COMMERCIAL PROGRAM GET COMFORTABLE WITH HVAC MEASURES

Measure Training Brown Bag Part 2 December 2, 2015

LET'S GET COMFORTABLE WITH HVAC MEASURES

AIR ALLIES

<u>UNDERSTAND</u>

HOW UTILITY PROGRAMS

WORK

PROGRAM MANAGERS

<u>UNDERSTAND</u>

TECHNOLOGIES AND

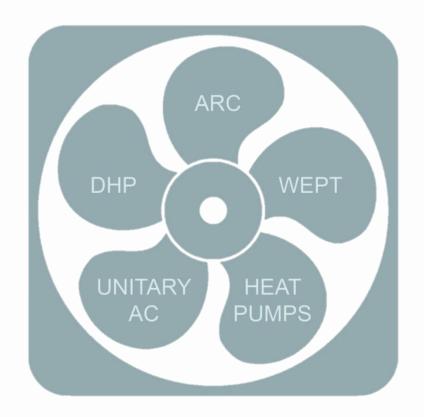
HOW THEY BENEFIT THEIR

CUSTOMERS

END-USERS

<u>UNDERSTAND</u>

HOW TO LOWER COSTS AND


INCREASE COMFORT

HELP IS ON THE WAY!

FEWER PROGRAM REQUIREMENTS • SIMPLIFIED DOCUMENTATION • GREATER PROGRAM SUPPORT

NEW MARKETING MATERIALS FOR UTILITIES
AND AIR ALLIES WILL HIGHLIGHT

- End-user benefits
- Basis for energy savings
- Estimated cost and payback
- Where to install

MARKETING & PROGRAM SUPPORT

Performance

Improved Performance

Maintenance

Remote Energy Monitoring & Control

Reduced fan energy use

Save thousands in annual energy cost

Contact your local utility to confirm incentives!

Web-Enabled Programmable Thermostat Qualified Products List

Ductless Heat Pump

Project Information Form

Instructions: Complete this form and submit it to the serving electric utility. Boxes with bold outlines indicate BPA

B O N N E V I L L E P O W E R

BUSINESS AND SITE INFORMATION

Business Name	Address	
State	Zip	
Operating hours per week	Operating weeks per year: Holidays observed per year:	
Considering the above, estimate the number of operating hours per year:		

BUILDING INFORMATION

Qualifying buildings must meet the requirements below.

The building was constructed before 2009	□Yes
Check the bax if this statement is correct. If not, the equipment is not eligible for incentives.	<u>=</u> 16
The existing heat source is electric resistance (either zonal or forced air)	□Yes
Check the box if this statement is correct. If not, the equipment is not eligible for incentives.	□ res
The estimate square footage of the conditioned area is less than 20,000 sq. ft.	□ Yes
Ghack the box if this statement is correct. If not, the couldment is not eligible for incentives.	Li Yes

NEW EQUIPMENT INFORMATION

Complete the information for each installed DHP.

	DHP 1	DHP 2	DHP 3	DHP 4
DHP manufacturer				
DHP model number				
Heating capacity in tons				

Company Name	Total Installed Cost (before rebate) including equipment, labor, permit and tax
By signing this form, I confirm that the above informa	tion is correct to the best of my knowledge.
Installer Signature	Date

the current BPA Implementation Manual.

Model
Thermostat
Commercial EMS
EMS SI
Vision Pro 8000 with Gateways for web-enabling
WIFI Vision Pro 9000
Prestige Wireless
UNITY System
P1900
ternet Managed Thermostats (IMT) 550 hard-wired wi-fi model
CATALYST BMS
EMS

A D M I N I S T R A T I O N

ned for residential applications; it doesn't meet fan-on during Is and fan-auto during unoccupied-periods requirements to meet

ned for residential applications; product is intended to work with ed thermostats from "most manufacturers", its qualification will ermostat's capabilities and whether it meets the commercial

ned for residential applications: it doesn't meet fan-on during Is and fan-auto during unoccupied-periods requirements to meet

ned for residential applications; it doesn't meet fan-on during Is and fan-auto during unoccupied-periods requirements to meet

that do not appear on the list, or other questions, please

Ductless Heat Pump Project Information Form 09/30/2015

HOW DOES AN ADVANCED ROOFTOP CONTROL WORK?

BEFORE ARC

- Constant speed fan
- Operates at 100% during occupied periods
- Operates more than is needed for required ventilation

AFTER ARC

- Variable or multi-speed fan
- Only operates at speed needed
- ☐ Uses sensors to bring in correct amount of required ventilation

ARC AND ARC LITE

BUILDING USE TYPE EXAMPLES

- Retail
- Shopping mall
- Grocery
- Warehouse
- Auditorium
- And many more!

END USER BENEFITS

- Reduced electricity costs
- Increased occupant comfort
- Potential to extend motor life
- Fault detection

Buildings with any fuel type qualify for ARC incentives

ESTIMATED COSTS

- The average total project cost is \$332/ton for ARC Lite, \$725/ton for ARC
- Additional software monitoring costs may apply

INCENTIVES

□ \$150-\$225/ton

ESTIMATED PAYBACK

2-6 years for ARC Lite, 4-10 years for ARC

Tip: RTUs in multi-story buildings may be great for ARCs because stairways are often in ventilation mode

ARC AND ARC LITE

SPECS & REQS

EXISTING CONDITIONS

- → > 5 tons of cooling capacity
- Unitary equipment (no split-systems)
- <u>Existing system has constant speed supply fan</u> (no variable speed fans)
- An operational economizer
- Continuous operation during occupied hours (minimum 2,000 hours/year)

ARC

- Either supply-fan variable speed, multi-speed or cycling
- ☐ Digital, integrated economizer control.

ARC Lite

 Either supply-fan variable speed, multi-speed or cycling

GOOD FACTS

- □ Sweet spot: between 5 20 tons
- Most units over 20 tons have variable fan speed operation
- Any existing fuel type

ENERGY SAVINGS

- ARC Retrofits add controls to convert constant airvolume RTUs into variable air-volume RTUs
- Research showed supply-fan controls accounted for over 80% of the ARC retrofit energy savings

FORMS & DOCUMENTATION

- □ PIF
- QPL

Check with the supplier to ensure the ARC doesn't effect the RTU warranty

DUCTLESS HEAT PUMPS

BUILDING USE TYPE EXAMPLES

Less than 20,000 square feet of floor area in newer buildings (post-2009)

- Homes converted to businesses
- Banks
- Warehouse Offices
- Small / Closet Server rooms

END USER BENEFITS

- Reduce electricity costs
- ☐ Increase comfort
- Better zone control
- Quiet units
- Small footprint, no duct work
- Easy operation and maintenance

ESTIMATED COSTS

- ☐ The average cost of an installed ductless heat pump is between \$3,000-\$5,000
- Factors that influence cost include: manufacturer and model, refrigerant lineset length, difficulty of installation, and contractor rates

INCENTIVES

□ \$250/Ton

ESTIMATED PAYBACK

☐ Less than 12 years for a 3 ton unit

This technology isn't recommended for applications that require significant ventilation.

DUCTLESS HEAT PUMPS

SPECS & REQS

The building conditioned by the DHP has the following characteristics:

- <20,000 square feet of conditioned floor area</p>
- A construction date before 2009
- Zonal or forced air electric resistance heat

ENERGY SAVINGS

- Control each heating/cooling zone independently, eliminating costly over-heating and cooling
- 25% greater efficiency due to lack of ductwork
- □ Inverter-driven variable speed compressors maintain constant indoor temperatures by running continuously at higher or lower speeds
- □ No on/off cycling common in electric resistance and forced air systems

FORMS & DOCUMENTATION

PIF

Project costs could include: condensate pumps, extra refrigeration, demo of old ductwork or outside concrete pad

WEB-ENABLED PROGRAMMABLE THERMOSTAT (WEPT)

BUILDING TYPE

Any commercial building except for hotel or motel rooms

END USER BENEFITS

- Reduced electricity bills
- Remote monitoring and control
- Increased occupant comfort

INCENTIVE

- Replacing a programmable thermostat \$150
- Replacing a non-programmable thermostat ranges from \$500-\$800

ESTIMATED COST

- The average product cost is between \$150-\$500, with some products approaching \$2,000
- ☐ Installation costs should be for approximately one hour of labor

ESTIMATED PAYBACK

■ Approximately one year for Type 1, twothree years for Type 2

Some WEPT products require annual data subscriptions

WEPT

SPECS & REQS WEPT REPLACES

- A thermostat that is not programmable
- A thermostat that is programmable but not web-enabled

WEPT MUST HAVE THE FOLLOWING TO QUALIFY

- Limited duration occupied-period override, multiple set back schedules and holiday programming
- Continuous supply fan operation during occupied periods and intermittent operation during unoccupied periods (this ensures ventilation requirements are to code, while saving energy)
- Remote, web-based programming (this allows building operators more opportunities to schedule HVAC operation to match occupancy)
- Battery and memory backup (this prevents loss of scheduling features during power outages)

APPLICATION

 Any commercial space with the exception of hotel rooms

ENERGY SAVINGS

WEPTs match HVAC operation with actual occupancy, minimizing energy use when not occupied

FORMS & DOCUMENTATION

□ PIF

HEAT PUMPS

BUILDING USE TYPE EXAMPLES

Small- to medium-sized buildings less than 50,000 sq ft.

- Retail
- Schools
- Offices
- Mixed-use
- Many building types!

END-USER BENEFIT

- Reduced electricity bills
- Increased occupant comfort

Heat pump savings are site-specific, so costs and payback can vary greatly from location to location

ESTIMATED COSTS

- Upgrades and conversion costs vary
- Units from 3 to 5 Tons can range from \$2,500 to \$5,000
- Other costs may include: Start-up, thermostat, controls, refrigerant and warranty

INCENTIVE

\$100-\$250/Ton – depending on an upgrade or conversion

ESTIMATED PAYBACK

□ 13 – 17 years, depending on product, installation and energy costs

HEAT PUMPS

SPECS & REQS

- HP meets at least CEE Tier 1 efficiency level Existing building has:
- □ 50,000 square feet or less conditioned building area
- ☐ Consume less than 600,000 kWh annually
- Electric heat

TYPICALLY REPLACING

- Packaged rooftop unit
- Small interior forced air furnace

Heat Pump incentives are for retrofits and upgrades of existing buildings only.

ENERGY SAVINGS

- Uses a refrigerant system involving a compressor and a condenser to absorb heat at one place and release it at another
- Let's talk about the Coefficient of Performance, or COP!

FORMS & DOCUMENTATION

■ Heat Pump Tool (calculator)

COMING UP...

- ☐ Commercial Measure Training 201:
 - Commercial Shell Measures
 - Refrigeration Measures
 - Commercial Small Savers
 - Generator block heater control
 - Engine block heater control
 - Hot water storage tanks
- ☐ Marketing Materials online beginning this month
- ☐ Interested in learning about other measures? Have a suggestion? Request a topic!

QUESTIONS?

YOUR FEEDBACK MATTERS!

JOHN ARTHUR WILSON COMMERCIAL SECTOR LEAD, 503.230.7319 JAWILSONS@BPA.GOV