Some Decision Support Systems

Charles D. D. Howard, P.E., P.Eng. CddHoward Consulting Ltd Victoria, BC, Canada

http://www.CddHoward.com

Example Decision Support System

- Overview of DSS Components
- Project Inflows
- Unit Commitment and Base Points
- Pre-Scheduling
- Generation Scheduling and Bidding
- Unit Maintenance Scheduling
- Project Sites: Some Specific Issues

Project Inflows

- Hydrologic Data
- Hydrologic Forecasting

Powell River BC Basin

High Elevation Hydromet Station

Cumulative Inflow Forecasts

Historical weather provides samples of possible future weather.

Forecasts are conditional on watershed conditions at Time Now, and possible future weather.

Stochastic Hydro-Thermal Scheduling

System Reliability Percent	Thermal Generation M\$	Hydro Generation M\$
90	1.75	47.29
92	1.84	48.33
94	1.90	50.47
96	1.96	53.10
98	2.04	55.84
99	2.07	59.04
	CddHoward Consulting Ltd.	

Operations Center and Scheduling

- Plant Efficiency
- Unit Operations

Can Plant Operate More Efficiently?

Optimized Plant H/K, Preferred Loading

1 Minute Hydroelectric Plant Operations 22 June 2009.

Time, Hours and Minutes

http://www.cddhoward.com/

Idealized Hill Curve: Monotonic Symmetrical Centered

Actual Hill Curve: Not monotonic Not Symmetrical Not Centered

http://www.cddhoward.com/

Charles Howard & Associates Ltd. Professional Water Resource Engineers

Near Real Time Unit Loading

Difference:

-20

-11

Optimized Loadings Table for 11 Units

Plant	Plant	: Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit	: Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit	:
Discharge	1	2	3	4	5	6	7	8	9	10	11	Power	1	2	3	4	5	6	7	
2,298.3	2,298	0	0	0	0	0	0	0	0	0	0	6,302	6,302	0	0	0	0	0	0	1
4,596.6	4,597		0	0	0	0	Â	0		0	0	28,463	28,463	0	0	0	0	0	0	
6,895.0	6,895	0	n Pin	ner	ρας	anv		n + ()††	0	0	47,802	47,802	0	0	0	0	0	0	
9,193.3	9,193	0	U YII				Y	0		0	0	64,818	64,818	0	0	0	0	0	0	
11,491.6	11,492	0	0	0	0	0	0	0	0	0	0	81,491	81,491	0	0	0	0	0	0	
13,789.9	13,790	0	0	0	0	0	0	0	0	0	0	97,805	97,805	0	0	0	0	0	0	
16,088.3	16,088	0	0	0	0	0	0	0	0	0	0	113,280	113,280	0	0	0	0	0	0	
18,386.6	12,768	5,618	0	0	0	0	0	0	0	0	0	129,065	90,643	38,421	0	0	0	0	0	
20,684.9	13,117	7,568	0	0	0	0	0	0	0	0	0	146,011	93,088	52,923	0	0	0	0	0	
22,983.2	13,790	9,193	0	0	0	0	0	0	0	0	0	162,623	97,805	64,818	0	0	0	0	0	
25,281.6	14,158	11,124	0	0	0	0	0	0	0	0	0	179,214	100,330	78,883	0	0	0	0	0	
27,579.9	15,044	12,536	0	0	0	0	0	0	0	0	0	195,353	106,358	88,995	0	0	0	0	0	
29,878.2	15,699	14,179	0	0	0	0	0	0	0	0	0	211,298	110,813	100,485	0	0	0	0	0	
32,176.5	16,088	16,088	0	0	0	0	0	0	0	0	0	226,560	113,280	113,280	0	0	0	0	0	
34,474.9	15,716	12,675	6,084	0	0	0	0	0	0	0	0	242,835	110,938	89,977	41,920	0	0	0	0	
36,773.2	15,616	13,601	7,556	0	0	0	0	0	0	0	0	259,537	110,229	96,465	52,843	0	0	0	0	
39,071.5	15,528	14,026	9,517	0	0	0	0	0	0	0	0	276,235	109,611	99,395	67,229	0	0	0	0	
41,369.8	15,640	14,631	11,099	0	0	0	0	0	0	0	0	292,678	110,397	103,573	78,708	0	0	0	0	
43,668.2	16,062	15,058	12,548	0	0	0	0	0	0	0	0	308,634	113,094	106,460	89,080	0	0	0	0	
45,966.5	16,164	15,659	14,144	0	0	0	0	0	0	0	0	324,576	113,813	110,532	100,230	0	0	0	0	
48,264.8	16,591	16,088	15,586	. 0	0	0	0	0	0	0	0	339,577	116,283	113,280	110,014	0	0	0	0	
50,563.1	16,020	15,519	13,016	6,008	0	0	0	0	0	0	0	356,112	112,799	109,547	92,371	41,394	0	0	0	
52,861.5	16,110	15,607	13,593	7,552	0	0	0	0	0	0	0	372,817	113,434	110,164	96,408	52,811	0	0	0	
55,159.8	16,046	15,545	14,041	9,528	0	0	0	0	0	0	0	389,516	112,986	109,728	99,501	67,301	0	0	0	
57,458.1	16,129	16,129	14,617	10,584	Į 0	0	0	0	0	0	0	405,585	113,564	113,564	103,472	74,986	0	0	0	
59,756.4	16,069	16,069	15,567	12,052	0	0	0	0	0	0	0	421,726	113,144	113,144	109,882	85,556	0	0	0	
62,054.8	16,515	16,014	15,514	14,012	Į 0	Į 0	0	0	0	0	0	437,313	115,747	112,758	109,507	99,301	0	0	0	
64,353.1	16,591	16,088	16,088	15,586	0	0	0	ļ O	ļ O	0	Į O	452,857	116,283	113,280	113,280	110,014	0	0	0	
66,651.4	17,039	16,538	16,538	16,538	. 0	0	0	0	0	0	0	466,230	118,505	115,908	115,908	115,908	0	0	0	
68,949.7	16,608	16,105	15,602	13,589	7,046	0	0	0	0	0	0	485,399	116,404	113,398	110,129	96,377	49,090	0	0	
71,248.0	16,558	16,056	15,554	14,049	9,031	0	0	0	0	0	0	502,130	116,049	113,052	109,793	99,560	63,677	0	0	
73,546.4	16,510	16,010	16,010	14,509	10,507	0	0	0	0	0	0	518,324	115,718	112,730	112,730	102,712	74,435	0	0	
75,844.7	16,575	16,073	16,073	15,068	12,055	0	0	0	0	0	0	534,630	116,173	113,173	113,173	106,534	85,578	0	0	
78,143.0	16,530	16,530	16,029	15,528	13,525	0	0	0	0	0	0	550,115	115,857	115,857	112,865	109,611	95,924	0	0	
80,441.3	16,591	16,591	16,088	16,088	15,083	0	0	0	0	0	0	565,761	116,283	116,283	113,280	113,280	106,635	0	0	
82,739.7	17,049	16,548	16,548	16,548	16,046	0	0	0	0	0	0	579,508	118,579	115,981	115,981	115,981	112,986	0	0	
85,038.0	16,507	16,507	16,007	15,507	13,506	7,003	0	0	0	0	0	598,145	115,697	115,697	112,709	109,459	95,791	48,792	0	
87,336.3	16,564	16,564	16,062	16,062	14,054	8,031	0	0	0	0	0	614,314	116,092	116,092	113,094	113,094	99,597	56,345	0	
89,634.6	16,525	16,525	16,024	16,024	14,522	10,015	0	0	0	0	0	630,952	115,819	115,819	112,828	112,828	102,801	70,857	0	
91,933.0	16,578	16,578	16,076	16,076	15,071	11,554	0	0	0	0	0	647,311	116,192	116,192	113,192	113,192	106,552	81,992	0	
94,231.3	16,541	16,541	16,541	16,039	15,538	13,032	0	0	0	0	0	662,887	115,930	115,930	115,930	112,936	109,680	92,483	0	

Short Term Operational Benefits

Project Base Points

- Contract Commitments
- Transmission Constraints

Starting Date: Sat. Aug. 23, 1997 Ending Date: Fri. Aug. 29, 1997

Data Date: Mon. Aug. 25, 1997 Period: Aug.

Period: Aug. 23 - Aug. 29

Operations Scheduling

- River Basins
- Projects
- Market Bids

River Basin Week Summary

S S S	n a		(GO		1	00	1	%Δ
aily Results by Plant	(Tables) - I	Kennebec	River						
Kennebec	River	Daily I	Result	s Starti	ing Tu	iesday	, Sep	14, 19	99
Plant	Starting Ohrs	Tue, Sep 14	Wed. Sep 15	Thu. Sep 15	Fit. Sep 17	Sat. Sep 18	Sun, Sep 19	Mon, Sep 20	Weekly A
BASIN TOTAL									
Bevenue [\$]		39715	54956	79110	76333	67677	73190	72135	463115
Generation (Mwh)		2009.5	2820.5	3434.2	3378.5	3096.7	3214.3	3352.2	21306
111000		200002000	11.20000	(1)	-	1429500.4			1000
Generative Multi-		619.0	740 1	11416	1026.7	654.2	0.649	943.0	5974
Geo Direch (etc)		2286	2743	4235	3909	2425	3130	3461	22069
Soil (ch)		6600	6140	46.05		6467	51.50		64000
MOOSEHEAD LAKE (ch		1802	3089	3089	3089	3089	3089	3089	20336
Total Inflow (cts)		1900	3245	3204	3635	3453	3359	3308	22105
Storage (cts)	7101	3898	7220	7052	6310	6785	7410	7544	45222
Ending Level (II)	954.5	954.3	954.6	953.9	953.8	954.5	954.6	954.5	
WIMAN	_								-
Generation (MWh)	_	774.2	1029.4	1238.0	1298.8	1362.6	1292.4	1320.9	8316
Gen Ditch (cts)		3088	4065	4935	5184	5424	5153	5248	33099
Spill (cts)									
FLAGSTAFF LAKE (cfs)		29	50	50	50	50	50	50	329
Total Inflow (clt)	· · · · · · · · · · · · · · · · · · ·	3207	3955	5091	6223	5431	5462	5157	34525
Storage (cfs)	47673	27804	47729	47609	48008	48804	49071	49158	318182
Ending Level (II)	484.0	484.1	484.1	484.2	484.8	484.8	485.0	484.9	
WILLIAMS									
Generation (MW/h)		191.3	320.4	323.6	317.9	337.8	330.8	346.2	2168
Gen Dirch (ctt)		2579	4422	4472	4422	4422	4472	4422	29110

Ready...

Start Date: Tuesday Sep 14, 1999 10hrs

End Date: Monday Sep 20, 1999 Midnight

Daily Pre-Schedule

THE PAIR	<u>∞</u> nxxxx =			00	10		
1 8 2	▶ 8 □			GO	1		
Hourly Results b	y Unit (Table	s) - Kenneb	ec River				
H	larris Ho	ourly Re	sults fo	r Wedne	sday,	September 1	15, 1999
Hour	1	2	3	4	Totals		
00 - 01	0.1			1.5	1.6		
01 - 02	0.1			1.5	1.6		
02 - 03	0.1			1.5	1.6		
03 - 04	0.1			1.5	1.6		
04 - 05	0.1			1.5	1.6		
05 - 06	0.1			1.5	1.6		
06 - 07	0.1			1.5	1.6		
07 - 08	0.1			1.5	1.6		
08 - 09	15.3	27.0	27.1		69.4		
09 - 10	15.3	28.7	28.4	1.5	73.9		
10-11	16.7	28.6	28.5	1.5	75.3		
11 - 12	15.3	28.6	28.5	1.5	73.9	- Plant Option	- Day Option
12-13	15.3	26.9	27.1	1.4	70.7	C Harris	C Lundan
13-14	14.9	26.9	27.1		68.9	C Man	C Madaandari
14 - 15	0.1			1.5	1.6	C Wymen	C Thursday
15 - 16	0.1			1.5	1.6	C Williams	C Thursday
16 - 17	0.1			1.5	1.6	Weston	C Finday
17 - 18	15.3	26.9	27.1		69.3	C Shawmut	C Saturday
18 - 19	15.3	26.9	27.1		69.3	C Lockwood	C Sunday
19-20	15.3	28.6	27.0	1.5	72.4		C Monday
20 - 21	16.6	28.5	28.4	1.5	75.0		
21-22	0.1			1.5	1.6		Display Option
22-23	0.1			1.5	1.6		Generation, Mwh
23-00	0.1			1.5	1.6		C Discharge cfabre
Totals	156.6	277.7	276.2	29.5	740.1		C Ellicience X
							C Run Time, mins
Runtime < 60 minu	kes					1	

Ready.

Bids to Independent System Operator

$H \otimes$	2	\$ E	1-5			(GO		145	\propto	00		% 1 63	
n Sab		Tenneho	e River						[and		~	1 1 1		
un ana			e mou is an B			alian	Cab	وارزامه		Made	والمحم		15 1000	
ĸe	nneo	ec H	iver i:	su i	Jener	ation	SCN	eauie	e on γ	rear	resaa	iy, sej	p 15, 1999	
ozen.	-			-									Day Option	
nour	1061432	1942433	GA 34 34 H	84757	writes w	nasaly	1363	wiesi h	VE 617 S	H 761 L	n en	10580	C Tuesday	
0-01	0	0	0	1	0	0	19	14	13	9	8	64	(F. Wednesday	
1 - 02	0	0	0	1	0	0	19	14	13	9	8	64	C Thurden	
2-03	0	0	0	1	0	0	19	14	13	9	8	64	C Thursday	
G - 04	0	0	0	1	0	0	19	14	13	9	8	64	C Friday	
H - US	0	0	0	1	U	0	19	13	13	3	8	63	C. Saturday	
C.07	0	U O	0	1	0	0	19	13	13	3	8	63	C. Sunday	
0.07	0	0	0		0	0	10	13	13	3	0	60	a sounday	
0.00	16	27	27	0	22	21	20	13	13	2	0	176		
8.10	16	29	28	2	22	22	20	13	12	9	9	181	Frozen Option	
0.11	17	29	28	2	22	22	20	13	13	9	8	183	Tuesday	
1 - 12	15	29	28	2	22	22	20	13	13	9	8	181	Wednesday	
2 - 13	15	27	27	1	22	22	20	13	13	9	8	177	Thursday	
3-14	15	27	27	0	22	21	20	13	13	9	8	175	E c ::	
4 - 15	0	0	0	1	21	0	20	13	13	9	8	85	I Friday	
5 - 16	0	0	0	1	21	0	20	13	13	9	8	85	Saturday	
6 - 17	0	0	0	1	21	21	20	13	13	9	8	106	C Sunday	
7 - 18	15	27	27	0	22	21	20	13	13	9	8	175		
8 - 19	15	27	27	0	22	21	20	14	13	9	8	176	- Malaa	
9 - 20	15	29	27	2	22	22	20	14	13	9	8	181	The Committee	
9 - 21	17	29	28	2	22	22	20	14	13	9	8	184	The Generation Value is MWb	
1 - 22	0	0	0	1	21	15	20	14	13	9	8	101	The Number in the	
2 - 23	0	0	0	1	0	0	19	14	13	9	8	64	heading is the ISO	
3-00	0	0	0	1	0	0	19	14	13	9	8	64	Hydro Unit ID.	
etals:	154	280	274	25	304	252	470	322	312	216	192	2,801		

Ready.

Optimized Unit Maintenance

- Work Required
- Crews Available
- Regular Hours and Overtime

🚆 FPL Energy - Seasonal Operations - Unit Maintenance Schedule										
<u>File Edit Options</u>	<u>W</u> indow	s <u>H</u> elp								
∛ ₫\\$	₩	٩	6	i 0				÷	6	60
List of Scheduled Ou	itages—									
Plant	Unit	Window Start	Window End	Outage Duration (wks)	Optimal Window Start	Optimal Window End	Energy Value / Week	MW Outage	Opt	
Wyman	2	Nov. 13, 1999 00:00	Jan. 1, 2000 00:00	7.00	Nov. 13, 1999 00:00	Jan. 1, 2000 00:00	NA	27.13		
Weston	2	Oct. 16, 1999 00:00	Oct. 23, 1999 00:00	1.00	Oct. 16, 1999 00:00	Oct. 23, 1999 00:00	NA	3.38		
Weston	3	Oct. 23, 1999 00:00	Oct. 30, 1999 00:00	1.00	Oct. 23, 1999 00:00	Oct. 30, 1999 00:00	NA	3.55		
Weston	4	Oct. 30, 1999 00:00	Nov. 6, 1999 00:00	1.00	Oct. 30, 1999 00:00	Nov. 6, 1999 00:00	NA	3.63		
Lockwood	7	Sep. 18, 1999 00:00	Oct. 9, 1999 00:00	3.00	Sep. 18, 1999 00:00	Oct. 9, 1999 00:00	NA	2.45		
Williams	1	Oct. 18, 1999 06:00	Oct. 22, 1999 16:00	0.57	Oct. 18, 1999 06:00	Oct. 22, 1999 16:00	NA	8.00		
Williams	2	Oct. 12, 1999 06:00	Oct. 15, 1999 16:00	0.43	Oct. 12, 1999 06:00	Oct. 15, 1999 16:00	NA	6.50		
Wyman	2	Nov. 13, 1999 00:00	Jan. 1, 2000 00:00	7.00	Nov. 13, 1999 00:00	Jan. 1, 2000 00:00	NA	27.13		-
Scheduled Outages	Scheduled Outages Unscheduled Outages Optimized Values									
At Plant:	At Plant: Unit Number: Window Start Date: Window End Date:									
Wyman 2 Nov. 13, 1999 00:00						Jan. 1, 2000 00:00				
Lockwood 1 Shawmut 2 Weston 3 Williams Wyman Harris			Weeks of Dow 7.00 Max simultanee	n Time Re Dus outage	quired: s:	 Optimize within window Rigid schedule - Do not optimize 				
			N	A		Update De	elete	Exp	ort	

Charles Howard & Associates Ltd. Starting Date: Sep. 27, 1999 Ending Date: Oct. 1, 2000			
	Charles Howard & Associates Ltd.	Starting Date: Sep. 27, 1999	Ending Date: Oct. 1, 2000

Foreca...

Site Specific Features

- Hydraulic Constraints
- Encroachment from below and above

Tailwater Encroachment Data

Effect of Hydraulic Control

Reservoir Looking Upstream

Reservoir Looking Downstream

Project Coordination Issues

- Owners
- Governments
- Economics and Politics

Mid-Columbia Hydro System Optimization Model of Fully Integrated Operations

Mid-Columbia System (12,700 MW)

Objective of the Study

Seven major hydro plants, two major reservoirs

Four completely different owners.

 Determine the energy benefit of fully coordinated and integrated hourly operations.

Global System Water Management

- Conflicting Constraints, TDG vs Fish Spills
- Ramping Constraints
- Flood Management
- Water Level Management
- Water Quality Management
- Coordination with Downstream Projects
- Natural Channel Controls on Storage
- Hydro Plant Efficiency Curves
- System Base Points (Loads among Plants)

Optimal Generation Management

- Representation of Hill Curves
- Validation with Historical Operations Data
- Run Times for Operations Planning Studies
- Run Times for Scheduling Operations
- Run Times for Near Real-Time Operations
- Unit Priorities and Maintenance
- Hydro Plant Efficiency Curves
- Operations Constraints

Topics for Discussion

- 1. The hydro enterprise should recognize that optimization is a normal tool for hydro systems operations and it has been used in many systems, some more successfully than others.
- 2. Operations optimization will minimize errors in judgment and identify good choices from many that are feasible. This can be pivotal when changes in regulations, market conditions, the hydro system, or staff make past experience less valuable.
- Data issues often dominate the design of the software and its ultimate acceptance. The model builder must anticipate that data was recorded for other prior purposes and is incomplete for the purposes of model design and verification.

- 4. Optimization software usually consists of several separate modules that deal with decisions on different time scales and spatial scope. These are sensitive issues for time and cost of model development, the execution time on a computer, and its verification and acceptance.
- 5. Models should be outwardly simple, understandable, and foolproof. User interfaces must be useful to the actual operators, not just modelers.
- 6. Before serious development effort begins, as the goals and expectations are discussed, the developer and the client should agree on criteria for acceptance, and what not to model.

- For validation of its water management functions an optimization model can be run in a simulation mode using optimization output for selected variables as inputs.
- 8. Validation of optimized unit dispatch and loading should compare the optimized MW plant output with actual plant output over 24-hours at a one minute time step under a range of operating constraints and seasonal constraints.
- 9. The allocation of "base points" in a system of hydro plants should consider the oscillating shape of the plant efficiency curves as they are affected by the dispatch order of the generating units. Base points throughout the system should be selected from peaks of the plant curves to avoid asking a plant to generate in a lower efficiency trough.

- 10. Methods That are least risky for development, least expensive in time and money, and most reliable use some variant of linear programming, such as quadratic linear programming, stochastic linear programming, etc.
- 11. A useful optimization approach combines quadratic linear programming for managing the water balance with dynamic programming to dispatch generating units and construct optimized plant efficiency curves from the unit hill surfaces.
- 12. It is likely that stochastic, non-linear methods will become the methods of choice when new software makes modern multiprocessor boards with hundreds of processors more convenient for rapid integrated system-wide optimization.

- 13. The current advances in real-time wireless data acquisition and management will profoundly change the applications for optimization methods in water management and power operations.
- 14. Acceptance of the software relies on more than simply putting it in front of the intended users. The process of model validation can be an important step in training people to understand its limitations and advantages.

- 15. The software design should focus on fundamentals: reading, writing, and arithmetic of the software and its specific application. Users should not need a map to untangle a plethora of drop boxes that lead to still more drop boxes.
- 16. Stochastic optimization is a well understood method for dealing with uncertainty and probability in hydrology. It is well understood by modelers and has the potential to incorporate other factors like prices and loads to estimate risk on an ongoing basis