When Green Goes Bad

Flyer banner for "When Green Goes Bad" webinar

By Lahne Mattas-Curry

When you think about the environment, what color comes to mind? Green, right? Because in everything we know in the environment “Green is Good.”

And while that is very often true, in the case of lakes and ponds that suddenly go green, it is most likely the result of an algae bloom, which, increasingly, contain many harmful cyanobacteria.  Also known as “blue-green algae,” some species of these tiny, photosynthetic aquatic organisms produce toxins. The impacts of these harmful algal blooms are widespread and often not good. Not good at all.

From acute adverse human health impacts such as respiratory and gastrointestinal problems (yuck) to known deaths of animals (keep the family dog out of green water, please!!), blooms like these are becoming a more frequent occurrence and are having greater impacts.

To better understand how algal blooms impact human health, identify the toxicity of cyanobacteria, predict the probability of bloom occurrences, and share this information broadly, our researchers have been working on a research project focused this topic since 2012.

The researchers involved in the project will be sharing what they have learned during a webinar on Wednesday, June 25 from 12:00 to 1:00pm as part of EPA’s Water Research Webinar Series.

We hope you will join them to hear an overview of the breadth of their algae bloom research, and learn details about ecological modeling they conducted on cyanobacterial blooms in U.S. lakes. They will explain how they embraced the concept of “Open Science”—the movement to make scientific research and data accessible to the public.

And if that’s not enough, they will also be available for a twitter chat on June 26 from 2:00pm to 3:00pm. You can submit questions now by using #greenwater or you can wait until the day of the chat. Please follow us @EPAresearch.

To register for the webinar, please send an email to sswr@epa.org with your name, title, organization and contact information.

Meet our Scientists

Jeff Hollister, Ph.D.
EPA research ecologist Jeff Hollister received his Ph.D. in Environmental Science from the University of Rhode Island. His past experience is in applications of geospatial technologies to environmental research and broad-scale environmental monitoring, modeling, and assessment. His current research focuses on how nutrients drive the risk of cyanobacterial blooms in lakes and ponds.

Betty Kreakie, Ph.D.
EPA research ecologist Betty Kreakie earned her Ph.D. in integrative biology from the University of Texas. Her work focuses on the development of spatially-explicit landscape level models that predict how biological populations and communities will respond to human-caused influences, such as nutrient and contaminant pollution, climate change, and habitat conversion.

Bryan Milstead, Ph.D.
EPA post-doctoral research ecologist Bryan Milstead received his Ph.D. from Northern Illinois University for work on small mammal population dynamics in Chile. Before coming to EPA, he worked for the U.S. National Park Service and for the Charles Darwin Foundation for the Galapagos Islands. His current work focuses on understanding how nutrient over-enrichment affects the aesthetic quality and risk of cyanobacteria blooms in lakes.

About the Author: Lahne Mattas-Curry communicates the many cool things happening in water science for EPA and hates #greenwater. She urges everyone to think twice about what fertilizers they use on their lawn and encourages pet owners to “pick up the poop” to reduce nutrient pollution.