SolarCity

Building a Holistic Grid Simulation Ecosystem Evaluating Innovative Grid Design Approaches

September 30th, 2016

Executive Summary

- <u>Challenge</u>: Renewables and DERs are readily being evaluated for grid integration, but more work could examine innovations in fundamental grid design principles
 - The grid landscape is changing quickly, and fundamentally new capabilities exist
 - Individual grid models are too narrow to enable evaluation of holistic grid design
 - Talented engineers are on the sidelines due to lack access to models and data
- <u>Objective</u>: Build a *Holistic Grid Simulation Ecosystem* to facilitate investigation of innovative grid design approaches
 - Investigate whether innovative grid designs can be done (e.g. technical)
 - Investigate whether innovative grid designs <u>should</u> be done (e.g. economic)

Building an Model Ecosystem

Identifying Objective Functions

Evaluating Hypotheses

Many grid system analyses are evaluating renewables and complex grid integration scenarios

DOE "Quadrennial Energy Review" & NREL ReEDS

National Renewable Energy Laboratory (Renewable Energy Deployment System, ReEDS)

- Electricity generation capacity expansion model
- Outputs include transmission capacity expansion, generation, electricity costs, etc.

NRECA "Open Modeling Framework" & GridLAB-D

MIT "Utility of the Future"

However, distributed resources are still challenging to model alongside bulk-level grid design changes

Bulk Optimization

Co-Optimized

DER-Focused

Passive distribution design, with DERs responding to bulk level signals

DERs and Distribution at the forefront, but computationally challenging

Bulk Optimization signals LMPs and DLMPs

[.] Caramanis, Ntakou, Hogan, Chakrabortty and Shoene "Co-Optimization of Power and Reserves in Dynamic T&D Power Markets with Nondispatchable Renewable Generation and Distributed Energy Resources" Invited Paper, Transactions of the IEEE Vol 104, No 4, April 2016

Co-Optimized, Centralized Bulk and Distributed Capacity Expansion Models

DER-Focused, Techno-Economic Feasibility

6. Passing Load Profiles Up the Voltage levels and Determine Dispatch across Power System

Start at DER/Consumer Level:

- Accurate hourly load and production profiles for solar PV owners
- Smarter charge/discharge dispatch for battery owners

Then, move into Distribution:

- Power flow analysis on feeders with high penetration of PV and Inverters
- Power flow analysis on feeders with high penetration of PV and batteries

4. Clearing Algorithm for *Transmission*System

2. Clearing Algorithm for Distribution System

5. If Constrained, re-iterate with Distribution System

> If Constrained, re-iterate with DERs/Consumers

DERs/Consumers
 Consumption &
 Production Profiles

Negash, A. Valuing Distributed Energy Resources. Ph.D. Dissertation. University of Washington. 2015 https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/35189/Negash_washington_0250E_15301.pdf?sequence=1&isAllowed=y
 Lovins, A. "Small is Profitable". 2002.

Modeling building blocks exist at every level of the power system, but holistic ecosystems do not

Ecosystems can be built with existing tools, but refinement is needed to make them readily usable

Least-Cost Co-Optimized

Transmission Heavy

New Capacity Expansion

Partial Equilibrium

Portfolio Optimized

Distribution Heavy

Example: "Least-Cost Co-Optimized" Ecosystem

Pros and Cons of Sample Ecosystems

	Ecosystem	Models	Pros	Cons
1	Least Cost Co- Optimized	PSO, PLEXOS, CYME, SAM, PowerWorld, OpenDSS, RNM	High spot market/ transmission system resolution	Most computationally intensive, transmission informing distribution
2	Transmission Heavy	PLEXOS, GE-MAPS, DERCAM, Gridlab-D	Detailed transmission and distribution simulation	Lack of planning distribution system optimization
3	Capacity Expansion	ReEDS, ESM, Gridlab-D	Single model, long-term equilibrium	Abstracts away complexity, lacking detailed economic optimization at DER and distribution levels
4	Partial Equilibrium	ESM, RNM, PLEXOS, CYME	Long-term economic model with transportation included	Intensive inputs for data at distribution and DER levels
5	Portfolio Optimized	WADE, REM, HOMER	Ratio of centralized to decentralized resources	Lacks spot market resolution and transmission simulation
6	Distribution Heavy	gridlacMulti, voltageDrop, solarFinancial, solarRates	Comprehensive financial and distribution simulation model	Lacks spot market resolution and transmission simulation

Building an Model Ecosystem

Identifying Objective Functions

Evaluating Hypotheses

Potential objective function: How do we increase grid system utilization?

Source: Regulated Electric Companies FERC Form 1 Annual Filings

Period: 1988 - 2013; Accessed March 2015 via SNL

All numbers are estimated in real terms. \$ are adjusted for inflation. Kwh of service are adjusted for EE and DG.

Other Potential Objective Functions

- Evaluate approaches to increase system utilization
- Evaluate approaches to integrate high levels of renewables
- Evaluate approaches to increase resiliency and security of supply
- Evaluate convergence of electric ecosystem with other industries (e.g. transportation, IT and communications, etc)

Building an Model Ecosystem

Identifying Objective Functions

Evaluating Hypotheses

Hypothesis: Decentralized Could be Better Conventional planning is bulky

Conventional Planning

Hypothesis: Decentralized Could be Better Targeted, distributed deployments increase utilization

Targeted Planning

Thank you!

Ryan Hanley Vice President Grid Engineering Solutions rhanley@solarcity.com

Transmission Heavy

Portfolio Optimized

Partial Equilibrium

Distribution Heavy

OMF Models:

cvrDynamic
cvrStatic
demandResponse
gridlabMulti
pvWatts
solarConsumer
solarEngineering
solarFinancial
solarRates
solarSunda
storageArbitrage
storageDeferral
storagePeakShave
voltageDrop
Load Profile effect on CVR

New Capacity Expansion

