January 2001 to October
2001, it moved from near the equator northwestward
toward 38N (Fig. 1c).

Over the same amount of time, salinity measurements
from the three floats changed in different ways. For
CORC 1118, which used an FSI sensor that was coated
with an antifouling agent, its salinity measurements
started in reasonable agreement with the climatology,
but steadily drifted toward higher values relative to the
estimated background salinity field (Figs. 2a,b). In the
eastern tropical Pacific, the water has a tight u–S rela-
tionship. For example, at 78C, objective estimates of
background salinity along the float trajectory fall within
the narrow range of 34.56–34.57, with the mapping er-
rors in the range of 0.003–0.007 (Fig. 3a). The CORC
1118 salinity measurements, however, drifted from
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FIG. 2. The u–S measurements from (a), (b) CORC 1118, (c), (d) COOE 21070, and (e), (f ) UW 453,
at the beginning of float lifetimes and 10 months after deployment. Uncalibrated float measurements are
denoted by continuous lines. Dashed lines are objectively estimated u–S relationships at respective float
locations, with error bars being objective mapping uncertainties in salinity. Shaded lines are calibrated float
measurements with k 5 10, i.e., calibrated by a 21-profile series. Width of shaded lines shows uncertainty
of salinity calibration.

34.58 (profile 1) to 34.65 (profile 21) over 10 months.
The wide range of salinity measurements obtained by
this float along its trajectory is therefore not due to the
different water masses sampled, but is the result of sen-
sor drift. Additional support for the sensor drift is found
in the systematic displacements between float measure-
ments and climatology over a temperature range en-
compassing at least two water masses (Fig. 2b). In the
case of this float, sensor drift toward salty values is due

to the ablation of the antifouling coating on the con-
ductivity cell. This ablation changes the cell geometry,
leading to salinity values that are higher later in the
float’s life.

For COOE 21070, which used an SBE sensor, its
salinity measurements were fresher than the climatology
at the beginning of the float’s life, but in time drifted
closer to the estimated background salinity values (Figs.
2c,d). The eastern tropical Indian Ocean is more variable
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FIG. 3. Ten-month series of salinity at the deepest available u sur-
face common to most profiles: (a) CORC 1118 on u 5 78C, (b) COOE
21070 on u 5 2.48C, and (c) UW 453 on u 5 3.68C. Uncalibrated
float measurements interpolated to the u surfaces are denoted by
continuous lines. Dashed lines are objectively estimated salinity at
respective float locations, with error bars being objective mapping
uncertainties. Shaded lines are calibrated float measurements. Width
of shaded lines shows uncertainty of salinity calibration. Calibration
has been done by using k 5 10 (a 21-profile series).

than the eastern tropical Pacific, but the climatological
salinity spread at depth along the float trajectory is still
less than the float measurement range. For example at
2.48C, objective salinity estimates along the float tra-
jectory decrease from 34.72 to 34.70, with the mapping
uncertainty at 0.005–0.006 (Fig. 3b). At the same tem-
perature, the float salinity measurements increased from
34.64 (profile 1) to 34.73 (profile 28) in 10 months. This
wide range of float measurements is therefore likely the
result of instrument drift. In this case, the salinity dis-
parity of nearly 0.1 at the beginning of the float’s life-
time is attributed to biocide leakage into the conductiv-
ity cell before deployment. After deployment the bio-
cide washed off relatively quickly and the sensor re-
turned to giving more normal salinity measurements.
Again, the difference between float measurements and
climatology is consistent over a few water masses (Fig.

2c), indicating that the displacement is due to sensor
drift.

The UW 453 float also employed an SBE sensor.
These sensors are often quite stable over periods of up
to 4 yr (Riser and Swift 2001, manuscript submitted to
J. Atmos. Oceanic Technol., hereafter RS). However,
UW 453 is an exception. Unlike COOE 21070, this float
did start in good agreement with the climatological es-
timates. However, the float measurements drifted toward
fresher values after 10 months (Figs. 2e,f). For example,
at 3.68C, historical data show salinity between 34.97
and 34.98 along the float trajectory, with uncertainty in
the range 0.003–0.006 (Fig. 3c). Float measurements
started at 34.97 (profile 1) and decreased to 34.89 (pro-
file 29), which was fresher than the objective estimate
by 0.08. Again, the consistent shift of the measured u–
S curve relative to the climatology over the entire water
column indicates that the fresher measurements are due
to sensor drift (Fig. 2f). Perhaps due to some unusual
failure of the biocide system, biological growth began
to accumulate over the conductivity cell, thus decreasing
its effective volume and so leading to the fresher salinity
values.

Note that the u–S variability of the region and the
availability of historical data for calibration are reflected
in the salinity mapping errors (Fig. 2). For example,
CORC 1118 and UW 453 profiled in regions that are
u–S stable and densely sampled historically relative to
the locations of COOE 21070. Hence the salinity map-
ping errors for CORC 1118 and UW 453 are less than
those for COOE 21070 at the corresponding u levels.
In addition, at each location the salinity mapping errors
naturally increase from the deeper layers to the shal-
lower layers, thus reflecting the greater u–S variability
at the shallow depths. Generally deeper profiles sample
more temporally stable and spatially uniform u–S re-
lationships, which is one reason for a 2000-m target
profiling depth for the Argo floats.

All three floats have been put through our routine
using a 21-profile time series for calibration, that is,
with k 5 10 (Figs. 2 and 3). For CORC 1118, the cal-
ibration procedure has made only slight adjustment to
profile 1, but has made significant adjustment to profile
21, displacing the u–S curve toward lower salinity val-
ues closer to the climatology. The opposite calibration
results are obtained for COOE 21070. The procedure
has made significant adjustment to profile 1, displacing
the u–S curve toward higher salinity values closer to
the climatology, while only slight adjustment has been
made to profile 28. For UW 453, the calibration made
almost no adjustment to profile 1, but displaced profile
29 toward higher salinity values. In all cases, the esti-
mated salinity calibration errors are small (less than
0.01). This is because the salinity calibration errors are
essentially the salinity objective estimate uncertainties
from the deepest u level, which are small in these re-
gions.

The effect of using different lengths of profile series
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FIG. 4. Evolution of potential conductivity slope correction term r
(mmho cm21) for (a) CORC 1118, (b) COOE 21070, and (c) UW
453, using k 5 1 (dashed line) and k 5 10 (continuous line) with
estimated errors. For clarity of presentation, error bars are only shown
for k 5 10. Error bars for k 5 1 are slightly larger.

in the calibration can be seen in the time evolution of
the potential conductivity slope correction term r. Figure
4 shows the evolution of r using k 5 1 and k 5 10. A
shorter time series (small k) will better fit fluctuations
over a shorter timescale, such as the rapid changes due
to biocide wash-off, but a longer time series (large k)
will average over the effects of the float variability and
ocean variability sampled by the float, thus giving a
more stable calibration in the long term.

When k is small, the solution will asymptotically ap-
proach the extreme case where k 5 0. In that case, one
profile is fitted to one objectively estimated cast. A slope
term can still be determined, but the estimate will be
sensitive to transient oceanic noise sampled by individ-
ual float profiles. Ideally, the length of the time series
should span several eddy scales (temporal and/or spa-
tial), so that the effects of variability are averaged out
over many samples, thus giving a more stable and robust
calibration. For most of the world’s oceans, this would
necessitate using float measurements over several
months. However, where rapid biocide wash-off is sus-

pected, as in the case of COOE 21070, the calibration
could start out with a small k during the wash-off, and
transition to a larger k later in the float’s profile series.
Some further exploration to determine optimal k is war-
ranted.

Note that the least squares fit is also fairly sensitive
to the presence of wild outliers. These situations can be
caused by transient biofouling that often affects only
one profile. In those cases, setting k to a small number
is not a good solution. A better method is to manually
remove the wild outliers before the calibration is run.

4. Discussion

This calibration model assumes that the pressure and
temperature measurements from the autonomous CTD
profiling floats are accurate and that only the salinity
measurements drift slowly over time. To correct the sa-
linity drift, the model makes use of adjacent profiles (a
time series) to estimate a time-varying multiplicative
correction term r by fitting to the estimated climatolog-
ical potential conductivities on u surfaces. The objective
mapping technique provides an error estimate associated
with the climatological estimate.

Due to the need to accumulate a time series, this is
a delayed-mode system (k . 0). Stable calibrations are
expected to take a few months after the float is deployed.
After this initial period, calibration estimates will still
be best from the middle of the profile series, but least
squares estimates of a calibration will be possible for
the ends of the series, and the time derivative of the
slope correction term ]r can be used to predict subop-
timal calibrations for upcoming profiles. The statistical
uncertainty associated with estimating the background
climatology from historical data is carried through in
the weighted least squares calculations.

Since u–S relationships vary over time even at great
depths (e.g., Dickson et al. 2001), this system relies
heavily on the availability of a global hydrographic da-
taset with dense and recent coverage for a good rep-
resentation of the temporal climate regime contempo-
rary with the float measurements. The WOD98 is a good
starting point for a global database, but it needs to be
augmented by recent hydrographic data as they become
available. These should include shipboard CTD mea-
surements taken at the launching of the floats, or any
other shipboard CTD profiles taken near the floats. The
inclusion of contemporary high quality calibrated hy-
drographic data will help to determine whether a mea-
sured trend is due to sensor drift or due to natural var-
iability.

In the absence of contemporary hydrographic data,
calibration by u–S climatology works best for the parts
of the ocean where the water has a stable u–S relation-
ship with little natural variability. The deep oceans away
from the bottom boundary are generally areas that have
a long ventilation timescale. Hence sampling to 2000
m or to where the u–S curve is stable will help the
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calibration in most areas. In areas with great spatial and
temporal variabilities, where ventilation timescales are
short and ventilation is deep, such as frontal regions,
the subpolar North Atlantic (e.g., Dickson et al. 1996),
and perhaps the Southern Ocean (e.g., Gordon 1982),
statistical estimates are more uncertain, and so give rise
to uncertain calibrations. An alternative method for the
high-variability areas would be to compare floats where
they approach each other to build an internally consis-
tent dataset within the float measurements, perhaps us-
ing available ship-based hydrographic data as calibra-
tion anchor points (e.g., Bacon et al. 2001). Such a
system could best be constructed after study of the be-
havior of many floats with respect to historical data in
a region where stable u–S relationships exist, such as
the Pacific Ocean.

This model thus raises the issue that until accurate
and stable conductivity measurements are achievable for
these floats, in situ hydrographic observations at inter-
vals less than the ventilation timescale to the bottom of
the float profiling depths are needed in order to accu-
rately calibrate profiling float salinity data. Rapid pro-
gress has been made in achieving stable salinity mea-
surements over periods of approximately 4 yr. Float
technology is still evolving, and the newer sensors have
demonstrated the ability to maintain the Argo salinity
accuracy target of 0.01 over longer periods (RS). Ac-
companied by contemporary ship-based measurements,
a high quality integrated global ocean observation sys-
tem is achievable based on these autonomous CTD pro-
filing floats.
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