

NOAA FISHERIES

West Coast Region

California Central Valley Area Office

"Sentinels" in the 2012 Stipulation Study)

Barb Byrne May 22, 2014

The 2012 Joint Stipulation

Action IV.2.1: Inflow:export ratio

San Joaquin Valley	Vernalis flow (cfs):CVP/SWP		
Classification	combined export ratio		
Critically dry	1:1		
Dry	2:1		
Below normal	3:1		
Above normal	4:1		
Wet	4:1		
Vernalis flow equal to or	Unrestricted exports until flood		
greater than 21,750 cfs	recedes below 21,750.		

Alternative delta operations for spring 2012

	Case 1:09-cv-01053-LJO -DLB Document 660) Filed 01/19/12 Page 1 of 11
1		
2		
-		
4		
5		
7		
,		COURT OF THE
	EN THE UNITED STAT	
10	FOR THE EASTERN DIST	RICI OF CALIFORNIA
10		1
	THE CONSOLIDATED SALMON CASES	1:09-cv-1053-LJO-DLB
12	SAN LUIS & DELTA-MENDOTA WATER	1:09-cv-1378-LJO-DLB
13	al. (Case No. 1:09-cv-1053)	1:09-cv-1520-LJO-DLB 1:09-cv-2452-LJO-DLB
17	STOCKTON EAST WATER DISTRICT V.	1:09-CV-1025-LIO-SMS
15	NOAA, et al. (Case No. 1:09-cv-1090)	CVP AND SWP OPERATIONS IN 2012
10	STATE WATER CONTRACTORS v. GARY F. LOCKE, et al. (Case No. 1:09-cv-1378)	Judge: Honorable Lawrence J. O'Neill
18	KERN COUNTY WATER AGENCY et al x	
19	U.S. DEPARTMENT OF COMMERCE, et al. (Case No. 1:09-cv-1520)	
20	OAKDALE IRRIGATION DISTRICT, et al.	
21	al. (Case No. 1:09-cv-2452)	
22	METROPOLITAN WATER DISTRICT OF	
23	SOUTHERN CALIFORNIA v. NMFS, et al.	
24	(Case No. 1.09-04-1025)	
25		
26		
27		
28		
	JOINT STIPULATION REGARDING CVP AN	ID SWP OPERATIONS IN 2012 (1:09-CV-1053 OWW DLB)

IV.2.1 Objective: Protect San Joaquin basin steelhead

Some key elements of the Joint Stipulation

- Preferential diversion at the CVP
- Rock barrier at head of Old River
- Adaptive range of Old and Middle River flows

Rock barrier at head of Old River has "downstream" effects

- Greater mainstem flow
- More negative OMR flows

Adaptive range of OMR flows in stipulation

OMR Technical Memorandum

Managed-risk Experimental Approach

- Protect San Joaquin basin steelhead
- Test hypotheses about OMR flows on fish movement and survival

PTM

"sentinel steelhead"

"Sentinel" approach to OMR management

• EXPERIMENTAL INFORMATION: Initial OMR levels

Management approach under joint stipulation	Period	OMR range allowed by stipulation	Planned Initial OMR
"sentinel" steelhead	April 15 – April 30	-1,250 to -3,500	-3,500* cfs
"sentinel" steelhead	May 1 – May 14	-1,250 to -5,000	-1,250* cfs
"sentinel" steelhead	May 15 – May 31	-1,250 to -5,000	-5,000* cfs

PROTECTION OF STEELHEAD: -1,250 OMR, if exposure trigger exceeded

"Sentinel" approach to OMR management

OMR Tech Memo – "sentinel" approach to OMR management

2012 Stipulation Study acoustic tagging

- Hatchery steelhead were surgically implanted with an acoustic tag following 6 Year Study SOP
- 166 or 167 steelhead per each of 3 release groups

General (and obvious) consideration:

 Using sentinels as markers for naturally-produced and naturally-migrating fish is most effective when the timing of migration and behavior of sentinels matches that of target population

The problem of small sentinel fraction compounded by small (?) salvage fraction:

Suppose 1 sentinel is inserted for every 1000 naturally produced SJRRP fish.

				estimated wild SR
			sentinel	salvage based on
	wild	sentinel	fraction	sentinel
Targeted sentinel	1000	1	0.00100	
fraction	1000	Ţ	0.00100	
Actual sentinel	800	1	0.00125	
fraction	1300	1	0.00077	
Theoretical sentinel fraction in salvage	1000	1	0.00100	
Actual sentinel	2	1	0.50000	1000
fraction in salvage	3	0	0.00000	0

• Quick turn-around time on analysis of acoustic data is difficult, and limited

Tag ID	Site 2A	Site 2B	Site 3A	Site 3B	Site 3C	Initial Date Detected
A180-1702-20846/7			Х	Х	Х	5/2/12
A180-1702-21962/3			Х	Х	Х	5/2/12
A180-1702-28780/1			Х	Х	Х	5/2/12
A180-1702-21960/1	Х	Х	Х	Х	Х	5/3/12
A180-1702-2950/1			Х	Х	Х	5/3/12
A180-1702-2960/1			X (NV)	Х	Х	5/3/12
A180-1702-20850/1			Х	Х	Х	5/3/12
A180-1702-24850/1			Х	Х	Х	5/3/12
A180-1702-21972/3	Х	Х	Х	Х	Х	5/3/12
A180-1702-5384/5			X (NV)	X (NV)	Х	5/3/12

The daydreams of cat herders

Credit to Lori Brown: http://www.nero.noaa.gov/prot_res/atlsturgeon/wsdoc/day2/Research%20Updates/Brown_ACT_sturgeon_workshop.pdf

- Quick turn-around time on analysis of acoustic data is difficult, and limited
- Uncertainty exists about whether acoustic tag detection represents live study fish, eaten study fish, or defecated tag.

- Quick turn-around time on analysis of acoustic data is difficult, and limited
- Uncertainty exists about whether acoustic tag detection represents live study fish or eaten study fish
- Acoustic tags and receivers are expensive

- Quick turn-around time on analysis of acoustic data is difficult, and limited
- Uncertainty exists about whether acoustic tag detection represents live study fish or eaten study fish
- Acoustic tags and receivers are expensive
- With wide receiver array, can get a lot of interesting spatial data!
- Slow data turnaround may, over time, be improved as analysis is automated.

Summary

- Representativeness
- Sentinel fraction x salvage fraction issue
- Quick turn-around time on analysis of acoustic data is difficult, and limited
- Uncertainty exists about whether acoustic tag detection represents live study fish or eaten study fish
- Acoustic tags and receivers are expensive
- With wide receiver array, can get a lot of interesting spatial data!
- Slow data turnaround may, over time, be improved as analysis is automated.

