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Introduction Preliminaries

River Network System

Input is flow hydrograph Q(t)

River system flow dynamics
determined by unsteady flow
routing

Nonlinear time-dependent
system

We use Performance Graphs
approach to simulate (OSU
Rivers)
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Introduction Overview

Incorporating Uncertainty

Incorporate uncertainty into inputs of the system

We propose to add a stochastic component to input variables

We use the system dynamics to propagate uncertainty

This results in a stochastic representation of system variables

Our approach allows for the explicit construction of the stochastic
representation for select variables

other related quantities are implicitly stochastic
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Introduction Overview

Advantages

Our proposed framework allows

Simple extraction of statistics of solutions: mean, variance, etc.

Representation of stochastic outputs in the form of a polynomial in a
random variable (easy to sample)

to extract pdf
for Monte-Carlo methods
compute failure probabilities

Polynomials computed using uncoupled, deterministic forward
simulations with different parameters (embarrassingly parallel)
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Introduction Problem Setup

Simple Network System

Consider this simple network system
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Introduction Problem Setup

The (nonlinear)
relationship
between variables
~X = [yd1 , . . . ,Qd8 ]
is given by the
following map
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Introduction Problem Setup

Problem Inputs

Inputs: Qu1 , y5, Rating Curve, gate positions

Assume uncertainty envelope around Qu1 prediction (representing flow
discharges upstream of reach 1)

Qu1(t) = Qu1
(t) + Q̃u1(t)

Additional input: pdf for Q̃u1
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Introduction Problem Setup

Questions one could ask

What is the resulting pdf of Qd8?
(propagation of uncertainty)

What choice of gate positions cause Qd8 to behave as desired?
(on average)

What choice of gate positions cause hydropower production h(~X ) to
behave as desired?
(on average)

What choice of gate positions minimize risk of flooding?
(on average)

Are there choices of gate positions that lead to robust predictions of
Qd8 or h(~X ) or flood volumes?
(minimize variance)
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Proposed Framework Preliminaries

Mathematical Framework

Given
Qu1(t) = Qu1

(t) + Q̃u1(t), Q̃u1 ∼ F

Find gate positions g(t) such that one or more of the following are
minimized

J1 = E [‖Qd8 − d‖] =

∫ ∥∥∥Qd8(Q̃u1)− d
∥∥∥ dF

not the same as ‖E[Qd8 ]− d‖

J2 = Var(Qd8)

J3 = Prob[Qd8 < tolerance]

or similar for ~Xi or h(~X ) or FV .
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Proposed Framework Preliminaries

Requirements

Need a framework that allows fast computation of statistics and/or
failure probabilities of select variables in the solution of the system.
(or nonlinear/non-smooth functions of select variables)

To take advantage of an already developed flow dynamics model
based on the HPG/VPG approach, we will incorporate the proposed
uncertainty framework non-intrusively into OSU Rivers.
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Proposed Framework Generalized Polynomial Chaos

Generalized Polynomial Chaos

Our approach is to explicitly model the random space (via random
variables and processes) and perform a generalized Polynomial Chaos
(gPC) representation

This method uses an orthogonal polynomial expansion in random
space to represent the stochastic input quantities as well as the
solutions to the system.

Convergence of polynomial chaos methods can be shown to be
exponential in the number of basis functions.
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Proposed Framework Generalized Polynomial Chaos

Example

To illustrate the idea of our approach, we present the following example.
Consider the quantity Qu1 above.

We may assume that the uncertainty around the prediction Qu1
(t) is

relative with magnitude 10%.

We introduce the standard random variable (hereafter referred to as a
germ) ξ ∼ Beta(α, β) with support [−1, 1] then

Qu1 = Qu1
+ 0.1ξQu1

(1)

Equation (1) represents a polynomial chaos expansion of the random
input.

If α = β, F is a symmetric beta distribution centered around mean 0;
for the special case α = β = 0 this is simply a uniform distribution.
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Proposed Framework Beta distributions
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Proposed Framework Generalized Polynomial Chaos

Generalizations

Continuous distributions that can be handled directly: Uniform, Beta,
Gaussian, Gamma

Discrete distributions: Poisson, Binomial, Hypergeometric

Choice of distribution determines corresponding orthogonal
polynomials (e.g., Gaussian pdf defines Hermite orthogonality)

Other distributions require non-linear transformations of the above, or
manual construction of orthogonal polynomials

Random inputs can be random variables or random processes
(time-dependent), e.g., represented by a Karhunen-Loeve (KL)
expansion

Any number of independent random inputs may be used, each with
their own distribution
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Proposed Framework Generalized Polynomial Chaos

Stochastic Galerkin Method

In a Galerkin method, we seek to determine the coefficients of a gPC
expansion of each component of the solution vector

~X = [yd1 , . . . ,Qd8 ]

To do this, one may take a Galerkin projection of the original system,
but with these expansions substituted in for the solution quantities

The resulting integrals can be computed analytically due to the
polynomial basis representation

This approach in general leads to a large coupled system of equations
for the gPC coefficients
(e.g., intrusive method: changes the system to be solved)

This new system must be discretized in space and time
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(e.g., intrusive method: changes the system to be solved)

This new system must be discretized in space and time
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Proposed Framework Stochastic Collocation Method

Stochastic Collocation Method

An alternative is to numerically approximate the integrals

Consider Qd8 : its representation in terms of a degree P expansion

QP
d8

(t, ξ) =
P∑

i=0

vi (t)φi (ξ)

where φi (ξ) are the basis functions
(Jacobi polynomials in the case of a Beta distribution of inputs).

Each gPC expansion coefficient is given by

vi (t) = E[Qd8(t, ξ)φi (ξ)]

i.e., the expected value with respect to F of the true solution times
the (normalized) basis function
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Proposed Framework Stochastic Collocation Method

Stochastic Collocation Method with Gaussian Quadrature

The computation of the integral in

E[Qd8(t, ξ)φi (ξ)] =

∫
Qd8(t, ξ)φi (ξ)dF (ξ)

can be performed efficiently via Gaussian quadrature.

Gaussian quadrature applies to functions which can be represented as
g(ξ)W (ξ) where g(ξ) is well-approximated by a polynomial.

Then the nodes ξj of the quadrature rule are the roots of an
orthogonal polynomial in the support of F

E[Qd8(t, ξ)φi (ξ)] ≈
N∑

j=1

wjQd8(t, ξj)φi (ξj)

Stochastic Collocation thus requires only deterministic system
solutions for the fixed values {ξj}Nj=1 of the random variable ξ
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Proposed Framework Stochastic Collocation Method

Comments on Stochastic Collocation

System solutions at ξj can be recycled even if the input pdf changes

Gaussian nodes are pre-determined (by choice of distribution) and
thus simulations are independent and parallelizable!

For large random dimension, sparse grids (Smolyak) are used to
mitigate curse of dimensionality in quadrature
Implemented in DAKOTA (Design Analysis Kit for Optimization and
Terascale Applications) toolkit by Sandia National Laboratories

Open source, C++ software
Extensible interface between simulation codes and various uncertainty
quantification methods

After simulations are performed, gPC expansion for any function of
output may be easily constructed

E[f (~X (t, ξ))φi (ξ)] ≈
N∑

j=1

wj f (~X (t, ξj))φi (ξj)
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Numerical Results gPC Example

We build the gPC expansion (response function) for the flood volume in a
single reach simulation using two different predictions of Qu1 :

Peak flows of 850
and 950
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Numerical Results gPC Example
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Conclusions Future Work

Future Work

Demonstrate on large-scale example

Incorporate into Optimal Control Framework

OSU Rivers: NSGA-II Genetic Algorithm
Semi-smooth Newton framework
(Primal-Dual Active Set Strategy)
Hybrid approach (local vs global)

Random Optimal Control

Use Bayesian Inference framework to determine gPC for optimal control
Polynomial representation allows pdf of control to be determined
Allows for quantification of robustness of control relative to uncertainty
(distributional sensitivities)
Likelihood of control meeting objectives (conditional probabilities)
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