Juvenile Production Estimate Calculation for Winter-run Chinook Salmon

Bruce Oppenheim NMFS June 26 2014

Background

NOAA

- Simple spreadsheet model (Excel)
- Used to determine incidental take limit at the Federal and state pumping facilities in the Delta
- Developed for the 1995 NMFS Biological Opinion on CVP/SWP operations
- Reviewed & updated by the IEP Winter-run Project Work Team (WRPWT)
- Changes with latest science and annual variation in population parameters

Breakdown of Components

* Modified in 2014

- 1. Escapement
- 2. Pre-spawn mortality
- 3. Fecundity
- 4. Survival, egg to fry*
- 5. Survival, fry to smolt*
- 6. Survival, smolt to Delta*
- 7. Confidence Intervals

(1)Escapement

- CDFW official escapement estimate based on carcass, or RBDD ladder counts
- Varies annually (300-16,000 adults)
- Sex ratio from Keswick trap
- 90 % Confidence Intervals added in 2013

Starts with official CDFW estimate in January

Estimated Total In-river Escapement (hatchery and natural origin)

Estimated In-river Escapement (hatchery origin)

Estimated Number of In-river Adult Females (hatchery and natural origin)

2,581

Example of JPE from 2012

NID ATMOSPHE

DEBARTMENT OF CO

NATIONAL

Version 3		12/19/2012
WINTER RUN CHINOOK SALMON		
draft Juvenile Production Estimate	Carcass	Carcass
	Survey	Survey
	Factors	Estimate
Total In-river Escapement - <u>1</u> /		2581
Adult Famala Fatimata 2/	500/	1100
Adult Female Estimate - <u>2</u>	56%	1498
Estimate of Female Snawners - 3/	100 00%	1/198
	100.0078	1430
Average Fecundity - 4/	4518	6767964
Egg Loss Due To Temperature - <u>5</u> /	Ο	0
Total Viable Eggs		6767964
Estimated Survival - egg to fry (at RBDD) -6/	0.25	1691991
Estimated Cuminal for to employ in mid Cap. 7/	0.50	000075
Lesunated Survivar - my to shorts in mid-Sac- <u>n</u>	0.59	998275
based on fish coming out of renama-colusa spawning cha		EDEDDE
Estimated Survival - Smolts to Delta - <u>o</u> /	0.55025	555525
Total Natural Production Entering Delta		535325
Total Hatara Froduction Entering Delta		555525
Hatchery Release - 9/		180000
Total Hatchery Production Entering Delta	0.53625	96525
evel of Concern for wild fish (1%)		5353
evel of Concern for hatchery fish (0.5%)		483
Incidental Take Level for Natural Production (2%)		10706
Incidental Take level for Hatchery Production (1%)		965

(2) Prespawn mortality

- Number of females that die prior to spawning
- Estimated from carcass survey data
- Typically very low for winter-run (1-2%)
- Subtract from total females
- Subtract temperature effect on eggs (assumes 100% mortality below compliance point)

(3) Fecundity

- Number of eggs/female
- Derived annually from hatchery returns
- Small sample size n = < 50
- Depends on female size (e.g., 4,000–5800)
- Historically, used 3,859 from literature

(4) Survival – Egg to Fry (25%)

- Early life-stages (egg, alevin, & fry)
- Spatially = spawning grounds to RBDD
- Temporally = 3–4 months (May–September)
- Size = <34 mm</p>
- Derived from RBDD data

(5) Survival -Fry to Smolt (59%)

- Early life-stages (fry, parr, pre-smolt)
- Spatially = RBDD to Colusa (mid Sac. R)
- Temporally = 4–6 months of age (Sept.–Nov)
- Size = 35–60 mm
- Derived from fall-run survival at Tehama-Colusa Spawning Channel (1972-1985)

(6) Survival -Smolt to Delta (53%)

- Early life-stages (pre-smolt to smolt)
- Spatially = Colusa to Delta (at Hwy 80 Bridge)
- Temporally = 6-8 months of age (Nov-Jan)
- Size = 61–120 mm

1088

MENT OF

 Based on 8 years of paired CWT late-fall run Chinook salmon releases from Battle Creek and Delta 1994-2001 (Chipps Island data)

(7) Confidence interval submodel

- > 95 % Cl's from CFS model since 2010
- Wide range on error bars

NOAA

RTMENT OF C

13

Modifications in 2013

- Incorporate recent data from 6 years of acoustic tag studies
- Consideration of:
 - SurrogacyWater year type

Data necessary for a JPE calculation

- Escapement (including sex ratio)
- Pre-spawn mortality
- Fecundity
- Survival estimates, such as:
 - Egg to fry
 - Fry to smolt
 - Smolt to Delta

Ideas for use of a spring-run JPE in San Joaquin Restoration Program

- Trap juveniles –estimate JPE, similar to RBDD
- Mark juveniles to identify at pumps
- Develop SJR specific length criteria
- Use JPE to evaluate program success
- Time constraint- likely 3 years to gather data (e.g., escapement and survival studies)

16

Questions ?

