RECLANATION Managing Water in the West

WRIMS – Water Resources Integrated Modeling System

Nancy Parker U.S. Bureau of Reclamation February 21-22, 2012

U.S. Department of the Interior Bureau of Reclamation

WRIMS Overview

- WRIMS is a general purpose water resources management tool for modeling surface water and/or groundwater allocations
- Water Resources Integrated Modeling System

- Developed and maintained by the California Department of Water Resources
- CVP/SWP Planning Modeling
- Klamath Project Planning Modeling

WRIMS Basics

 Physical river system represented as a network of nodes (reservoirs, diversion points) and arcs (river channels, canals)

ECLAMAT

 Describe what the problem is, not how to solve it

WRIMS Basics

- <u>Water Resources Engineering Simulation</u> <u>Language (wresl) Code</u>
 - Define variables, Write goals/constraints
 - "English-like" syntax
- Input
 - Time series inputs HEC-DSS (monthly, daily)
 - Parameter/Function inputs ascii tables
- Output
 - HEC-DSS

WRIMS Components and Structure

WRESL Basics – Three Elements

Definitions

- State Variables Input data (time series or lookup) or values calculated from input data
- Decision Variables Storage, Flows, Diversions, or other values calculated at run time
- Goals / Constraints describe physical and institutional limits on operations; hard or soft, constant or conditional
- Weights prioritize flows, deliveries, storage

RECLAMATIC

Optimization Problem

C4 = C4 MIF + C4 EXC

Connectivity

I1 + S1(-1) = S1_1 + S1_2 + S1_3 + E1 + C1 C1 + I2 = D2 + C2 C2 = D3+ C3 C3 + R4 = C4

Storage Zones

S1 = S1_1 + S1_2 + S1_3 S1_1 < 150 S1_2 < 300 S1_3 < 50

Operation Constraints C1 < release capacity

D2 < constant demand

D3 < time series demand C4_MIF < minimum flow

R3 = factor * D2

50 taf Flood Space

300 taf Conservation Pool

150 taf Minimum Storage

Weights		Sorted We	eights
S1_1	2000	S1_1	2000
S1_2	1000	C4_MIF	1200
S1_3	-10000	D2	1100
D2	1100	D3	1050
D3	1050	S1_2	1000
C4_MIF	1200	S1_3	-10000

Objective Function:

Max Z = 2000*S1_1 + 1000*S1_2 -10000*S1_3 + 1100*D2 + 1050*D3 + 1200*C4_MIF

• Define Inputs

• Define Decision Variables

```
define S1 {std kind 'storage' units 'taf'}
define S1_1 {std kind 'storage-level' units 'taf'}
define S1_2 {std kind 'storage-level' units 'taf'}
define S1_3 {std kind 'storage-level' units 'taf'}
goal totS4 {S4 = S4_1 + S4_2 + S4_3}
define C1 {std kind 'channel' units 'cfs'}
define C2 {std kind 'channel' units 'cfs'}
define C4 {std kind 'channel' units 'cfs'}
define C4 {std kind 'channel' units 'cfs'}
define C4_MIF {std kind 'flow-minimum' units 'cfs'}
define C4_EXC {std kind 'flow-excess' units 'cfs'}
define D1 {std kind 'diversion' units 'cfs'}
```

define D2 {std kind 'diversion' units 'cfs'}
define R4 {std kind 'return' units 'cfs'}

RECLAMATION

Ξ

- Write Constraints and Goals
- Weight Decision Variables

```
goal continuity1 {I1 - C1 - E1 = S1*taf_cfs - S1(-1)*taf_cfs}
goal continuity2 {C1 + I2 - D2 - C2 = 0.}

goal meetD2 {D2 < demand2}
goal meetD3 {D3 < demand3}
goal setD3Return {R4 = D3 * factor}
goal MeetMinFlow {C4_MIF < C4_min}

Objective obj = {
[S1_1, 2000*taf_cfs],
[C4_MIF, 1200],
[D2, 1100],
[D3, 1050],
[S1_2, 1000*taf_cfs],
[C4_EXC, -100],
[S1_3, -1000*taf_cfs]</pre>
```

• Soft Constraints – slack and surplus penalties

WRIMS Solution

- XA LP/MILP Solver Sunset Software
 - \$1250
 - Hardware license
- Maximize objective function value while meeting user specified constraints
- Integer variables allow dynamic switches
- Solution vs. optimization
- Debugging is an acquired skill

WRIMS Software

- Conditional or multiple solutions within each time step allow for layering of constraints
- Can incorporate external functions or dll's
- Position analysis capabilities enable use of ensemble input data sets
- Flow routing using arc "storage"
- Mixed timestep simulations look-ahead forecasting and routing applications

WRIMS User Experience

- Problems are hard; models should help
- WRIMS development done in text files
 - custom, readable, searchable, "story-line", text highlights
- GUI facilitates running the model
- GUI enables basic results processing variable lists, time series, plots, tables

WRIMS Look and Feel

