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Water Power 



Introduction 

• Presentation Outline 
– Operating challenges 

– Why integrate water and power models? 

– Objective of this work 

– Selected integrated model structure 

– Future work 



Introduction 
• Water System Operational Challenges 

– Uncertain inflows 
– Conflicting Purposes 
– Time delay 
– Complex legal agreements 
– Interconnected reservoirs 

Figure source: President's Water Resources Policy Commission, 1950 



Introduction 
• Power System Operational Challenges 

– Production = Consumption + Losses at all times 
– Contingencies  reserves and ramping rates 
– Uncertain renewables production 
– Multi-area power flow 
– Interconnections 
– Congestion 



Introduction 
• Why Operations Modeling and Optimization? 

– Infrastructure = Money + Time 
• Critical operations for critical infrastructure 
• Improved efficiency = more revenue 
• Accidents are too costly 

– Computers are needed 
• Large systems 
• Repeated tasks 



Introduction 
• Why Integrate Water and Power System 

Operations Modeling? 
– Segregated modeling framework 

River and Reservoir Modelers 

Transmission System Operator 

“Do this” 

“Sorry, we can’t do that” 

“Sorry, we can’t do that” 

Power Marketers 

“Do this” 



Introduction 
• Why Integrate Water and Power System 

Operations Modeling? 
– Integrated modeling framework 

River and Reservoir Modelers 

Transmission System Operator 

“Do this” “Sorry, we can’t do that” 

Power Marketers 

Aren’t these 
generally two 

different 
entities?   



Introduction 
• Why Integrate Water and Power System 

Operations Modeling? 
– Unrealistic modeling in current renewable 

integration studies [1]-[4] 
• Transmission constraints (and other security issues) 
• Non-power water system constraints and objectives 
• Interrelated nature of multi-reservoir operations 

– Energy storage is essential 
• Hydropower provides large and  

long-term energy storage 
• Reduce uncertainty in renewable  

energy production 



Introduction 
• Why Integrate Water and Power System 

Operations Modeling? 
– Climate change impacts on operations 
– Emergency response plans 
– National economic security 
– Interdisciplinary analysis of economic and 

environmental tradeoffs 



Introduction 
• Hasn’t integrated water and power systems 

modeling already been done? 
– Previous models generally do not include ramping 

rate constraints and increased reserve capacity 
requirements 

– To our knowledge, no freely available, generalized 
model currently exists 



Introduction 
• How did Colorado State University (CSU) get 

involved in this project? 
– Fellowship from the Hydro Research Foundation 
– CSU has a customizable water operations model 

(called MODSIM) 
– CSU is a major research center for power system 

controls 



Introduction 
• Objective 

– Realize the full potential for both conventional and 
pumped storage hydropower to aid renewable 
energy integration with sufficient accuracy 

• Build model 
– Handles water AND power constraints adequately 
– Incorporates uncertainty 
– Multiple objectives 

• Apply the model to a test system 
• Examine operational improvements 



Model Structure 
• What type of model do we need to build? 

– Spatial and temporal scales  

Figure taken directly from [10] 



Model Structure 
• What type of model do we need to build? 

– Spatial and temporal scales  

Figure taken directly from [10] 



• What type of model do we need to build? 
– Stochastic, dynamic optimization method 
– Incorporates energy storage 

• Introduces dispatchability 

Model Structure 



• What type of model do we need to build? 
– Conventional hydropower 

Model Structure 
W

in
d 

Po
w

er
 

High 

Low 

Release less, 
Store more water 

Release more,  
Store less water 

Powerplant 

Powerplant 



• What type of model do we need to build? 
– Pumped storage hydropower (e.g., peak shaving) 

Model Structure 
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Integrated Model 
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Model Structure 
• First Level 

– Water network solution 
• MODSIM 

– Iterative network flow algorithm & Frank-Wolfe algorithm 

– Constrained Economic Dispatch 
• Open-ended design that allows for both:  

– Programmatic (or tightly coupled) interface 
– Loosely coupled interface (I/O to disk)  

• Light-weight addition to MODSIM 
– “Direct search” method seems promising [5]-[8] for active 

power dispatch problem 



Model Structure 
• First Level 

– Water network solution 
• Network flow algorithm 

– Solve mass balance 
– Distribute water according to priority 

• Successive approximations 
– Solve for evaporation, reservoir levels, lags, any nonlinear 

customized changes 

• Frank-Wolfe method 
– Solve quadratic formulations (power demand) 



Model Structure 
• First Level 

– Water network solution 
• Frank-Wolfe method 



Model Structure 
• Second Level 

– Lagrangian Relaxation Master Problem 
• Optimality Condition Decomposition [9] 



Model Structure 
• Second Level 

– Simulation Structure 

Static Second-Level 
Optimization 



Model Structure 
• Second Level 

– Simulation Structure 

Smaller timestep 



Model Structure 
• Second Level 

– Simulation Structure 
• Allows system approach 



Model Structure 
• Second Level 

– Simulation Structure 
• Dynamically updated ramping rate & reserve constraints 



Model Structure 
• Second Level 

– Simulation Structure 



Model Structure 
• Third Level 

– Reinforcement Learning 

Dynamic Optimization 



Model Structure 
• Third Level 

– Reinforcement Learning 
– In other words… 

Set target 
 level 

See how well the system performs 

Store the results Update target level 



Model Structure 
• Third Level 

– Reinforcement Learning 

What about uncertainty? 



Integrated Model 
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Model Structure 
Reinforcement 

Learning 

vs. 

Greedy Exploratory 

Stochastic Optimal Policies 

Current Reservoir Levels 

Reservoir Inflow Forecasts 

Wind Power Forecasts 

Optimal Policy 
• Table  
• Fuzzy rules 
• Neural network 

Targets 
• Reservoir Levels 
• Release Schedules 

Time 



Model Structure 
• Benefits to this approach 

– Incorporate uncertainty easily 
• No need to estimate explicit transition probabilities! 
• Optimal policies are inferred  
• Ensemble prediction  

(streamflow & renewables) 

– Parallel processing 
– Multiobjective analysis 
– System approach to firming renewables 
– Algorithms are similar to operators’  

way of thinking 



Test Systems 
• Does anybody want to partner with CSU to 

provide actual test systems?  
– Wind-hydro-thermal mix 

• Wind power forecasts and actual production 
• Pumped and conventional hydropower 

– Transmission system constraints 
• Transmission data (under NDA perhaps) 

– Water system constraints 
• Legal/environmental agreements 
• Operating criteria 



Future Work 
• Parallelization & high-performance computing 
• Interdisciplinary analysis of: 

– Climate change 
– Emergency response plans 
– Economic and environmental tradeoffs 

• Integration with other critical infrastructure 
models 
– Natural gas and oil 
– Water and power distribution  
– Crop production and irrigation 
– Weather forecasting and climate change models 
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