air research

Learn About Your Environment with Science Bite Podcasts

By Jocelyn Buckley

I know you’re really busy. I know that as much as you want to stay updated on the latest news, you just don’t have the time to sit down and read a newspaper. We want to make it easier for you to stay informed about some pretty cool science that is protecting your health and environment. Instead of downloading the latest Maroon 5 song, you should check out EPA’s “Science Bite” podcast. While each episode is only about three minutes long, they provide a healthy dose of research news.

Science Bite graphic identifier: illustration of globe with headphones“Science Bite” explores the research conducted by some very dedicated EPA scientists and engineers to protect air quality, prepare for climate change impacts on human health and ecosystems, and make energy decisions for a sustainable world. Researchers talk about their work and why it is important.  I had the privilege of meeting some of these researchers while helping write the most recent podcast, and I have never met such passionate, intelligent people.

I found out a lot about environmental issues and interesting facts by listening to these podcasts. Here’s a quick sampling of my three favorites (there are more):

  • July’s episode focused on the dangers of cookstoves fueled on wood, charcoal and other traditional fuels, and how they affect the health of many, many people around the world as a result of their indoor emissions.
  • In May’s “Science Bite,” EPA researchers talked about the Village Green Project, and how this state-of-the-art park bench can measure air pollution.
  • The most recent podcast discusses wildfire emissions. Who knew that there are many more things to consider besides your lungs? Researcher Ian Gilmour talked a little bit about his experience with the 2008 study of a peat fire in Eastern North Carolina.

Science-Bite1So, if you’re driving to work or eating breakfast, spare a couple of minutes to hear what’s going on in your environment. Go to www2.epa.gov/research/science-bite-podcasts for more information.

About the Author: Jocelyn Buckley was a student intern in EPA’s Air, Climate, and Energy Research Program this summer. She will graduate from high school next year, and hopes to pursue environmental policy and journalism.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Are Some People More At Risk from Air Pollution?

By Dina Abdulhadi

Rearview mirror during an early morning commute.

A study by researchers from EPA and Duke University reflects how traffic-related air pollution can impact the health of people living in nearby communities.

I’m driving in rush hour traffic, waiting for the slow crawl of cars to reach the speed I would be moving had I biked home. My heart rate rises slightly; it’s a beautiful summer day and I’m thinking of the many things I’d rather be doing than sitting in traffic.

The congestion eventually eases though, and I’m home. I breathe deeply, and my heart rate lowers.

The stress I felt had an immediate but temporary effect on my health. For people who live in communities near these congested roadways, however, traffic can have a longer-term impact on heart health. And even then, air pollution does not affect everyone equally.

A new study suggests that women and African-Americans who live near busy roadways may have a greater risk than their white male counterparts for developing high fasting blood sugar levels, a risk factor for heart disease.

The study used a database called CATHGEN, developed by Duke University. It contains health information on nearly 10,000 people who received cardiac catheterization, a common test for heart disease. Researchers at EPA and Duke University are using the participant’s health data to see how air pollution also affects the progression of heart disease.

A large body of research has connected fine particulate matter, a common air pollutant, to health effects, including heart problems. Many studies have even found that consistent exposure to the same elevated level of air pollution can have a stronger impact on blood glucose for women than men. But the race-related disparity is a new observation, researchers conclude in the study.

This study is one in a series that aims to see how factors like age, sex, race, disease status, genetic makeup, socioeconomic status, and where a person lives can put someone at greater risk from the health effects of air pollution. The knowledge gained through CATHGEN studies can be used to develop public health strategies for protecting those at greater risk from air pollution and to support review of the Air Quality Standards under the Clean Air Act.

Ongoing EPA CATHGEN studies are expected to provide more answers to the question of whether air pollution may affect people differently. In the meantime, read this first CATHGEN study, published in Environmental Health Perspectives and titled, Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients.

Air pollution most strongly effects those already at risk for heart disease, mainly older adults and those with high blood pressure, cholesterol, or history of heart problems. Though I’m young and healthy, days with higher pollution levels can still make me winded while exercising even if they don’t trigger a heart attack. Reading papers like this reminds me to check the Air Quality Index before planning long summer bike rides and makes me appreciate how important environmental quality is to human health.

About the Author: Dina Abdulhadi is a student contractor working with the science communication team in EPA’s Office of Research and Development.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Release of Community Air Monitoring Training Videos

picture

Community leaders and EPA presenters

By Amanda Kaufman

I have seen a fast expansion of next generation air pollution sensor technologies while working in the field of citizen science for the past three years. Small, hand-held air quality sensors are now commercially available and provide citizens the ability to plan, conduct, and understand local environmental air quality as never before. Many of these cost less than $1,000, making them more accessible for community groups and even individuals to purchase.

While the new sensor technologies generally do not provide regulatory-grade data, such devices are rapidly advancing to improve data quality and can be used to enhance monitoring efforts. They can be used in a wide range of situations including to investigate air quality concerns in local communities and to teach people about the importance of clean air to public health and the environment.

picture1

EPA’s Kristen Benedict talks about sensor messaging

With the rapid growth of sensor technologies, there is a great demand for information on how to select the appropriate monitoring technology and use it to gather viable information. That is why I am pleased to announce the availability of six air monitoring training videos, developed to help citizen scientists conduct air quality monitoring projects. The videos feature presentations by EPA experts and a citizen science professional given at EPA’s Community Air Monitoring Training workshop on July 9, 2015.

EPA hosted the training workshop as a pilot venture to share tools used to conduct citizen science projects involving Next Generation Air Monitoring (NGAM) technology and to educate interested groups and individuals about best practices for successful air monitoring projects.

The videos are part of the Air Sensor Toolbox for Citizen Scientists and are intended to serve as resources for anyone interested in learning more about monitoring air quality. They provide short overviews (between 15-18 minutes in length) on topics that can help citizens plan and implement a successful air monitoring project. The topics and presenters are:

 

I was delighted to see the enthusiasm of the workshop attendees for the training and their desire to apply it to their local situation. It was contagious. Many who attended indicated they would go home and share key aspects of the training with their community groups to develop their own citizen science research plans.

With the availability of the training videos, more people will have access to the information provided on emerging technologies and community air monitoring. I see a bright future for citizen scientists as they become more aware of their local environment.

 

About the Author: Amanda Kaufman is an ORISE participant hosted by EPA’s National Exposure Research Laboratory.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

When Cooking Can Harm: Cookstove Research and Human Health

By Dina Abdulhadi

Two researchers examine a clean-burning cookstove design in a lab.

EPA cookstove research

While I don’t Instagram every meal, cooking is still an important part of my life. It’s a social anchor that ties me to my family and friends. I also see the act of cooking as a major part of being healthy, since it allows me to control what goes into my food.

So when I learned that the process of cooking is one of the greatest health threats that people face globally, I felt disoriented. Cooking is an everyday task that most in the U.S. can accomplish by turning a dial on a stove. Yet three billion people throughout the world use biomass or coal-fed cookstoves to cook their meals and heat their homes, and the smoke from these fires often causes respiratory and heart disease. In fact, household air pollution is the fourth highest risk factor for disease worldwide for all genders and the second highest risk factor for women[1]. Cookstove emissions also contribute to climate change.

Recently, I attended a scientific meeting to learn about cookstove studies by researchers who received one of six grants from EPA to research cleaner technologies and fuels for cooking, lighting and heating in homes that have limited or no access to electricity or gas lines. This research into cleaner cooking options will help improve air quality and protect the health of people throughout the world, including native peoples in Alaska and others in rural areas of the U.S. who use cookstoves to make their meals.

A presentation by Dr. Tami Bond, one of the grantees and a professor at the University of Illinois, particularly stood out for me. Bond studies the climate and air quality effects of fuel combustion. She receives assistance from trained citizen scientists in the communities who help collect and assess emissions from cookstoves in their homes.

The research by Bond and other grant recipients has given me an appreciation for how science can help to provide solutions to environmental health risks, including those from simply cooking a family meal. I plan to learn more by visiting the cookstove research lab in Research Triangle Park, N.C. There, researchers are testing a wide variety of cookstoves from all over the world to measure their energy efficiency and how much they pollute. You too can get an inside look at the research by watching this recent video by Voice of America on EPA’s cookstove testing.

Interested in seeing other research presented at the meeting? Click here for a list of presentations.

About the Author: Dina Abdulhadi is a student contractor working with the science communication team in EPA’s Office of Research and Development.

[1] A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Air Pollution and Your Brain

By Michelle Becker

Graphic depiction of the brainNext week is Air Quality Awareness week, which is a time to reflect on how far we have come in our understanding of the health effects of air pollution. We know air quality can affect the lungs and heart and cause serious health problems, as documented in a large body of scientific literature. However, we don’t know very much about the potential effects on the brain.

That is why EPA supports research through its Science to Achieve Results (STAR) grant program to further examine potential health effects of air pollution. The Clean Air Research Center (CLARC) at Harvard University receives funds from EPA to explore the health effects of air pollution mixtures across organ systems and during various stages of human life.

Recently, the center published a study in the journal Stroke that looked at what may happen to the brain of older adults after long-term exposure to fine particle pollution (PM2.5), which is emitted from tail pipe emissions as well as other sources. The study included 943 individuals over the age of 60 with no history of dementia or stroke. They also lived within 1,000 meters (0.62 miles) of a major roadway where levels of air pollutants are generally higher.

Researchers looked at pictures of the brain using a technique called Magnetic Resonance Imaging (MRI) to identify the differences in certain brain structures. Then they considered the pictures in connection with the distance participants lived from a major road.

After considering all the data and a number of other factors that might affect the brain, the researchers found that exposure to outdoor PM2.5 was associated with a decrease in total cerebral brain volume and an increase in covert brain infarcts (known as “silent” strokes because there are no outward symptoms). The impact of being close to roadways was less clear.

So what are the potential implications? A decrease in cerebral brain volume is an indicator of degeneration of the brain, which can lead to dementia and other cognitive impairments. Also, an increase in covert brain infarcts increases a person’s risk for a major stroke.

To give you a better idea about PM2.5 (particulate matter of 2.5 microns in diameter) the average human hair has a diameter of 100 microns. So these air pollutant mixtures are roughly one quarter the diameter of a single hair on your head. That is to say, very small. Yet these small particles pack a big punch when it comes to our health. The study demonstrates an increase of just 2 micrograms per cubic meter can cause brain deterioration.

This study is one of the first to look at the relationship between air pollution and the brain so the evidence is suggestive. The study contributes to a growing body of scientific research that is exploring the cognitive connections to air pollution. So this week while we think about air quality, let’s remember that small things can make a big impact and that science can help us to learn more about air quality and our health.

About the Author: Michelle Becker, M.S, is currently working with the Air, Climate, and Energy research program in EPA’s Office of Research and Development through a Skills Marketplace opportunity. The project has allowed her to increase her scientific communication skills and to learn more about EPA funded research to protect human health.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Expanding the Village Green Project to Measure Local Air Quality

By Esteban Herrera, Gayle Hagler and John White

VG Station in Philadelphia, PA

Village Green Station in Philadelphia, PA

We have been busy for a few years with the Village Green Project, exploring new ways of measuring air pollution using next generation air quality technology put into a park bench. After testing our first Village Green station in Durham, N.C., we are now in the process of building and installing new stations with some design improvements and modifications.

The Village Green Project expansion is being made possible with the support of state and local partners across the country. Five new locations for stations have been selected through a nationwide proposal process open to local and state air monitoring agencies.

Today, EPA announced the partners and location for the new stations and held a ribbon-cutting ceremony in Philadelphia, Pa. for one of the five stations.

The Village Green Project has many benefits. It enables EPA’s scientists to further test their new measurement system, built into a park bench, and it provides an opportunity for the public and students to learn more about the technology and local air quality.

Each station provides data every minute on two common air pollutants – fine particle pollution and ozone – and weather conditions such as wind speed and direction, temperature, and relative humidity. The data are automatically streamed to the Village Green Project web page. You can access the data generated by stations as they come on line at www.epa.gov/villagegreen. As members of a team working on the Village Green Project at EPA, we have been doing a lot of coordination and tackled some difficult scientific challenges to get this project launched. But it is all coming together as we get the stations installed. We think it will be a great opportunity for educational outreach and to showcase some new capabilities for communities to learn more about their local air quality. These monitoring stations will enable communities to get information about nearby sources of air pollution that can impact local air quality.

VG Station in Washington, DC

Washington, DC

The five station locations being installed in 2015 as part of the local and state partnership are:

  • Philadelphia, Pa. – the station is located in Independence National Historical Park in Philadelphia owned by the National Park Service.
  • Washington, D.C. – the station is located in a children’s area at the Smithsonian National Zoological Park.
  • Kansas City, Kan.- the station is located outside of the new South Branch public library in Kansas City.
  • Hartford, Conn. – the station will be located outside of the Connecticut Science Center and will be installed in the summer or early fall of 2015.
  • Oklahoma City, Okla. – the station will be located in the children’s garden of the Myriad Botanical Gardens and will be installed in the summer or early fall of 2015.
VG Station in Kansas City, KS

Kansas City, KS

So what is next? We are excited about the expansion of the Village Green Project and hope to learn how some of the new system features perform, such as a combined wind and solar power system we’re using for more northern locations. We hope the project will provide more knowledge about how to build and operate next generation air quality measurement systems for use by communities. Please stay tuned for more updates from the Village Green Project team members as we continue our learning journey.

 

About the Authors: Esteban Herrera is an environmental engineer and project lead for the Village Green Project. Gayle Hagler is an environmental engineer who studies air pollutant emissions and measurement technologies. John White is leading the effort of expanding AirNow’s capabilities to handle one-minute data, including data from the Village Green stations.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Training Citizen Scientists to Monitor Air Quality

By Amanda Kaufman

Next-generation air monitor developed by EPA researchers

Next-generation air monitor developed by EPA researchers

As a science fellow at EPA, I am working with Agency researchers to help bring local air measurement capabilities to communities. This includes training citizen scientists with next generation air monitors developed by EPA researchers. One such device is the Citizen Science Air Monitor, which contains many sophisticated instruments to measure air quality under its sleek and simple design.

Today, Administrator Gina McCarthy is joining New Jersey Senator Cory Booker, Newark Mayor Ras J. Baraka, and other community members at Newark’s Ironbound neighborhood Family Success Center to launch an EPA-Ironbound partnership for community air monitoring that is a first of its kind citizen science project. Read the press release.

The monitor does a lot for being so small and portable. It measures two air pollutants—nitrogen dioxide and particulate matter—as well as relative humidity and temperature. Residents of the Ironbound community are using the monitors to measure pollutants in different locations, during different times of the day and under a variety of weather conditions. The community is impacted by many sources of air pollutants.

In January, I traveled to Newark with researchers who developed the monitor to help train members of the Ironbound Community Corporation to use and maintain the monitors and collect data. The training was very hands-on and the participants were enthusiastic. They even turned the exercise for assembling the monitors into a friendly competition.

EPA researchers shared two training manuals that they developed as part of the outreach project. The quality assurance guidelines and operating procedures manuals are available to the public and are part of an online Citizen Science Toolbox developed to assist citizen scientists who are interested in using new air sensor technologies.

While the quality assurance guidelines and operating procedure are specific to the monitor developed for the Ironbound community, many of the concepts detailed in the documents are transferable to similar air quality monitoring efforts using next generation air monitors. The manuals are:

The ultimate goal of the research project is to empower people with information to address their local air quality concerns. I am glad to be a part of this important activity empowering a community to monitor their local quality

About the Author: Amanda Kaufman is an ORISE participant hosted by EPA’s Air, Climate, and Energy national research program.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Clean Cookstoves Research: An Opportunity to Benefit Billions

By Bryan Bloomer, Ph.D.

I have long appreciated the ability to cook and heat my home with minimum risk of exposure to toxic indoor air pollution. But I am also painfully aware that more than 3 billion people around the world rely on inefficient, unsustainable and dangerous cookstove technologies for their everyday cooking, heating and lighting needs.

Display of clean cookstoves.

EPA’s Bryan Bloomer examines clean-burning prototypes at the Cookstoves Future Summit in New York City.

That is why I am so pleased to join EPA Administrator Gina McCarthy and other prominent leaders this week at the first ever ministerial- and CEO-level Cookstoves Future Summit, “Fueling Markets, Catalyzing Action, Changing Lives,” in New York City.

Traditional cookstoves typically burn biomass fuels such as wood, dung, crop residues, charcoal or the fossil fuel, coal. This causes a wide range of negative health effects to the people, primarily women and children, exposed to the smoke they emit. And there’s more. The use of traditional cookstove technologies also depletes natural resources, contributes to deforestation, and releases harmful pollutants into the atmosphere that contribute to climate change at regional and global scales.

This is why clean cookstoves research is a top EPA priority. Our goal is to transform the sustainability and health impacts of the energy infrastructure in ways that will not only improve the health of billions, most of them disadvantaged women and children, but improve the global environment as well.

We conduct and support cooperative research to identify gaps and deliver practical solutions from a wide array of stakeholders. The Agency is leading an international clean cookstove research effort, helping to support the development of international cookstove standards, conducting trusted independent research on the energy efficiency and emissions of cookstoves, and improving our understanding of the negative health impacts from exposure to cookstove smoke.

In March 2012, EPA announced the funding of six universities to address residential burning and its effects on human health worldwide. This group of researchers is developing innovative technologies to quantify the impacts of cookstove emissions on climate and air quality.

Moving forward, we and our many partners in this global effort will focus on translating these results into the field, primarily bringing innovative, consumer-driven and life-saving technologies to individuals worldwide.

Turning research results into welcomed solutions is the topic of this week’s Cookstoves Future Summit. The summit presents a unique opportunity to further develop a thriving and sustainable clean cookstove market. Such a market will mean substantial progress toward preventing the more than 4 million estimated indoor air pollution related deaths due to traditional cookstoves and fuels.

The clean cookstoves challenge encompasses a number of health, social and environmental issues. Such a pressing and compelling problem presents us with a significant opportunity to improve livelihoods, empower women and protect the environment for generations to come.

About the Author: Dr. Bryan Bloomer is the director of the Applied Science Division at EPA’s National Center for Environmental Research. He works with grant managers that support scientists and engineers through the Science to Achieve Results (STAR) grants program, to improve EPA’s scientific basis for decision on air, climate, water and energy issues.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Air Sensors Citizen Science Toolbox

airsensorid

By Amanda Kaufman

There is a growing interest by citizens to learn more about what’s going on in their community: What’s in the air I breathe? What does it mean for my health and the health of my family? How can I learn more about these things and even be involved in the process? Is there a way for me to measure, learn, and share information about my local air quality?

Researchers at EPA have developed the virtual Air Sensors Citizen Science Toolbox to help citizens answer these types of questions and more. With the recent release of the Toolbox web page, citizens can now visit http://go.usa.gov/NnR4 and find many different resources at this one simple location. As a citizen scientist myself, I am very excited to learn that there are funding opportunities for individuals and communities to conduct their own air monitoring research projects. The Funding Sources for Citizen Science Database is just one of the many resources on the Toolbox webpage.

One of the resources available as part of the Toolbox is the Air Sensors Guidebook, which explores low-cost and portable air sensor technologies, provides general guidelines on what to look for in obtaining a sensor, and examines important data quality features.

Compact air sensor that could be used by citizen scientists to monitor local air quality.

Compact air sensor that could be used by citizen scientists to monitor local air quality.

To understand the current state of the science, the Toolbox webpage also includes the Sensor Evaluation Report, which summarizes performance trials of low-cost air quality sensors that measure ozone and nitrogen dioxide. Future reports to be posted on the webpage will summarize findings on particulate matter (PM) and volatile organic compound (VOC) sensor performance evaluations.

As they are developed, more tools will be posted on the webpage, including easy-to-understand operating procedures for select low-cost sensors; basic ideas for data analysis, interpretation, and communication; and other helpful information.

I believe the Toolbox is a great resource for citizens to learn more about air sensor technology at a practical level. It will provide guidance and instructions to citizens to allow them to effectively collect, analyze, interpret, and communicate air quality data. The ultimate goal is to give citizens like you and me the power to collect data about the air we breathe.

About the author: Amanda Kaufman is an Environmental Health Fellow from the Association of Schools and Programs of Public Health (ASPPH). She is hosted by EPA’s Air, Climate, and Energy national research program.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Changing Times: EPA’s Report on National Trends

By Gaelle Gourmelon

Some things in my childhood memories look different when I revisit them as an adult. That tall slide in the playground? It’s really only four feet high. The endless summer bike rides to the beach? They now take ten minutes. Sometimes, however, things seem different because they’ve actually changed. I recently went to a favorite childhood beach and saw that the dock was now stranded in the water, no longer reachable from the beach. Undeniable evidence of the changing coast.

But what evidence do we have to observe real changes over time when it comes to our national environment? What data can we use to determine if our environment has meaningfully changed?

To help answer these questions, EPA released the draft Report on the Environment 2014 (ROE 2014) for public comment in March, and it will undergo external peer review on July 30-31, 2014.

The ROE 2014 is not an intimidating, technical tome; it is an interactive website, full of national-level environmental and health indicators and is designed to make it easier to find information on national environmental trends. It’s not a giant, unwieldy database. Rather, it’s a summary of important indicators that paints a picture of how our environment is changing.

Why use indicators?

Just like having a high temperature indicates you are sick, environmental indicators help us understand the health of the environment. ROE indicators are simple measures that track the state of the environment and human health over time.

For example, if we want to understand the nation’s air quality, we can measure indicators such as lead emissions, acid deposition, and particulate matter concentrations to give us clues about overall changes. These indicators can help us make informed decisions about conditions that may otherwise be difficult to measure.

Report on the Environment

An exhibit for the acid deposition indicator gives us a clue about the changes in the quality of outdoor air in the US.

 

What’s included in the Report on the Environment?

Data for the ROE indicators come from many sources, including federal and state agencies as well as non-governmental organizations. EPA brought together scientists and other experts to determine what data are accurate, representative, and reliable enough to be included. With feedback from the public and our partners, we selected 86 indicators that help to answer questions about air, water, land, human health and exposure, and ecological condition. The ROE 2014 also includes new indicators on aspects of sustainability.

Why do we need the Report on the Environment?

EPA designed the ROE to help answer mission-relevant questions and help us track how we’re doing in meeting environmental goals. But because the ROE 2014 is an easy-to-use, interactive website, scientists, decision-makers, educators, and anyone who is curious about the environment and health can view the most up-to-date national (and sometimes regional) data, too. The ROE shows trends and sets up baselines where trend data do not yet exist. It also highlights gaps where we don’t have reliable indicators.

How can I participate in the external peer review meeting?

EPA is committed to proactively engaging stakeholders, increasing transparency, and using the best available science. By releasing the draft ROE 2014 for public comment and peer review, we benefit from stakeholder and scientific engagement to support the best conclusions possible. The draft ROE 2014 website will be reviewed by EPA’s Science Advisory Board in a public meeting on July 30-31, 2014. For additional meeting details, visit the July 11, 2014 Federal Register Notice and the SAB meeting website.

How can I stay connected with the ROE?

Everyone can use the ROE to inform their discussions of environmental conditions and related policies in the U.S. The information it provides helps you understand your environment, and encourages you to ask more questions about your environment and health. Now, it’s time to investigate. Things might have changed more than you think.

Sign up to be notified about the upcoming release of the final Report on the Environment 2014; you can also receive periodic updates and highlights.

About the author: Gaelle Gourmelon was an Association of Schools and Programs of Public Health Fellow working on EPA’s Report on the Environment project from September 2012 through May 2014. Her background in biology and environmental health has fueled her passion for reconnecting people with their natural and built environment.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.