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1 INTRODUCTION 
Section 7 (a)(2) of the Endangered Species Act (ESA) requires Federal agencies to insure their 
actions are not likely to jeopardize the continued existence of endangered or threatened species 
or adversely modify or destroy their designated critical habitat. When a Federal agency’s action 
“may affect” a protected species, that agency is required to consult formally with the National 
Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS) 
or the United States Fish and Wildlife Service (USFWS), depending on the endangered species 
(50 Code of Federal Regulations [CFR] §402.14(a)). Federal agencies are exempt from this 
general requirement if they have concluded that an action “may affect, but is not likely to 
adversely affect” endangered species, threatened species, or designated critical habitat and 
NMFS or the USFWS concurs with that conclusion (50 CFR §402.14(b)).  

Section 7 (b)(3) of the ESA requires that at the conclusion of consultation, NMFS and/or 
USFWS provide an opinion stating how the Federal agencies’ actions will affect ESA-listed 
species and their critical habitat under their jurisdictions. If an incidental take is expected, section 
7 (b)(4) requires the consulting agency to provide an incidental take statement that specifies the 
impact of any incidental taking and includes reasonable and prudent measures to lessen such 
impacts. 

For the actions described in this document, the action agency is the NMFS Office of Protected 
Resources, Permits and Conservation Division (Permits Division), which proposes to authorize 
permit amendment 14856-04 for close approach of humpback whales in the Atlantic, Pacific, and 
Southern Ocean basins as well as satellite tagging of humpback whales in the Atlantic and 
Southern Oceans under permit amendment 14809-02. The consulting agency for this proposal is 
the NMFS Office of Protected Resources, Endangered Species Act Interagency Cooperation 
Division.  

This biological and conference opinion (opinion) and incidental take statement were prepared by 
NMFS Endangered Species Act Interagency Cooperation Division in accordance with section 
7(b) of the ESA and implementing regulations at 50 CFR §402. This document represents 
NMFS’ opinion on the effects of these actions on proposed, endangered, and threatened species 
and critical habitat that has been designated for those species. A complete record of this 
consultation is on file at NMFS’ Office of Protected Resources in Silver Spring, Maryland. 

1.1 Background 

On December 18 2013, the Permits Division issued permit 14856 for close approach, biopsy, 
aerial survey, and tagging activities on blue, bowhead, fin, western North Pacific gray, 
humpback, sei, North Pacific and southern right, and sperm whales in the Atlantic, Arctic, 
Indian, Pacific, and Southern Ocean basins and Mediterranean Sea. Unintentional harassment of 
Hawaiian insular false killer and southern resident killer whales, Guadalupe fur, Hawaiian monk, 
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bearded, and ringed seals as well as  eastern and western Distinct Population Segments (DPSs) of 
Steller sea lions was also authorized from aerial and surface vessel approaches. On August 13 
2014, the Permits Division issued an amendment to permit 14856 that removed reapproach 
restrictions for blue, bowhead, fin, western North Pacific gray, humpback, North Pacific right, 
sei, southern right, and sperm whales. On May 15 2015, the Permits Division issued an 
additional amendment to permit 14856 to allow retagging and additional biopsy of some whale 
species. On April 2 2015, the Permits Division contacted the ESA Interagency Cooperation 
Division to discuss whether consultation would be appropriate on another amendment related to 
how humpback whale takes had been accounted for. On May 8 2015, the ESA Interagency 
Cooperation Division responded, requesting more specific information to determine whether  
reinitiation would be appropriate. On July 8 2015, the Permits Division requested reinitiation of 
consultation on Permit 14856.  

On March 24 2014, the Permits Division issued permit 14809 for approach, behavioral 
observation, biopsy, suction cup tagging, and acoustic playback of humpback and sperm whales 
in the North Atlantic Ocean, as well as humpback whales in the North Pacific Ocean, and 
humpback and southern right whales in the Southern Ocean. On December 4 2014, the Permits 
Division issued an amendment to permit 14809 that allowed for different tag designs to be 
deployed than those originally authorized. On July 8 2015, the Permits Division requested 
reinitiation of consultation on permit 14809 to allow for additional tagging of humpback whales 
in the Atlantic and Southern Oceans. On July 13 2015, the Permits Division submitted additional 
information to the ESA Interagency Cooperation Division on its own accord. Information was 
sufficient to initiate consultation on this date for both permit amendments. Because of the 
similarities in species and actions, the consultations were batched into a single opinion. 

2 DESCRIPTION OF THE PROPOSED ACTION 
In this opinion, we consider two separate actions being carried out by the Permits Division: 
issuance of amendments 14856-04 and 14809-02. “Action” means all activities or programs of 
any kind authorized, funded, or carried out, in whole or in part, by federal agencies. These 
amendments will largely allow actions already considered through ESA consultation to continue, 
but call out specific modifications that can affect humpback whales: increase in allowed take in 
permit 14856-04 and the use of dart tags in permit 14809-02. We relied on information provided 
by the applicants in their applications as well as follow-up information provided by the Permits 
Division verbally and in email to understand the activities proposed. 

2.1 Proposed activities 

Permit 14856-04 will not allow any added effort or activities by the applicant. It will, however, 
allow additional take. When the applicant applied for, received, and signed permit 14856 and its 
later amendments, he understood take to occur as a response to activities undertaken, not as 
something to be counted simply by engaging in the activity close to protected species. So, for 
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example, the applicant estimated and counted take based on behavioral responses observed from 
marine mammals, but did not count closely approaching individuals closer than the defined 
boundary under Marine Mammal Protection Act (MMPA) regulations as take. This difference 
became obvious after the permit was signed and, with this new understanding, the applicant 
believes that authorized take will not allow him to undertake the authorized activities to the 
extent he intends. Therefore, the applicant has applied for an increase in the number of takes 
authorized, but not for additional activities or with an expectation of increasing research effort. 
This increase is for humpback whales only (although potentially anywhere in the Atlantic, 
Pacific, Indian, or Southern oceans), from 1,000 annual takes via close approach to 2,000 . In 
addition, the applicant will be permitted to take an individual six times per day, an increase from 
the three per day allowance in the current permit. Future reporting will incorporate the 
applicant’s revised understanding of take. 

Permit 14809-02 will allow for the use of dart satellite tags on humpback whales in the Atlantic 
and Southern Oceans. The applicants state their research on behavioral ecology of and responses 
of cetaceans to disturbances requires good understanding of baseline behavior, ecology and 
movement patterns. Recent advances in the miniaturization of technology and a track record of 
reliability in gathering these types of data have compelled the applicant to request the addition of 
dart tags, and Low Impact Minimally Percutaneous Electronic Transmitter (LIMPET) tags in 
particular, to their research permit. No additional activities, such as close approach, will be 
undertaken. 

Some of the LIMPET tags will contain an Argos satellite transmitter as well as a time-depth 
recorder, light level and temperature gauge. The dimensions of these tags are 58x47x25 
millimeters, and they weigh 63 grams. Smaller, lighter LIMPET units that contain only Argos 
satellite transmitters will also be used. Once deployed via crossbow, tags attach to the animal via 
two titanium dart anchors that are configured with either three or six petals. The dimensions of 
these are 45x22 millimeters x 4 grams and 68x24 millimeters x 6 grams, respectively. These tags 
are deployed either with an air-gun or crossbow with a customized bolt and cradle to the side of 
the animal. These tags are designed to transmit for up to 80 days (those with multi-sensors) or 
160 days (with Argos only). After this time, the darts are designed to migrate out of the animal 
leaving a small scar that heals over time (Andrews 2012). All tag posts are sterilized and kept 
this way until deployment. 

In addition to the LIMPET tags, a larger platform tag has been developed specifically for 
mysticete whales to collect multi-sensor data over variable time frames. This dart-tag uses four 
dart anchors that are similar in size and shape to those in the LIMPET tag. The main difference 
in this tag design is the tag platform is recovered and data are archived for download. The 
platform of the tag is 20x12x3 centimeters and the attached sensors are the Wildlife Computers 
MK10/SPLASH time-depth recorder, a Very High Frequency transmitter, a Fast-loc Global 
Positioning System, and a Daily Diary multi-sensor recorder. The weight of this Dart-tag is about 
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400 grams and it is deployed using a carbon-fiber hand pole with a customized housing. The tags 
are attached to the whale in the area below the dorsal fin and the posts, similar to the LIMPET 
tag, migrate out of the animal after a period of time. The tag floats and is recovered for data 
offload and reuse. All tag posts are sterilized and kept this way until deployment. 

The permit amendment will allow for up to 30 adult or juvenile humpback whales per year to be 
tagged with any of these devices in the Southern Ocean and up to 50 in the Atlantic Ocean. 
Individuals may not be tagged with multiple devices simultaneously (for example, suction 
tagging  is not permitted with a dart tag on the same individual at the same time).  

2.2 Action area 

Action area means all areas affected directly, or indirectly, by the Federal action, and not just the 
immediate area involved in the action (50 CFR 402.02). 

The action area for permit 14856-04 will encompass all Unites States (US) Exclusive Economic 
Zone waters, as well as international waters worldwide. Although previous permits have been 
issued to the applicant with a similarly broad geographic scope, the applicant’s activities have 
been limited to North Pacific, northwestern Atlantic, Mediterranean Sea, South African, and Gulf 
of Mexico waters. However, as humpback whales do not generally occur in the Gulf of Mexico, 
we do not expect the proposed action to occur here. We have not received information to indicate 
the applicant will engage in new activities or projects outside the scope of what he has previously 
conducted. Although we acknowledge that activities could occur in any of the locations broadly 
specified, we expect most if not all activities will occur in areas the applicant has operated in, 
based on more than a decade of past performance reporting data. The permit will allow for 
proposed activities to occur any time of year. Permit 14809-02 will authorize activities in the 
northwestern Atlantic Ocean from Canada to the Caribbean, American Samoa, and the Southern 
Ocean southward from 60° South. 

2.3 Interrelated and interdependent actions 

Interrelated actions are those that are part of a larger action and depend on that action for their 
justification. Interdependent actions are those that do not have independent use, apart from the 
action under consideration. For permit amendments 14856-04 and 14809-02, we did not identify 
any interrelated or interdependent actions. 

3 OVERVIEW OF NMFS’ ASSESSMENT FRAMEWORK 
Section 7 (a)(2) of the ESA requires Federal agencies, in consultation with NMFS, to insure their 
actions either are not likely to jeopardize the continued existence of endangered or threatened 
species; or adversely modify or destroy their designated critical habitat. 

“To jeopardize the continued existence of an ESA-listed species” means to engage in an action 
that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of 
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both the survival and recovery of an ESA-listed species in the wild by reducing the reproduction, 
numbers, or distribution of that species (50 CFR §402.02). The jeopardy analysis considers both 
survival and recovery of the species.  

Section 7 assessment involves the following steps: 
1. We identify the proposed action and those aspects (or stressors) of the proposed action that 

are likely to have direct or indirect effects on the physical, chemical, and biotic environment 
within the action area, including the spatial and temporal extent of those stressors. 

2. We identify the ESA-listed species and designated critical habitat that are likely to co-occur 
with those stressors in space and time.  

3. We describe the environmental baseline in the action area including: past and present impacts 
of Federal, state, or private actions and other human activities in the action area; anticipated 
impacts of proposed Federal projects that have already undergone formal or early section 7 
consultation; and impacts of state or private actions that are contemporaneous with the 
consultation in process. 

4. We identify the number, age (or life stage), and gender of ESA-listed individuals that are 
likely to be exposed to the stressors and the populations or subpopulations to which those 
individuals belong. This is our exposure analysis. 

5. We evaluate the available evidence to determine how those ESA-listed species are likely to 
respond given their probable exposure. This is our response analyses. 

6. We assess the consequences of these responses to the individuals that have been exposed, the 
populations those individuals represent, and the species those populations comprise. This is 
our risk analysis.  

7. The adverse modification analysis considers the impacts of the proposed action on the critical 
habitat features and conservation value of designated critical habitat. This opinion does not 
rely on the regulatory definition of “destruction or adverse modification” of critical habitat at 
50 C.F.R. 402.02. Instead, we have relied on the statutory provisions of the ESA to complete 
the following analysis about critical habitat.1

2 

8. We describe any cumulative effects of the proposed action in the action area.  

 Cumulative effects, as defined in our implementing regulations (50 CFR §402.02), are the 
effects of future state or private activities, not involving Federal activities, that are reasonably 
certain to occur within the action area. Future Federal actions that are unrelated to the proposed 
action are not considered because they require separate section 7 consultation. 

                                                 
1 Memorandum from William T. Hogarth to Regional Administrators, Office of Protected Resources, NMFS 
(Application of the “Destruction or Adverse Modification” Standard Under Section 7(a)(2) of the Endangered 
Species Act) (November 7, 2005). 
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9. We integrate and synthesize factors one through nine by considering the effects of the action 
to the environmental baseline and the cumulative effects to determine whether the action 
could reasonably be expected to: 
a. Reduce appreciably the likelihood of both survival and recovery of the ESA-listed 

species in the wild by reducing its numbers, reproduction, or distribution; or  
b. Reduce the conservation value of designated or proposed critical habitat. These 

assessments are made in full consideration of the status of the species and critical habitat.  

10. We state our conclusions regarding jeopardy and the destruction or adverse modification of 
critical habitat. 

If, in completing the last step in the analysis, we determine the action under consultation is likely 
to jeopardize the continued existence of ESA-listed species or destroy or adversely modify 
designated critical habitat, we must identify a reasonable and prudent alternative (RPA) to the 
action. The RPA must not be likely to jeopardize the continued existence of ESA-listed species 
nor adversely modify their designated critical habitat and it must meet other regulatory 
requirements. 

To conduct these analyses, we rely on all the best scientific and commercial evidence available 
to us. This evidence consists of:  
• The environmental assessment submitted by the Permits Division  

• Monitoring reports submitted in conjunction with past research 

• Reports from NMFS Science Centers 

• Reports prepared by natural resource agencies in states and other countries 

• Reports from nongovernmental organizations involved in marine conservation issues  

• The information provided by NMFS’ Permits Division when it initiated formal consultation 

• The general scientific literature 

• Our expert opinion 

During the consultation, we conducted electronic searches of the general scientific literature 
using search engines, including Agricola, Ingenta Connect, Aquatic Sciences and Fisheries 
Abstracts, JSTOR, Conference Papers Index, First Search (Article First, ECO, WorldCat), Web 
of Science, Oceanic Abstracts, Google Scholar, and Science Direct. We also referred to an 
internal electronic library that represents a major repository on the biology of ESA-listed species 
under the NMFS’ jurisdiction. 

We supplemented these searches with electronic searches of doctoral dissertations and master’s 
theses. These searches specifically tried to identify data or other information that supports a 
particular conclusion (for example, a study that suggests whales will exhibit a particular response 
to acoustic exposure or close vessel approach) as well as data that do not support that conclusion. 
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When data are equivocal or when faced with substantial uncertainty, our decisions are designed 
to avoid the risks of incorrectly concluding that an action will not have an adverse effect on 
listed species when, in fact, such adverse effects are likely (i.e., Type II error).  

4 STATUS OF ESA-LISTED AND PROPOSED SPECIES 
This section identifies the ESA-listed and proposed species that potentially occur within the 
action areas that may be affected by permit amendments 14856-04 and 14809-02 (Table 1). It 
then summarizes the biology and ecology of those species that is pertinent to this consultation 
and what is known about species’ life histories in the action areas. The ESA-listed species 
potentially occurring within the action area are listed in Table 1, with their regulatory status. This 
does not include species that we do not expect will be affected by the action. 

Table 1. Threatened, endangered, and proposed species that may be affected by 
the Permit Division’s proposed permit amendments 14856-04 and 14809-02. 

Species ESA Status Critical Habitat Recovery Plan 

Humpback whale (Megaptera novaeangliae) E – 35 FR 18319 -- -- 55 FR 29646 

Humpback whale (Megaptera novaeangliae) - 
Central America Distinct population segment 
(DPS) (proposed threatened) E – 80 FR 22304 -- -- 55 FR 29646 

Humpback whale (Megaptera novaeangliae) - 
Cape Verde Islands/Northwest Africa DPS 
(proposed endangered) E – 80 FR 22304 -- -- 55 FR 29646 

Humpback whale (Megaptera novaeangliae) – 
Western North Pacific DPS (proposed 
endangered) E – 80 FR 22304 -- -- 55 FR 29646 

4.1 ESA-listed and proposed species and critical habitat not likely to be adversely affected 

NMFS uses two criteria to identify the ESA-listed or proposed species or critical habitat that are 
not likely to be adversely affected by the proposed action, as well as the effects of activities that 
are interrelated to or interdependent with the Federal agency’s proposed action. The first 
criterion is exposure, or some reasonable expectation of a co-occurrence, between one or more 
potential stressors associated with the proposed activities and ESA-listed or proposed species or 
designated critical habitat. If we conclude that an ESA-listed or proposed species or designated 
critical habitat is not likely to be exposed to the proposed activities, we must also conclude the 
species or critical habitat is not likely to be adversely affected by those activities.  

The second criterion is the probability of a response given exposure. ESA-listed or proposed 
species or designated critical habitat that is exposed to a potential stressor but is likely to be 
unaffected by the exposure is also not likely to be adversely affected by the proposed action. We 

http://www.nmfs.noaa.gov/pr/pdfs/fr/fr35-18319.pdf
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr55-29646_attachment.pdf
https://www.federalregister.gov/articles/2015/04/21/2015-09010/endangered-and-threatened-species-identification-of-14-distinct-population-segments-of-the-humpback
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr55-29646_attachment.pdf
https://www.federalregister.gov/articles/2015/04/21/2015-09010/endangered-and-threatened-species-identification-of-14-distinct-population-segments-of-the-humpback
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr55-29646_attachment.pdf
https://www.federalregister.gov/articles/2015/04/21/2015-09010/endangered-and-threatened-species-identification-of-14-distinct-population-segments-of-the-humpback
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr55-29646_attachment.pdf
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applied these criteria to the ESA-listed or proposed species in Table 1 and we summarize our 
results below.  

An action warrants a "may affect, not likely to be adversely affected" finding when its effects are 
wholly beneficial, insignificant or discountable. Beneficial effects have an immediate positive 
effect without any adverse effects to the species or habitat. Beneficial effects are usually 
discussed when the project has a clear link to the ESA-listed or proposed species or its specific 
habitat needs and consultation is required because the species may be affected.  

Insignificant effects relate to the size or severity of the impact and include those effects that are 
undetectable, not measurable, or so minor that they cannot be meaningfully evaluated. 
Insignificant is the appropriate effect conclusion when plausible effects are going to happen, but 
will not rise to constituting an adverse effect. That means the ESA-listed or proposed species 
may be expected to be affected, but not harmed or harassed. 

Discountable effects are those that are extremely unlikely to occur. For an effect to be 
discountable, there must be a plausible adverse effect (i.e., a credible effect that could result from 
the action and that would be an adverse effect if it did impact a listed species),but it is very 
unlikely to occur. 

For permit amendments 14856-04 and 14508-02, no ESA-listed or proposed species or critical 
habitats may be affected but are unlikely to be adversely affected.  

4.2 ESA-listed species and critical habitat likely to be adversely affected 

This opinion examines the status of each ESA-listed or proposed species that will be affected by 
the proposed action. The status is determined by the level of risk the ESA-listed or proposed 
species face, based on parameters considered in documents such as recovery plans, status 
reviews, and listing decisions. The Status of ESA-Listed or Proposed Species section helps to 
inform the description of the species’ current “reproduction, numbers, or distribution” as 
described in 50 CFR 402.02.  

One factor affecting the range-wide status of humpback whales, and aquatic habitat at large, is 
climate change. Although the effects of climate change are ongoing, many of the expected 
effects are likely to occur years to centuries from now, well beyond when the proposed 
amendments would expire. We primarily discuss climate change as a threat common to all 
species addressed in this opinion, rather than in each of the species-specific narratives. As we 
better understand responses to climate change, we address these effects in relevant species-
specific sections.  

In general, based on forecasts made by the Intergovernmental Panel on Climate Change, climate 
change is projected to have substantial direct and indirect effects on individuals, populations, 
species, and the structure and function of marine, coastal, and terrestrial ecosystems in the near 
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future (IPCC 2002). From 1906 to 2006, global surface temperatures have risen 0.74º C and 
continue at an accelerating pace; 11 of the 12 warmest years on record since 1850 have occurred 
since 1995 (Poloczanska et al. 2009). Furthermore, the Northern Hemisphere (where a greater 
proportion of ESA-listed and proposed species occur) is warming faster than the Southern 
Hemisphere, although land temperatures are rising more rapidly than over the oceans 
(Poloczanska et al. 2009). North Atlantic and Pacific sea surface temperatures have shown trends 
in being unusually warm in recent years (Blunden and Arndt 2013). The ocean along the US 
eastern seaboard is also much saltier than historical averages (Blunden and Arndt 2013). The 
direct effects of climate change will result in increases in atmospheric temperatures, changes in 
sea surface temperatures, patterns of precipitation, and sea level. Oceanographic models project a 
weakening of the thermohaline circulation resulting in a reduction of heat transport into high 
latitudes of Europe as well as an increase in the mass of the Antarctic and Greenland ice sheets, 
although the magnitude of these changes remain unknown. Species that are shorter-lived, larger 
body size, or generalist in nature are liable to be better able to adapt to climate change over the 
long term versus those that are longer-lived, smaller-sized, or rely on specialized habitats 
(Brashares 2003; Cardillo 2003; Cardillo et al. 2005; Issac 2009; Purvis et al. 2000). Climate 
change is likely to have its most pronounced effects on species whose populations are already in 
tenuous positions (Isaac 2008). As such, we expect the risk of extinction to ESA-listed or 
proposed species to rise with the degree of climate shift associated with global warming. 

Indirect effects of climate change would result from changes in the distribution of temperatures 
suitable for whale calving and rearing, the distribution and abundance of prey, and abundance of 
competitors or predators. For species that undergo long migrations, individual movements are 
usually associated with prey availability or habitat suitability. If either is disrupted by changing 
ocean temperature regimes, the timing of migration can change or negatively impact population 
sustainability (Simmonds and Eliott. 2009). With warming temperatures and decreasing sea ice, 
humpback and fin whales have been found in increasing numbers at the northern extreme of their 
Pacific range and are regularly found now in the southern Chukchi Sea (Clarke et al. 2013). We 
do not know if this is due to range expansion owing to species recovery, or due to altered habitat 
associated with climate change (Clarke et al. 2013). Climate change can influence reproductive 
success by altering prey availability, as evidenced by high success of northern elephant seals 
during El Niño periods, when cooler, more productive waters are associated with higher first 
year pup survival (McMahon and Burton. 2005). Reduced prey availability resulting from 
increased ocean temperatures has also been suggested to explain reductions in Antarctic fur seal 
pup and harbor porpoise survival (Forcada et al. 2005; Macleod et al. 2007). Polygamous marine 
mammal mating systems can also be perturbed by rainfall levels, with the most competitive grey 
seal males being more successful in wetter years than in drier ones (Twiss et al. 2007). Sperm 
whale females were observed to have lower rates of conception following unusually warm sea 
surface temperature periods (Whitehead 1997). Marine mammals with restricted distributions 
linked to water temperature may be  exposed to range restriction (Issac 2009; Learmonth et al. 
2006). MacLeod (2009) estimated that, based on expected shifts in water temperature, 88% of 
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cetaceans would be affected by climate change, 47% would be negatively affected, and 21% 
would be put at risk of extinction. Of greatest concern are cetaceans with ranges limited to 
nontropical waters and preferences for shelf habitats (Macleod 2009). Modeling of North 
Atlantic cetacean species found that three of four odontocete species would likely undergo range 
contraction while one would expand its range (Lambert et al. 2014). Kaschner et al. (2011) 
modeled marine mammal species richness, overlaid with projections of climate change and 
found that species in lower-latitude areas would likely be more affected than those in higher-
latitude regions. Variations in the recruitment of krill and the reproductive success of krill 
predators correlate to variations in sea-surface temperatures and the extent of sea-ice cover 
during winter months. Although the IPCC (2001) did not detect significant changes in the extent 
of Antarctic sea-ice using satellite measurements, Curran et al. (2003) analyzed ice-core samples 
from 1841 to 1995 and concluded Antarctic sea ice cover had declined by 20% since the 1950s.  

Roughly 50% of the Earth’s marine mammal biomass occurs in the Southern Ocean, with all 
baleen whales feeding largely on a single krill species, Euphausia superba, here and feeding 
virtually nowhere else (Boyd 2002). Atkinson et al. (2004) found severe decreases in krill 
populations over the past several decades in some areas of the Antarctic, linked to sea ice loss. 
Reid and Croxall (2001) analyzed a 23-year time series of the reproductive performance of 
predators (Antarctic fur seals, gentoo penguins, macaroni penguins, and black-browed 
albatrosses) that depend on krill for prey. They concluded these populations experienced 
increases in the 1980s, followed by significant declines in the 1990s associated with more years 
of reduced reproductive success. The authors concluded that macaroni penguins and black-
browed albatrosses had declined by as much as 50% in the 1990s, although incidental mortalities 
from longline fisheries probably contributed to the decline of the albatross. These declines 
resulted, at least in part, from changes in the structure of krill population (reduced recruitment 
into older krill age classes), which lowered the number of predator’s krill could sustain. The 
authors concluded the biomass of krill within the largest size class was sufficient to support 
predator demand in the 1980s but not in the 1990s. By 2055, severe reductions in fisheries catch 
(including krill) because of climate change have been predicted to occur in the Indo-Pacific, Red 
Sea, Mediterranean Sea, Antarctic, and tropical areas worldwide while increased catches are 
expected in the Arctic, North Pacific, North Atlantic, and northern portions of the Southern 
Ocean (Cheung et al. 2010). 

Climate-mediated changes in the distribution and abundance of keystone prey species, such as 
krill, are likely to affect marine mammal populations as they re-distribute throughout the world’s 
oceans in search of prey. If sea ice extent decreases, then larval krill may not be able to survive 
without access to underice algae to feed on. This may be a cause of decreased krill abundance in 
the northwestern Antarctic Peninsula during the last decade (Fraser and Hofmann 2003). 
Meltwaters have also reduced surface water salinities, shifting primary production along the 
Antarctic Peninsula (Moline et al. 2004). Blue whales, as predators that specialize in eating krill, 
are likely to change their distribution in response to changes in the distribution of krill (Clapham 
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et al. 1999; Payne et al. 1986; Payne et al. 1990). If they did not change their distribution or 
could not find the biomass of krill necessary to sustain their population numbers, their 
populations would likely experience declines similar to those observed in other krill predators, 
including dramatic declines in population size and increased year-to-year variation in population 
size and demographics. These outcomes would dramatically increase the extinction probability 
of baleen whales. Edwards et al. (2007) found a 70% decrease in one zooplankton species in the 
North Sea and an overall reduction in plankton biomass as warm-water species invade formerly 
cold-water areas. However, in other areas, productivity may increase, providing more resources 
for local species (Brown et al. 2009). This has been proposed to be the case in the eastern North 
Pacific, where a poleward shift in the North Pacific Current that would likely continue under 
global warming conditions would enhance nutrient and planktonic species availability, providing 
more prey for many higher trophic level species (Sydeman et al. 2011). Species such as gray 
whales may experience benefits from such a situation (Salvadeo et al. 2013). In addition, 
reductions in sea ice may alleviate “choke points” that allow some marine mammals to exploit 
additional habitats (Higdon and Ferguson 2009). Long-term shifts of sperm whale prey (squids) 
in the California Current have also been attributed to the re-distribution of squids’ prey resulting 
from climate-based shifts in oceanographic variables (Salvadeo et al. 2011). Similar changes 
have also been suggested for sardines and anchovy in the California Current (Salvadeo et al. 
2011), which are important prey for humpback and fin whales, among others. Humpback whale 
foraging locations in the North Atlantic have shifted by significant distances over the past few 
decades, potentially because of global warming (Palsboll et al. 2013). 

Foraging is not the only potential aspect of ESA-listed species biology that climate change could 
influence. Acevedo-Whitehouse and Duffus (2009) proposed the rapidity of environmental 
changes, such as those resulting from global warming, can harm immunocompetence and 
reproductive parameters in wildlife to the detriment of population viability and persistence. 
Altered ranges can also result in the spread of novel diseases to new areas via shifts in host 
ranges (Schumann et al. 2013; Simmonds and Eliott. 2009). It has also been suggested that 
increases in harmful algal blooms (which humpback whales have died from) could be a result 
from increases in sea surface temperature (Simmonds and Eliott. 2009). 

Climate change has been linked to changing ocean currents as well. Ocean temperatures around 
Iceland are linked with alterations in the continental shelf ecosystem there, including shifts in 
minke whale diet (Víkingsson et al. 2014); humpback whales may experience similar effects. 

Climactic shifts also occur because of natural phenomena. In the North Atlantic, this primarily 
concerns fluctuations in the North Atlantic Oscillation (NAO), which results from changes in 
atmospheric pressure between a semi-permanent high pressure feature over the Azores and a 
subpolar low pressure area over Iceland (Curry and McCartney 2001; Hurrell 1995; Stenseth et 
al. 2002). This interaction affects sea surface temperatures, wind patterns, and oceanic 
circulation in the North Atlantic (Stenseth et al. 2002). The NAO shifts between positive and 
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negative phases, with a positive phase having persisted since 1970 (Hurrell 1995). The NAO is 
significant for North Atlantic right whales and probably humpback whales because of its 
influence on the species’ primary prey, zooplankton of the genus Calanus, which are more 
abundant in the Gulf of Maine during positive NAO years (Conversi et al. 2001; Greene and 
Pershing 2004; Greene et al. 2003). This subsequently impacts the nutritional state of at least 
North Atlantic right whales and the rate at which sexually mature females can produce calves 
(Greene et al. 2003). 

4.2.1 Humpback whale 

Population designations. Populations have been relatively well defined for humpback whales. 

North Atlantic. Humpback whales range from the Mid-Atlantic Bight and the Gulf of Maine 
across the southern coast of Greenland and Iceland to Norway in the Barents Sea. Whales 
migrate to the western coast of Africa (Waerebeek et al. 2013), the Cape Verde Islands, and the 
Caribbean Sea during the winter. Humpback whales collect in four summer feeding areas: Gulf 
of Maine and eastern Canada, west Greenland, Iceland, and Norway (Boye et al. 2010; Katona 
and Beard 1990; Smith et al. 1999). Although historically absent from the North Sea and 
European waters, humpback whales have been occurring in Dutch, English, and Irish waters with 
increasing frequency since the turn of the century, potentially exploiting foraging opportunities 
in the region (Leopold et al. 2014). 

The principal breeding range for Atlantic humpback whales lies from the Antilles and northern 
Venezuela to Cuba (Balcomb III and Nichols 1982; Whitehead and Moore 1982; Winn et al. 
1975). The largest breeding aggregations occur off the Greater Antilles where humpback whales 
from all North Atlantic feeding areas have been photo-identified (Clapham et al. 1993; Katona 
and Beard 1990; Mattila et al. 1994; Palsbøll et al. 1997; Smith et al. 1999; Stevick et al. 2003b). 
However, the possibility of historic and present breeding further north remains enigmatic but 
plausible (Smith and G.Pike 2009). Winter aggregations also occur at the Cape Verde Islands in 
the eastern North Atlantic and along Angola and Suriname (De Boer and Willems 2015) 
(Cerchio et al. 2010; Reeves et al. 2002b; Reiner et al. 1996; Weir 2007). Accessory and 
historical aggregations also occur in the eastern Caribbean (Levenson and Leapley 1978; 
Mitchell and Reeves 1983; Reeves et al. 2001a; Reeves et al. 2001b; Schwartz 2003; Smith and 
Reeves 2003; Swartz et al. 2003; Winn et al. 1975). To further highlight the “open” structure of 
humpback whales, a humpback whale migrated from the Indian Ocean to the South Atlantic 
Ocean, demonstrating that interoceanic movements can occur (Pomilla and Rosenbaum 2005). 
Genetic exchange at low-latitude breeding groups between Northern and Southern Hemisphere 
individuals and wider-range movements by males has been suggested to explain observed global 
gene flow (Rizzo and Schulte 2009). However, there is little genetic support for wide-scale 
interchange of individuals between ocean basins or across the equator. 
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Increasing range and occurrence in the Mediterranean Sea coincides with population growth and 
may represent reclaimed habitat from pre-commercial whaling (Frantzis et al. 2004; Genov et al. 
2009; Panigada et al. 2014). 

In 2015, NMFS proposed to designate humpback whale DPSs separately, listing some of them as 
endangered, some as threatened, and not list others (NOAA 2015). Within the North Atlantic 
Ocean, two DPSs are proposed: the West Indies DPS (proposed as non-listed) and the Cape 
Verde Islands/Northwestern Africa DPS (proposed endangered). The Cape Verde Islands plus 
Northwest Africa DPS consists of the humpback whales whose breeding range includes waters 
surrounding the Cape Verde Islands, as well as an undetermined breeding area in the eastern 
tropical Atlantic which may be more geographically diffuse than the West Indies breeding 
ground. The population of whales breeding in the Cape Verde Islands plus this unknown area 
likely represents the remnants of a historically larger population breeding around Cape Verde 
Islands and northwestern Africa (Reeves et al. 2002a). There is no known overlap in breeding 
range with North Atlantic humpback whales that breed in the West Indies, although overlap 
occurs among feeding aggregations from different breeding populations. 

North Pacific. Based on genetic and photo-identification studies, NMFS currently recognizes 
four stocks, likely corresponding to populations, of humpback whales in the North Pacific 
Ocean: two in the eastern North Pacific, one in the central North Pacific, and one in the western 
Pacific (Hill and DeMaster 1998). Gene flow between them may exist. Humpback whales 
summer in coastal and inland waters from Point Conception, California, north to the Gulf of 
Alaska and the Bering Sea, and west along the Aleutian Islands to the Kamchatka Peninsula and 
into the Sea of Okhotsk (Ashe et al. 2013; Johnson and Wolman 1984; Nemoto 1957; Tomilin 
1967). These whales migrate to Hawaii, southern Japan, the Mariana Islands, and Mexico during 
winter. More northerly penetrations in Arctic waters occur on occasion (Hashagen et al. 2009). 
The central North Pacific population winters in Hawaii waters while the eastern North Pacific 
population (also called the California-Oregon-Washington-Mexico stock) winters along Central 
America and Mexico (Rasmussen et al. 2012). However, Calambokidis et al. (1997) identified 
individuals from several populations wintering (and potentially breeding) in the areas of other 
populations, highlighting the potential fluidity of population structure. Humpback whales were 
recently found to migrate to the northwestern Hawaiian Islands; this may represent an 
undescribed breeding group or expansion of breeding from the main Hawaiian Islands (Lammers 
et al. 2011). Herman (1979) presented extensive evidence that humpback whales associated with 
the main Hawaiian Islands immigrated there only in the past 200 years. Winn and Reichley 
(1985b) identified genetic exchange between the humpback whales that winter off Hawaii and 
Mexico (with further mixing on feeding areas in Alaska) and suggested that humpback whales 
that winter in Hawaii may have emigrated from Mexican wintering areas. A “population” of 
humpback whales winters in the South China Sea east through the Philippines, Ryukyu Retto, 
Ogasawara Gunto, Mariana Islands, and Marshall Islands, with occurrence in the Mariana 
Islands, Guam, Rota, and Saipan from January-March (Darling and Mori 1993; Eldredge 1991; 
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Eldredge 2003; Rice 1998; Silberg et al. 2013). During summer, whales from this population 
migrate to the Kuril Islands, Bering Sea, Aleutian Islands, Kodiak, Southeast Alaska, and British 
Columbia to feed (Angliss and Outlaw 2007; Calambokidis 1997; Calambokidis et al. 2001). 

NMFS is proposing five humpback whale DPSs in the North Pacific: Hawaii (proposed non-
listed), Central America (proposed threatened), Mexico (proposed non-listed), and a western 
Pacific DPS (proposed threatened) (NOAA 2015). The Central American DPS is composed of 
whales that breed along the Pacific coast of Costa Rica, Panama, Guatemala, El Salvador, 
Honduras and Nicaragua. Whales from this breeding ground feed almost exclusively offshore of 
California and Oregon in the eastern Pacific, with only a few individuals identified at the 
northern Washington–southern British Columbia feeding grounds. This DPS was determined to 
be discrete based on resight data as well as findings of significant genetic differentiation between 
it and other populations in the North Pacific. The genetic composition of the DPS is also unique 
in that it shares mitochondrial DNA haplotypes with some Southern Hemisphere DPSs, 
suggesting it may serve as a conduit for gene flow between the North Pacific and Southern 
Hemisphere. The western Pacific DPS (constituted by an Okinawa/Philippines DPS and a second 
unknown western Pacific DPS) consists of the whales’ breeding and wintering around Okinawa 
and the Philippines as well as unknown areas. Animals transiting the Ogasawara area are 
believed to be a mixture of whales from this DPS and the second western Pacific DPS. The 
Okinawa/ Philippines DPS migrates to feeding grounds in the northern Pacific, primarily off the 
Russian coast. The population was determined to be discrete based on both significant genetic 
differentiations from other North Pacific populations and apparently limited exchange with other 
breeding populations in the North Pacific. 

Southern Hemisphere. Eight stocks, or populations, of humpback whales occur in waters off 
Antarctica (Figure 1). Individuals from these stocks winter and breed in separate areas and are 
known to return to the same areas. However, the degree (if any) of gene flow (i.e., adult 
individuals wintering in different breeding locations) is uncertain (Carvalho et al. 2011). Genetic 
relatedness is high between eastern and western Australian breeding populations, but 
significantly different (Schmitt et al. 2014). Individuals from here may migrate past New 
Zealand, although other stocks also migrate through the area (Franklin et al. 2014). Individuals 
from breeding grounds in Ecuador are somewhat heterogeneous from individuals in other 
breeding areas, but may maintain a genetic linkage (Felix et al. 2009). Based on recent satellite 
telemetry, a revision of stocks A and G may be warranted to reflect stock movements within and 
between feeding areas separated east of 50º W (Dalla Rosa et al. 2008). Individuals from 
breeding stock G along the Antarctic Peninsula forage off Columbia (Albertson et al. 2015). 
Besides being a breeding area, the west coast of South Africa and Namibia also appears to serve 
as a foraging ground because of upwelling of the Benguela Current (Barendse et al. 2010; Elwen 
et al. 2013). North of this, along Gabon, a separate breeding group also occurs (Elwen et al. 
2013). Females appear in this area in large numbers well before their male counterparts, 
frequently with calves (Barendse et al. 2010). Low-level movement between breeding locations 
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across years has been documented, bringing into question the genetic discreteness of at least 
Southern Hemisphere populations (particularly between Oceania groups and Australia)(Garrigue 
et al. 2011a; Garrigue et al. 2011b; Stevick et al. 2011). However, mixing between some 
populations has not been found (such as between B2 and C1 groups). Sao Tome appears to be 
primarily a resting, nursing, and calving area with very little breeding occurring (Carvalho et al. 
2011). At least two stop-over sites exist along Madagascar for the C stock (Fossette et al. 2014). 
Another breeding area may exist along the Kenya and Somali coasts, with females moving more 
directly along migratory corridors while males potentially searching for and intercepting females 
along the way (Cerchio et al. 2013). Movement between several locations, either islands or 
bathymetric features, in the southwestern Indian Ocean appears to be frequent (Dulau et al. 
2014). 

NMFS is proposing to designate eight DPSs in the Southern Ocean, but all as non-listed (NOAA 
2015). 

 
Figure 1. Southern Hemisphere humpback stocks (populations)(IWC 2005). 

Distribution. Humpback whales are a cosmopolitan species that occur in the Atlantic, Indian, 
Pacific, and Southern Oceans. Humpback whales migrate seasonally between warmer, tropical or 
sub-tropical waters in winter months (where they breed and give birth to calves, although feeding 
occasionally occurs) and cooler, temperate or sub-Arctic waters in summer months (where they 
feed; (Gendron and Urban 1993)). In both regions, humpback whales  occupy shallow, coastal 
waters. However, migrations are undertaken through deep, pelagic waters (Winn and Reichley 
1985b). Humpback whales wintering in the West Indies migrate relatively directly to the Gulf of 
Maine and areas around Iceland and Norway (Kennedy et al. 2013). Some individuals may not 
migrate, or species occurrence in foraging areas may extend beyond summer and winter months 
(Murray et al. 2014; Van Opzeeland et al. 2013). 

Reproduction and growth. Humpback whale calving and breeding occurs during winter at 
lower latitudes. Gestation takes about 11 months, followed by a nursing period of up to 1 year 
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(Baraff and Weinrich 1993). Sexual maturity is reached at between 5-7 years old in the western 
North Atlantic, but may take as long as 11 years in the North Pacific, and perhaps over 11 years 
(e.g., southeast Alaska, Gabriele et al. 2007). Females usually breed every 2-3 years, although 
consecutive calving is not unheard of (Clapham and Mayo 1987; 1990; Glockner-Ferrari and 
Ferrari 1985 as cited in NMFS 2005b; Weinrich et al. 1993). Males  return to breeding grounds 
more frequently than do females (Herman et al. 2011). Larger females  produce larger calves that 
may have a greater chance of survival (Pack et al. 2009). Females  preferentially select larger-
sized males (Pack et al. 2012). In some Atlantic areas, females  prefer shallow nearshore waters 
for calving and rearing, even when these areas are extensively trafficked by humans (Picanco et 
al. 2009). In Hawaii, humpback whales with calves  prefer shallow waters, where they move 
more slowly than their postpartum counterparts in deeper waters (who are frequently 
accompanied by adult males) (Craig et al. 2014). Offspring  return to the same breeding areas 
where they were born once they are independent (Baker et al. 2013). 

In calving areas, males sing long complex songs directed towards females, other males, or both. 
The breeding season can best be described as a floating lek or male dominance polygamy 
(Clapham 1996). Calving occurs in the shallow coastal waters of continental shelves and oceanic 
islands worldwide (Perry et al. 1999). Males “court” females in escort groups and compete for 
proximity and presumably access to reproduce females (particularly larger females)(Pack et al. 
2009). Although long-term relationships do not  exist between males and females, mature 
females do pair with other females; those individuals with the longest standing relationships also 
have the highest reproductive output, possibly because of improved feeding cooperation (Ramp 
et al. 2010). Site fidelity off Brazilian breeding grounds was extremely low, both within and 
between years (Baracho-Neto et al. 2012). 

Generation time for humpback whales is estimated at 21.5 years, with individuals surviving from 
80-100 years (COSEWIC 2011). 

Feeding. During the feeding season, humpback whales form small groups that occasionally 
aggregate on fairly constant concentrations of food. Humpbacks use a wide variety of behaviors 
to feed on various small, schooling prey including krill and fish (Hain et al. 1982; Hain et al. 
1995; Jurasz and Jurasz 1979; Weinrich et al. 1992a; Witteveen et al. 2011). The principal fish 
prey in the western North Atlantic are sand lance, herring, and capelin (Kenney et al. 1985). 
There is good evidence of some territoriality on feeding and calving areas (Clapham 1994; 
Clapham 1996; Tyack 1981). Humpback whales are believed to fast while migrating and on 
breeding grounds, but some individuals apparently feed while in low-latitude waters normally 
believed to be used exclusively for reproduction and calf-rearing (Danilewicz et al. 2009; Pinto 
De Sa Alves et al. 2009). Some individuals, such as juveniles, may not undertake migrations at 
all (Findlay and Best. 1995). Additional evidence, such as songs sung in northern latitudes 
during winter, provide additional support to plastic seasonal distribution (Smith and G.Pike 
2009). Relatively high rates of resighting in foraging sites in suggest whales return to the same 
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areas year after year (Ashe et al. 2013; Kragh Boye et al. 2010). This trend appears to be 
maternally linked, with offspring returning to the same areas their mother brought them once 
calves are independent (Baker et al. 2013; Barendse et al. 2013). Humpback whales in foraging 
areas may forage largely or exclusively at night when prey are closer to the surface (Friedlaender 
et al. 2013). Prey distribution does not necessarily result in shifts in humpback whale 
distributions (Nottestad et al. 2014), which suggests humpbacks may not exhibit plastic behavior 
in all cases to respond to climate-related changes. 

Status and trends. Humpback whales were originally listed as endangered in 1970 (35 FR 
18319), and this status remains under the ESA. Winn and Reichley (1985a) argued the global 
humpback whale population consisted of at least 150,000 whales in the early 1900s, mostly in 
the Southern Ocean. Consideration of the status of populations outside the action area is 
important under the present analysis to determine the risk to the affected population(s) bears on 
the status of the species as a whole. Table 2 provides estimates of historic and current abundance 
for ocean regions. 

Table 2. Summary of past and present humpback whale abundance. 

Region 

Population, 
stock, or study 

area 

Pre-
exploitation 

estimate 

95%  
Confidence 

interval 
(CI)  

Recent 
estimate 95% CI Source 

Global ~~ 1,000,000 ~~ ~~ ~~ (Roman and 
Palumbi 2003) 

   10,000  (NMFS 1987) 

North 
Atlantic 

Basinwide 240,000 156,000-
401,000* 

11,570 10,005-
13,135* 

(Stevick et al. 
2003a) 

~~ ~~ ~~ >5,500 ~~ (Sigurjonsson 1995) 

Basinwide-
females 

~~ ~~ 2,804 1,776-
4,463 

(Palsbøll et al. 
1997) 

Basinwide-males ~~ ~~ 4,894 3,374-
7,123 

(Palsbøll et al. 
1997) 

Western North 
Atlantic from 
Davis Strait, 
Iceland, to the 
West Indies 

>4,685* ~~ ~~ ~~ *circa 1865; 
(Mitchell and 
Reeves 1983)  

West Greenland ~~ ~~ 4,090 CV=0.50 (Heide-Jorgensen 
and Laidre 2013) 

Iceland ~~ ~~ 5,000 ~~ (Pike et al. 2009) 
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Region 

Population, 
stock, or study 

area 

Pre-
exploitation 

estimate 

95%  
Confidence 

interval 
(CI)  

Recent 
estimate 95% CI Source 

NMFS-Gulf of 
Maine stock 

~~ ~~ 845 CV=0.55 (NMFS 2008b) 

NMFS-Gulf of 
Maine stock 
including portions 
of the Scotian 
Shelf 

~~ ~~ 902 177-
1,627 

(Clapham et al. 
2003) 

Barents and 
Norwegian Seas 

~~ ~~ 889 331-
1,447* 

(Øien 2001) in 
(Waring et al. 2004) 

North 
Pacific 

Basinwide 15,000 ~~ 6,000-
8,000 

~~ (Calambokidis et al. 
1997) 

~~ ~~ ~~ 18,300 ~~ (Calambokidis et al. 
2008a) 

~~ ~~ ~~ 20,800 ~~ (Barlow et al. 2009) 

NMFS-western 
North Pacific 
stock 

~~ ~~ 394 329-
459* 

(Angliss and Allen 
2007) 

NMFS-central 
North Pacific 
stock 

~~ ~~ 4,005 3,259-
4,751* 

(Angliss and Allen 
2007) 

NMFS-eastern 
North Pacific 
stock 

~~ ~~ 1,391 1,331-
1,451* 

(Carretta et al. 
2008) 

NMFS-CA/OR/WA 
stock 

~~ ~~ 2,043 CV=0.10 (Carretta et al. 
2013) 

Southern 
Hemisphere 

Basinwide 100,000 ~~ 19,851 ~~ (Gambell 1976; 
IWC 1996) 

Gabon ~~ ~~ >1,200 ~~ (Strindberg et al. 
2011) 

Oceania   2,300-
3,500 

 (Constantine et al. 
2010) 

~~ ~~ ~~ 4,329 3,345-
5,313 

(Constantine et al. 
2012) circa 2005 
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Region 

Population, 
stock, or study 

area 

Pre-
exploitation 

estimate 

95%  
Confidence 

interval 
(CI)  

Recent 
estimate 95% CI Source 

Western Australia ~~ ~~ 26,1003 20,152-
33,272 

(Kent et al. 2012) 

Mozambique ~~ ~~ 6,808 CV=0.14 (Findlay et al. 2011) 

American Samoa ~~ ~~ 150 ~~ (Carretta et al. 
2012) 

Brazil   6,404  (Andriolo et al. 
2010) 

South of 60°S ~~ ~~ 42,000 34,000-
52,000 

(IWC 2007) 

*Note: CIs not provided by the authors were calculated from Coefficients of Variation where available, 
using the computation from Gotelli and Ellison (2004).  

North Atlantic. Historical estimates have ranged from 40,000-250,000 (Smith and G.Pike 
2009). Smith and Reeves (2010) estimated that roughly 31,000 individuals were removed from 
the North Atlantic because of whaling since the 1600s. Estimates of animals on Caribbean 
breeding grounds exceed 2,000 individuals (Balcomb III and Nichols 1982). Several researchers 
report an increasing trend in abundance for the North Atlantic population, based on increased 
sightings within the Gulf of Maine feeding aggregation (Barlow 1997; Katona and Beard 1990; 
Smith et al. 1999; Waring et al. 2001). The rate of increase varies from 3.2-9.4%, with rates of 
increase slowing over the past two decades (Barlow 1997; Katona and Beard 1990; Stevick et al. 
2003a). If the North Atlantic population has grown according to the estimated instantaneous rate 
of increase (r = 0.0311), this would lead to an estimated 18,400 individual whales in 2008 
(Stevick et al. 2003a). Punt (2010) estimated the rate of increase for humpback whales in the 
Gulf of Maine to be 6.3% annually (1.2 standard error [SE]). Pike et al. (2009) suggested the 
eastern and northeastern waters off Iceland are areas of significant humpback consumption, 
estimating nearly 5,000 whales in 2001 and proposing an annual growth rate of 12% for the area. 
The authors suggest that humpback whales in the area had probably recovered from whaling. 
Recent data suggest the upward growth may have slowed or ceased around Iceland according to 
analysis of survey data there (Pike et al. 2010). The Gulf of Maine stock is estimated to be 
increasing at a rate of 3.1% annually (Waring et al. 2013). Humpback whales summering off 
West Greenland are increasing at a rate of 9.4% annually (Heide-Jorgensen et al. 2012). 

                                                 
3 Accounting for perception bias, 33,300 Kent, C. S., C. Jenner, M. Jenner, P. Bouchet, and E. 
Rexstad. 2012. Southern Hemisphere Breeding Stock D humpback whale population estimates 
from North West Cape, Western Australia. Journal of Cetacean Research and Management 
12(1):29-38. 
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North Pacific. It is estimated that 15,000 humpback whales resided in the North Pacific in 1905 
(Rice 1978). However, from 1905 to 1965, nearly 28,000 humpback whales were harvested in 
whaling operations, reducing the number of all North Pacific humpback whale to roughly 1,000 
(Perry et al. 1999). This estimate does not account for under-reporting by Soviet whalers, who 
took approximately 2,700 more individuals than were reported (Ivashchenko et al. 2013). 
Estimates have risen over time from 1,407-2,100 in the 1980s to 6,010 in 1997 (Baker 1985; 
Baker and Herman 1987; Calambokidis et al. 1997; Darling and Morowitz 1986). Because 
estimates vary by methodology, they are not directly comparable and it is not clear which of 
these estimates is more accurate or if the change from 1,407 to 6,010 is the result of a real 
increase or an artifact of model assumptions. Tentative estimates of the eastern North Pacific 
stock suggest an increase of 6-7% annually, but fluctuations have included negative growth in 
the recent past (Angliss and Outlaw 2005). Barlow et al. (2009) estimated an annual growth rate 
of 4.9%. Punt (2010) estimated the rate of increase for humpback whales in the eastern North 
Pacific to be 6.4% annually (0.9 SE) between 1992 and 2003 and 10.0% for Hawaii (3.32 SE). 
Modeled abundance increase in southeastern Alaska was 5.1% annually from 1986 to 2008 
(Hendrix et al. 2012); a more specific estimate from Glacier Bay, the site of a long-term 
monitoring study over roughly the same time frame found a rate of increase of 4.4% (Saracco et 
al. 2013). For Asia, an annual rate of growth of 6.7% has been estimated (Calambokidis et al. 
2008b). 

Southern Hemisphere. The International Whaling Commission compiled population data on 
humpback whales in the Southern Hemisphere. However, humpback whales in this region 
experienced severe whaling pressure. Based on whaling logs, particularly by Soviet vessels, at 
least 75,542 humpback whales were harvested from Antarctic waters from 1946 through 1973, 
largely from management areas IV, V, and VI (Clapham et al. 2009). One-third of these catches 
occurred from 1959-1961 in Area V. These numbers support Southern Hemisphere humpbacks 
being well below their carrying capacities (Clapham et al. 2009). A 2009 spike in calf mortality 
along western Australia brings into question whether carrying capacity has been reached by this 
population or other factors have increased mortality (Coughran and Gales 2010). Some vital rates 
of the humpback whale population summering off eastern Australia (E1) were recently 
estimated, including adult annual survival of 0.925 and subadult survival of 0.70 (Hoffman et al. 
2010). Growth rates for certain age classes included 10.7% for adult females and 12.4% for 
juveniles (Hoffman et al. 2010). Punt (2010) estimated the rate of increase for humpback whales 
off eastern and western Australia to be 10.9% and 10.1% annually, respectively (0.23 and 4.69 
SE, respectively). Kent et al. (2012) provided an even higher estimate of 13% from 2000-2008. 
Humpback whales off Mozambique are more numerous now than when surveyed in the 1990s 
(Findlay et al. 2011). Population growth along Brazil showed a growth rate of 7.4% annually 
between 1995-1998 (Ward et al. 2011). 

Natural threats. Natural sources and rates of mortality of humpback whales are not well known. 
Based on prevalence of tooth marks, attacks by killer whales appear to be highest among 
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humpback whales migrating between Mexico and California, although populations throughout 
the Pacific Ocean appear to be targeted to some degree (Steiger et al. 2008). Juveniles appear to 
be the primary age group targeted. Humpback whales engage in grouping behavior, flailing tails, 
and rolling extensively to fight off attacks when attacked by killer whales, but engage in a flight 
response if predators are perceived, but not in the immediate vicinity (Cure et al. 2015). Calves 
remain protected near mothers or within a group and lone calves have been known to be 
protected by presumably unrelated adults when confronted with attack (Ford and Reeves 2008). 
The Canadian humpback whale stock has twice the scarring rate of other North Atlantic stocks, 
suggesting that this group may experience higher levels of predation than humpback whales 
elsewhere in the North Atlantic (McCordic et al. 2014). 

Parasites and biotoxins from red-tide blooms are other potential causes of mortality (Perry et al. 
1999). The occurrence of the nematode Crassicauda boopis appears to increase the potential for 
kidney failure in humpback whales and may be preventing some populations from recovering 
(Lambertsen 1992). Studies of 14 humpback whales that stranded along Cape Cod between 
November 1987 and January 1988 indicate they apparently died from a toxin produced by 
dinoflagellates during this period. One-quarter of humpback whales of the Arabian Sea 
population show signs of tattoo skin disease, which may reduce the fitness of afflicted 
individuals (Baldwin et al. 2010).  

Anthropogenic threats. Three human activities are known to threaten humpback whales: 
whaling, entanglement, and shipping. Historically, whaling represented the greatest threat to 
every population of whales, and was ultimately responsible for listing several species as 
endangered. Because of the large scale of the action areas, current threats are discussed more 
fully in the Environmental Baseline. 

5 ENVIRONMENTAL BASELINE 
The “environmental baseline” includes the past and present impacts of all Federal, state, or 
private actions and other human activities in the action areas, the anticipated impacts of all 
proposed Federal projects in the action areas that have already undergone formal or early section 
7 consultation, and the impact of state or private actions which are contemporaneous with the 
consultation in process (50 CFR 402.02). 

5.1 Habitat degradation 

Several factors may directly or indirectly affect listed species in the action areas by degrading 
habitat; perhaps most significant among them is anthropogenic noise in the ocean. Natural 
sources of ambient noise include wind, waves, surf noise, precipitation, thunder, and biological 
noise from marine mammals, fishes, and crustaceans. Anthropogenic sources of ambient noise 
include: transportation and shipping traffic, dredging, construction activities, geophysical 
surveys, and sonars. In general, it has been asserted that ocean background noise levels have 
doubled every decade for several decades in some areas, primarily because of shipping traffic 
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(IWC 2004). The acoustic noise that commercial traffic contributes to the marine environment is 
a concern for listed species because it may impair communication between individuals (Hatch et 
al. 2008; Naguib 2013; Papale et al. 2015).  

Vessel noise could affect marine animals in the action area. Shipping and seismic noise 
dominates ambient noise at frequencies from 20 to 300 Hertz (Andrew et al. 2002; Hildebrand 
2009; Richardson et al. 1995b). Background noise has increased significantly in the past 50 years 
because of increasing vessel traffic, and particularly shipping, with increases of as much as 12 
dB in low frequency ranges and 20 dB versus preindustrial periods (Hildebrand 2009; Jasny et al. 
2005; McDonald et al. 2006; NRC 1994; NRC 2003; NRC 2005; Richardson et al. 1995b). Over 
the past 50 years, the number of commercial vessels has tripled, carrying an estimated six times 
as much cargo (requiring larger, more powerful, and consequently louder vessels) (Hildebrand 
2009). Seismic signals also contribute significantly to the low frequency ambient sound field 
(Hildebrand 2009). Baleen whales may be more sensitive to sound at those low frequencies than 
are toothed whales. Dunlop et al. (2010b) found that humpback whales shifted from using vocal 
communication (which carries relatively large amounts of information) to surface-active 
communication (splashes; carry relatively little information) when low-frequency background 
noise increased because of increased sea state. Sonars and small vessels also contribute 
significantly to mid-frequency ranges (Hildebrand 2009). Cetaceans in the Mediterranean Sea are 
found in areas with lower vessel abundance, suggesting that vessel noise may influence habitat 
use (Campana et al. 2015). 

The northeastern US hosts some of the busiest commercial shipping lanes in the world, including 
those leading into Boston, Providence, Newark, and New York (MARAD 2011). In addition to 
vessel traffic, marine construction activities occur in the Cape Cod area (liquefied natural gas 
terminal construction, pile driving, dredging, cable laying, drilling, and others) that contributes to 
local and regional background sound levels. 

Commercial shipping in the Gulf of Alaska is dominated by cargo transports, container freight, 
crude oil tankers, and barges. Military vessels, ferries, and other commercial and recreational 
fishing vessels also converge in the Gulf of Alaska. Two primary shipping lanes radiate from the 
Gulf of Alaska to Honolulu and San Francisco. Important Alaskan ports include Kodiak, 
Alaska’s largest commercial fishing port, and Valdez, the southern terminus of the 1,300 km 
trans-Alaska pipeline. 

Several major ports occur further south along the US west coast, including Portland, San 
Francisco, Los Angeles, Long Beach, and San Diego (DoT 2005). These ports service a wide 
variety of vessels, including cargo, tug and barges, small ships, liquid bulk, dry bulk, break bulk, 
intermodal (container, roll-on/roll-off, lighter aboard ship), ferry, tourist passenger vessels 
(sailboats, ferry, party-boat fishing, whale watching) and cruise ships. Long Beach is among the 
largest ports in the US, accounting for 6% of the total cargo entering the US, and increasing 
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rapidly (growing 122% between 2003 and 2006) (DoT 2007a; DoT 2007b). Los Angeles is also 
the fifth-largest cruise ship terminal in the US. A shipping lane runs along the US west coast 
south to southern California and additional shipping lanes extend westward from San Francisco 
and near Santa Barbara Island.  

In-water construction activities (e.g., pile driving associated with shoreline projects) in both 
inland and coastal waters in the action areas can produce sound levels sufficient to disturb ESA-
listed and proposed species under some conditions. Pressure levels from 190-220 dB re 1 μPa 
were reported for piles of different sizes in a number of studies (NMFS 2006b). The majority of 
the sound energy associated with pile driving is in the low frequency range (<1,000 Hertz) 
(Illingworth and Rodkin Inc. 2001; Illingworth and Rodkin Inc. 2004; Reyff 2003). Dredging 
operations also have the potential to emit sounds at levels that could disturb individuals of many 
taxa. Depending on the type of dredge, peak sound pressure levels from 100 to 140 dB re 1 μPa 
were reported in one study (Clarke et al. 2003). As with pile driving, most of the sound energy 
associated with dredging is in the low-frequency range, below 1 kiloHertz (Clarke et al. 2003).  

Several measures have been adopted to reduce the sound pressure levels associated with in-water 
construction activities or prevent exposure of marine mammals to sound. For example, a six-inch 
block of wood placed between the pile and the impact hammer used in combination with a 
bubble curtain can reduce sound pressure levels by about 20 dB (NMFS 2008d). Alternatively, 
pile driving with vibratory hammers produces peak pressures that are about 17 dB lower than 
those generated by impact hammers (Nedwell and Edwards 2002). Other measures used in the 
action area to reduce the risk of disturbance from these activities include avoidance of in-water 
construction activities during times of year when marine mammals may be present; monitoring 
for marine mammals during construction activities; and maintenance of a buffer zone around the 
project area, within which sound-producing activities would be halted when marine mammals 
enter the zone (NMFS 2008d).  

The input of plastics into the marine environment also constitutes a significant degradation to the 
marine environment. In 2010, an estimated 4.8-12.7 million metric tons of plastic entered the 
ocean globally (Baulch and Simmonds 2015). South Korea alone is believed to loss roughly 
38,5000 tons of gillnetting per year, which can lead to entanglements of marine mammals 
(Baulch and Simmonds 2015). 

Microplastics were recently discovered in the gut contents of humpback whales; the impact of 
this and the chemicals these plastics contain is unknown (Besseling et al. 2015), but have the 
potential to impact the immune system and stress response. Pollutants 

Organochlorines, including polychlorinated biphenyl and dichlorodiphenyltrichloroethane, have 
been identified from humpback whale blubber (Gauthier et al. 1997). Higher polychlorinated 
biphenyl levels have been observed in whales in western Atlantic waters versus Pacific waters 
along the US and levels  increase with individual age (Elfes et al. 2010); eastern Atlantic 
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individuals fall between these two in contaminant burden (Ryan et al. 2014). Although 
humpback whales in the Gulf of Maine and off Southern California  have the highest 
polychlorinated biphenyl concentrations, overall levels are on par with other baleen whales, 
which are lower than odontocete cetaceans (Elfes et al. 2010). These contaminants are 
transferred to young through the placenta, leaving newborns with contaminant loads equal to that 
of mothers before bioaccumulating additional contaminants during life and passing the additional 
burden to the next generation (Metcalfe et al. 2004). Huang et al. (2015) theorized that at 
intermediate levels of contaminants, this biomagnification could act to reduce the survival and/or 
reproduction of predators, which could increase the abundance of their prey. 

5.2 Bycatch and entanglement 

Humpback whales are also killed or injured during interactions with commercial fishing gear 
(Cole and Henry 2013). Humpback whales have been entangled by fishing gear off 
Newfoundland and Labrador, Canada. A total of 595 humpback whales were reported captured 
in coastal fisheries in those two provinces between 1969 and 1990, of which 94 are known to 
have died (Lien 1994; Perkins and Beamish 1979). From 1979-2008, 1,209 whales were 
recorded entangled, 80% of which were humpback whales (Benjamins et al. 2012). Along the 
Atlantic coast of the US and the Maritime Provinces of Canada, there were 160 reports of 
humpback whales being entangled in fishing gear between 1999 and 2005 (Cole et al. 2005; 
Nelson et al. 2007). Of these, 95 entangled humpback whales were confirmed, with 11 whales  
known to sustain injuries and at least nine dying of their wounds. The first estimate of 
population-level effects of entanglement were recently produced, with over 12% of the Gulf of 
Maine population of humpbacks acquiring new scars from entanglement interactions annually 
(Mattila and Rowles 2010). 

Along the Pacific coast of Canada, 40 humpback whales have been reported as entangled since 
1980, four of which are known to have died (COSEWIC 2011; Ford et al. 2009). Between 30 and 
40% of humpback whales in the Arabian Sea show scarring from entanglements, with fishing 
effort on the rise (Baldwin et al. 2010). Alava et al. (2012) reported that 0.53% of humpback 
whale populations breeding along Ecuador are bycaught annually in commercial fishing gear 
(mortality of 15-33 individuals per year). From 2004-2008, 18 humpback whales were observed 
to be entangled along the US west coast, of which 14 were considered seriously injured and two 
are known to have died (Carretta et al. 2013). From 2006-2010, 29 entangled whales were 
identified with serious injury or mortality resulting from the entanglement (Waring et al. 2013). 
Modeling suggests that 6-50 humpback whales were bycaught in the California drift gillnet 
fishery from 1990-2009, with up to 21 of these individuals dying (Martin et al. 2015). From 
1996-2000, 22 humpback whales of the Central North Pacific population were found entangled 
in fishing gear (Angliss and Lodge. 2004). In 1996, a vessel from the Pacific Missile Range 
Facility in Hawaii rescued an entangled humpback, removing two crabpot floats from the whale. 
In 1991, a humpback whale was observed entangled in longline gear and released alive (Hill et 
al. 1997). In 1995, a humpback whale in Maui waters was found trailing numerous lines (not 
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fishery-related) and entangled in mooring lines. The whale was successfully released, but 
subsequently stranded and was attacked and killed by tiger sharks in the surf zone. From 2001 
through 2006, there were 23 reports of entangled humpback whales in Hawaiian waters; 16 of 
these reports were from 2005 and 2006. Ten humpback whales were found entangled in gill nets 
or long lines between 1995 and 2002 off Peru (Garcia-Godos et al. 2013). 

Many of the entangled humpback whales observed in Hawaiian waters brought the gear with 
them from higher latitude feeding grounds; for example, the whale the US Navy rescued in 1996 
had been entangled in gear that was traced to a recreational fisherman in southeast Alaska. Thus 
far, six of the entangled humpback whales observed in the Hawaiian Islands have been 
confirmed to have been entangled in gear from Alaska. Nevertheless, humpback whales are also 
entangled in fishing gear in the Hawaiian Islands. Since 2001, there have been five observed 
interactions between humpback whales and gear associated with the Hawaii-based longline 
fisheries (NMFS 2008c). In each instance, however, all of the whales were disentangled and 
released or they were able to break free from the gear without reports of impairment of the 
animal’s ability to swim or feed. 

5.3 Ship strike 

More humpback whales are killed in collisions with ships than any other whale species except 
fin whales (Jensen and Silber 2003). Of 123 humpback whales that stranded along the Atlantic 
coast of the US between 1975 and 1996, 10 (8.1%) showed evidence of collisions with ships 
(Laist et al. 2001). From 1975-2011, 68 collisions (not necessarily mortalities) were actually 
witnessed in the main Hawaiian Islands, 63% involving calves and subadults, with the rate of 
collisions increasing over time even accounting for higher numbers of whales present (Lammers 
et al. 2013). Between 1999 and 2005, there were 18 reports of humpback whales being struck by 
vessels along the Atlantic coast of the US and the Maritime Provinces of Canada (Cole et al. 
2005; Nelson et al. 2007). Of these reports, 13 were confirmed as ship strikes and in seven cases, 
ship strike was determined to be the cause of death. Along Pacific Canada, 21 reports of ship 
strikes involving humpback whales were reported from 2001-2008 (COSEWIC 2011; Ford et al. 
2009). From 2006-2010, 10 instances of mortality stemming from vessel collision were 
documented (Waring et al. 2013). In the Bay of Fundy, recommendations for slower vessel 
speeds to avoid right whale ship strike appear to be largely ignored (Vanderlaan et al. 2008). 
However, new rules for seasonal (June through December) slowing of vessel traffic to 10 knots 
and changing shipping lanes by less than one nautical mile to avoid the greatest concentrations of 
right whales has changed the probability of ship strike to large whales (particularly right whales), 
but data are still being gathered to evaluate the extent of this change to humpback whales (Silber 
and Bettridge 2012).  

On the Pacific coast, a humpback whale is killed about every other year by ship strikes (Barlow 
et al. 1997). Two humpbacks were recorded as ship struck and died along the West Coast from 
2004-2008; a third was known to have been struck, but its outcome is unknown (Carretta et al. 
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2013). Although data for actual strikes is lacking off Pacific Panama, study of shipping data and 
satellite tag data on humpback whales showed that 8 of 15 whales tagged came within 200 
meters of 81 different ships on 98 occasions in a period of 11 days (Guzman et al. 2013). 

5.4 Naval activities 

Naval activity, notably sonar use during training exercises, has gained notoriety for its 
coincidence with marine mammal strandings. However, other activities (also during training 
exercises in designated naval operating areas and training ranges) also have the potential to harm 
humpback whales. The action areas overlap several naval training ranges or facilities listed 
below. Listed whales travel widely through ocean basins and could be exposed to naval activities 
in several ranges. 
• The Southern California Range Complex, where numerous listed whales forage 

• The Northwest Training Range Complex, where humpback whales forage 

• The Gulf of Alaska Operating Area, where several listed whale species are known to forage 

• The Hawaiian Islands Operating Area, where humpback whales regularly breed and give 
birth 

• The Northeast Training Range Complex, where humpback whales forage 

• The Virginia Capes, Cherry Point, and Jacksonville-Charleston Operating Areas and the Key 
West, Gulf of Mexico, Bermuda, and Puerto Rican Complexes have the potential to overlap 
the range of humpback whales, but presence within these areas is rare or undocumented.  

Naval activities to which individuals could be exposed include, among others, vessel and aircraft 
transects, munition detonations, and sonar use. Responses by marine mammals could include no 
response, short-term and long-term behavioral responses and changes (altered vocal activity, 
changes in swimming speed and direction, respiration rates, dive times, and social interactions), 
temporary or permanent hearing loss, debris ingestion, ship-strike injury, and death.  

Although naval  vessels represent a small fraction of the total sound energy put into the ocean 
and are designed to operate quietly, these ships are large and equipped with high-output sonar 
equipment such as ANISQS-53C tactical sonar, which produces signals at source levels of 235 
dB re 1 µParms at 1 m. The signals emitted from these devices have the potential to affect 
humpback whales in the action areas; however, empirical data are limited. No stranding or 
mortality events have been documented in or around other operating areas or training ranges 
within the action areas that appear linked to naval sonar. However, an event that occurred in the 
Strait of Juan de Fuca and Haro Strait on May 5, 2003 demonstrates the potential for naval 
activities to impact whales that can also hear these frequencies. The US Navy guided missile 
destroyer Shoup passed through the strait operating its mid-frequency sonar during a training 
exercise. Members of J pod (a family group of southern resident killer whales) were in the strait 
at the same time and exhibited unusual behaviors coincident with exposure to the sonar, as 
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reported by local researchers (Commander U.S. Pacific Fleet 2003; NMFS 2005; NMFS 2006b). 
Based on the duration of exposure, the received levels experienced by the whales, and 
information on sound levels known to cause behavioral reactions in other cetaceans, NMFS 
concluded J pod was exposed to levels likely to cause behavioral disturbance, but not temporary 
or permanent hearing loss (NMFS 2005; NMFS 2006b). Underwater detonations are sometimes 
performed at this site and there was an occasion when J pod was fewer than 1.5 km away when a 
blast occurred, which caused the whales to suddenly change their direction of travel (NMFS 
2006b). In another incident, five beaked whales were discovered stranded or floating dead 
coincident in time with the Alaska Shield/Northern Edge 2004 exercise between June 17 and 19, 
2004 in the Gulf of Alaska operating area. However, no mid-frequency sonar or explosives were 
used during this exercise and evidence linking the exercise to mortalities is circumstantial, at 
best. 

5.5 Vessel approaches – commercial and private marine mammal watching 

Although considered by many to be a non-consumptive use of marine mammals with economic, 
recreational, educational and scientific benefits, marine mammal watching is not without 
potential negative impacts. Whale watching has the potential to harass whales by altering 
feeding, breeding, and social behavior, or even injure them, if the vessel gets too close and 
strikes the whale. Another concern is that preferred habitats may be abandoned if disturbance 
levels are too high. In the Notice of Availability of Revised Whale Watch Guidelines for Vessel 
Operations in the Northeastern United States (64 FR 29270; June 1, 1999), NMFS noted that 
whale watch vessel operators seek out areas where whales concentrate, which has led to numbers 
of vessels congregating around groups of whales, increasing the potential for harassment, injury, 
or even the death of these animals. Within the St. Lawrence Estuary, blue whales are believed to 
be affected by large amounts of recreational and commercial vessel traffic. Blue whales in the St. 
Lawrence appeared more likely to react to these vessels when boats made fast, erratic approaches 
or sudden changes in direction or speed (Edds and Macfarlane 1987). Humpback whales may 
respond in similar ways to the same stressors. 

Several studies have specifically examined the effects of whale watching on marine mammals, 
and investigators have observed a variety of short-term responses from animals, ranging from no 
apparent response to changes in vocalizations, duration of time spent at the surface, swimming 
speed, swimming angle or direction, respiration rate, dive time, feeding behavior, and social 
behavior (NMFS 2006b). Responses appear to be dependent on factors such as vessel proximity, 
speed, and direction, as well as the number of vessels in the vicinity (Au and Green. 2000; 
Corkeron 1995; Erbe 2002; Magalhaes et al. 2002; Richter et al. 2003; Scheidat et al. 2004; 
Watkins 1986; Williams et al. 2002a; Williams et al. 2002b).  
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5.6 Seismic surveys and oil and gas development 

Numerous surveys have been conducted in the northwest Atlantic using seismic airguns, and 
have the potential to affect ESA-listed or proposed species. As a general mitigation measure, 
airguns are shut down if marine mammals approach too closely, presumably avoiding the 
potential for temporary or permanent threshold shifts in their hearing. However, some species 
(such as bowhead whales) appear to be  sensitive to seismic, vessel, and industrial sounds and 
may move rapidly up to several kilometers away from the sound source (Gallagher and Hall. 
1993; George 2010; Greene 1982; Richardson et al. 1995a; Richardson et al. 1985a; Richardson 
et al. 1990; Richardson et al. 2004; Richardson and Williams 2003; Richardson and Williams 
2004; Schick and Urban 2000; Streever et al. 2008; Wartzok et al. 1989). Other baleen whales 
frequently do the same (Malme et al. 1984a; Malme et al. 1985; McCauley et al. 2000; 
McCauley et al. 1998a; McCauley et al. 1998b; Miller et al. 1999; Stone and Tasker 2006). 
Noise pollution associated with seismic surveys and oil and gas activities along Brazil overlaps 
the same sound frequencies used by humpback whales here during their breeding and calving 
period, potentially interfering with the ability of individuals here to communicate or collect 
information about their environment (Rossi-Santos 2015). 

From 1968-2003, approximately 212,967 line miles of seismic survey data acquisition were 
collected in the Atlantic region for commercial purposes (MMS 2005). In addition, several 
academic-based research seismic surveys have been undertaken in the region. During October 
and November 2003, the National Science Foundation undertook a seismic survey over the mid-
Atlantic Ridge. No marine mammals or sea turtles were observed during the cruise, which had 
airgun operations for six days (Holst 2004). The airgun array discharge size was 8,760 in3. 

Another seismic survey was conducted along North Carolina during September and October 
2014. This seismic survey used a 3,300 in3, 20-airgun array. A monitoring report is not yet 
available for this cruise and we are unaware of what protected species, if any, were actually 
impacted by this project, and to what extent. 

A seismic survey was undertaken during July and August of 2014 along New Jersey with a 40-
airgun source array of 1,400 in3. However, because of several issues, the cruise completed only a 
small amount of its effort. Airguns were operational at some level for a total of 61 hours (Ingram 
et al. 2014). A humpback whale was sighted while airguns were off. As the seismic survey could 
not be completed in 2014, it resumed June through August 2015, but with a reduced source array 
of 700 in3. No information is available regarding the impacts of the 2015 seismic survey. 

During August and September 2014, and again at the time of this writing, the US Geological 
Survey funded a seismic survey along the US eastern seaboard from roughly Massachusetts to 
South Carolina. The 6,600 in3, 40-airgun array was operational for 357 hours in 2014. No 
information is available on the impacts from the 2015 component, but humpback whales were 
not seen in during the 2014 cruise. 
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On May 13, 2013, NMFS completed programmatic consultation on Bureau of Ocean Energy 
Management-authorized geological and geophysical activities in the Mid- and South Atlantic 
Planning Areas from 2013 to 2020 (NMFS 2013). The biological opinion estimated, using 
NMFS’s 180 dB criterion for “level A harassment,” 38 instances in which a humpback whale 
would be “taken” in the form of harassment by all active sound sources associated with the 
seismic and high resolution geophysical survey activities from 2013-2020. All of these takes 
were expected to stem from airgun activities. Under another set of criteria using information that 
better reflects current understanding of humpback whale hearing (Southall et al. 2007), 17 
instances of humpback whale “takes” from airgun surveys were expected between 2013 and 
2020. In addition, the biological opinion estimated that, using NMFS’ 160 dB criterion for “level 
B harassment,” 3,829 humpback whales (all but three from seismic airguns) would be “taken” by 
all active sound sources associated with the seismic and high resolution geophysical surveys 
from 2013-2020. Humpback whales would be exposed primarily during the winter months. 

5.7 Invasive species 

Invasive species have been referred to as one of the top four threats to the world’s oceans, 
consistently ranked just behind habitat degradation and alteration (Pughiuc 2010; Raaymakers 
2003; Raaymakers and Hilliard 2002; Terdalkar et al. 2005; Wambiji et al. 2007).  Invasive 
species, facilitated by human commerce, have the ability to directly alter ecosystems on which 
listed species rely.  

Invasive species are a major threat to many ESA-listed species. For species listed by the 
USFWS, 26% were listed partially because of the impacts of invasive species, and 7% were 
listed because invasive species were the major cause of listing (Anttila et al. 1998). Pimentel et 
al. (2004) found that roughly 40% of ESA-listed species are at risk of becoming endangered or 
extinct completely, or in part, because of invasive species, while Wilcove et al. (1998) found this 
to be 49%, with 27% of invertebrates, 37% of reptiles, 53% of fishes, and 57% of plants 
imperiled partly or wholly because of non-native invasions. In some regions of the world, up to 
80% of species facing extinction are threatened by invasive species (Pimentel et al. 2004; Yan et 
al. 2002). Clavero and Garcia-Bertro (2005) found that invasive species were a contributing 
cause to over half of the extinct species in the International Union for the Conservation of Nature 
database; invasive species were the only cited cause in 20% of those cases. Richter et al. (1997) 
identified invasive species as one of three top threats to threatened and endangered freshwater 
species in the US as a whole.  

5.8 Scientific research and permits 

Scientific research permits issued by the NMFS authorize studies of listed species in the Atlantic, 
Pacific, and Southern Oceans, all of which are a part of the action areas. Authorized research on 
ESA-listed whales includes close vessel and aerial approaches, biopsy sampling, breath 
sampling, tagging, ultrasound, and exposure to acoustic activities. Research activities involve 
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non-lethal “takes” of these whales by harassment, with none authorized to result in mortality. 
Tables 3 through 5 show the  number of takes authorized for humpback whales in the action area 
in scientific research permits.  

Table 3. Humpback whale takes in the Southern Ocean. 
Year Approach Biopsy Suction cup tagging Implantable tagging Acoustic playback 

2009 2,074 140 163 25 0 

2010 1,979 150 173 15 0 

2011 1,979 50 163 5 0 

2012 869 50 163 5 0 

2013 1,724 200 160 5 0 

2014 2,150 450 160 5 50 

2015 2,150 450 160 5 50 

2016 1,000 300 10 5 50 
Total 13,925 1,790 1,152 70 150 

Permit numbers: 774-1714, 782-1719, 808-1735, 1058-1733, 14809, 14097, and 14856. 

Table 4. Humpback whale takes in the Pacific Ocean. 

Year Approach Biopsy 
Suction 

cup 
tagging 

Implantable 
tagging 

Belt 
tagging 

Acoustic 
playback 

Exhalation 
sampling Ultrasound 

2009 44,399 4,640 357 67 0 280 10 5 

2010 67,171 6,060 1,447 237 0 970 10 5 

2011 84,191 6,700 6,755 1,590 0 690 1,070 5 

2012 64,353 7,125 6,845 1,710 125 1,120 1,260 5 

2013 59,483 7,375 7,210 1,735 125 1,820 1,250 0 

2014 61,619 6,665 7,197 1,735 125 230 1,250 0 

2015 60,809 7,365 7,197 1,735 125 180 1,250 0 

2016 34,388 5,835 5,757 1,595 125 100 1,250 0 
Total 476,413 51,765 42,765 10,404 625 5,390 7,350 20 

Permit numbers: 393-1772, 473-1700, 532-1822, 540-1811, 545-1761, 587-1767, 0662-1661, 0642-
1536, 716-1705, 727-1915, 731-1774, 774-1714, 781-1824, 782-1719, 945-1776, 965-1821, 1000-1617, 
1120-1898, 1029-1675, 1049-1718, 1071-1770, 1120-1898, 1127-1921, 10018, 13846, 14097, 14118, 
14122, 14245, 14296, 14353, 14451, 14534, 14585, 14599, 14682, 14610, 14809, 15240, 15271, 15330, 
15569, 15750, 15844, 16111, 16160, 16163, 16239, 16388, 16479, 16919, 17312, and 17845. 
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Table 5. Humpback whale takes in the North Atlantic Ocean and Mediterranean 
Sea. 

Year Approach Biopsy 

Suction 
cup 

tagging 
Implantable 

tagging Belt tag 
Exhalation 
sampling 

Acoustic 
playback 

2009 5,260 415 173 45 0 0 624 

2010 5,568 415 173 45 0 0 600 

2011 8,653 1,040 723 95 0 0 600 

2012 10,354 1,370 723 95 125 2,410 600 

2013 17,555 1,980 1,465 395 125 2,410 600 

2014 18,215 2,230 1,490 435 125 2,410 650 

2015 17,570 2,230 1,490 435 125 2,410 50 

2016 14,085 1,930 1,190 135 125 2,410 50 
Total 97,260 11,610 7,427 1,680 625 12,050 3,774 

Permit numbers: 605-1904, 633-1778, 775-1875, 948-1692, 981-1707, 1036-1744, 1058-1733, 1121-
1900, 1128-1922, 10014, 13927, 14118, 14245, 14451, 14586, 14856, 15575, 15682, 16109, 16325, 
16388, 16473, and 17355. 

5.9 The impact of the baseline on ESA-listed and proposed species 

Listed resources are exposed to a wide variety of past and present state, Federal, or private 
actions and other human activities that have already occurred, and continue to occur, in the 
action areas. Federal projects in the action areas that have already undergone formal or early 
section 7 consultation, and state or private actions that are contemporaneous with this 
consultation also impact listed resources. However, the impact of those activities on the status, 
trend, or the demographic processes of proposed, threatened, and endangered species remains 
largely unknown. To the best of our ability, we summarize the effects we can determine based on 
the information available to us. 

Acoustic effects from anthropogenic sources, whether they are vessel noise, seismic sound, 
military activities, oil and gas activities, or wind turbine construction and operation, could have 
biologically significant impacts to humpback whales in the action areas. These activities increase 
background noise levels in the marine environment, making communication more difficult over a 
variety of ranges. We expect that this increased collective noise also reduces the sensory 
information that individuals can gather from their environment; an important consideration for 
species that do so primarily through sound. At closer ranges to some anthropogenic sound 
sources, behavioral responses also occur, including deflecting off migratory paths and changing 
vocalization, diving, and swimming patterns. At even higher received sound levels, physiological 
changes are likely to occur, including temporary or permanent loss of hearing, and potential 
trauma of other tissues. Although this is a small fraction of the total exposure individuals receive, 
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it is expected to occur in rare instances, such as when individuals are near detonations or very 
close to sonar sources. 

Authorized research on ESA-listed whales can have significant consequences for these species, 
particularly when viewed in the collective body of work that has been authorized. Researchers 
have noted changes in respiration, diving, swimming speed, social exchanges, and other behavior 
correlated with the number, speed, direction, and proximity of vessels. Responses were different 
depending on the age, life stage, social status of the whales being observed (i.e., males, cows 
with calves) and context (feeding, migrating, etc.). Beale and Monaghan (2004a) concluded the 
significance of disturbance was a function of the distance of humans to the animals, the number 
of humans making the close approach, and the frequency of the approaches. These results 
suggest the cumulative effects of the various human activities in the action areas would be 
greater than the effects of the individual activity. This is discussed more fully in the Effects of the 
Action on ESA-Listed and Proposed Species and Critical Habitat section. 

6 EFFECTS OF THE ACTION ON ESA-LISTED AND PROPOSED SPECIES AND 

CRITICAL HABITAT 
Section 7 regulations define “effects of the action” as the direct and indirect effects of an action 
on the species or critical habitat, together with the effects of other activities that are interrelated 
or interdependent with that action, that will be added to the Environmental Baseline (50 CFR 
402.02). Indirect effects are those that are caused by the proposed action and are later in time, but 
are reasonably certain to occur. This effects analyses section is organized following the stressor, 
exposure, response, risk assessment framework. 

As was stated in Overview of NMFS’ Assessment Framework, this opinion includes both a 
jeopardy analysis and an adverse modification analysis.  

The jeopardy analysis relies on the regulatory definition of “to jeopardize the continued 
existence of a listed species,” which is “to engage in an action that would be expected, directly or 
indirectly, to reduce appreciably the likelihood of both the survival and recovery of a listed 
species in the wild by reducing the reproduction, numbers, or distribution of that species” (50 
CFR 402.02). Therefore, the jeopardy analysis considers both survival and recovery of the 
species. 

6.1 Stressors associated with the proposed action 

The assessment for this consultation identified several possible stressors associated with the 
proposed research activities, including;  
• Close approach and pursuit via vessel 
• Application of telemetry tags 
• Continued attachment of tags 
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• Exposure to acoustic transmissions from tags and echosounders 

Based on a review of available information, this opinion determined which of these possible 
stressors would be likely to occur, and which would be discountable or insignificant. We expect 
that all of these potential stressors could have meaningful biological effects on humpback 
whales. Accordingly, this consultation focused on all of these stressors. 

6.2 Mitigation to minimize or avoid exposure 

Under permit 14809-02, observers select an animal for tagging and monitor this animal before 
tag attachment to test for any effects of tagging. The research vessel approaches slowly, typically 
from behind, and to one side of the animal, and moves into a position to allow attachment of the 
tag. When close to marine mammals, vessel operators move slowly and deliberately, but do not 
physically contact the listed marine mammals. To prevent duplicative tagging, a dedicated 
photographer photographs all animals exposed to tagging attempts. Adult females with calves, or 
individuals believed to be less than one year old are not targeted for tagging. Vessels are 5-10 
meters long with outboard motors using  consistent speeds and avoidance of sudden changes in 
speed or direction unless where necessary. Tagging materials are also sterilized and/or 
disinfected before use. Approach vessels used under permit 14856-04 operate under the same 
conditions. 

6.3 Exposure and response analysis 

As discussed in the Overview of NMFS’ Assessment Framework section, response analyses 
determine how listed or proposed resources are likely to respond after exposure to an action’s 
effects on the environment or directly on species themselves. For the purposes of consultation, 
our assessments try to detect potential lethal, sub-lethal (physiological), or behavioral responses 
that might result in reducing the fitness of listed or proposed individuals. Ideally, response 
analyses would consider and weigh evidence of adverse consequences as well as evidence 
suggesting the absence of such consequences.  

There is mounting evidence that wild animals respond to human disturbance in the same way 
that they respond to predators (Beale and Monaghan 2004b; Frid 2003; Frid and Dill 2002; Gill 
et al. 2001; Harrington and Veitch 1992; Lima 1998; Romero 2004). These responses manifest 
themselves as stress responses (in which an animal perceives human activity as a potential threat 
and undergoes physiological changes to prepare for a flight or fight response), interruptions of 
essential behavioral or physiological events, alteration of an animal’s time budget, or some 
combinations of these responses (Frid and Dill 2002; Romero 2004; Sapolsky et al. 2000b; 
Walker et al. 2005). These responses have been associated with abandonment of sites 
(Sutherland and Crockford 1993), reduced reproductive success (Giese 1996; Mullner et al. 
2004), and the death of individual animals (Bearzi 2000; Daan 1996; Feare 1976). Stress is an 
adaptive response and does not normally place an animal at risk. However, distress involves a 
stress response resulting in a biological consequence to the individual. The mammalian stress 
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response involves the hypothalamic-pituitary-adrenal axis being stimulated by a stressor, causing 
a cascade of physiological responses, such as the release of the stress hormones cortisol, 
adrenaline (epinephrine), glucocorticosteroids, and others (Atkinson et al. 2015; Busch and 
Hayward 2009). These hormones subsequently can cause short-term weight loss, the release of 
glucose into the blood stream, impairment of the immune and nervous systems, elevated heart 
rate, body temperature, blood pressure, fatigue, cardiovascular damage, and alertness, and other 
responses (Aguilera and Rabadan-Diehl 2000; Busch and Hayward 2009; Dierauf and Gulland 
2001; Guyton and Hall 2000; NMFS 2006a; Omsjoe et al. 2009a; Queisser and Schupp 2012; 
Romero 2004), particularly over long periods of continued stress (Desantis et al. 2013; Sapolsky 
et al. 2000a). In some species, stress can also increase an individual’s susceptibility to 
gastrointestinal parasitism (Greer 2008). In highly-stressful circumstances, or in species prone to 
strong “fight-or-flight” responses, more extreme consequences can result, including muscle 
damage and death (Cowan and Curry 1998; Cowan and Curry 2002; Cowan and Curry 2008; 
Herraez et al. 2007). The most widely-recognized indicator of vertebrate stress, cortisol, 
normally takes hours to days to return to baseline levels following a significantly stressful event, 
but other hormones of the hypothalamic-pituitary-adrenal axis may persist for weeks (Dierauf 
and Gulland 2001). Mammalian stress levels can vary by age, sex, season, and health status 
(Cockrem 2013; Delehanty and Boonstra 2012; Gardiner and Hall 1997; Hunt et al. 2006; Keay 
et al. 2006; Place and Kenagy 2000; Romero et al. 2008; St. Aubin et al. 1996). Marine mammal 
hormones associated with stress responses, as well as other body systems, may become 
imbalanced because of exposure to chlorinated hydrocarbons (Brouwer et al. 1989; Jin et al. 
2015). In general, stress response pathways appear to be very similar to those in better-studied 
terrestrial mammal systems, although important difference in the renin-angiotensin-aldosterone 
system  and catecholamines exist likely stemming from fasting and diving life history traits in 
many marine mammals (Atkinson et al. 2015). Smaller mammals  react more strongly to stress 
than larger mammals (Peters 1983); a trend reflected in data from Gauthier and Sears (1999) 
where smaller whale species  reacted more frequently to biopsy than larger whales. Stress is 
lower in immature right whales than adults and mammals with poor diets or undergoing dietary 
change and  have higher fecal cortisol levels (Hunt et al. 2006; Keay et al. 2006). 

Several studies have suggested that stress can adversely impact female reproduction through 
alterations in the estrus cycle (Herrenkohl and Politch 1979; Moberg 1991; Mourlon et al. 2011; 
Rivier 1991). This is likely due to changes in sex steroids and growth hormone levels associated 
with the stress response (Sapolsky et al. 2000a). Komesaroff et al. (1998) found that estrus may 
inhibit the stress response to some extent, although several studies suggest estrus and the 
follicular stage may be susceptible to stress-induced disruption (see River (1991) and Moberg 
(1991) for reviews). Most of these studies were conducted with single or multiple invasive 
methodologies or chronic stress; we do not expect stressors associated with the proposed 
research to be nearly as stressful. Under less invasive and acutely stressful methods (but more 
invasive than those proposed by the applicant), Omsjoe et al. (2009b) found no impacts to the 
percentage of individuals with offspring the year following chase, capture, and restraint of 
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reindeer (ungulates in general are prone to strong, potentially lethal stress responses). Overall, 
we do not expect reproduction to be impaired, primarily because of the applicants will not be 
using methods remotely as impactful as those presented in studies here to induce adverse 
reproductive impacts. 

6.3.1 Implantable tags 

Although external transmitting devices have been used by many researchers, few studies have 
examined the possible effects of these devices (Culik et al. 1994; Hawkins 2004a; Murray and 
Fuller 2000; White and Garrot 1990; Wilson and McMahon 2006). Godfrey and Bryne (2003) 
found that only 4.5% of scientific papers reporting on radio tracking of mammals assessed the 
effects of tags on subjects, but 61% of the studies that did investigate impacts found substantial 
tagging effects. Murray and Fuller (2000) surveyed a sample of articles in which vertebrates had 
been marked, covering nine journals that publish studies on a broad range of taxonomic groups, 
and found that in most instances (90% of 238 articles surveyed), the articles did not address 
potential effects of marking, or at least did not report that such effects had been considered.  

However, attaching a device has the potential to generate physiological and behavioral effects to 
the extent that (even in large mammals), pain, distress, and reduced survival and reproduction 
can occur, depending on factors such as device weight, shape, and attachment location (Hawkins 
2004a; Walker et al. 2012; White and Garrot 1990). To date, reproductive or growth effects have 
not been found in marine mammals. Mortality has been found in a few cases (surgically-placed 
abdominal devices; not the tags or procedures proposed for use here), although fairly little effort 
has been devoted to studying these effects compared to the amount of effort to place tags on 
marine mammals (Walker et al. 2012). No studies to date have investigated reproductive or 
growth effects of internal tagging such as in the proposed action for permit 14809-02 (Walker et 
al. 2012). Effects of attached devices may range from subtle, short-term behavioral responses to 
long-term changes that affect survival and reproduction; attached devices may also cause effects 
not detectable in observed behaviors, such as increased energy expenditure by the tagged animal 
(White and Garrot 1990; Wilson and McMahon 2006). Walker and Boveng (1995) concluded the 
effects of devices on animal behavior are expected to be greatest when the device-to-body size 
ratio is large. Although the weight and size of the device may be of less concern for larger 
animals such as cetaceans, there is still the potential for significant effects; for example, 
behavioral effects that may cause reduced biological performance, during critical periods such as 
lactation (Walker and Boveng 1995; White and Garrot 1990).  

Once target individuals are approached under permit 14809-02, researchers propose to place 
devices in some whales to track movements and dive data. Implantable tags can cause behavioral 
responses similar to close approach as well as wounds, bruising, swelling, and hydrodynamic 
drag. Humpback whales are one of the least apparently responsive baleen whales to tagging, with 
37 of 122 humpback whales tagged exhibiting a response to tagging (Mate et al. 2007) . 
Available data regarding the effects of tagging is almost exclusively focused on short-term 
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effects, as few studies have attempted to follow up on tagged individuals weeks, months, or years 
after tagging. However, some opportunistic resightings have been documented; results are 
presented when available. 

Physiological risks to whales from tagging include swelling, inflammation, or infection of the tag 
site. Although concerns about the potential to strike an animal in sensitive areas, such as the eyes 
or blowhole, have been raised in previous studies (Whitehead et al. 1990), permit conditions here 
are designed to  prevent such occurrences. To reduce localized infection risks, the parts of the 
tags that would be inserted into whales would be constructed of stainless steel, and thoroughly 
disinfected before attachment. Most infections in wildlife resulting from invasive tagging stem 
from the skin (Hawkins 2004b; Mate et al. 2007). Invasive components are designed to reduce 
the potential for skin intrusion into the wound at time of tagging (Mate et al. 2007). Although a 
wide variety of implantable tags have been used over the past several decades, review of 
available data support tags to produce a similar, small variety of wound patterns in North 
Atlantic right and humpback whales: white scar, white scar and divot, a divot and cyamids 
(whale lice), localized swelling, and regional swelling (up to 90 centimeters across and persisting 
for years), although roughly one in eight individuals showed no wound pattern (Kraus et al. 
2000; Mate et al. 2007; Quinn et al. 2000; Weller 2008). Follow-up monitoring shows local and 
regional swelling frequently occurs around the tag site following implantation in humpback and 
North Atlantic right whales (Mate et al. 2007). Southern right whales appeared to  lack swelling 
around implantable tags, but divots were frequently seen after tag rejection on individuals 
resighted more than one year post tagging (Best and Mate. 2007). Divots are theorized to result 
from fat cells being ruptured on tag entry (Mate et al. 2007). The physiological consequences of 
such responses remain unstudied, but a general response of glucocorticoid secretion and 
lymphocyte suppression is known to occur in whales entangled in fishing gear (Cole et al. 2006). 
Seaweed became entangled with a harbor porpoises’ dorsal fin tag and had to be removed when 
an infection became apparent (Geertsen et al. 2004). Because of the streamlined design of the 
tags to be used, we do not expect tag entanglement to be an issue for humpback whales tagged 
under permit 14809-02. 

Expert reviewers in a workshop summarized by Kraus et al. (2000) looked at and ultimately were 
not concerned by the consequences of divots, cyamids, or scars. However, workshop participants 
looked at swelling and determined it  to be due either to hematoma, abscess, or an active 
inflammatory response to a foreign body or agent (such as bacteria), rupture through the 
subdermal sheath, foreign body granuloma, or benign tumor. Several reviewers had serious 
concerns for the potential of tags penetrating into the muscle layer, potentially introducing 
serious infections into muscle and expanding the infection because of shear forces at the muscle-
blubber interface (Kraus et al. 2000; Quinn et al. 2000; Weller 2008). The extensive resighting 
history of North Atlantic right whales permits some analysis of tagging effects and, ultimately, 
survival rates of tagged versus untagged individuals is not discernibly different (Mate et al. 
2007). Resightings from other species, although not as extensive, has also failed to support long-
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term effects at the individual level (Best and Mate. 2007; Mate et al. 2007). Only two studies of a 
wound after tagging exist. One was based on a gray whale that died after stranding dead 18 days 
post-tagging; although the animal was decomposed, investigators found no evidence of infection 
at the tag site or other findings that suggested the tag/tagging process resulted in the animal’s 
death (Weller 2008). The other study was of a North Atlantic right whale that had  a deep-
penetrating sedation dart shot into it. Post mortem examination revealed extensive muscle tissue 
damage, likely because of the aforementioned shear forces between the blubber (which likely 
anchored the dart) and muscle (which, being less dense, was “shredded” by the dart tip) 
(McLellan 2011). Studies of odontocetes along Hawaii show that tag sites become inflamed 
within days of attachment, but do not appear to become infected (Hanson et al. 2009). Tissues 
appeared to break down around the attachment site as the tags migrated out of the body (Hanson 
et al. 2009). Once expelled, wound sites appeared to heal completely, with some individuals 
showing raised or depressed marks at the tagging location (Hanson et al. 2009). Sperm whales 
tagged and resighted in the Gulf of California did not show signs of emaciation, but did 
occasionally show inflammation or tissue extrusions when resighted with tags still present 
(Hayslip et al. 2009). After expulsion, tagging sites showed devoted, reconstituted tissue 
(Hayslip et al. 2009). 

Keeping implanted tags stable promotes healing, as new epithelial cells and scar tissue form 
around the foreign body to wall it off (Mate et al. 2007). Researchers expect that the presence of 
recurved barbs on the cylinder housing should enable the tag to remain embedded for longer 
periods of time and be more stable in the body. However, over time, the tag would be rejected by 
the body and migrate out of the blubber because of possible infection, reaction to a foreign body, 
irritation from motion from body flexing, as well as mechanical stress from hydrodynamic drag 
on the external components of the tag (Watkins et al. 1981). Southern right whales tagged with 
implantable tags designed to be retained for long periods were found to retain tags for 27 
months, but have been expelled by 36 months (Best et al. 2015). Implantation sites were found to 
have healed within two years (Best et al. 2015). No difference in pregnancy rates in tagged 
versus untagged females was found (Best et al. 2015). The tags to be used under permit 14809-
02 are not designed to be retained for this long and we expect they will be expelled within a few 
months. Experimental evaluation of a short-term implantable tag anchor showed that the anchor 
left the body of humpback whales in the Gulf of Maine after a few days, which was followed 
shortly thereafter by complete healing (Baumgartner et al. 2015) (Figure 2). Only one of five 
tagging events produced a noticeable behavioral response (a tail flick). 
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Figure 2. Dermal implantable tag migration out of a humpback whale and 
subsequent healing. 

Apart from pathological effects, tagged marine mammals can also experience physiological 
effects, particularly from impaired hydrodynamics. Tags should be designed to reduce the drag 
experienced by the individual carrying the tag (Hawkins 2004b; Hooker et al. 2007). For 
example, Walker and Boveng (1995) found that average foraging-trip and nursing-visit durations 
were significantly greater for seals carrying time-depth recorders and radio transmitters than for 
seals carrying radio transmitters only. A spotted dolphin fitted with a bulky satellite transmitter 
was recaptured eight days after tagging in poor body condition, presumably because of the large 
drag effects the tag created (Scott et al. 1990). A harbor porpoise consistently lost weight after 
having an implantable tag attached for several weeks (although the authors attributed this to a 
normal, seasonal blubber change) (Geertsen et al. 2004). Harbor porpoises carrying two tags, 
versus those carrying one, were found to dive to deeper depths on average (i.e., larger tag 
packages with potentially more drag), but did not differ in other behavioral factors studied 
(Berga et al. 2015). Bottlenose dolphins did not exhibit metabolic costs when wearing a tag, 
versus without, but did swim 11% slower when wearing the tags (Van Der Hoop et al. 2014). 
However, the tag designs under the proposed action minimize drag so as to increase attachment 
duration. Drag would be considered minute when compared to that inherent to most target 
species, even as calves, because of the large drag individuals experience as a consequence of 
their large body size. The additional energy expenditure, even when considered over the course 
of a year, would be small in comparison to the drag created by such large animals in a viscous 
medium. This is supported by data from Best and Mate (2007), who found that six out of seven 
female southern right whales birthed in their routine intervals (similar to the rate of detection of 
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untagged individuals; (Best et al. 2005)). In addition, dorsal fin tag models tested under various 
configurations and angles were found to have a less than 4% drag coefficient, meaning the 
amount of energy needed to be expended with a dorsal fin tag (larger compared to body size 
versus those on large whales and, hence, greater impact) was not much more than without the tag 
(Pavlov and Rashad 2012). Biofouling coatings may be necessary to prevent long-term tags from 
becoming coated in growth and increasing drag (Wells et al. 2013) (Figure 3). Additional 
concerns exist on the ability of tissue surrounding implantable barbs to continue to be effectively 
perfused with blood, potentially leading to compromised thermoregulation or tissue 
degeneration. However, thermal imaging has not found this to be the case (Andrews et al. 2014). 

 
Figure 3. Implantable satellite tags with biofouling preventive coating (right) and 
no coating (left) (Wells 2013). 

Use of behavior as an indicator of a whale’s response to tagging may or may not accurately 
reflect the whale’s experience, and we cannot definitively know whether such behavioral 
responses have long-term consequences. Responses to human disturbances, such as tagging, may 
manifest as stress responses, interruptions of essential behavioral or physiological events, 
alteration of an animal’s time budget, or some combination of these responses. Weinrich et al. 
(1992) associated “moderate” responses with alarm reactions and “strong” behavioral reactions 
with stress responses. Wild harbor porpoises restrained and tagged did not show consistent 
elevations in cortisol nor did heart rate change in ways consistent with a stress reaction (Eskesen 



Permit amendments 14856-04 and 14809-02   FPR-2015-9131 

40 

et al. 2009); these actions were much more invasive that those proposed. Moderate responses 
might also be associated with a stress response, given that certain behavioral responses may have 
metabolic consequences. As a result, we assume the proposed tagging could be stressful for a 
significant portion of the whales; however, the significance of this stress response and its 
consequences, if any, on the fitness of individual whales are not definitively known. However, 
the limited information available from Erickson (1978) indicates that for a more invasive radio 
package attachment on the dorsal fin, the blood parameters of killer whales showed no 
significant change. Recognizing the evidence indicating that behavioral responses would be 
short-lived, we provisionally assume the tagging activities produce short-lived stress responses in 
some individuals.  

Short-term, behavioral effects are also documented for humpback whales. General whale 
responses include no response at all, skin twitching, startle reactions or flinching, altered 
swimming speed and orientation, diving, rolling, head lifts, high back arching, fluking, and tail 
swishing (Goodyear 1981; Goodyear 1993b; Hooker et al. 2001; Mate et al. 1997; Watkins 
1981b; Watkins et al. 1984). Mate et al. (1998) found humpback whales to not respond to 
satellite tagging at all. Humpback whales responded to shallow implantable tags by turning away 
from the tagging vessel and undertaking short dives, and increasing their swimming speed 
(Goodyear 1993b). Watkins (1981a) found humpback whales in the North Atlantic to respond to 
tagging with startle reactions, increased swimming speed, or with no reaction at all; all 
responding individuals returned to baseline behavior within 15 minutes. A humpback whale was 
found to resume singing within 13 minutes of tagging in another case (Mate et al. 2007). 
“Strong” reactions were found in only 3.3-5.6% of humpbacks tagged (Weinrich et al. 1991; 
Weinrich et al. 1992b). Alves et al. (2005) found increased respiration rate, longer dives, and tail 
splashes (80% of trials) in response to implantable tagging. Humpback reactions can also occur 
to misses, possibly because of splashes in the water (Brown et al. 1994; Watkins 1981b). 
Baseline behavior appears to resume within minutes. Responses to tagging may be difficult to 
discern from responses to close approaches. In two studies of humpback whales off Hawaii and 
Alaska, no additional responses were found to approach and tagging versus approach alone 
(Mate et al. 1991; Watkins 1981b). Ultimately, humpback whale survival does not appear altered 
by invasive tagging; seven individuals tagged in Alaska 20-30 years ago have been reidentified 
in recent years also in Alaska (Mizroch et al. 2008). Humpback calves responded to tagging in 
various behavioral ways, including delayed surfacing, fast dive, small tail flick, or slow evasive 
swimming, but returned to baseline behavior with a few minutes (Stimpert et al. 2013). 

Permit amendment 14809-02 will allow for up to 30 adult or juvenile humpback whales to be 
tagged with these devices per year in the Southern Ocean and up to 50 in the Atlantic Ocean. 
Based on the tagging response rate in . of 30.3%, we expect roughly 9 Southern Ocean and 15 
North Atlantic humpback whales will respond to tagging attempts under permit amendment 
14809-02 annually, or 36 and 60 over the remaining four-year life of the permit. If the proposed 
DPS listing structure proposed by NMFS comes into effect, this would mean that only the ESA-
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listed DPS that could be affected by the action would be the Azores DPS. To date, the applicant 
has not conducted research in this area, although the permit would allow work in this area. As 
such, we do not expect takes would occur to any proposed ESA-listed DPS, but up to 60 in the 
Azores DPS could reasonably be expected to . 

Responses would include low to moderate responses such as skin twitching, startle reactions or 
flinching, altered swimming speed and orientation, diving, rolling, head lifts, high back arching, 
fluking, and tail swishing. A short-term (days to weeks), temporary localized swelling and an 
immune response are also expected.  

6.3.2 Close approaches-surface vessel 

Vessel approaches to be authorized under permit 14856-04 have the potential to induce 
behavioral and physiological changes in targeted individuals. The degree to which individuals 
are disturbed is  variable. Whales may respond differently depending on what behavior the 
individual or pod is engaged in before the vessel approaches (Hooker et al. 2001; Wursig et al. 
1998), the degree to which they have become accustomed to vessel traffic (Richter et al. 2006), 
and between species or individuals (Gauthier and Sears 1999). Overall, reactions include little to 
no observable change in behavior to momentary changes in swimming speed, pattern, 
orientation, diving and time spent submerged, foraging, respiratory patterns, and may include 
aerial displays like breaching and lob tailing (Baker and Herman. 1989; Best et al. 2005; Brown 
et al. 1991; Clapham and Mattila 1993; Jahoda et al. 2003). Jahoda et al. (2003) found effects of 
more than a few minutes, with fin whales failing to return to baseline behaviors after one hour of 
observation in some cases, in spite of the fact that Gauthier and Sears (1999) found fin whales to 
be less responsive than humpbacks.  

Humpback whales have been the best-studied whale species in regards to responses to close 
approaches by vessels. Numerous studies have documented varied responses of humpback 
whales to vessel approaches, ranging from no response to evasion (Goodyear 1993a; Salden 
1993). Hall (1982) did not find social or feeding behavior to be disturbed by vessel traffic or 
close approaches. However, there is the possibility that humpback whales may habituate to 
vessel noise if given sufficient time and exposure (Clapham and Mattila 1993; Watkins 1986).In 
response to vessel approach, Felix et al. (2001) found that 27 of 86 individuals approached 
engaged in behavior that resulted in avoidance of the vessel (50 were indifferent and 9 
approached vessels), including long dive, change in heading, tail splashes, altered swimming 
speed or breathing frequency, and group structure disruption. Approaching vessels may instigate 
aerial behavior, such as fluke slapping and breaching, behavior recently suggested to be a switch 
in communication from vocal to surface active signaling (Baker et al. 1983a; Baker et al. 1983c; 
Baker et al. 1982; Dunlop et al. 2009; Holt et al. 2009). Goodyear (1993a) did not observe 
changes in behavior because of vessel approaches in most cases, although an increase in speed 
did occur on one occasion when a whale was approached to within 10 meters. Cantor et al. 
(2010) found resting or socializing whales to switch to traveling on approach of their research 
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vessels. Watkins et al. (1981) found that humpback whales appeared to react to vessel approach 
by increasing swim speed, exhibiting a startle reaction, and moving away from the vessel with 
strong fluke motions. Baker and Herman (1989), Baker et al. (1983a; 1983c; 1982), Bauer 
(1986b), Bauer and Herman (1986b), and Green and Green (1990) found that humpbacks spent 
less time at the surface and altered their direction of travel in response to approaching vessels. 
Increased time underwater and decreased swim speed persisted for up to 20 minutes after vessels 
left the area. Watkins and Goebel (1984) found humpbacks to be very difficult to approach, 
possibly because of physical ocean features in the area that likely altered sound properties such 
that vessel noise was difficult to detect except at close range, resulting in whales suddenly 
becoming aware of boats nearby and reacting strongly as a result. Norris (1994) documented 
changes in humpback song structure in response to passing vessels, with unit and phrase 
durations reduced versus control periods.  

Bauer and Herman (1986a) studied the potential consequences of vessel disturbance on 
humpback whales wintering off Hawaii. They as well as Scheidat et al. (2004) and Hemphill et 
al. (2006) noted changes in respiration, diving, swimming speed (50-300%) and direction, social 
exchanges, and other behavioral changes correlated with the number, speed, direction, and 
proximity of vessels. Agonistic behavior has also been noted (Bauer and Herman 1986a). Results 
of vessel approach were different depending on individual sex and age class (smaller groups and 
groups with calves appeared more responsive), but humpback whales tried to avoid vessels 
beginning at 500 to 1,000 meters away. Similar results were found in Alaskan waters, with 
increased dive durations and orientation away from the path of moving boats, often at ranges up 
to 3-4 kilometers (Baker et al. 1983b; Baker and Herman. 1989). Approaches in Alaskan waters 
closer than 100 meters initiated evasive behavior (Hall 1982). Watkins (1986) found little 
response to approaches outside of 100 meters away, although humpbacks regularly reacted to 
outboard vessels on a collision course even from long distance. 

Responses can also change over long timeframes; Watkins (1986) looked at whale responses off 
Cape Cod over a several decade period and found that humpbacks shifted their response from 
being evasive to a tendency to approach vessels. Mizroch et al. (2010) followed-up on several 
humpback whales that were approached and radio tagged over the course of several decades. 
They found no basis for substantiating a long-term reaction to approach, including gross 
measures of growth and reproduction.  

Information on contextual responses is also relatively abundant for humpback whales. Responses 
by humpback whales likely depend on a given individual’s prior experience and current situation 
(Clapham and Mattila 1993). The use of smaller, outboard-powered vessels (presumably louder) 
elicited more frequent and stronger responses to biopsy attempts than larger, inboard-powered 
vessels; sex was not a factor in response frequency or intensity (Cantor et al. 2010). Sudden 
changes in vessel speed and direction have been identified as contributors to humpback whale 
behavioral responses from vessel maneuvering (Watkins 1981a). The more active the group, the 
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more easily it was disturbed; however, Cantor et al. (2010) found structuring in the response rate 
of various individuals in mating groups, with male response becoming progressively less 
frequent with increasing degree of dominance in the mating group. Mother-calf pairs were the 
most easily disturbed group, followed by all adult groups, adult-subadult mixes, and all subadult 
groups (Felix 2001). Weinrich et al. (1991) and (1992b), Cantor et al. (2010), as well as Krieger 
and Wing (1984) found feeding animals to be least responsive, although data from these studies 
was contradictory when evaluating responses while resting or on breeding grounds. The 
Weinrich studies also found that respiratory parameters are not good indicators of responsiveness 
due to the large natural variance associated with them. However, numerous studies have 
identified significant changes in respiration and diving in association with vessel traffic (see 
Bauer and Herman (1986a) for a summary). On several occasions, research trips conducted by 
Krieger and Wing (1984) had to actively avoid collisions with humpbacks, although whales 
presumably were aware of the vessel’s presence. Single or paired individuals may respond more 
than larger groups (Bauer and Herman 1986a). Würsig et al. (1998) found milling or resting 
cetaceans to be more sensitive.  

Repeated exposure can have a cumulative effect that is greater than the sum of individual 
exposures, eliciting responses that are more significant for individuals and populations, although 
Cantor et al. (2010) did not find a difference in response based on re-exposure. However, 
humpback whales have vacated areas where relatively high boat traffic and human activity 
occurs (Herman 1979). Major declines and distributional shifts in Glacier Bay, Alaska were 
correlated with a rapid and significant increase in vessel traffic from 1976 to 1978, whereas 
humpback whales in other nearby areas with less traffic did not undergo such changes (Bauer 
and Herman 1986a). It should be noted that potentially reduced prey resources may also have 
been important in this redistribution (Bauer and Herman 1986a). Matkin and Matkin (1981) did 
not find a correlation between humpback whale behavior and recreational vessels. 

The close approach of vessels also presents the possibility that valuable acoustic information 
could be missed by the target individual(s) due to masking by the vessel’s engines. The acoustic 
properties of vessels likely to be used by the applicant are similar to the frequency range used by 
target marine mammals during vocalization such that communication could be impaired (Clark et 
al. 2009; Dunlop et al. 2010a). Parks et al. (2010) and Anonymous (2010) found that North 
Atlantic right whales temporarily modify the amplitude of their calls, making them louder with 
increased background noise (including noise from vessel traffic), as well as shifting call 
frequency over longer time frames. Killer whales in high traffic areas have been found to 
increase call duration or call amplitude in response to increased anthropogenic noise in the 
marine environment (Erbe 2002; Foote et al. 2004; Holt et al. 2011; Holt et al. 2009). As a 
broader issue, increased anthropogenic noise in the marine environment has the potential to 
reduce the range over which individuals communicate, conceivably increasing calf mortality, 
altering ideal group or individual spacing, and making identification and selection of mates more 
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difficult or impossible (Croll et al. 2001). The applicants use one vessel per survey, and we do 
not anticipate masking will occur for several reasons:  
• Operations will be conducted at low speed with a minimum of throttling and directional 

changes.  

• Low vessel speed means that less cavitation will occur, which is the primary source of sound 
energy emitted by motorized vessels (Mazzuca et al. 2001; Ross 1976).  

• Lower speed and fewer directional changes will also result in fewer changes in sound 
characteristics, which are believed to add to the significance of vessel noise and its impact to 
cetaceans.  

• Most interactions with target individuals should be brief before the vessel breaks contact 
following photoidentification, acoustic recording, tagging, exhalation sampling, and/or 
behavioral documentation. 

Permit amendment 14856-04 will not authorize any additional effort or activities on the part of 
the applicant. It will, however, authorize additional take via close approach not previously 
documented by the applicant. Although the practical effect of the action on ESA-listed species 
will not change, NMFS’ accounting for this effect at the level of “take” will. Also, the applicant 
will be permitted to take an individual six times a day, an increase from the three a day 
allowance in the current permit. 

We expect most humpback whales exposed to close vessel approaches under the proposed permit 
to exhibit either no visible reaction or short-term low-level to moderate behavioral responses. 
Available evidence, including approaches of individuals of other species in a variety of locations, 
leads us to conclude there should be few strong behavioral responses to close approaches. Based 
on the available literature and anticipated levels of future exposure, one to a few dozen 
humpback whales annually may also respond with low-to moderate-level behavioral responses 
described above. It is also possible a subset of individuals exposed will undergo a stress response 
(particularly those that show moderate to strong behavioral responses, but also some which show 
little or no behavioral response). 

6.4 Risk analysis 

The Response analysis found that responses by whales to these activities are such that a majority 
of targeted individuals are not expected to show an overt response. We do expect all individuals 
to at least be aware of approach and tagging attempts and undergo a low-level stress reaction 
because of these activities. Some individuals are expected to respond behaviorally. Information 
available to us does not support behavioral responses by an individual being more severe (as 
opposed to more frequent) when additional activities (such as biopsy already authorized under 
permit 14856-03) are added to approach or tagging, although we do expect more frequent 
responses to the combined activities versus approach or tagging alone. 
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6.4.1 Implantable tags 

Implantable tags have the potential to introduce pathogenic agents into the blubber and muscle of 
targeted individuals. This concern has been addressed to some extent by several reviews 
presented in Section 6.3.1, but conclusive evidence for or against the potential for infection is 
lacking (Best and Mate. 2007; Kraus et al. 2000; Mate et al. 2007; Weller 2008). At present, 
available evidence from a single animal of advanced decomposition, a single observation of a 
deceased North Atlantic right whale and numerous observations of live whales does not suggest 
regular occurrence of debilitating infection or muscle damage caused by implantable tags 
(McLellan 2011; Weller 2008). This is further supported by the fact that tags proposed for use do 
not cross the muscle-blubber interface and not result in more severe effects thought to potentially 
result from such a tag that crosses the blubber-muscle interface. Methods adopted by the 
applicant under permit amendment 14809-02, including use of disinfectants on tagging materials 
penetrating target individuals, should lessen the risk of infection (Mate et al. 2007; Weller 2008). 
We do expect that tagged individuals will exhibit similar inflammatory responses, development 
of divots, and scar tissue from implantable tags as has been seen in whale species who have been 
tagged in the past (Best and Mate. 2007; Kraus et al. 2000; Mate et al. 2007; Quinn et al. 2000; 
Weller 2008). We also expect implantably-tagged individuals to experience increased drag 
during the days to months that tags will be protruding from the blubber as they migrate out of the 
body (Best and Mate. 2007). However, we expect the amount of drag to not be significant to 
target whales, as the tags are small compared to the size of target whales. More severe effects 
have been found in some odontocete species, such as reduced swimming speed in bottlenose 
dolphins, and weight loss in harbor porpoises. Considering the relatively much smaller tag size 
relative to body size in the proposed tagging activities on humpback whales and lack of similar 
findings in large whales, we do not expect these effects to occur under the proposed actions. As 
evidenced from the apparent ability of whales to survive and reproduce successfully given 
potential infection and additional drag (Baumgartner and Hammar 2010; Best and Mate. 2007; 
Mate et al. 2007), we do not expect these physiological responses to be significant to any 
individuals’ overall metabolic balance or health state given available evidence. 

6.4.2 Close approach 

Vessel approaches frequently result in behavioral changes in ESA-listed whales, with most 
approaches resulting in no response or apparently “minor” to “moderate” responses (increasing 
swim speed and direction, startle reaction, movement away, changes in respiration and diving, 
agonistic behavior, evasion (Baker et al. 1983b; Baker and Herman. 1989; Bauer and Herman 
1986a; Bauer 1986; Clapham and Mattila 1993; Hall 1982; Hemphill et al. 2006; Koski and 
Johnson 1987; Malme et al. 1983; Malme et al. 1984b; Richardson et al. 1985b; Scheidat et al. 
2004)). Strong responses are rarely observed. Cumulative vessel approaches (Bauer and Herman 
1986a; Herman 1979) or additive effects of vessel approach and other anthropogenic stressors 
(Fraker et al. 1982) can have more significant effects, including the displacement of humpback 
whales from Alaskan foraging areas and displacement of gray whales from habitat (Reeves 
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1977). The presence of additional anthropogenic stressors, such as commercial vessel traffic, are 
likely to induce additional disturbance on potential target individuals (Fraker et al. 1982; NMFS 
2008a). For humpback whales, the number and severity of responses to research vessel 
approaches that individuals will experience is negligible, given the incremental increase in 
stressors individuals, populations, and listed entities as a whole must cope with and does not 
reduce growth, survival, or reproduction. . Although it is possible that individuals are being 
displaced from more preferable habitat, we have no evidence to suggest this. On the contrary, 
Weinrich (2010) found that individuals exposed to extensive whale watching retained high 
calving rates and positive population trajectories. Coupled with trends suggesting recovery for 
most target species, the continuation of close approach activities under proposed permit 
amendment 14809-02 are not expected to measurably hamper survival or recovery of listed 
species. 

6.5 Cumulative Effects 

“Cumulative effects” are those effects of future state or private activities, not involving Federal 
activities, that are reasonably certain to occur within the action areas of the Federal actions 
subject to consultation (50 CFR 402.02). Future Federal actions that are unrelated to the 
proposed action are not considered in this section because they require separate consultation 
pursuant to section 7 of the ESA.  

Government and private actions may include changes in land and water use patterns, including 
ownership and intensity, any of which could affect ESA-listed or proposed species. It is difficult, 
and perhaps speculative, to analyze the effects of such actions, considering the broad geographic 
landscape covered by this opinion, the geographic and political variation in the action areas, 
extensive private land holdings, the uncertainties associated with State and local government and 
private actions, and ongoing changes in the region’s economy. However, State and local 
governments have regulations in place to reduce these effects to ESA-listed species, including 
regulations regarding construction best management practices, storm water control, and 
treatment of wastewater. 

6.6 Integration and synthesis 

The Integration and Synthesis section is the final step in our assessment of the risk posed to 
species and critical habitat because of implementing the proposed action. In this section, we add 
the Effects of the Action on ESA-Listed Species and Critical Habitat (Section 6) to the 
Environmental Baseline (Section 5) and the Cumulative Effects (Section 6.5) to formulate the 
agency’s biological opinion as to whether the proposed action is likely to: “reduce appreciably 
the likelihood of both the survival and recovery of a ESA-listed and proposed species in the wild 
by reducing its numbers, reproduction, or distribution.” This assessment is made in full 
consideration of the Status of ESA-listed and Proposed Species (Section 4). 
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As explained in the Overview of NMFS’ Assessment Framework section, risks to listed 
individuals are measured using changes to an individual’s “fitness” – i.e., the individual’s 
growth, survival, annual reproductive success, and lifetime reproductive success. When ESA-
listed or proposed animals exposed to an action’s effects are not expected to experience 
reductions in fitness, we would not expect the action to have adverse consequences on the 
viability of the population(s) those individuals represent or the species those populations 
comprise (Anderson 2000; Brandon 1978; Mills and Beatty 1979; Stearns 1992). As a result, if 
the assessment indicates that ESA-listed or proposed animals are not likely to experience 
reductions in their fitness, we conclude our assessment. If possible reductions in individuals’ 
fitness are likely to occur, the assessment considers the risk posed to population(s) to which 
those individuals belong, and then to the species those population(s) represent. 

The following discussions separately summarize the probable risks the proposed actions pose to 
threatened and endangered species and critical habitat that are likely to be exposed. These 
summaries integrate the exposure profiles presented previously with the results of our response 
analyses for each of the actions considered in this opinion. 

Overall, we expect all targeted whales to experience some degree of stress response to approach, 
tagging, and tagging attempts. We also expect a fraction of these individuals to undergo short-
term behavioral responses to these activities, varying from twitches to evasion. We do not expect 
more than temporary displacement of some individuals from small areas because of the proposed 
actions. Individuals responding in such ways may temporarily cease feeding, breeding, resting, 
or otherwise disrupt vital activities. However, we do not expect that these disruptions will cause 
a measureable impact to any individual’s growth or reproduction. We expect all implantably-
tagged individuals to experience additional physiological reactions associated with foreign body 
penetration into the blubber and possibly muscle, including inflammation, scar tissue 
development, and a small amount of drag associated with the applied tags. We do not expect any 
single individual to experience a fitness consequence because of the proposed actions and, by 
extension, do not expect population-level effects.  

7 CONCLUSION 
After reviewing the Status of ESA-listed and Proposed Species, the Environmental Baseline 
within the action areas, the Effects of the Action on ESA-Listed Species and Critical Habitat, any 
effects of interrelated and interdependent actions, and Cumulative Effects, it is NMFS’ opinion 
these proposed actions are not likely to jeopardize the continued existence of humpback whales 
as currently listed or in any proposed threatened or endangered DPS. No critical habitat has been 
designated or proposed for this species; therefore, none will be affected. 
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8 INCIDENTAL TAKE STATEMENT 
Section 9 of the ESA and Federal regulations pursuant to section 4(d) of the ESA prohibit the 
take of endangered and threatened species, respectively, without a special exemption. “Take” is 
defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt 
to engage in any such conduct. Harm is further defined by regulation to include significant 
habitat modification or degradation that results in death or injury to ESA-listed species by 
significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. 
Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of 
an otherwise lawful activity. Section 7(b)(4) and section 7(o)(2) provide that taking that is 
incidental to an otherwise lawful agency action is not considered to be prohibited taking under 
the ESA if that action is performed in compliance with the terms and conditions of this incidental 
take statement. 

We do not expect incidental take of threatened or endangered species as a result of the proposed 
actions because all actions that may affect ESA-listed species would be undertaken in a directed 
manner. 

9 CONSERVATION RECOMMENDATIONS 
Section 7(a)(1) of the ESA directs Federal agencies to use their authorities to further the 
purposes of the ESA by carrying out conservation programs for the benefit of the threatened and 
endangered species. Conservation recommendations are discretionary agency activities to 
minimize or avoid adverse effects of a proposed action on ESA-listed species or critical habitat, 
to help implement recovery plans or develop information (50 CFR 402.02). 
• The Endangered Species Act Interagency Cooperation Division recommends that annual 

reports submitted to the Permits Division require detail on the response of listed individuals 
to permitted activities. A minimum of general comments on response can be informative 
regarding methodological, population, researcher-based responses in future consultations. 
The number and types of responses observed should be summarized and include responses of 
both target and non-target individuals. This will greatly aid in analyses of likely impacts of 
future activities. 

In order for the Endangered Species Act Interagency Cooperation Division to be kept informed 
of actions minimizing or avoiding adverse effects on, or benefiting, ESA-listed species or their 
critical habitat, the Permits Division should notify the Endangered Species Act Interagency 
Cooperation Division of any conservation recommendations they implement in their final action. 

10 REINITIATION OF CONSULTATION 
This concludes formal consultation for the Permit’s Division proposed issuance of permit 
amendments 14856-04 and 14809-02. As 50 CFR 402.16 states, reinitiation of formal 
consultation is required where discretionary Federal agency involvement or control over the 
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action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental 
take is exceeded, (2) new information reveals effects of the agency action that may affect ESA-
listed species or critical habitat in a manner or to an extent not considered in this opinion, (3) the 
agency action is subsequently modified in a manner that causes an effect to the ESA-listed 
species or critical habitat that was not considered in this opinion, or (4) a new species is ESA-
listed or critical habitat designated that may be affected by the action. 
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