

Department of Energy

Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208-3621

PUBLIC AFFAIRS

August 21, 2012

In reply refer to: DK-7

Vulcraft Group, a Division of the Nucor Corporation Attn: Russell Balvin PO Box 59 Norfolk, NE 68702

FOIA #BPA-2012-01752-F

Dear Mr. Balvin:

Thank you for your request for records that you made to the Bonneville Power Administration (BPA) under the Freedom of Information Act (FOIA), 5 U.S.C. 552. Your request was received in this office on Tuesday, August 14, 2012, and has been assigned a control number, BPA-2012-01752-F. Please use this number in any correspondence with the Agency about your request.

You have requested the following:

Structural drawings including material sizes and associated connections for BPA's newly designed one double circuit and three single circuit towers.

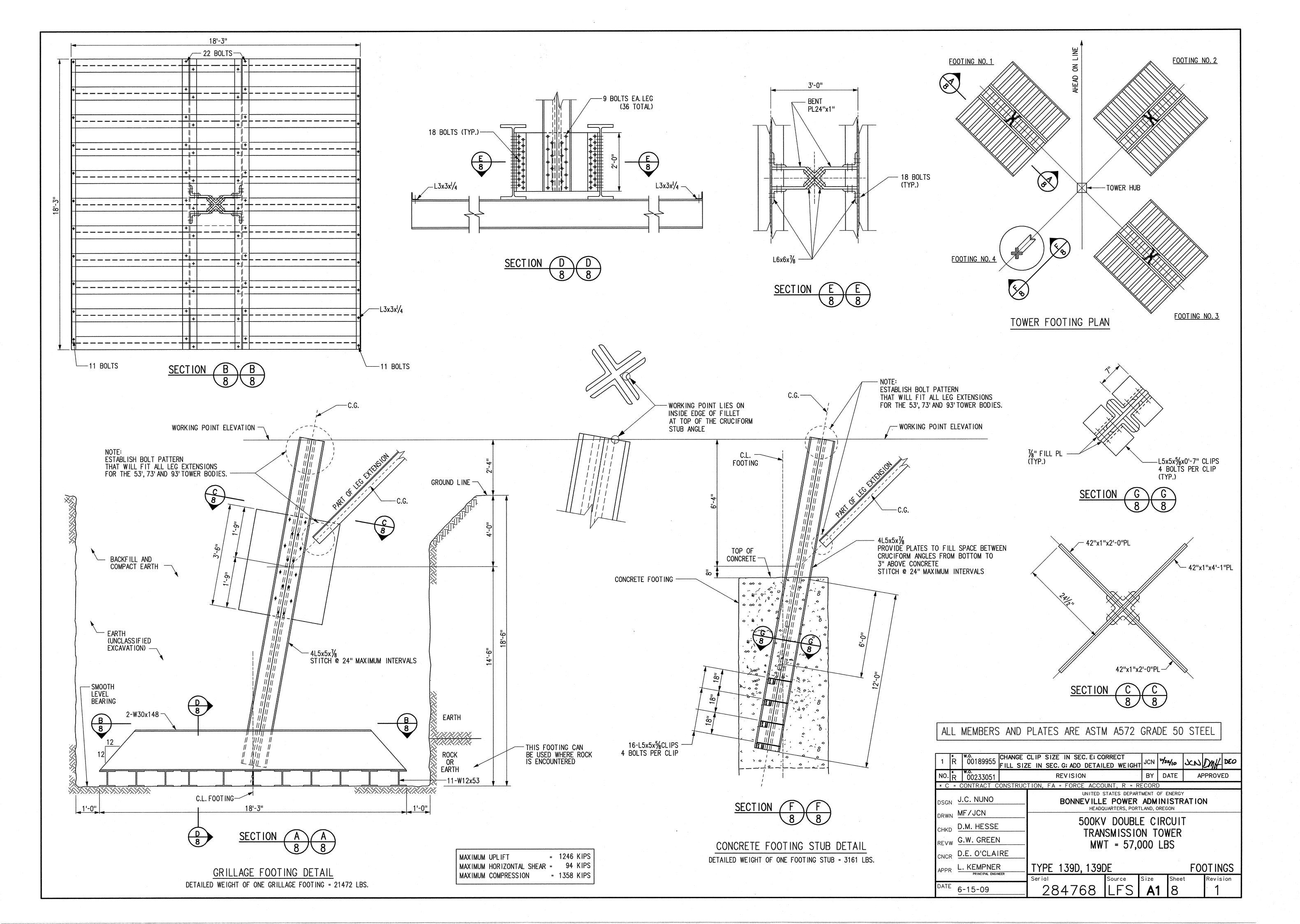
We have reviewed your letter and have determined that it addresses all of the criteria of a proper request under the FOIA, DOE, and BPA regulation that implements the FOIA at Title 10, Code of Federal Regulations, Part 1004. You agreed to pay all applicable fees.

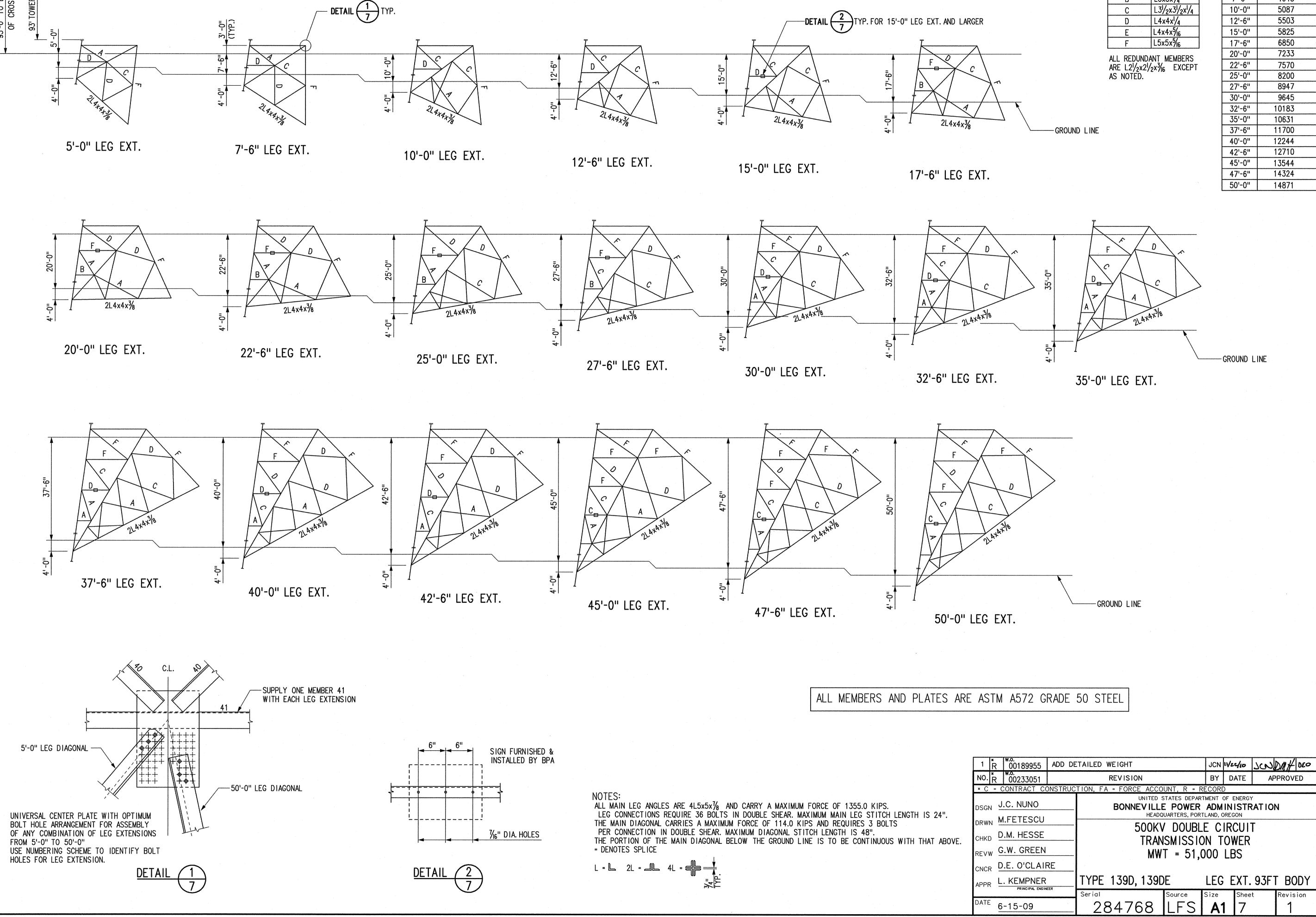
Final response:

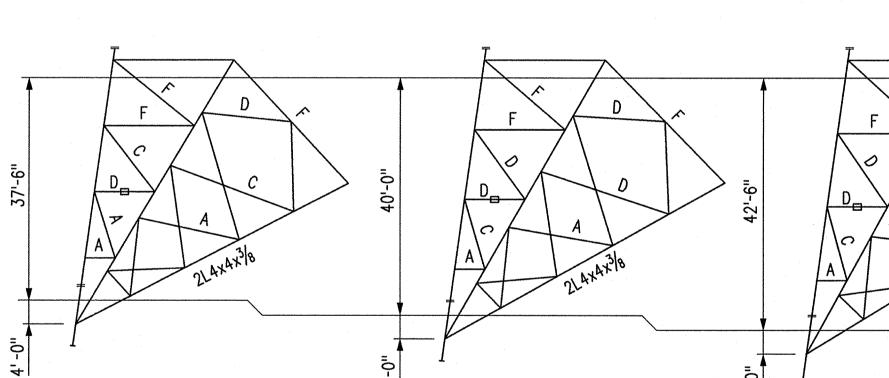
BPA has provided the requested documents in their entirety on the enclosed CD.

Pursuant to 10 CFR 1004.8, if you are dissatisfied with this determination, or the adequacy of the search, you may appeal in writing within 30 calendar days of receipt of a final response letter. The appeal should be made to the Director, Office of Hearings and Appeals, HG-1, Department of Energy, 1000 Independence Avenue, SW, Washington, DC 20585-1615. The written appeal, including the envelope, must clearly indicate that a FOIA Appeal is being made.

The fees for request total \$41.54. You will be billed separately.

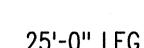

I appreciate the opportunity to assist you. Please contact Kim Winn, Communications Specialist, at 503-230-7305 with any questions about this letter.

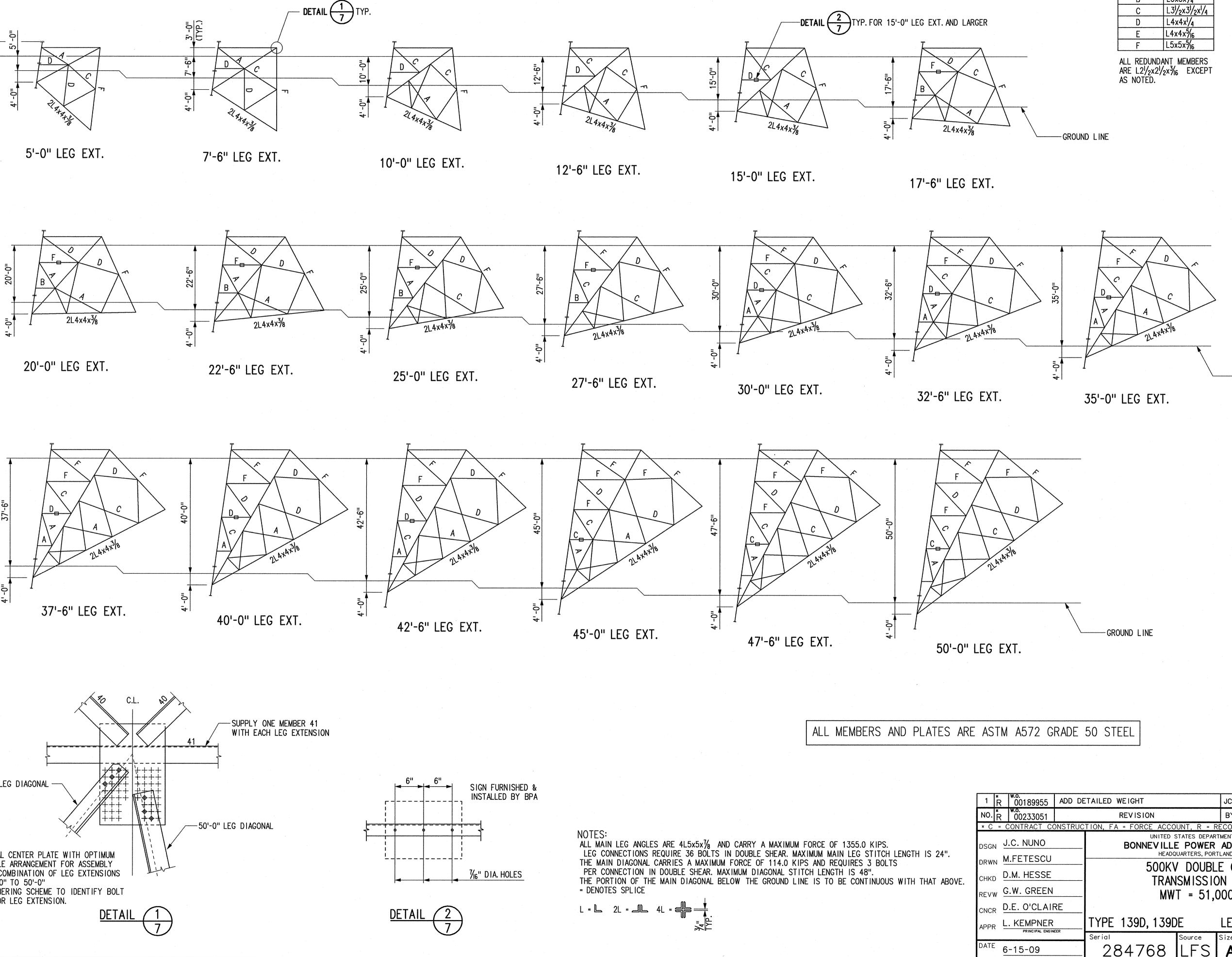

Sincerely,

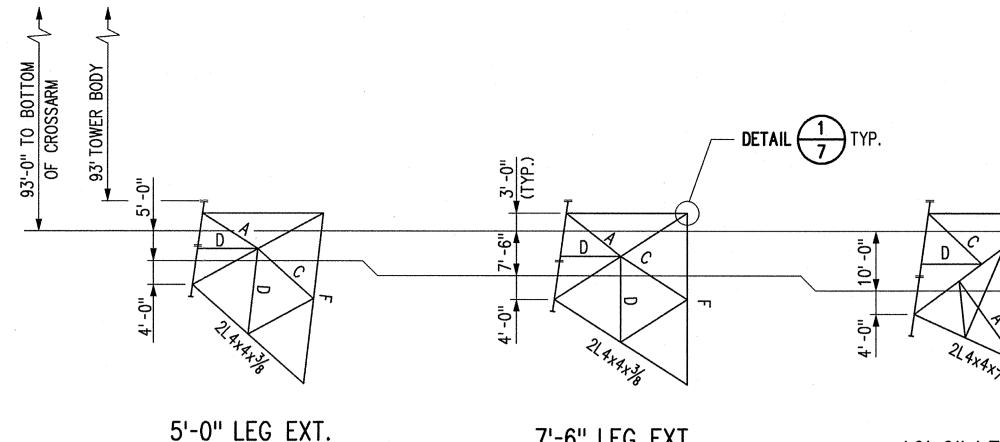

/s/ Christina J. Munro

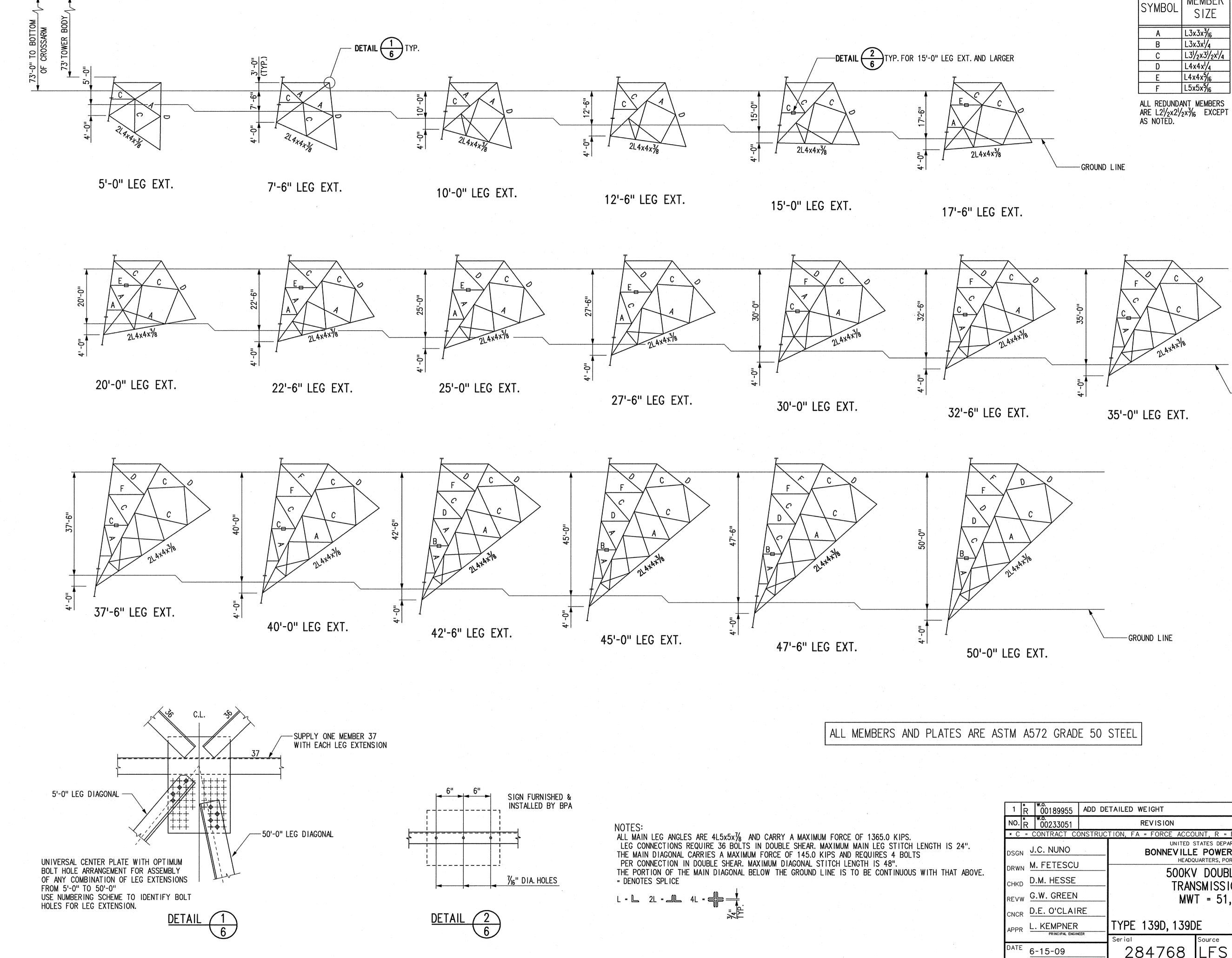
Christina J. Munro Freedom of Information Act/Privacy Act Officer

Enclosure: CD







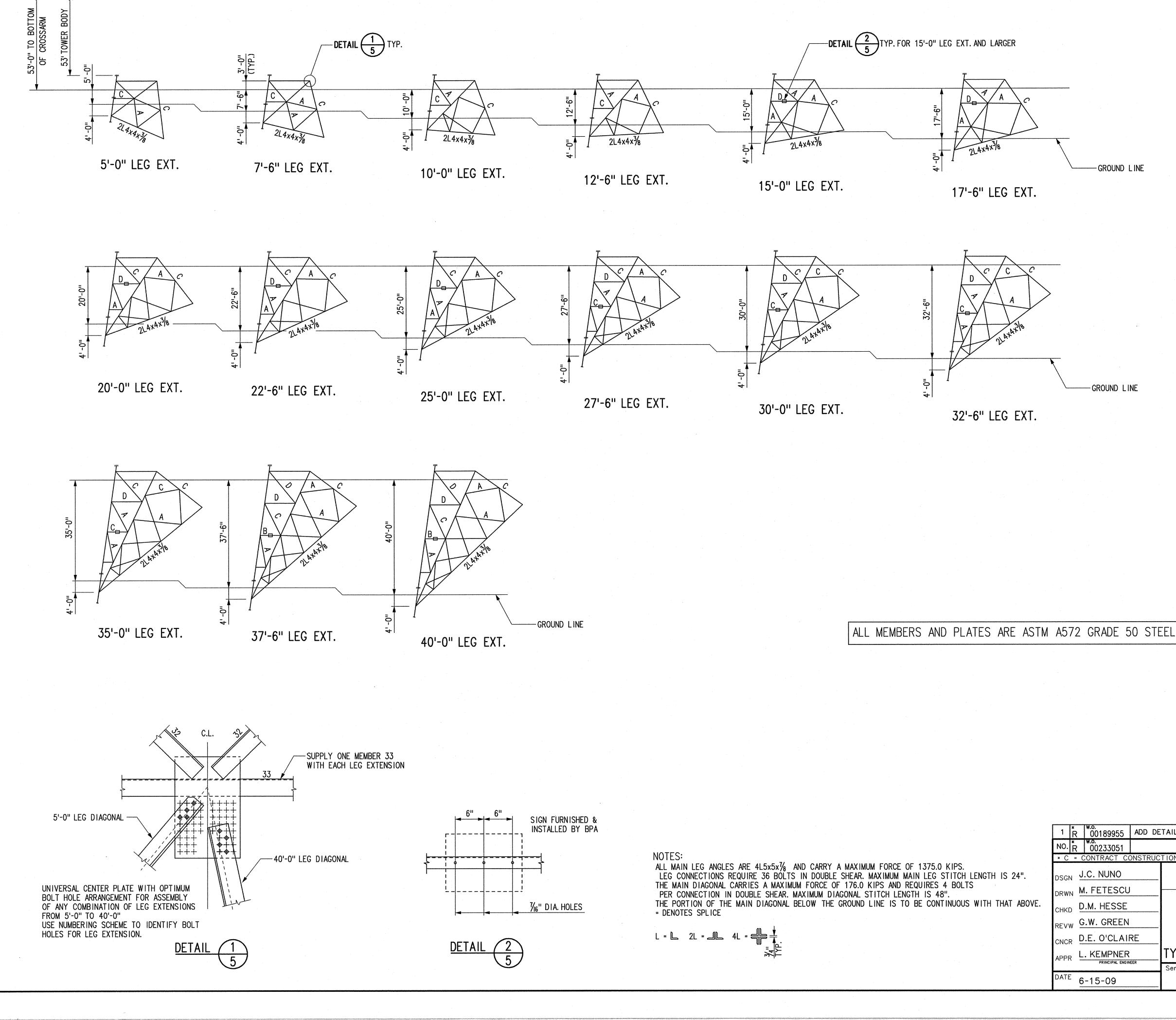


SYMBOL	MEMBER SIZE					
A	L3x3x ³ / ₁₆					
В	L3x3x ^I /4					
 С	$L3\frac{1}{2}x3\frac{1}{2}x^{1}\frac{4}{4}$					
D	L4x4x ^I /4					
Е	L4x4x5⁄16					
F	L5x5x5/16					
ALL REDUNDANT MEMBERS						

LEG EXT. ftin.	DETAILED WEIGHT LBS
5'-0"	4239
7'-6"	4643
10'-0"	5087
12'-6"	5503
15'-0"	5825
17'-6"	6850
20'-0"	7233
22'-6"	7570
25'-0"	8200
27'-6"	8947
30'-0"	9645
32'-6"	10183
35'-0''	10631
37'-6"	11700
40'-0"	12244
42'-6"	12710
45'-0"	13544
47'-6"	14324
50'-0"	14871

-GROUND LINE

955	ADD DE	TAILED	WEIGHT			JCN	1/24/10	son	DMH DEC	>
5051									PROVED	
CT CC	ONSTRUC	TION, FA	= FORCE A	CCOUNT,	R = RE	ECOR)			
NO			BONNEVI	ED STATES LLE PO EADQUARTER	WER	ADM	INISTR		N	
SCU			FOC					T ·		
SSE		500KV DOUBLE CIRCUIT TRANSMISSION TOWER								
REEN				AWT =						
CLAIF	RE	· ·								
PNER	EER	TYPE	139D, 13	S9DE		LEG	EXT.	93F1	r body	1
		Serial		Sourc	ce S	Size	Shee	t	Revision	
9		28	34768	λ Ε	2	Δ	17		1	

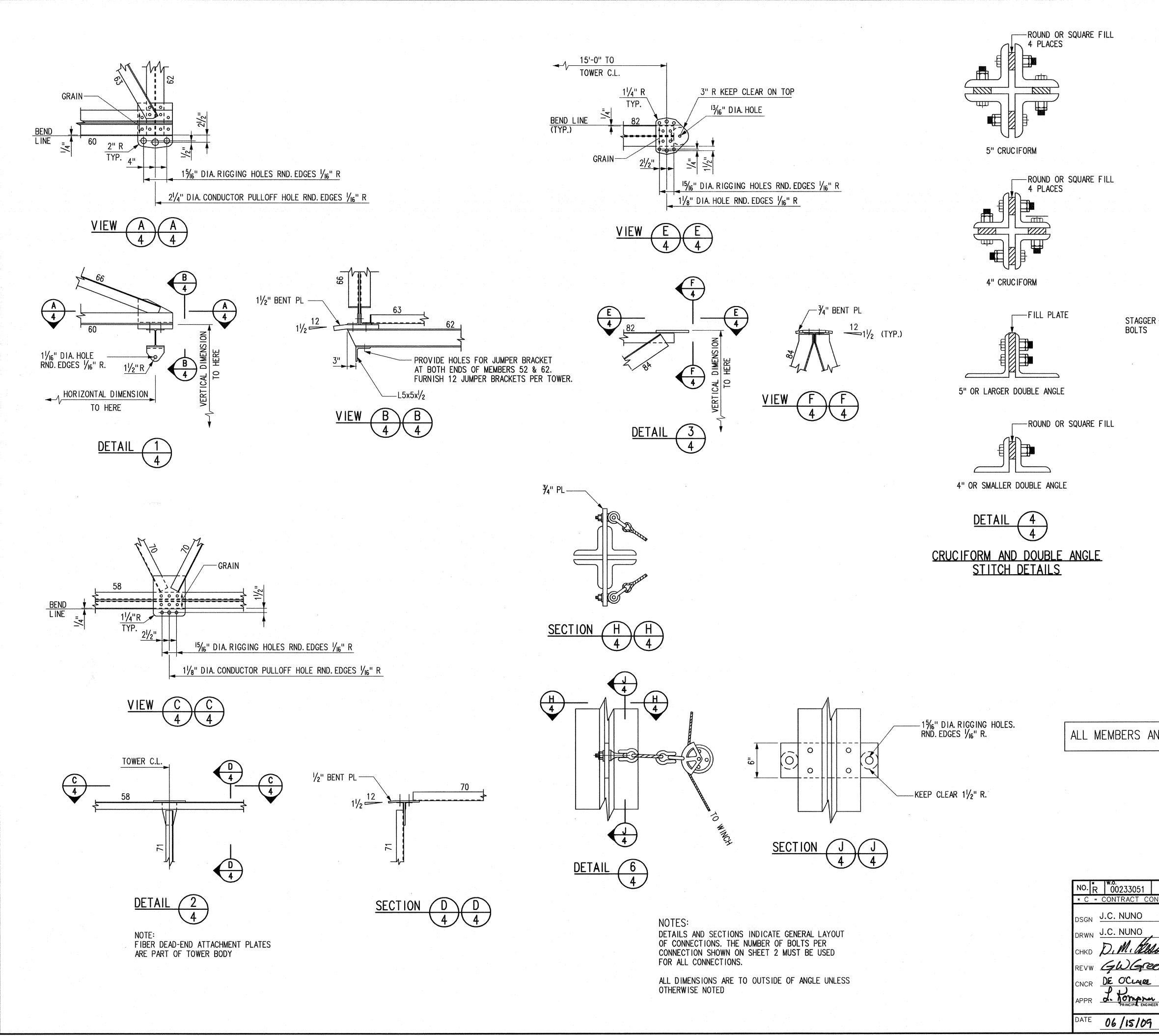


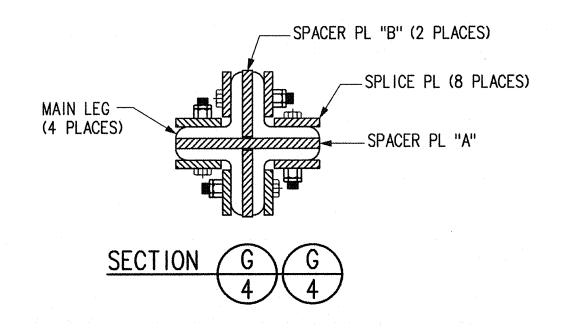
			a . *					
5	ADD DE	TAILED WEIGHT	•	· · ·	JCN	1/22/10	SCN	DMH DEO
1.		REVISIO	Л	1. 4.	BY	DATE	AP	PROVED
СС	DNSTRUC	TION, FA = FORC	CE ACCOU	NT, R = RE	ECOR)		
)				ATES DEPART				J.
		DONN		ARTERS, PORTI			ATIO	
CU					······		Т	
E				DOUBLI			1	
			IRANS	SMISSIO	N I	OWER		
EN			MWT	= 51,0	00	LBS		
AIF	RE							
		TYPE 139D	, 139DE	Ξ	LEG	EXT.	73F1	BODY
.116 IN		Serial		Source	Size	Shee	t	Revision
		2847	68	LFS	A	6		1

LEG EXT. DETAILED WEIGHT FT.-IN. LBS 5'-0" 3734 7'-6" 4191 10'-0" 4650 12'-6" 5067 15'-0" 5541 17'-6" 6341 20'-0" 6745 22'-6" 25'-0" 7251 7718 27'-6" 8289 30'-0" 8992 32'-6" 9622 35'-0" 10733 37'-6" 11184 40'-0" 11774 42'-6" 45'-0" 12440 12595 47'-6" 13544 50'-0" 14047

-GROUND LINE

MEMBER


NO. R 00233051 DSGN J.C. NUNO DRWN M. FETESCU CHKD D.M. HESSE REVW G.W. GREEN CNCR D.E. O'CLAIRE APPR L. KEMPNER DATE 6-15-09


SYMBOL	MEMBER SIZE					
Α	L3x3x ³ / ₁₆					
В	L3x3x ^I /4					
С	$L3\frac{1}{2}x3\frac{1}{2}x^{1}\frac{4}{4}$					
D	L4x4x ¹ /4					
Ε	L4x4x5/16					
F	L5x5x5/16					
ALL REDUNDANT MEMBERS ARE $L2\frac{1}{2}\times2\frac{1}{2}\times3\frac{3}{16}$ EXCEPT AS NOTED.						

LEG EXT. ftin.	DETAILED WEIGHT LBS
5'-0"	3469
7'-6"	3904
10'-0"	4388
12'-6"	4741
15'-0"	5483
17'-6"	5927
20'-0"	6403
22'-6"	6859
25'-0"	7300
27'-6"	8165
30'-0"	8666
32'-6"	9100
35'-0"	10182
37'-6"	10708
40'-0"	11170

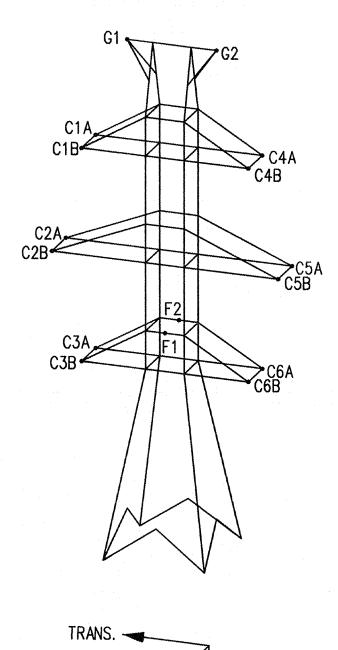
- GROUND LINE

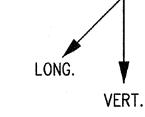
1 R 00189955 ADD DETAILED WEIGHT JCN 11/22/10 JCN MAY DED BY DATE APPROVED REVISION * C = CONTRACT CONSTRUCTION, FA = FORCE ACCOUNT, R = RECORD UNITED STATES DEPARTMENT OF ENERGY BONNEVILLE POWER ADMINISTRATION HEADQUARTERS, PORTLAND, OREGON 500KV DOUBLE CIRCUIT TRANSMISSION TOWER MWT = 51,000 LBSLEG EXT. 53FT BODY TYPE 139D, 139DE Source Size Sheet Serial Revision LFS **A1** 5 284768

	SPL ICE PL	SPACER PL "B"	SPACER PL "A"	MAIN ANGLE
33/8	5%x33%	∛4x5	¥4x10¥4	L5x5x7/8
хЗ	1/2×3	¾ x5	¥4x10¥4	L5x5x5/8
2 ¹ /2	1/2×21/2	∛4×4	∛4×8∛4	L4x4x5/8
21/2	1/4×21/2	³∕ ₄ x4	∛4x8∛4	L4x4x5/16
2	1/2×2	³ ⁄ ₄ x4	∛4×8¾	L4x4x5/8

NOTE

MAIN ANGLE IS SMALLER OF SPLICED ANGLES. USE FILL PL WHEN THICKNESS OF ANGLES BEING SPLICED IS DIFFERENT.


5 DETAIL 4


ERS	AND	PLATES	ARE	ASTM	A572	GRADE	50	STEEL	
			· · · · · · · · · · · · · · · · · · ·						,

					-							
33051	REVISION BY DATE APPROVED								PROVED			
ACT CO	ONSTRUC	TION, FA	- FOR	CE ACCO	UNT, R = F	RECORD) .		di seconda de la constante de			
UNO UNO			BON	NEVILLE	TATES DEPAR	ADM	INISTR		N			
N. He	ise	3	500KV DOUBLE CIRCUIT TRANSMISSION TOWER									
)Gre Cine					T = 51,							
) mpno incipal engin	r h	TYPE 139D, 139DE STRUCTURAL DETAI							DETAILS			
15/09		Serial	347	68	Source	Size	Shee	t	Revision O			

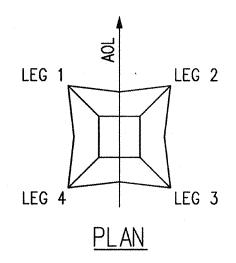
LOAD	CASE	C1A	C1B	C2A	C2B	C3A	C3B	C4A	C4B	C5A	C5B	C6A	C6B	G1	G2	F1	F2
	LONG	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	0.0	0.0	6.1	-6.1
A1	TRANS	33.8	33.8	31.3	31.3	31.3	31.3	33.8	33.8	31.3	31.3	31.3	31.3	11.2	11.2	4.6	4.6
	VERT	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	2.2	2.2	0.6	0.6
	LONG	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	-44.0	44.0	0.0	0.0	6.1	-6.1
A2	TRANS	31.7	31.7	29.8	29.8	29.8	29.8	31.7	31.7	29.8	29.8	29.8	29.8	10.6	10.6	4.4	4.4
	VERT	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	2.2	2.2	0.6	0.6
	LONG	-54.4	54.4	-54.4	54.4	-54.4	54.4	-54.4	54.4	-54.4	54.4	-54.4	54.4	0.0	0.0	9.0	-9.(
B1	TRANS	36.9	36.9	36.9	36.9	36.9	36.9	36.9	36.9	36.9	36.9	36.9	36.9	17.9	17.9	6.8	6.8
	VERT	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	9.0	9.0	4.2	4.
	LONG	-63.3	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	0.0	0.0	10.3	-10.3
B2	TRANS	43.4	43.4	41.3	41.3	41.3	41.3	43.4	43.4	41.3	41.3	41.3	41.3	19.7	19.7	7.3	7.
	VERT	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	10.1	10.1	4.9	4.9
	LONG	0.0	73.1	0.0	73.1	0.0	73.1	0.0	73.1	0.0	73.1	0.0	73.1	16.1	16.1	11.9	0.0
B2L-0	TRANS	0.0	6.8	0.0	4.8	0.0	4.8	0.0	6.8	0.0	4.8	0.0	4.8	1.8	1.8	1.3	0.0
	VERT	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	5.1	5.1	4.9	0.0
	LONG	0.0	63.3	0.0	63.3	0.0	63.3	0.0	63.3	0.0	63.3	0.0	63.3	14.0	14.0	10.3	0.
B2L-1	TRANS	0.0	43.4	0.0	41.3	0.0	41.3	0.0	43.4	0.0	41.3	0.0	41.3	9.9	9.9	7.3	0.
	VERT	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	0.0	30.2	5.1	5.1	4.9	0.
	LONG	-63.3	63.3	-63.3	63.3	-63.3	63.3	0.0	63.3	0.0	63.3	0.0	63.3	0.0	14.0	10.3	-10.3
B2L-2	TRANS	43.4	43.4	41.3	41.3	41.3	41.3	0.0	43.4	0.0	41.3	0.0	41.3	19.7	9.9	7.3	7.
	VERT	30.2	30.2	30.2	30.2	30.2	30.2	0.0	30.2	0.0	30.2	0.0	30.2	10.1	5.1	4.9	4.9
	LONG	0.0	63.3		63.3		63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	14.0		10.3	-10.3
B2L-3	TRANS		43.4	0.0	41.3	0.0	41.3	43.4	43.4	41.3	41.3				0.0	<u> </u>	
DEL J		0.0		0.0		0.0				}		41.3	41.3	9.9 E 4	19.7	7.3	7.3
	VERT	0.0	30.2	0.0	30.2	0.0	30.2	30.2	30.2	30.2	30.2	30.2	30.2	5.1	10.1	4.9	4.9
B2L-4	TRANS	-63.3 43.4	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	-63.3	63.3	0.0	0.0	10.3	0.0
			43.4	41.3	41.3	41.3	41.3	43.4	43.4	41.3	41.3	41.3	41.3	19.7	19.7	7.3	0.0
	VERT	30.2 0.0	30.2 0.0	<u>30.2</u> 0.0	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	10.1	10.1	4.9	0.0
С					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TRANS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	VERT	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	44.4	17.8	17.8	8.9	8.9
D	LONG	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	0.0	0.0	7.7	-7.7
. U	TRANS	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	14.3	14.3	5.5	5.5
	VERT	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	4.9	4.9	1.8	1.8
	LONG	0.0	69.3	0.0	69.3	0.0	69.3	0.0	69.3	0.0	69.3	0.0	69.3	12.5	12.5	8.8	0.0
DL-0	TRANS	0.0	4.6	0.0	4.6	0.0	4.6	0.0	4.6	0.0	4.6	0.0	4.6	1.0	1.0	1.1	0.0
	VERT	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	2.4	2.4	1.8	0.0
	LONG	0.0	60.0	0.0	60.0	0.0	60.0	0.0	60.0	0.0	60.0	0.0	60.0	10.8	10.8	7.7	0.
DL-1	TRANS	0.0	39.3	0.0	39.3	0.0	39.3	0.0	39.3	0.0	39.3	0.0	39.3	7.2	7.2	5.5	0.
	VERT	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	0.0	23.9	2.5	2.5	1.8	0.
	LONG	-60.0	60.0	-60.0	60.0	-60.0	60.0	0.0	60.0	0.0	60.0	0.0	60.0	0.0	10.8	7.7	-7.7
DL-2	TRANS	39.3	39.3	39.3	39.3	39.3	39.3	0.0	39.3	0.0	39.3	0.0	39.3	14.3	7.2	5.5	5.5
	VERT	23.9	23.9	23.9	23.9	23.9	23.9	0.0	23.9	0.0	23.9	0.0	23.9	4.9	2.5	1.8	1.8
	LONG	0.0	60.0	0.0	60.0	0.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	10.8	0.0	7.7	-7.
DL-3	TRANS	0.0	39.3	0.0	39.3	0.0	39.3	39.3	39.3	39.3	39.3	39.3	39.3	7.2	14.3	5.5	5.5
	VERT	0.0	23.9	0.0	23.9	0.0	23.9	23.9	23.9	23.9	23.9	23.9	23.9	2.5	4.9	1.8	1.
	LONG	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	-60.0	60.0	0.0	0.0	7.7	0.0
DL-4	TRANS	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	14.3	14.3	5.5	0.0
	VERT	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	4.9	4.9	1.8	0.0
	LONG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DU	TRANS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	VERT	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-12.0	-2.5	-2.5	-0.9	-0.9

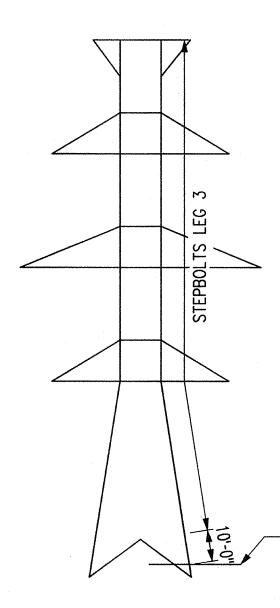
NOTE: LOADS SHOWN IN THE ABOVE TABLE ARE BASED ON A TRANSVERSE SPAN OF 2000', A VERTICAL SPAN OF 4000', AND LINE ANGLE OF 0 TO 60 DEGREES. THE TOWER WAS ALSO CHECKED WITH LOADS CALCULATED BASED ON THE SPAN COMBINATIONS SHOWN ON SHEET 1.

- ULTIMATE DESIGN CONDITIONS
- A1. HIGH WIND ON BARE CONDUCTOR, 100 MPH WIND IN ANY DIRECTION, SPAN FACTOR = 0.7 FOR C2A/B, C3A/B, C5A/B, C6A/B, F1 AND F2 SPAN FACTOR = 1.0 FOR G1, G2, C1A/B, C4A/B TOWER GUST FACTOR = 1.2
- B1. 40.0 MPH TRANSVERSE WIND ON 2" RADIAL RIME ICE (15 PCF).
- B2. 56.6 MPH TRANSVERSE WIND ON 1" RADIAL GLAZE ICE (57 PCF). SPAN FACTOR = 0.7 FOR C2A/B, C3A/B, C5A/B, C6A/B, F1 AND F2 SPAN FACTOR = 1.0 FOR G1, G2, C1A/B, C4A/B
- C. HEAVY VERTICAL $(1\frac{1}{2})$ RADIAL GLAZE ICE). NO WIND.
- D. NESC 2007 EDITION MEDIUM LOADING 40 MPH WIND WITH 1/4" RADIAL GLAZE ICE AND OVERLOAD FACTORS: 1.5 VERTICAL, 2.5 TRANSVERSE, 1.65 LONGITUDINAL.

PROJECTED WIND AREA IS EQUAL TO $1\frac{1}{2}$ TIMES THE PROJECTED AREA OF ONE FACE OF THE TOWER EXCEPT CASE D.

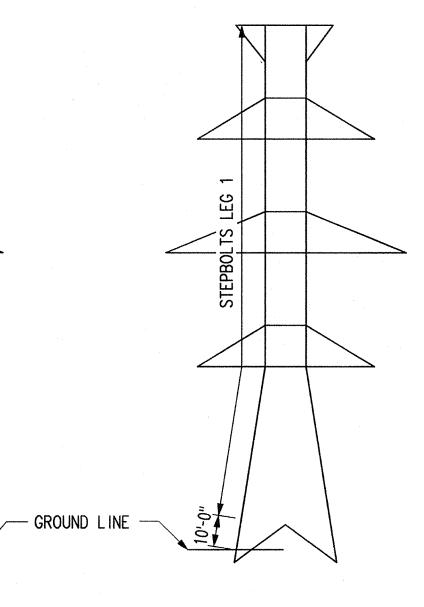
FOR ROUND (APPROXIMATE ROUND) SURFACES: $R = 0.00256 \times V_{o}^{2}$


FOR FLAT SURFACES: $P_x = 0.00256 \times 1.6 \times V_o^2$


LINE ANGLE = 0° - 60°

LOADS SHOWN ARE BASED ON THE FOLLOWING DESIGN SPANS: (SEE NOTE ON SHEET 1)

V SPAN: 4000 FT.


T SPAN: 2000 FT.

VIEW AHEAD ON LINE

TANGENT AND ANGLE TO RIGHT (STEP UP LEG 3)

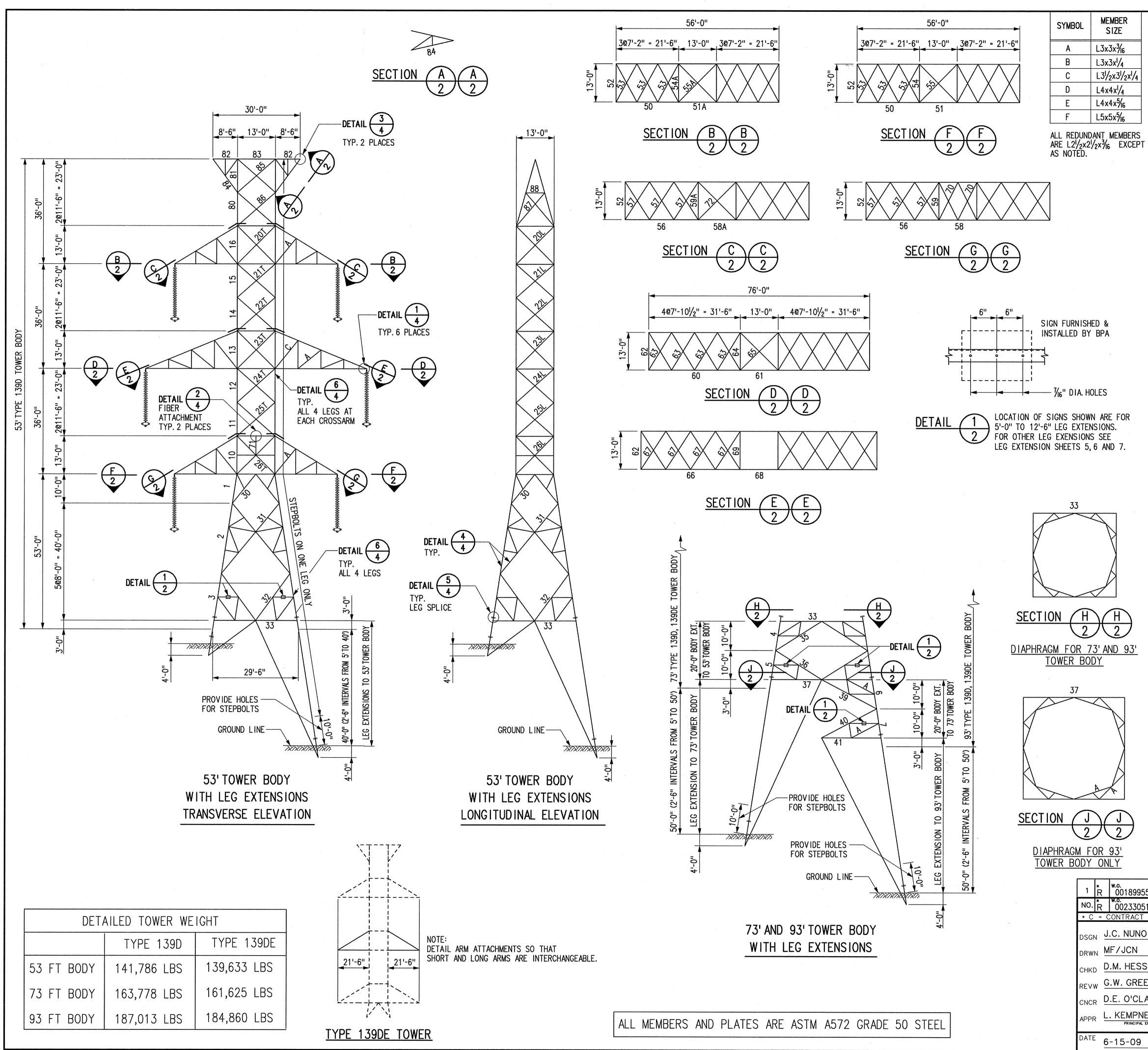
VIEW AHEAD ON LINE ANGLE TO LEFT (STEP UP LEG 1)

B2L-3 DESIGN CON B2L-4 DESIGN CON DESIGN CON С DESIGN CON n DESIGN CO DL-0 DESIGN CO DL-1 DESIGN CON DL-2 DESIGN CON DL-3 DL-4 DESIGN CON DU DESIGN CON

LOAD CASES

ALL LOAD CASES, EXCEPT B2L-2/3/4 AND DL-2/3/4, ARE TO BE REPEATED WITH G1, C1A/B, C2A/B, C3A/B, F1 AND F2 LOADED ONLY.

ALL LOAD CASES, EXCEPT B2L-2/3/4 AND DL-2/3/4, ARE TO BE REPEATED WITH G2, C4A/B, C5A/B, C6A/B, F1 AND F2 LOADED ONLY.

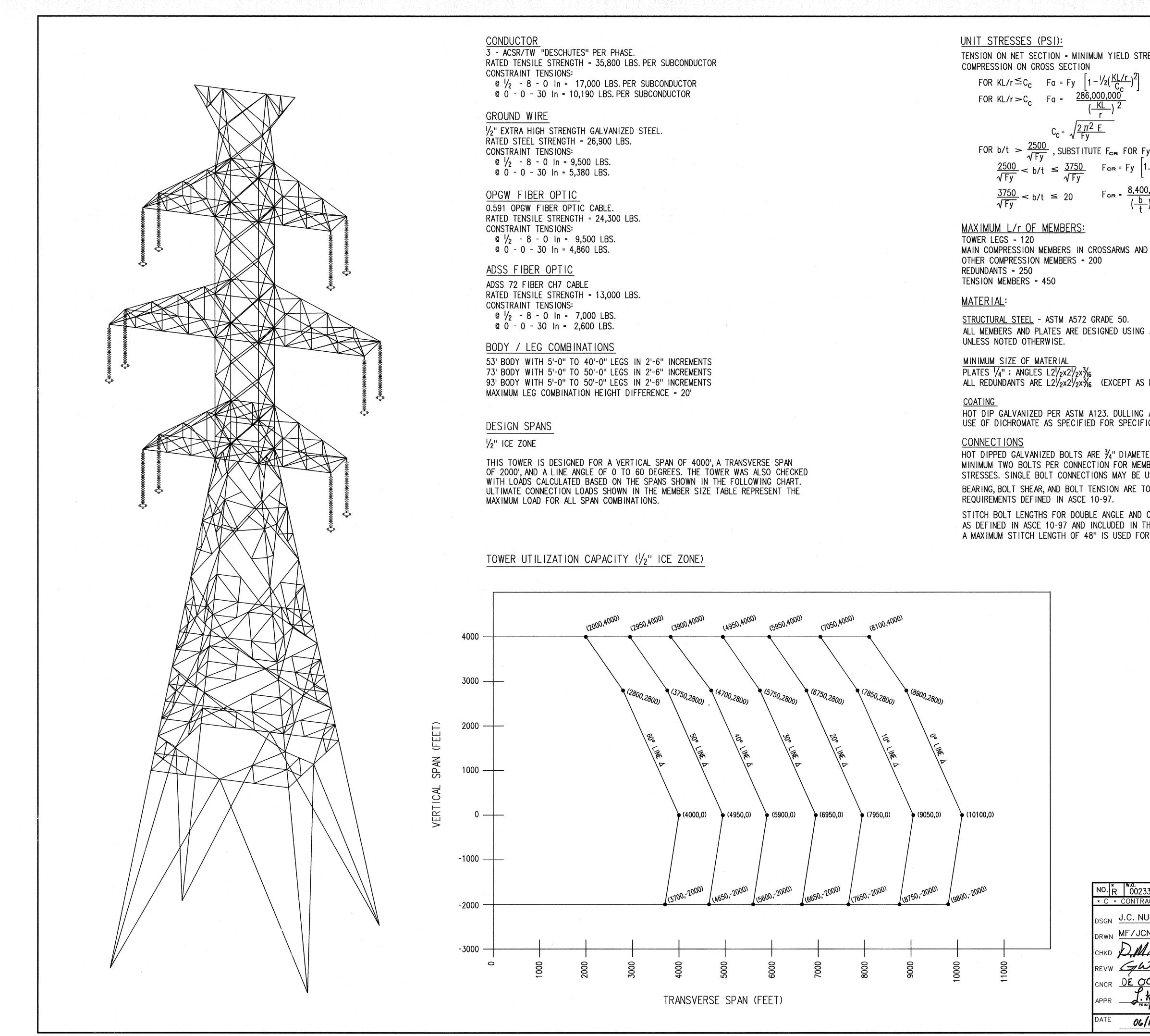

ALL LOADS IN KIPS.

NO. R	w.o. 00233051	REVISION BY DATE APPROVED					
× C ==	CONTRACT CO	DNSTRUCTION, FA = FORCE ACCO	JNT, R = RE	COR)		
DOGN	J.C. NUNO MF/JCN	BONNEV ILLE	TATES DEPARTI POWER JARTERS, PORTL	ADM	INISTR		
DRWN CHKD	D. M. Kis		DOUBLE SMISSIO				
REVW	<u>GWGR</u> DE O'CLAIN	an MWT	= 51,0				
CNCR APPR	J. Nomon PRINCIPAL ENGIN	uh TYPE 139D, 139	DE		DESIG	N CRITERIA	
DATE	06/15/0	Serial	Source S	Size A	Sheet	t Revision	

A1 A2 B1 B2L-0 B2L-1 B2L-2 B2L-3 B2L-4	DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION	A B1 B2 B2 B2 B2 B2 B2	ALL WIRES INTACT. ALL WIRES INTACT, 60° WIND TO LINE. ALL WIRES INTACT. ALL WIRES INTACT. ALL WIRES BROKEN ON ONE FACE @ 0° LINE ANGLE. ALL WIRES BROKEN ON ONE FACE @ 60° LINE ANGLE. ONE GW AND THREE CONDUCTOR PHASES BROKEN ON ONE CIRCUIT. ONE GW AND THREE CONDUCTOR PHASES BROKEN ON ONE CIRCUIT. BROKEN FIBER OPTIC WIRE.
C D DL-0 DL-1 DL-2 DL-3 DL-4 DU	DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION DESIGN CONDITION	D D D D D	ALL WIRES INTACT. ALL WIRES INTACT. ALL WIRES BROKEN ON ONE FACE @ 0° LINE ANGLE. ALL WIRES BROKEN ON ONE FACE @ 60° LINE ANGLE. ONE GW AND THREE CONDUCTOR PHASES BROKEN ON ONE CIRCUIT. ONE GW AND THREE CONDUCTOR PHASES BROKEN ON ONE CIRCUIT. BROKEN FIBER OPTIC WIRE. 1/2 VERTICAL LOAD IN UPLIFT.

FOR ULTIMATE STRENGTH DESIGN, THE TOWER SHALL BE DESIGNED TO WITHSTAND THE DESIGN LOADS SHOWN WITH A FACTOR OF SAFETY EQUAL TO 1.0 UNLESS OTHERWISE SPECIFIED.

> 12" WORK ING SPACE 30" CLIMBING SPACE 12" WORKING SPACE - 30" CLIMBING SPACE CLEARANCE FROM JUMPER TO CLIMBING SPACE OR WORKING SPACE = 12'-0" WORKING AND CLIMBING SPACES



	MEMBER	ULT. CONN. LOAD (KIPS)	MEMBER SIZE	NO. OF BOLTS PER CONN.	AX. STITCH ENGTH (IN)	MEMBER	ULT. CONN. LOAD (KIPS)	MEMBER SIZE	NO. OF BOLTS PER CONN.	MAX. STITCH LENGTH (IN)
									ON	
-	1	1315.1	4L5x5x7/8	36●	30	50	162.1	2L4x4x5/16	. 5.●	40
	2	1334.9	4L5x5x7/8	36•	30	51	235.7	2L4x4x3%	6•	24
	3	1374.7	4L5x5x7/8	36•	30	51A	97.3	2L5x5x5/16	3●	48
	4	1349.1	4L5x5x7/8	36●	24	52	FLEX	W6x20	4	
	5	1364.3	4L5x5x7/8	36•	24	53	45.3		3	
	6	1346.1	4L5x5x7/8	36●	24	54	199.8	2L4x4x5/16	5●	24
	7	1356.3	4L5x5x7/8	36•	24	54A	9.2	L31/2x31/2x1/4	2	
	10	1021.0	4L5x5x5⁄8	28•	32	55	57.9	L5x5x5⁄16	3	
	11	899.7	4L5x5x5%	22•	32	55A	32.4	L4x4x5//6	2	
	12	621.9	4L4x4x5%	16•	42	56	105.7	2L31/2x31/2x1/4	4●	46
Γ	13	409.5	4L4x4x5%	10•	42	57	31.1	L4x4x ¹ /4	2	
Γ	14	294.2	4L4x4x5/16	8•	44	58	45.2	2L21/2×21/2×3/16	2•	36
· [15	178.8	4L4x4x5/16	8•	44	58A	59.0	2L3x3x ³ / ₁₆	3●	48
	16	93.2	4L4x4x5/16	8•	44	59	81.7	2L4x4x5/16	2•	48
Γ	20T	54.3	L5x5x5/16	3		59A	19.3	2L3x3x ³ /16	2●	48
	20L	40.6	L5x5x5/16	3		60	200.1	2L4x4x3/8	5●	44
	21T	125.0	2L4x4x5/16	4•	48	61	90.5	2L5x5x5/16	3●	48
	21L		2L4x4x5/16	3●	48	62	FLEX	W6x20	4	
-	22T	125.0	2L4x4x5/16	4•	48	63	40.8	L4x4x5/16	2	-
-	22L		2L4x4x5/16	3●	48	64	23.4	2L3x3x ³ /16	2•	48
F	23T	159.7	2L4x4x ³ / ₈	4•	48	65	42.8	L5x5x5/16	3	
	23L		2L4x4x ³ / ₈	4●	48	66	119.6	$2L_{3}^{1}/_{2}\times_{3}^{1}/_{2}\times_{4}^{1}/_{4}$	4●	48
	24T	270.6	$2L5x5x\frac{1}{2}$	7●	48	67	23.9	$L3^{1}/_{2}\times 3^{1}/_{2}\times 1^{1}/_{4}$	2	
F	24L	177.6	2L5x5x5/16	5•	48	68	91.1	$2L3\frac{1}{2}x3\frac{1}{2}x^{1}/4$	3●	48
-	25T	270.6	2L5x5x3/8	7•	48	69	22.7	$2L3x3x\frac{3}{16}$	2•	48
	25L	177.6	2L5x5x5/16	5●	48	70	17.8	$L3x3x_{16}^{3}$	2	
	26T	306.2	$2L5x5x\frac{1}{2}$	8•	48	71	9.0	L21/2×21/2×3/16	2	
	26L	277.3	2L5x5x3/8	7●	48	72	19.8	L31/2x31/2x1/4	2	
F	30	265.7	2L5x5x3/8	7●	48	80	37.9	L5x5x5/16	2	
F	31	178.8	2L5x5x3/8	5•	48	81	12.1	L5x5x5/16	2	
F	32		$2L5x5x\frac{5}{16}$	4•	48	82	27.3		2•	24
-	33		$L3x3x_{16}^{3/16}$	2		83	23.9	$2L3^{1}/_{2}x3^{1}/_{2}x^{1}/_{4}$	2•	48
F	35	89.6	$2L4x4x\frac{3}{8}$	3•	48	84	39.7	L5x5x5/16	3	
F	36		$2L4x4x\frac{5}{16}$	2•	48	85	18.2	$L3\frac{1}{2}x3\frac{1}{2}x\frac{1}{4}$	2	
	37		$L3^{1}/_{2}\times 3^{1}/_{2}\times 1^{1}/_{4}$	2		86		$L4x4x\frac{3}{8}$	2	
	39		$2L4x4x\frac{3}{8}$	2•	48	87	5.1	$L3x3x\frac{3}{16}$	2	
F	40		$2L4x4x\frac{5}{6}$	2•	48	88		L2 ¹ / ₂ ×2 ¹ / ₂ × ³ / ₁₆	2	
╞	41		L4x4x1/4	2				/ 2/ 2/10	. .	

• DENOTES DOUBLE SHEAR = DENOTES SPLICE

"FLEX" DENOTES DESIGN BASED ON FLEXURAL STRESS ALL FORCES IN KIPS

		· · · ·									
9955		MEMBER FAILED TO	TABLE; DWER WEIGHT		JCN	1/22/10	JCN	DMH	DEO		
3051			REVISION		BY	DATE	AF	PROV	ED		
CT CC	ONSTRUC	TION, FA	= FORCE ACCO	UNT, R = F	ECOR)					
NO		ł	BONNEVILLE	TATES DEPAR POWER UARTERS, POR	ADM	INISTR		N			
V											
SSE			500KV DOUBLE CIRCUIT								
REEN			TRANS	MISSIO	N TC)WER					
	RE		MWT	= 51,0	00 L	.BS					
PNER TYPE 139D, 139DE DESI						DESIG	N CF	RITE	RIA		
		Serial		Source	Size	Shee	t	Revis	ion		
9		28	34768	LFS	A	2	-	1			

TENSION ON NET SECTION = MINIMUM YIELD STRESS Fy

FOR KL/r
$$\leq C_c$$
 Fa = Fy $\left[1 - \frac{1}{2}\left(\frac{KL/r}{C_c}\right)^2\right]$
FOR KL/r $> C_c$ Fa = $\frac{286,000,000}{\left(\frac{-KL}{r}\right)^2}$
 $C_c = \sqrt{\frac{2\pi^2 E}{Fy}}$
FOR b/t $> \frac{2500}{\sqrt{Fy}}$, SUBSTITUTE For FOR

 $\frac{2500}{\sqrt{Fy}} < b/t \le \frac{3750}{\sqrt{Fy}} \qquad F_{CR} = Fy$

MAIN COMPRESSION MEMBERS IN CROSSARMS AND GROUND WIRE PEAKS = 150

ALL MEMBERS AND PLATES ARE DESIGNED USING ASTM A572 GRADE 50

PLATES $\frac{1}{4}$; ANGLES $\frac{12}{2} \times \frac{21}{2} \times \frac{3}{16}$ ALL REDUNDANTS ARE $\frac{12}{2} \times \frac{21}{2} \times \frac{3}{16}$ (EXCEPT AS NOTED)

HOT DIP GALVANIZED PER ASTM A123. DULLING AS SPECIFIED FOR SPECIFIC PROJECT. USE OF DICHROMATE AS SPECIFIED FOR SPECIFIC PROJECT.

HOT DIPPED GALVANIZED BOLTS ARE $\frac{3}{4}$ " DIAMETER A325 TYPE 1 WITH LOCKNUT. MINIMUM TWO BOLTS PER CONNECTION FOR MEMBERS CARRYING CALCULATED STRESSES. SINGLE BOLT CONNECTIONS MAY BE USED SUBJECT TO BPA APPROVAL. BEARING, BOLT SHEAR, AND BOLT TENSION ARE TO BE DESIGNED FOLLOWING THE

STITCH BOLT LENGTHS FOR DOUBLE ANGLE AND CRUCIFORM SECTIONS ARE CALCULATED AS DEFINED IN ASCE 10-97 AND INCLUDED IN THE MEMBER TABLE ON SHEET 2. A MAXIMUM STITCH LENGTH OF 48" IS USED FOR ALL SECTIONS.

$$b/t \leq \frac{2500}{\sqrt{Fy}}$$

y IN ABOVE FORMULAS.
.8 - $\frac{(b/t)\sqrt{Fy}}{3110}$

233051	REVISION		BY	DATE	APF	PROVED		
RACT CONSTRUC	TION, FA = FORCE ACCOU	JNT, R = R	ECORD)				
NUNO	UNITED STATES DEPARTMENT OF ENERGY BONNEVILLE POWER ADMINISTRATION HEADQUARTERS, PORTLAND, OREGON							
1. Hesse	500KV DOUBLE CIRCUIT TRANSMISSION TOWER							
w Green	MWT = 51,000 LBS							
Kompman L RINCIPAL ENGINEER	TYPE 139D, 139DE STRUCTURAL DESIGN							
7 7	Serial	Source	Size	Shee	t	Revision		
115/09	284768	LFS	A 1	10	F9	0		

MEMBER	SIZE	LENGTH	LX	EQX	KL/RX	LZ	EQZ	KL/RZ	TENSION CAPACITY	FORCE
$\begin{array}{c} 47C\\ 48A\\ 48B\\ 48C\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 60\\ 62\\ 63\\ 64\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 90\\ 91\\ 92\\ 93\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 120\\ 121\\ 122\\ 123\\ 107\\ 108\\ 109\\ 111\\ \end{array}$	L1 3/4 X1 3/4 X 1/8 L1 3/4 X1 3/4 X 3/16 L3X3X 3/16 L2 1/2 X2 1/2 X 3/16 L2 1/2 X2 1/2 X 3/16 L2X2X 3/16 * L4X4X 1/4 L4X4X 1/4 L4X4X 1/4	4.0 4.5 4.0 7.4 4.0 7.4 4.0 7.4 7.5 4.0 10.6 6.3 9.4 6.3 9.4 6.3 7.4 9.0 7.9 20.1 10.6 9.5 2.0 11.7 6.6 11.5 14.7 14.7 12.0 16	58888566666665555561137787843342335555622222266666664334444233243444434334564679911092561141211111111111111111111111111111111	\$	$\begin{array}{c} 55.8\\ 78.8\\ 79.9\\ 99.9\\ 99.2\\ 23.3\\ 39.9\\ 99.9\\$	5444566666655555565374478977742335555622222266663662334342332334444443434334564679911092565772867022 544445666666655555556537444789777423355555622222226666366233434233233444444343433456467991109256577218670212 12	© © © © © © © © © © © © © © © © © © ©	138.3 78.0 122.8 57.8 115.4 138.3 126.4 139.9 111.5 157.7 118.0 195.4 113.3 138.3 151.8 156.7 185.5 165.7 30.8 119.5 203.9 100.3 112.9 112.9 183.9	$\begin{array}{c} 56.3\\ 96.6\\ 128.1\\ 128.1\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.4\\ 152.5\\ 56.3\\ 38.4\\ 38.5\\ 55.5\\ 56.5\\ 56.5\\ 56.5\\ 56.3\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.3\\ 8.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 8.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 8.4\\ 38.5\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 38.3\\ 8.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 38.3\\ 8.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 38.3\\ 8.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 38.3\\ 38.3\\ 38.3\\ 38.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 39.3\\ 38.3\\ 38.3\\ 38.4\\ 38.4\\ 38.6\\ 11.6\\ 9.6\\ 39.2\\ 22.2\\ 21.3\\ 39.3\\ 39.3\\ 39.3\\ 38.3\\ 38.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 38.5\\ 38.3\\ 38.3\\ 8.4\\ 38.6\\ 8.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 44.4\\ 38.6\\ 8.4\\ 38.6\\ 8.4\\ 38.6\\ 8.4\\ 38.6\\ 8.4\\ 44.4\\$	$\begin{array}{c} 3123496245668709145850120639507897275842045611899654355437341162343167913081392966617105225125\\ 201781232026435668709145850120639507897275842045611899654355437341162343167913081392966617108525125\\ 20178123202643501202643501679130813929666171082746822746822\\ 201781232026435554373411623431679130813929666171085255125\\ 117502325129113441082746822\\ 1182255125566656666566656665666566656665666$

CE	LC	COMPRESSION CAPACITY	FORCE	LC	UTIL
57962456687091458501206395078972758420456118996543554373411623431679130813929661710525125	VT4_ E1 VT4_ E1 VT4_ E1 VT4_ E1 VT4_ E1 VT4_ A VT4_ E1 VT4_ E2 VT4_ E2 VT4_ E2 VT4_ E2 VT4_ E1 VT4_ E1 VT1_ E1 VT1_ E1 VT1_ E1 VT1_ E1 VT1_ C VT1_ C V VT1_ C V VT1_ C V VT1_ C V V V C V C V C V C V C V C V C C V	$\begin{array}{c} 55.3\\ 55.2\\ 86.9\\ 87.1\\ 101.5\\ 101.5\\ 101.5\\ 101.5\\ 101.5\\ 101.5\\ 101.5\\ 101.5\\ 101.4\\ 150.5\\ 10.1\\ 17.1\\ 12.3\\ 10.9\\ 53.7\\ 48.0\\ 133.5\\ 10.0\\ 13.5\\ 25.9\\ 40.7\\ 75.3\\ 8.1\\ 25.9\\ 40.7\\ 75.3\\ 8.1\\ 25.9\\ 40.7\\ 75.3\\ 8.1\\ 25.9\\ 40.7\\ 75.3\\ 9.3\\ 40.6\\ 3.5\\ 7.3\\ 9.1\\ 30.2\\ 24.1\\ 10.0\\ 13.5\\ 25.9\\ 40.7\\ 75.3\\ 8.1\\ 23.9\\ 40.7\\ 75.3\\ 9.3\\ 40.7\\ 75.3\\ 9.3\\ 40.7\\ 75.3\\ 9.3\\ 40.7\\ 75.3\\ 9.1\\ 30.2\\ 24.1\\ 10.0\\ 41.3\\ 24.1\\ 10.9\\ 92.6\\ 3.3\\ 27.7\\ 7.5\\ 14.4\\ 10.9\\ 24.1\\ 10.9\\ 21.6\\ 10.9\\ 21.6\\ 10.9\\ 10.9\\ 21.6\\ 10.9\\ $	$\begin{array}{c} 45.1\\ 30.2 \\ 71.5 \\ 87.5 \\ 9.10\\ 10.6 \\ 7.5 \\ 9.10\\ 10.6 \\ 7.5 \\ 10.7 \\ 80.7 \\ 9.10\\ 10.6 \\ 7.5 \\ 10.7 \\ 10.6 \\ 7.5 \\ 10.7 \\ 10.$	VT4_ G1 VT1_ E1 VT1_ E1 VT1_ E1 VT4_ A1 VT1_ C1 VT1_ C1 <td< td=""><td>0.817 0.556 0.778 0.922 0.781 0.922 0.781 0.922 0.782 0.922 0.838 0.799 0.838 0.799 0.838 0.799 0.849 0.7945 0.849 0.7945 0.849 0.7945 0.9456 0.9563 0.95655 0.9565555 0.9565555555555555555</td></td<>	0.817 0.556 0.778 0.922 0.781 0.922 0.781 0.922 0.782 0.922 0.838 0.799 0.838 0.799 0.838 0.799 0.849 0.7945 0.849 0.7945 0.849 0.7945 0.9456 0.9563 0.95655 0.9565555 0.9565555555555555555

NOTES:

1. * DENOTES ASTM A572 GRADE 50 STEEL. ALL OTHERS ASTM A36.

2. UNITS ARE FEET AND KIPS.

3. TENSION CAPACITIES:

TENSION CAPACITIES ARE BASED ON THE REDUCTION IN MEMBER AREA DUE TO BOLT HOLES. THE ACTUAL NUMBER OF HOLES IN THE MEMBER, BASED ON DETAILING, MAY NOT BE THE SAME AS THE DEFAULT NUMBER OF BOLTS USED IN THE MODEL.

CONNECTION STRENGTH IS NOT CONSIDERED.

4. COMPRESSION CAPACITIES:

LZ, EQZ, & KL/RZ ARE EQUAL TO LY, EQY & KL/RY FOR SHAPES OTHER THAN SINGLE ANGLES. EQUATIONS:

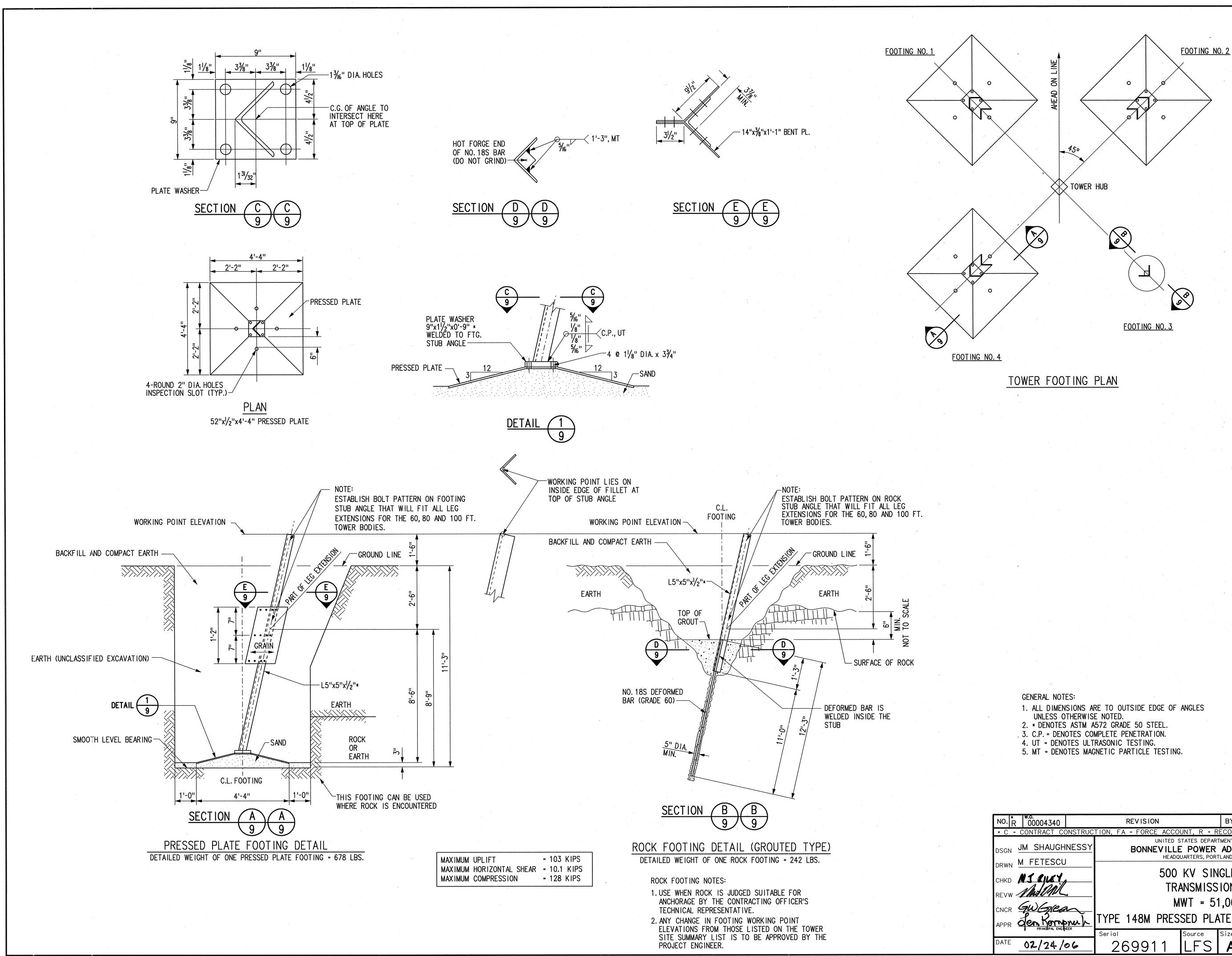
0: KL/R = L/R 6: KL/R = 30 + 0.75 L/R 7: KL/R = 60 + 0.50 L/R 8: KL/R = 28.6 + 0.76 L/R 9: KL/R = 46.2 + 0.615 L/R

CONNECTION STRENGTH IS NOT CONSIDERED.

5. TENSION AND COMPRESSION FORCES CONSIDER ALL FIBER POSITIONS AND ALL COMBINATIONS OF VERTICAL AND TRANSVERSE SPANS. 6. "UTIL" IS MEMBER UTILIZATION (MAXIMUM OF TENSION FORCE / TENSION CAPACITY AND COMPRESSION FORCE / COMPRESSION CAPACITY). 7. MAIN LEG AND DIAGONAL LEG MEMBER MODELING INFORMATION IS NOT INCLUDED DUE TO VARIATIONS FROM DIFFERING LEG EXTENSIONS. 8. MEMBER 56 NOT INCLUDED DUE TO FLEXURAL DESIGN.

WHEN SI SHAPES ARE AVAILABLE AND MORE ECONOMICAL, A SUBTITUTION CAN BE MADE USING THE FOLLOWING SI SHAPES WITH BPA APPROVAL:

ENGLISH OR IMPERIAL SHAPE	METRIC
L1 3/4 X 1 3/4 X 1/8	L 45 X 45
L1 3/4 X 1 3/4 X 3/16	L 45 X 45
L2X2X 1/8	L 50 X 50
L2X2X 3/16	L 50 X 50
L2 1/2 X 2 1/2 X 3/16	L 65 X 65
L3X3X 3/16	L 75 X 75
L3X3X 1/4	L 75 X 75
L3 1/2 X 3 1/2 X 1/4	L 90 X 90
L4X4 1/4	L 100 X 1
L4X4 5/16	L 100 X 1
L4X4 3/8	L 100 X 1
L5X5 5/16	L 13Ø X 1
L5X5 3/8	L 130 X 1
L5X5 5/8	L 13Ø X 1


FOR MEMBER 23, USE L75 X 75 X 7.

FOR THE LEG DIAGONAL MEMBERS UNDER THE 80 AND 100 FT. BODIES, THE FOLLOWING LEG EXT. DIAGONALS SHALL USE L75 X 75 X 7: 22'-6", 37'-6", 47'-6" AND 50'-0".


> NO.' * C DSGN DRWN CHKD REVW CNCR APPR DATE

IC OR SI SHAPE 45 X 3 5 X 5 бØХЗ 5ØX5 S X 5 75 X 5 75 X 6 9ØX6 100 X 6 100 X 8 100 X 10 13Ø X 8 13Ø X 1Ø 13Ø X 16 _____

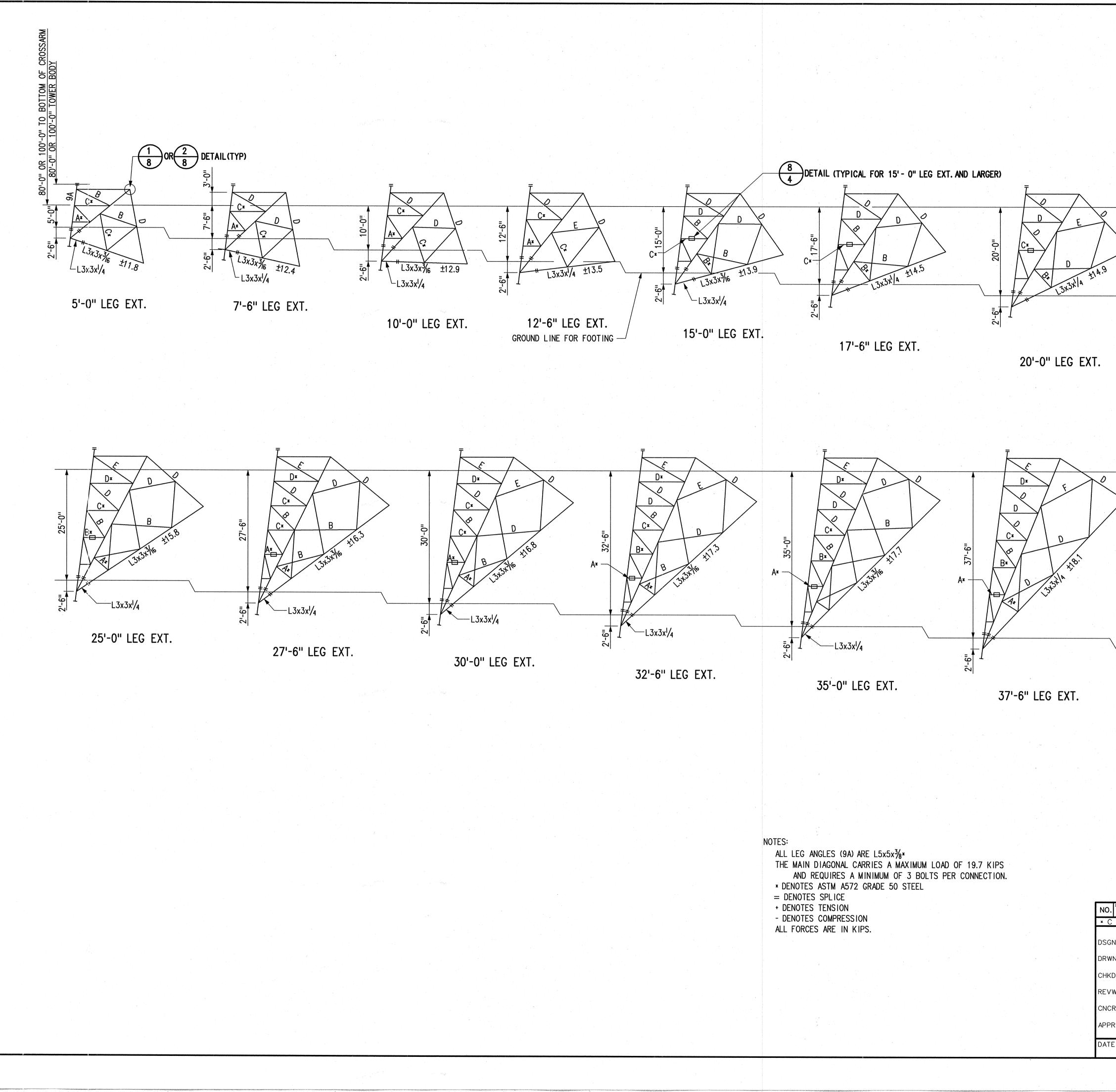
R		MODIFIE	D GROUND	WIRE BRACK	ETS	DMH	10/19/10	Dmf	JUN JK
	w.o. 4340			REVISION		BY	DATE	AP	PROVED
= (CONTRACT CO	ONSTRUC	TION, FA	- FORCE AC	COUNT, R = R	ECOR)		
D	.M. HESSE			BONNEVIL	D STATES DEPART	ADM	INISTR		N
D	.M. HESSE		HEADQUARTERS, PORTLAND, OREGON						
E.T. ORTH			500 KV SINGLE CIRCUIT TRANSMISSION TOWER						
М	ICHAEL D. N	/ ILLER			WT = 51,0				
G	.W. GREEN		•						
L			TYPE	148M	МО	DEL	ING II	NFOR	MATION
0	2/24/06		Serial	59911	^{Source}	Size	Shee	t)	Revision 1

R 00004340	REVISION	BY	DATE	APPROVED
= CONTRACT CONSTRUC	TION, FA = FORCE ACCOUNT, R =	RECOR)	
JM SHAUGHNESSY	UNITED STATES DEPA BONNEVILLE POWER HEADQUARTERS, POI	R ADM	INISTR	
M FETESCU	500 KV SI			
Muslonic	TRANSMISS MWT = 5			
GWGreen				
PRINCIPAL ENGINEER	TYPE 148M PRESSED PL		i di si i i i i i i i i i i i i i i i i	
	Serial Source	Size	Shee	et Revision
02/24/06	269911 LFS	A	1 9	0

DATE

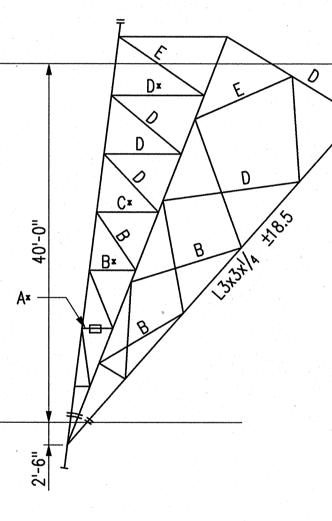
p.

SYMBOL	MEMBER SIZE
Α	L1¥4x1¥4x1/8
В	$L2x2x\frac{1}{8}$
С	L2x2x ³ / ₁₆
D	L21/2×21/2×3/16
Е	L3x3x ³ / ₁₆
F	L31/2x31/2x1/4

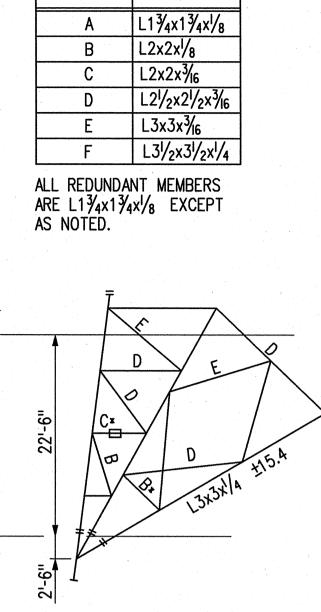

· · · · · · · · · · · · · · · · · · ·					
LEG	DETAILED WEIGHT				
EXT. FTIN.	80' (LBS)	100(LBS)			
42'-6"	2319	2436			
45'-0''	2408	2445			
47'-6"	2654	2692			
50'-0"	2610	2647			

ALL REDUNDANT MEMBERS ARE $L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$ EXCEPT AS NOTED.

- SUPPLY WITH LEG EXTENSIONS FOR 80'BODY 80 FT. BODY EXTENSION


SUPPLY WITH LEG EXTENSIONS FOR 100' BODY

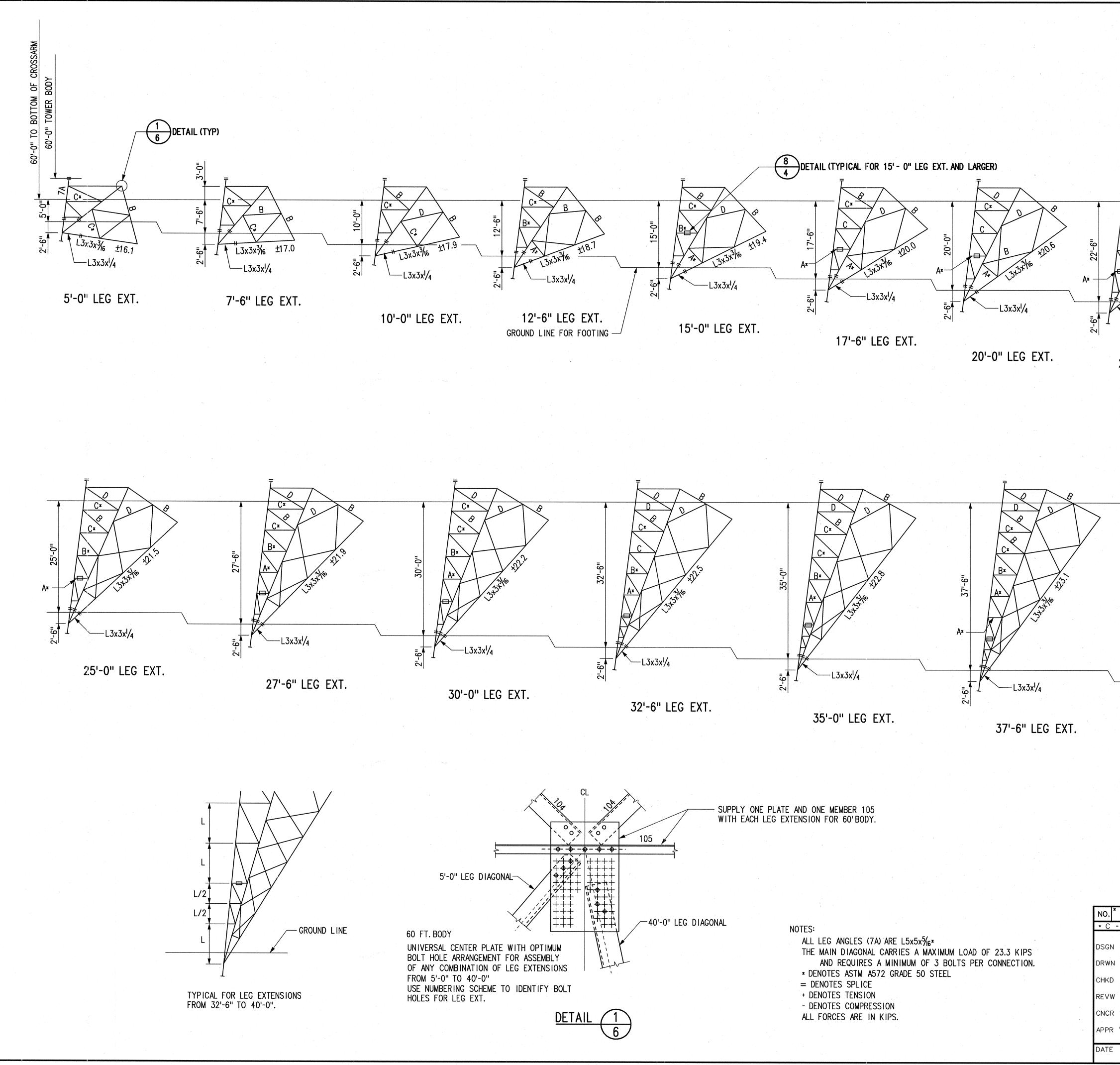
			NAL CARRIES ES A MINIMUN A572 GRADE CE ION RESSION	A MAXI M OF 3	BOLTS	AD OF 19.7 KIPS PER CONNECTION.		
w.o. 4340		REVISION		BY	DATE	APPROVED		
CONTRACT CON	STRUC		OUNT, R = R STATES DEPAR					
MDM		BONNEVILI	E POWER	ADMI	NISTR	ATION		
MDM		HEADQUARTERS, PORTLAND, OREGON						
E.T. Ont	4	500 KV SINGLE CIRCUIT						
Na.1A.A.A		TRANSMISSION TOWER						
/ mary/1100	·	MWT = 51,000 LBS.						
Gw Green	<u> </u>							
ten Kompni	nh	TYPE 148M L	EG EXT	80 &	· 100	FT BODIES		
FRINCIPAL ENGINEER	[Serial	Source	Size	Sheet	Revision		
02/24/06		269911	LFS	A1	8	0		

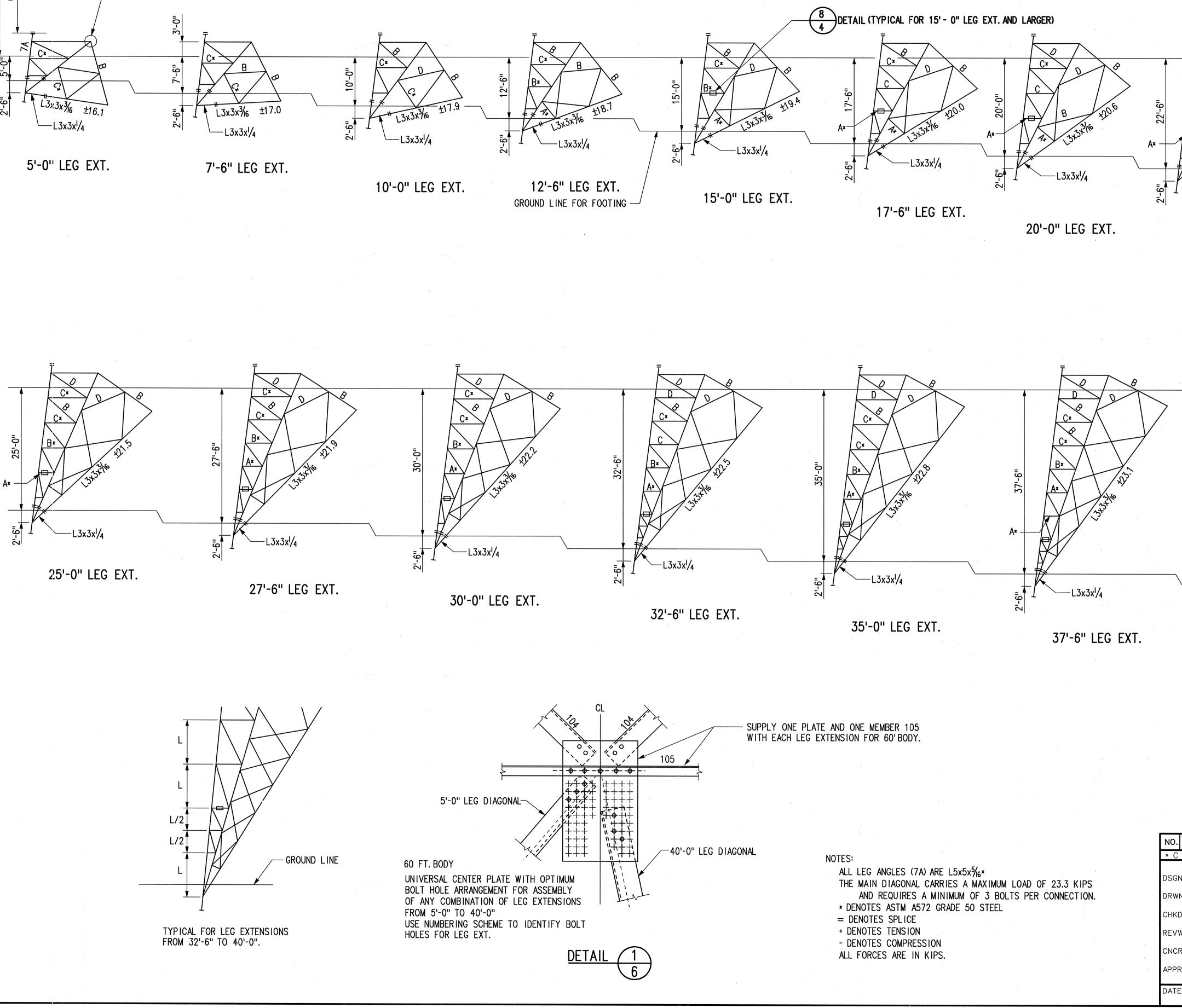


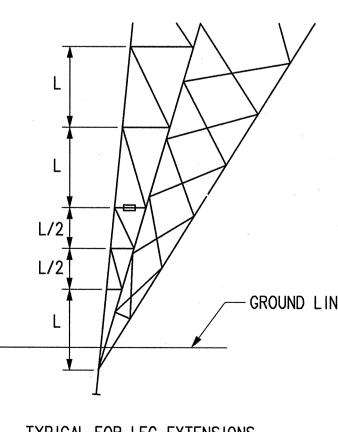
• w.o. 4340		RE	VISION		BY	DATE	APPR	OVED	
C = CONTRACT CC									
M D MILLE		E	BONNEVIL	D STATES DEPART LE POWER ADQUARTERS, PORT	ADM	NISTR			
D E.T. ON	th			KV SING					
w Mail M				IWT = 51,					
R Contemport	iner h	TYPE	148M	LEG EXT	80 8	× 100	FT B	ODIES	
E 02/24/0	6	Serial 269	9911	^{Source}	Size	Sheet	t Re	evision O	

40'	-0"	LEG	EXT.

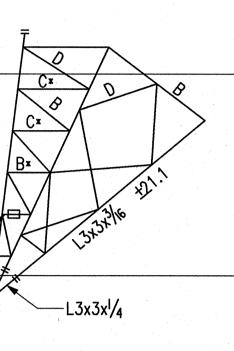
22'-6" LEG EXT.


MEMBER SIZE

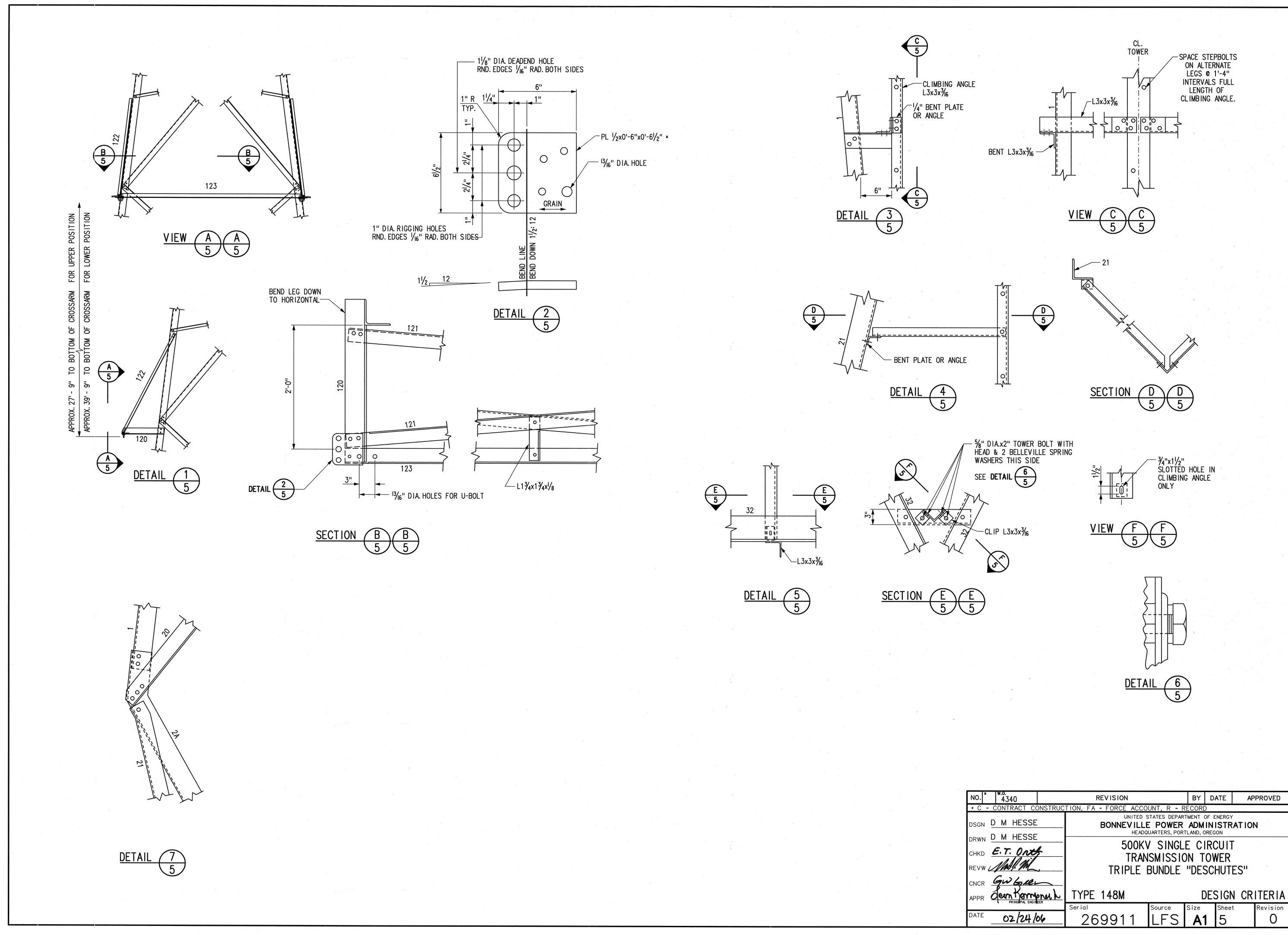

SYMBOL

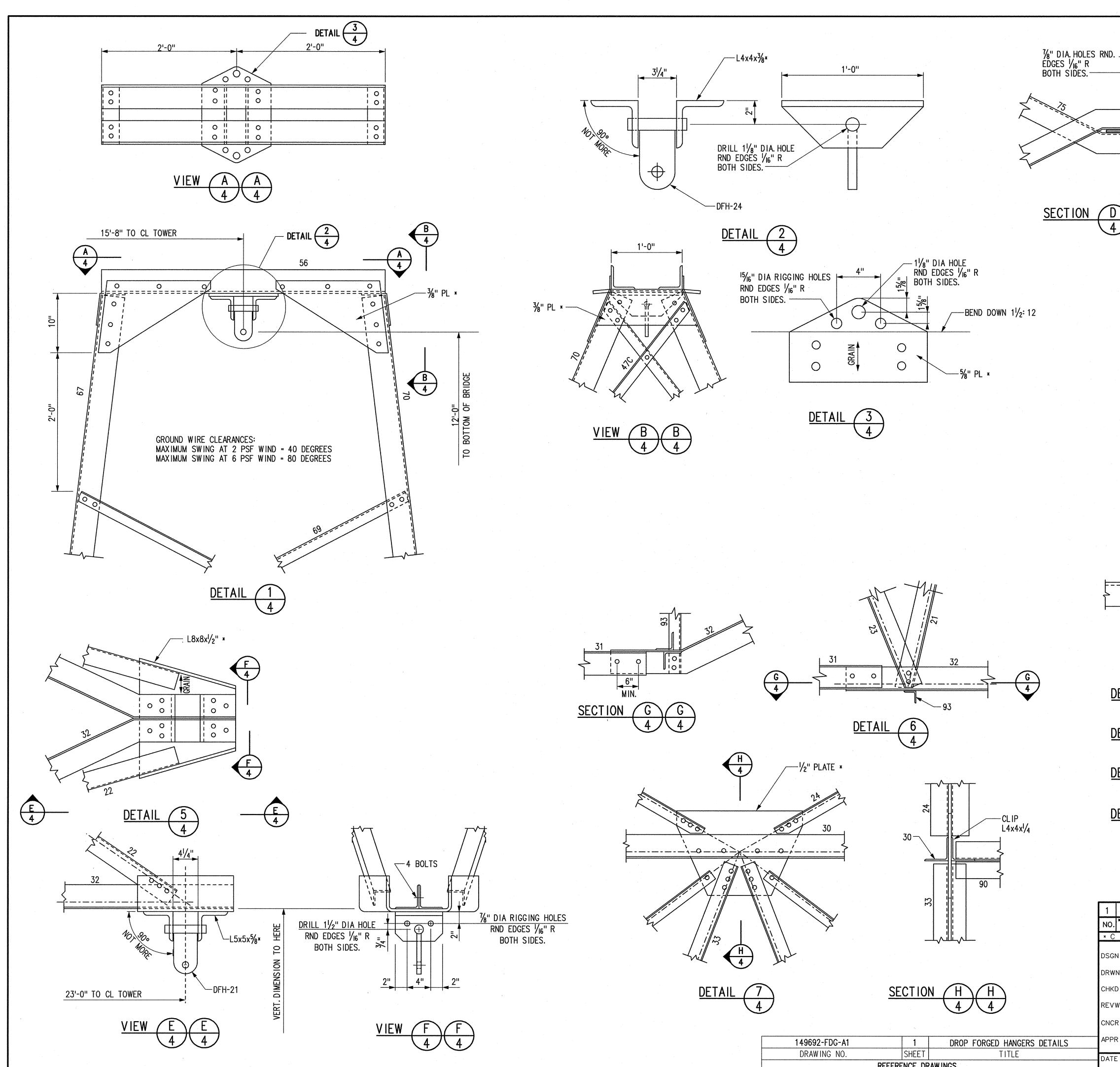

Α

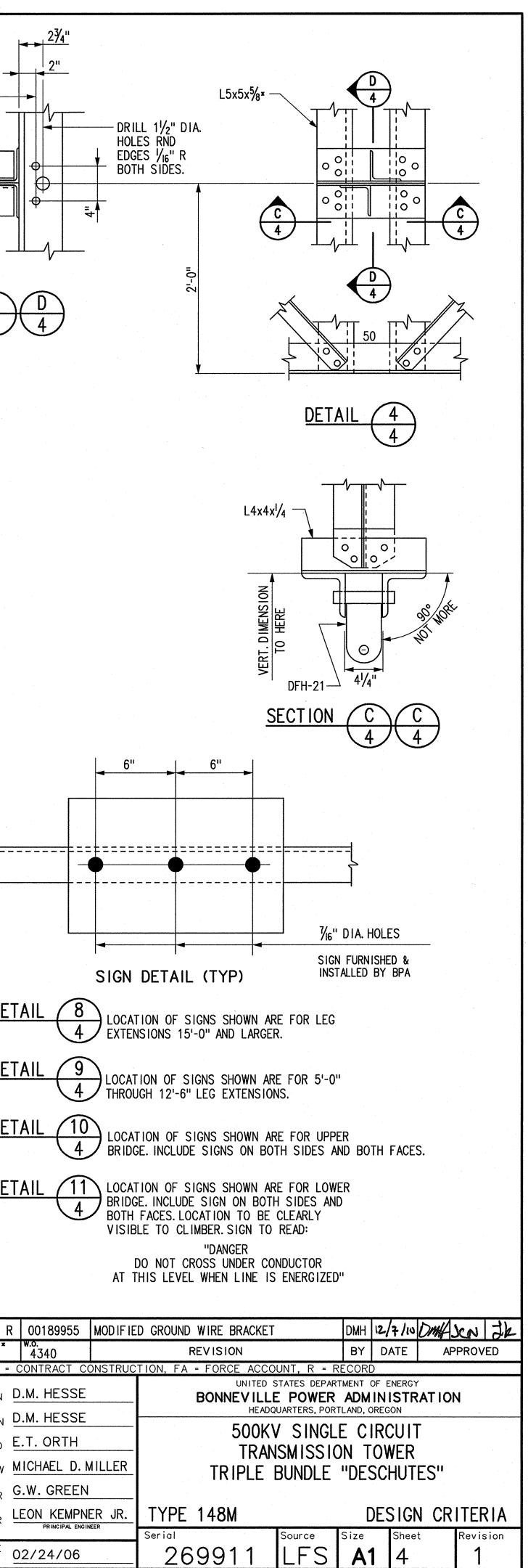
В C D E

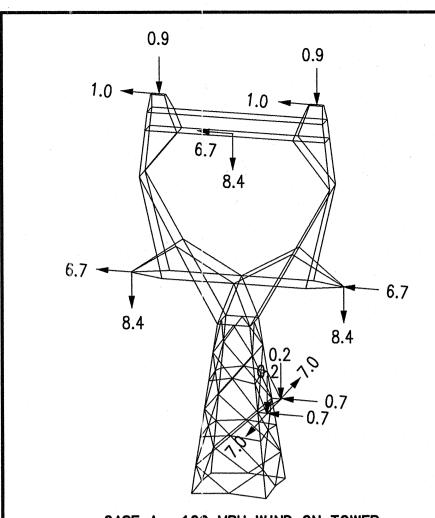

LEG	DETAILED WEIGHT							
EXT. FTIN.	80' (LBS)	100'(LBS)						
5'-0"	712	744						
7'-6"	814	852						
10'-0"	877	914						
12'-6"	996	1033						
15'-0"	1081	1118 1235						
17'-6"	1198							
20'-0"	1343	1380						
22'-6"	1433	1470						
25'-0"	1435	1473						
27-6"	1546	1584						
30'-0"	1703	1741						
32'-6"	1800	1838						
35-0"	1852	1890						
37-6"	2185	2223						
40'-0"	2188	2225						
	1							

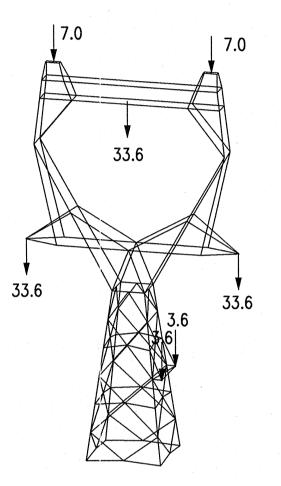
SYMBOL	MEMBER SIZE	LEG EXT. FTIN.	DETAILED WEIGHT LBS
Α	L1¾x1¾x1⅛	5'-0"	560
В	L2x2x1/8	7'-6"	614
С	$L2x2x\frac{3}{16}$	10'-0"	702
D	L21/2×21/2×3/16	12'-6"	771
E	L3x3x ³ / ₁₆	15'-0"	852
F	$L3\frac{1}{2}x3\frac{1}{2}x\frac{1}{4}$	17'-6"	945
ALL REDUNDA	NT MEMBERS	20'-0"	1033
ARE L1 3/4 x 1 3/		22'-6"	1135
AS NOTED.		25'-0"	1194
		27-6"	1278
		30'-0"	1373
		32'-6"	1489
		35-0"	1551
		37-6"	1673
		40'-0"	1812



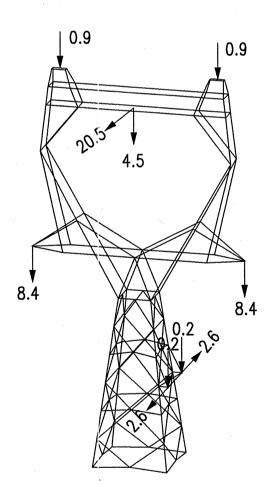

22'-6" LEG EXT.

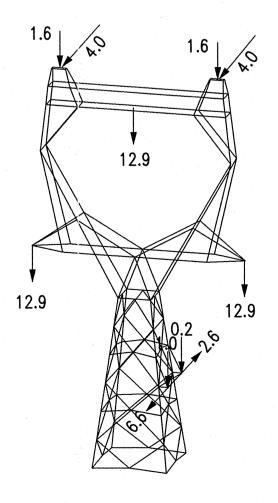

40'-0" LEG EXT.

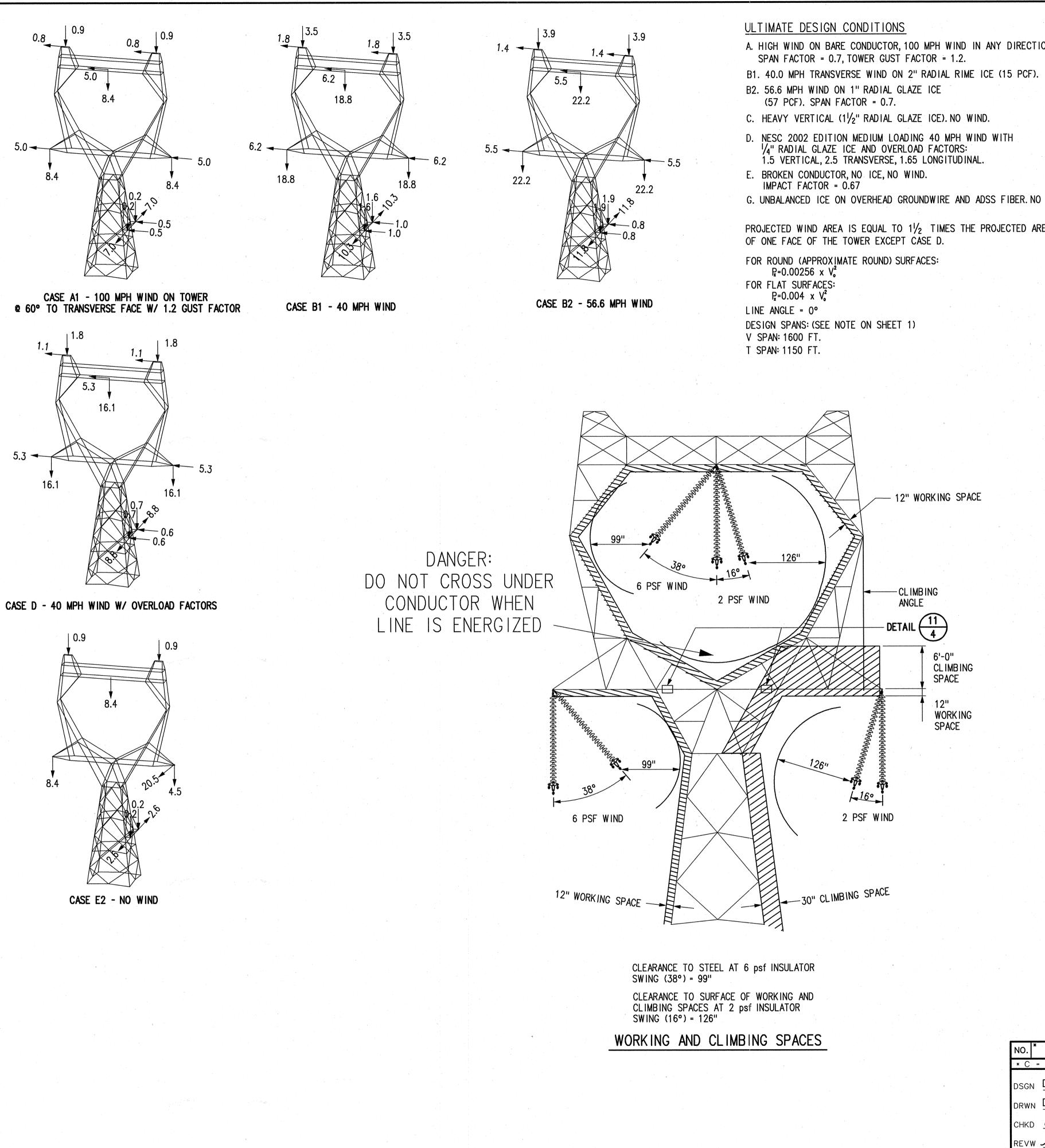

× w.o. 4340	REVISION		BY D	ATE AF	PROVED
= CONTRACT CONSTRUC	TION, FA = FORCE ACCO				
D M HESSE	BONNEVILLE	STATES DEPART E POWER UARTERS, PORT	ADMIN	ISTRATIO	N - January
MF/DMH E.T. Ogth MMMMM	500 H TRAI	(V SING NSMISSI('T = 51,(LE CIF ON TO	RCUIT WER	
Jen Kempnuh PRINCIPAL ENGINEER	TYPE 148M		EG EX	T 60 F1	BODY
02/24/06	269911	LFS	A1	6	O
				· · · · · · · · · · · · · · · · · · ·	

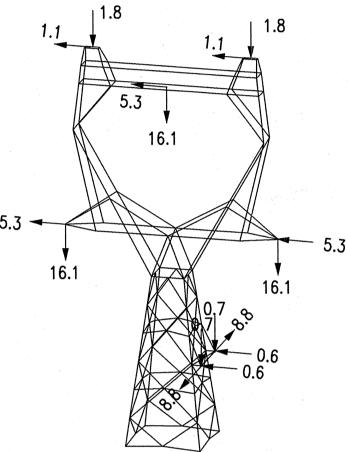


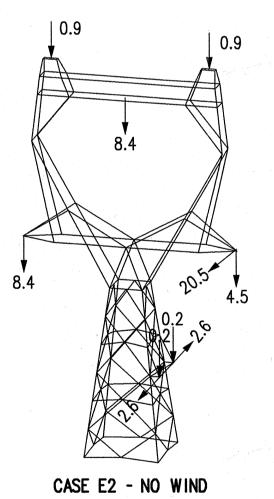
31	$\frac{31}{32}$	╞ ╲ ┝
G G MIN. SECTION G G	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & $	DET
	DETAIL 6 4	DET
K H	/2" PLATE ▼ 	DET
	$\begin{array}{c} 2^{A} \\ \hline \\ $	<u>DET</u>
HOLES "R		1 R NO. * * C = DSGN [DRWN
DETAIL 7 4	SECTION H H H 4	CHKD E REVW M CNCR
	149692-FDG-A1 1 DROP FORGED HANGERS DETAILS DRAWING NO. SHEET TITLE REFERENCE DRAWINGS	APPR -



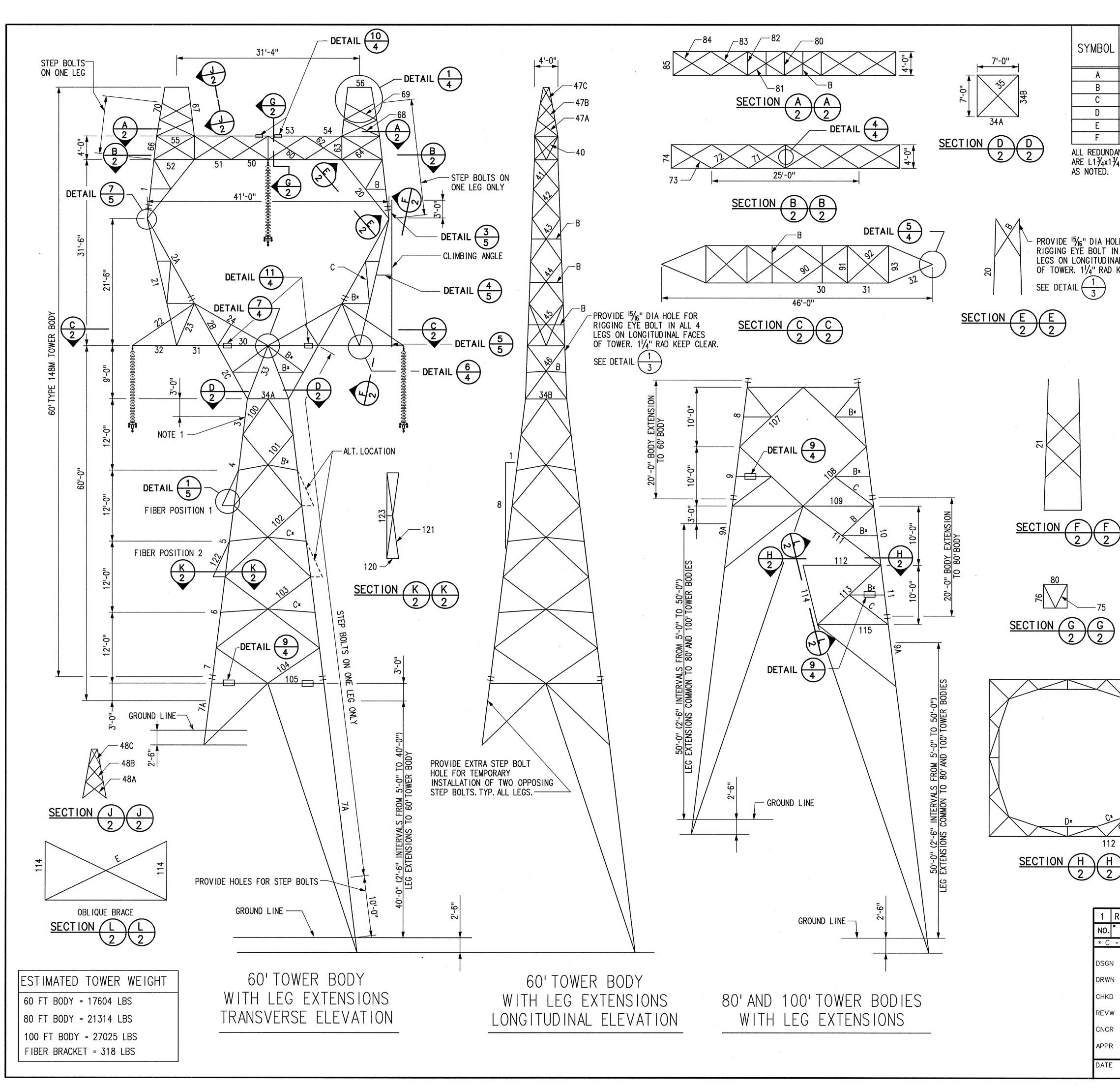

CASE A - 100 MPH WIND ON TOWER © 90° TO TRANSVERSE FACE W/ 1.2 GUST FACTOR


CASE C - NO WIND

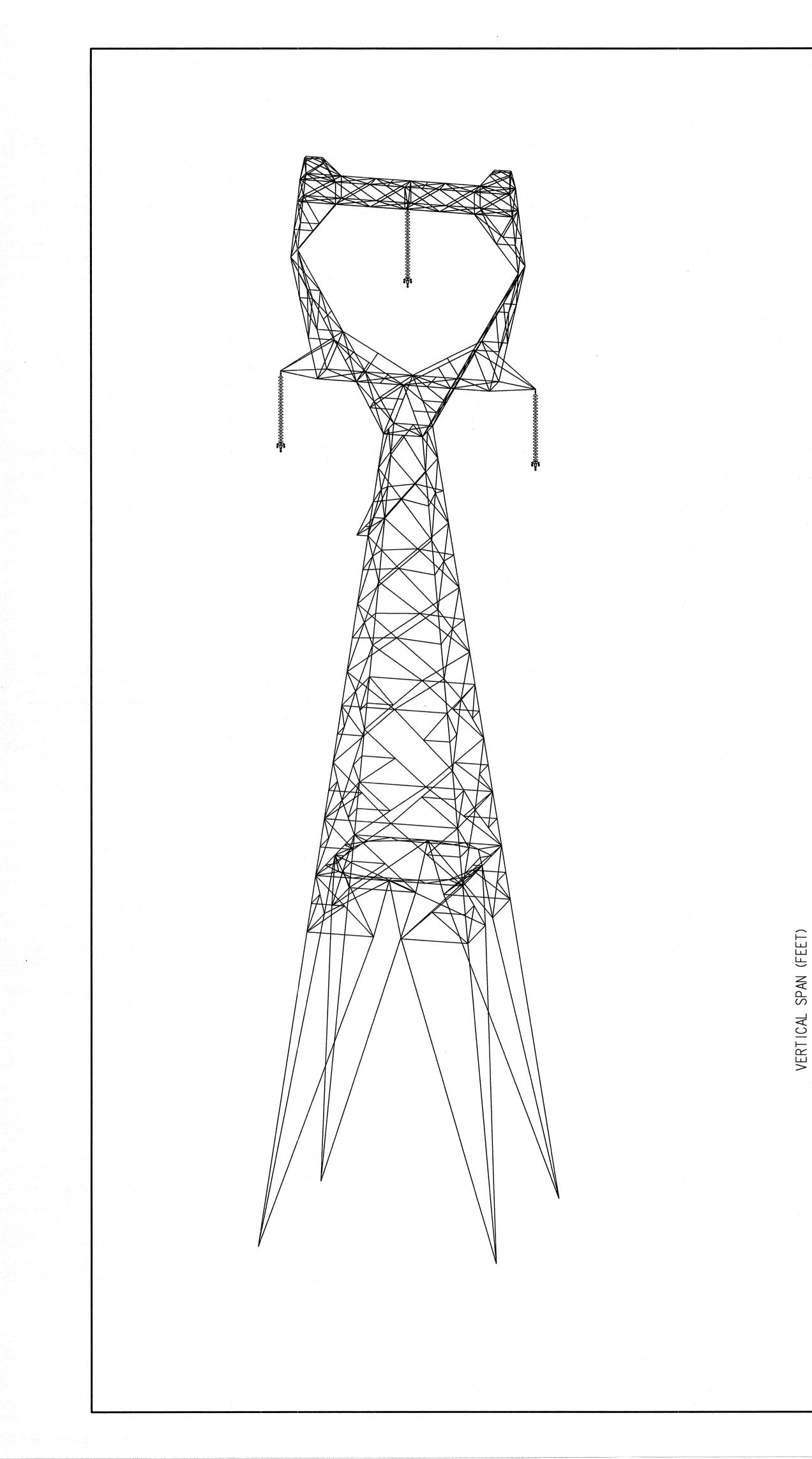



CASE E1 - NO WIND

CASE G1 - NO WIND



ΓΙΟΝ,). IO WIND. AREA	LOAD CASES A DESIGN CONDITION A ALL WIRES INTACT. A1 DESIGN CONDITION A ALL WIRES INTACT. B1 DESIGN CONDITION B1 ALL WIRES INTACT. B2 DESIGN CONDITION B2 ALL WIRES INTACT. C DESIGN CONDITION C ALL WIRES INTACT. C1 DESIGN CONDITION C ALL WIRES INTACT. E1 DESIGN CONDITION C ALL WIRES INTACT. E2 DESIGN CONDITION E MIDDLE PHASE BROKEN. E2 DESIGN CONDITION E OUTSIDE PHASE BROKEN. E3 DESIGN CONDITION G BOTH GW AND ADSS WITH UNBALANCED ICE. R RIGGING LOADS. ADSS FIBER LOADS SHALL BE REPEATED IN ALL POSITIONS. FOR ULTIMATE STRENGTH DESIGN, THE TOWER SHALL BE DESIGNED TO WITHSTAND THE DESIGN LOADS SHOWN WITH A FACTOR OF SAFETY EQUAL TO 1.0, UNLESS OTHERWISE SPECIFIED. ALL LOADS IN KIPS.
	DETAIL (1)
	A 3 12.6 K
VIEW (TYPICAL RIGGING LAYOUT GENERAL LOCATION AND LAYOUT CASE R - NO WIND I I I I I I I I
• W.O.	REVISION BY DATE APPROVED
a a tha an tha an tha an tha an tha	TRUCTION, FA = FORCE ACCOUNT, R = RECORD UNITED STATES DEPARTMENT OF ENERGY
DMH/MDM D M HESSE	BONNEVILLE POWER ADMINISTRATION HEADQUARTERS, PORTLAND, OREGON
E.T. Onth	TRANSMISSION TOWER
GW GREL	
Alem Kempner PRINCIPAL ENGINEER	TYPE 148MDESIGN CRITERIASerialSourceSizeSheetRevision
02/24/04	


CNCR

APPR

DATE

- MEMBER SIZE L1¾x1¾x1%	MEMBER	ULT. CONN. LOAD (KIPS)	MEMBER SIZE	NO. OF BOLTS PER CONN.	MEMRER	WILIWIULY	ULT. CONN. LOAD (KIPS)	MEMBER SI	NO. OF BOLTS PER CONN.
L2x2x ¹ / ₈								10.01/	
L2x2x ³ / ₁₆	1	45.1	$L3\frac{1}{2}x3\frac{1}{2}x\frac{1}{4}x$	4	┨	50		L2x2x ¹ /8	2
L21/2×21/2×3/16	2A	42.9	L4x4x ¹ /4	4	1	52	8.5	L2x2x1/8	2
L3x3x ³ / ₆	2B	71.5	L4x4x5/16*	6	{	53		L2x2x ³ / ₁₆ *	2
L31/2x31/2x1/4	2C	80.3	L4x4x5/16*	6	1	54	24.3	L21/2×21/2×3/16	
ANT MEMBERS 3/4x1/8 EXCEPT	3	79.3	L5x5x5/16*	6		6	23.8	L3x3x1/4	2
74778 270211	4	85.0	L5x5x5/ ₁₆ ×	6	6	57	3.4	L4x4x ^l / ₄ *	4
	5	94.3	L5x5x5/ ₁₆ *	8	6	8		L13/4×13/4×1/8	2
	6	109.6	L5x5x ³ / ₈ ×	8		<u>59</u>	2.3	L1¾x1¾x1/8	2
	7	109.9	L5x5x ³ / ₈ ×	8		70	7.5	L4x4x ¹ /4*	4
	7A	110.1	L5x5x5/ ₁₆ *	8	7	71	4.3	L1 ³ ⁄ ₄ x1 ³ ⁄ ₄ x ¹ / ₈	
DLE FOR	8	110.8	L5x5x <mark>¾</mark> ∗	8	7	7 <u>2</u>	4.3	L1¾x1¾x1⅛	* 2
IN ALL 4 NAL FACES	9	120.6	L5x5x ¾ *	8		73	5.1	L2x2x1/8	2
KEEP CLEAR.	9A	126.1	L5x5x¾∗	10	7	/4	0.6	L13/4x13/4x1/8	× 2
	10	117.6	L5x5x3/8*	10	7	75	17.6	L31/2x31/2x1/4	2
	11	125.7	L5x5x ³ %*	10	7	6	6.8	L2x2x1/8	2
	20	28.4	L3x3x ¹ /4	3	8	30	3.3	ST4x9.2*	2
	21	16.5	L3x3x ¹ /4	2	8	31	8.6	L2x2x ¹ /8	2
	22	30.8	L3x3x ³ / ₆ *	3	3	32	6.3	L1¾x1¾x1/8	2
	23	17.5	L3x3x ¹ /4	2	8	33	7.2	L1¾×1¾×1/8	
	24	54.0	2L2 ¹ / ₂ x2 ¹ / ₂ x ³ / ₁₆ *	3•	8	34	5.6	L1¾x1¾x1/8	
	30	40.3	L4x4x ^I /4	3	8	35	1.7	L13/4×13/4×3/16	; 2
	31	37.5	L4x4x ^I /4	4	9	90	11.9	L3x3x ³ / ₁₆	2
	32	30.0	L4x4x ^I /4	4	9	91	17.1	L21/2×21/2×3/16	, 2
,	33	59.6	2L2 ¹ /2×2 ¹ /2× ³ /6*	3•		92	15.3	L21/2×21/2×3/16	, 2
	34A	55.6	2L21/2×21/2×3/16*	3•		33	10.0	L2x2x ³ / ₁₆ *	2
	34B	22.9	2L21/2×21/2×3/16*	2	1	00	35.8	L4x4x ^I /4	3
	35	11.3	L21/2×21/2×3/16	2	{ }	01	23.2	L4x4x ¹ /4	2
	40	6.7	$L2x2x\frac{1}{8}$	2	ł	02	17.4	$L4x4x\frac{1}{4}$	2
	41	7.7	L2x2x ¹ /8	2	ł	03	12.9	L4x4x1/4	2
`	42	6.8	L2x2x ¹ /8	2	ł	04		L31/2×31/2×1/4	
)	43	7.9	L2x2x ³ / ₆	2	{ }	05	2.0	$L3^{1}/{2} \times 3^{1}/_{2} \times 3^{1}/_{4}$	
	44	6.7	L2x2x ³ / ₁₆	2	4	07	10.2		2
	45	12.2	L21/2x21/2x ³ /16	2	┦ ┣━━━	08	8.1	L4x4x1/4	2
	46	33.9	L3 ¹ / ₂ x3 ¹ / ₂ x ¹ / ₄	3	4	09		$\frac{L+x+x/4}{L4x4x^{1}/4}$	2
	47A		L1 ³ / ₄ ×1 ³ / ₄ ×1/ ₈	2		11	2.6	$L^{4}x^{4}x^{7}$	
	47B	0.5	L1 ³ / ₄ ×1 ³ / ₄ ×1/ ₈	2	{ }	12	5.0	L3x3x ³ /6*	2
\	47C					13		$L3x3x\frac{16}{16}$	2
)	47C	1.4	$L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$	2			6.1		2
		2.2	$L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$	2		14	18.2	$\frac{L4x4x^{1}/_{4}}{L^{2}/_{4}}$	
	48B	1.6	$L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$	2	┨ ┠	15	2.6	$L3^{1}/_{2} \times 3^{1}/_{2} \times 1^{1}/_{4}$	
	48C 50	1.4	L1¾x1¾x1⅛	2	1	20	2.7	$\frac{L4x4x\frac{3}{8}}{17.7}$	2
	50	70.5	L4x4x ^I / ₄ *	4	12		13.6	$L3x3x\frac{3}{16}$	2
			CONTINUOUS		1 . J	22	4.1	$L2x2x\frac{1}{8}$	2
\mathbf{N}	52	17.1		2		23	14.7	L3 ¹ / ₂ x3 ¹ / ₂ x ¹ / ₄	× 2
	53	55.6	$\frac{L4x4x^{1}/4^{x}}{L4x4x^{1}/4^{x}}$	4	1				
	54	47.4	$L4x4x^{1}/4x$	4					
	55	21.3	L4x4x1/4	2					
	56	FLEX	L4x4x ³ / ₈ *	2]				
2	= DE • DE + DE	NOTES NOTES NOTES	ASTM A572 GRADE SPLICE DOUBLE SHEAR TENSION COMPRESSION	50 ST	TEEL				
$ \rightarrow $	FLEX	DENOT	ES DESIGN BASED IN KIPS	ON FL	EXURAL	STI	RESSES		
R 00189955	MODI	FIED GR	OUND WIRE BRACK	(ETS		וח	MH 10/	9/10 DMA.	Jun JK
* w.o. 4340			REVISION						PROVED
	ONSTR	UCTION	I, FA = FORCE AC				والمتراجد ومستخدماتها		· · ·
D.M. HESSE					res depar POWER			NERGY STRATION	
D.M. HESSE			HE	ADQUAR	TERS, POF	RTLA	ND, OREG	N	
E.T. ORTH					SINGL				
IRANSMISSION IOWER									
*		 	TRIPL	e BU	INDLE	"[JESCH	HUTES"	
G.W. GREEN							D - -	A A A A	
LEON KEMPNE			TYPE 148M					GN CRIT	
		Ser		So		Si		Sheet	Revision 1
02/24/06			269911		15		<u>A1</u>	Z	

CONDUCTOR

3- ACSR/TW "DESCHUTES" PER PHASE. RATED TENSILE STRENGTH = 36,400 LBS. CONSTRAINT TENSIONS:

 $@ \frac{1}{2} - 8 - 0$ In = 17,000 LBS. PER SUBCONDUCTOR

GROUND WIRE

 $\frac{1}{2}$ " EXTRA HIGH STRENGTH GALVANIZED STEEL. RATED STEEL STRENGTH = 26,900 LBS. CONSTRAINT TENSIONS: $Q \frac{1}{2} - 8 - 0$ In = 9,500 LBS. @ 0 - 0 - 30 In = 5,380 LBS.

OPGW FIBER OPTIC

1- 0.591 OPGW FIBER OPTIC CABLE. RATED TENSILE STRENGTH = 24,300 LBS. CONSTRAINT TENSIONS: $0^{1}/_{2}$ - 8 - 0 ln = 9,500 LBS.

@ 0 - 0 - 30 In = 4,860 LBS.

ADSS FIBER OPTIC

ADSS 72 FIBER CH7 CABLE RATED TENSILE STRENGTH = 13,000 LBS. CONSTRAINT TENSIONS:

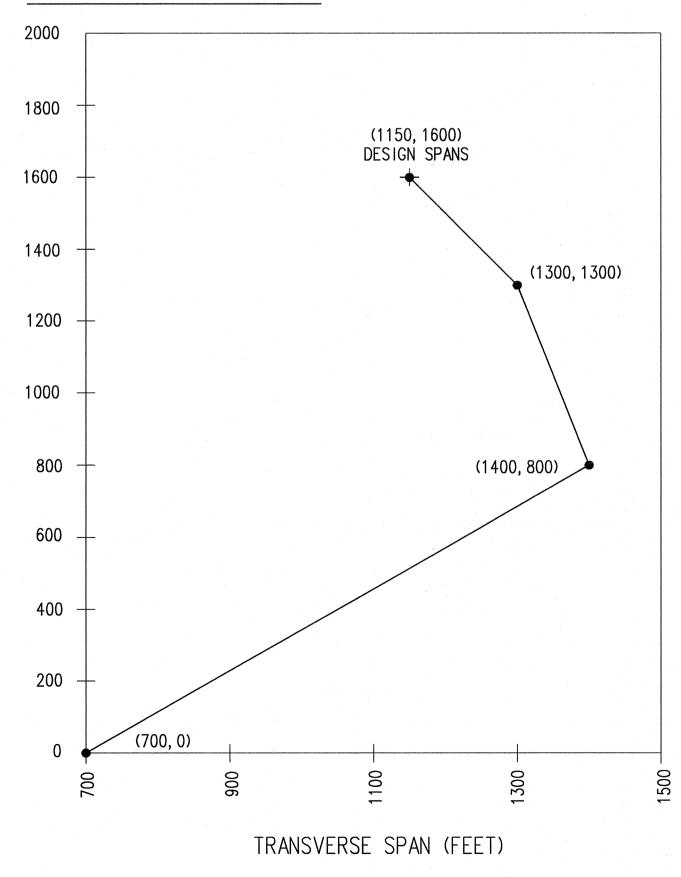
@ 1/2 - 8 - 0 In = 7,000 LBS. @ 0 - 0 - 30 In = 2,600 LBS.

CONDUCTOR CLEARANCE

MAXIMUM SWING AT 6 psf WIND = 38° MAXIMUM SWING AT 2 psf WIND = 16° CONDUCTOR SLOPE = 10° UP TO 15° DOWN

BODY / LEG COMBINATIONS

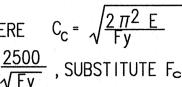
60' BODY WITH 5' TO 40' LEGS IN 2'-6" INCREMENTS 80' BODY WITH 5' TO 50' LEGS IN 2'-6" INCREMENTS 100' BODY WITH 5' TO 50' LEGS IN 2'-6" INCREMENTS


WORKING AND CLIMBING SPACES

CLEARANCE TO STEEL AT 6 psf INSULATOR SWING (38°) = 99" CLEARANCE TO SURFACE OF WORKING AND CLIMBING SPACES AT 2 psf INSULATOR SWING (16°) = 126"

DESIGN SPANS

THIS TOWER IS DESIGNED FOR A VERTICAL SPAN OF 1600' AND A TRANSVERSE SPAN OF 1150'. THE TOWER WAS CHECKED WITH LOADS CALCULATED BASED ON THE SPANS SHOWN IN THE FOLLOWING CHART. ULTIMATE CONNECTION LOADS SHOWN IN THE MEMBER SIZE TABLE REPRESENT THE MAXIMUM LOAD FOR ALL SPAN COMBINATIONS. A LINE ANGLE OF O DEGREES WAS USED FOR ALL SPANS.


TOWER UTILIZATION CAPACITY

UNIT STRESSES (PSI):

TENSION ON NET SECTION = MINIMUM YIELD STRESS Fy COMPRESSION ON GROSS SECTION

FOR KL/r \leq C_c Fa = Fy $\left[1 - \frac{1}{2}\left(\frac{\text{KL/r}}{C_c}\right)^2\right]$ $b/t \le \frac{2500}{\sqrt{Fy}}$ FOR KL/r > C_c Fa = $\frac{286,000,000}{(KL)^2}$ WHERE $C_c = \sqrt{\frac{2\pi}{Fy}}$ FOR b/t > $\frac{2500}{\sqrt{Fy}}$, SUBSTITUTE F_{CR} FOR Fy IN ABOVE FORMULAS. $\frac{2500}{\sqrt{Fy}}$ < b/t $\leq \frac{3750}{\sqrt{Fy}}$ F_{CR} = Fy $\left[1.8 - \frac{(b/t)\sqrt{Fy}}{3110}\right]$

 $\frac{3750}{\sqrt{Fy}} < b/t \le 20$ $F_{CR} = \frac{8,400,000}{\left(\frac{b}{t}\right)^2}$

MAXIMUM L/r OF MEMBERS:

TOWER LEGS = 120MAIN COMPRESSION MEMBERS IN CROSSARMS AND GROUND WIRE PEAKS = 150 OTHER COMPRESSION MEMBERS = 200 REDUNDANTS = 250 TENSION MEMBERS = 450

MATERIAL:

STRUCTURAL STEEL - ASTM A36. MINIMUM YIELD STRESS Fy = 36,000 PSI

HIGH STRENGTH LOW ALLOY STRUCTURAL STEEL - ASTM A572 GRADE 50. ALL MEMBERS ARE DESIGNED USING ASTM A36 EXCEPT WHERE NOTED. MEMBERS MARKED WITH * ARE DESIGNED FOR HSLA STRUCTURAL STEEL ASTM A572 GRADE 50.

MINIMUM SIZE OF MATERIAL PLATES $\frac{3}{16}$ "; ANGLES $L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$ ALL REDUNDANTS ARE $L1\frac{3}{4}\times1\frac{3}{4}\times\frac{1}{8}$ (EXCEPT AS NOTED)

<u>COAT ING</u> USE OF DICHROMATE AS SPECIFIED FOR SPECIFIC PROJECT.

CONNECTIONS:

HOT DIPPED GALVANIZED BOLTS ARE 5/8" DIAMETER ASTM A325 OR A449 TYPE 1, HEAVY HEX HEAD WITH LOCKNUT. MINIMUM TWO BOLTS PER CONNECTION FOR MEMBERS CARRYING CALCULATED STRESSES. SINGLE BOLT CONNECTIONS MAY BE USED SUBJECT TO BPA APPROVAL.

BEARING, BOLT SHEAR, AND BOLT TENSION ARE TO BE DESIGNED FOLLOWING THE REQUIREMENTS DEFINED IN ASCE 10-97.

HOT DIP GALVANIZED PER ASTM A123. DULLING AS SPECIFIED FOR SPECIFIC PROJECT.

R	w.o. 00214170	MODIFIE	ED VT CU	URVE			MF	12-4-03	DAN		Ras			
R	w.o. 4340			REVISION			BY	DATE	AP	PROVI	ED			
= (CONTRACT CO	ONSTRUC	TION, F	A = FORCE										
D	M HESSE				VILLE	TATES DEPAR POWER UARTERS, POR	ADM	IINISTE		n (nastar Nastaria Nastaria				
D	M HESSE													
E	.T. ORTH			500 KV SINGLE CIRCUIT										
MICHAEL D. MILLER			TRANSMISSION TOWER MWT = 51,000 LBS.											
G	.W. GREEN													
LEON KEMPNER JR			TYP	E 148M			ST	RUCTU	IRAL I	DES	IGN			
			Serial			Source	Size	Shee	۶t	Revis	ion			
0	2/24/06		2	<u>6991</u>	1	LFS	A	1 1 c	of 10	1				

							1			1			1			1			
MEMBER	SIZE	LENGTH	LX	EQX KL/RX	LZ	EQZ KL/RZ	CAPACITY	TENSION Y FORCE	LC	CAPACITY	COMPRESS FORCE	SION LC	BOLTS		INECTION BEARING	CAPACITY	UTILIZATION		
1	4L5X5X7/8 W/Ø.75' SPC	10.2	10.2	Ø 50.3	10.2	Ø 5Ø.3	1289.8	1201.0	2_B2L-1	1419.8	1315.1	B2L-2	36	2	2	1617.2	Ø.931T		
2	4L5X5X7/8 W/Ø.75" SPC	24.6	8.2	Ø 4Ø.2	8.2	0 40.2	1289.8	1239.4	2_B2L-1	1483.2	1334.9	1_B2L-1	36	2	2	1617.2	Ø.961T		NOTES:
3	4L5X5X7/8 W/0.75" SPC	16.4	8.2	Ø 40.2	8.2	Ø 40.2	1289.8	1268.3	3_B2L-1	1483.2	1374 . 7 1349 . 1	1_B2L-1	36 36	2	2	1617.2 1617.2	Ø.983T Ø.968T		1. ALL MEMBERS ARE ASTM A572 GRADE 50 STEEL.
4 5	4L5X5X7/8 W/0.75" SPC 4L5X5X7/8 W/0.75" SPC	10.2 10.2	5.1 5.1	Ø 25.1 Ø 25.1	5.1 5.1	Ø 25.1 Ø 25.1	1289.8 1289.8	1248.4 1257.6	3_B2L-1 3_B2L-1	1514.4	1364.3	1_B2L-1 1_B2L-1	36	2	2	1617.2	Ø.975T		2. UNITS ARE FEET AND KIPS.
	4L5X5X7/8 W/Ø.75" SPC	10.2	5.1	Ø 25.1	5.1	Ø 25.1	1289.8	1241.8	3_B2L-1	1514.4	1346.1	1_B2L-1	36	2	2	1617.2	Ø.963T		3. TENSION CAPACITIES:
	4L5X5X7/8 W/Ø.75" SPC	10.2	5.1	Ø 25.1	5.1	Ø 25.1	1289.8	1248.1	3_B2L-1	1514.4	1356.3	1_B2L-1	36	2	2	1617.2	Ø.968T		TENSION CAPACITIES ARE BASED ON THE RED
	4L5X5X5/8 W/Ø.75' SPC	13.0	6.5	Ø 32.6	6.5	Ø 32.6	953.3	922.5	3_B2L-3	1059.5	1021.0	B2L-2	28	2	2	1257.8	Ø.968T		DUE TO BOLT HOLES. THE ACTUAL NUMBER OF
	4L5X5X5/8 W/Ø.75' SPC	11.5	11.5	Ø 57.7	11.5	Ø 57.7	953.3	797.8	3_B2L-3	1001.8	899.7	B2L-2	22	2	2	988.3	Ø.91ØS		BASED ON DETAILING, MAY NOT BE THE SAME NUMBER OF BOLTS USED IN THE MODEL.
	4L4X4X5/8 W/Ø.75" SPC 4L4X4X5/8 W/Ø.75" SPC	11.5 13.Ø	11.5 13.0	Ø 69.2 Ø 78.2	11.5 13.Ø	Ø 69.2 Ø 78.2	7Ø3.3 7Ø3.3	554.8 347.3	2_B2L-1 2_B2L-2	729.3	⁄621.9 4Ø9.5	B2L-2 B2L-2	16 1Ø	2	2	718.8	Ø.865S Ø.912S		TENSION CAPACITIES DO NOT CONSIDER CON
	4L4X4X5/16 W/Ø.75" SPC	11.5	11.5	Ø 71.4	11.5	Ø 71.4	370.6	252.3	3_B2L-1	359.9	294.2	B2L-2	8	2	2	359.4	Ø.819S		4. COMPRESSION CAPACITIES:
	4L4X4X5/16 W/Ø.75"SPC	11.5	11.5	Ø 71.4	11.5	Ø 71.4	370.6	142.3	B2L-2	359.9	178.8	B2L-2	8	2	2	359.4	Ø.498S		
16	4L4X4X5/16 W/Ø.75"SPC	13 . Ø	13.0	Ø 80.7	13.0	Ø 80.7	370.6	60.2	3_B2	343.3	93.2	CL	8	2	2	359.4	Ø.271C		LZ, EQZ, & KL/RZ ARE EQUAL TO LY, EQY & K
2ØT	L5X5X 5/16	18.4	9.2	6 83.Ø	9.2	6 113.6	128.8	54.3	CR	67.0	49.6	CR	3	1	1	67.4	Ø.806S		EQUATIONS:
20L 21T	L5X5X 5/16 2L4X4X 5/16	18.4 17.4	9.2 8.7	6 83.Ø Ø 84.Ø	9.2 8.7	6 113.6 Ø 57.9	128.8 204.0	36.2 125.Ø	B2L-1 3_B2L-2	67.Ø 166.1	40.6 122.9	B2L-Ø 1_B2L-2	4	2	2	67.4 179.7	Ø.6Ø5C Ø.74ØC		0: KL/R = L/R 0 <= L/r <= 1 120 <= L/r <
	2L4X4X 5/16	17.4	8.7	Ø 84.Ø	8.7	Ø 57.9	204.0	92.3	3_B2L-ØR	166.1	93.5	3_B2L-ØR	3	2	2	134.8	Ø.694S		6: KL/R = 30 + 0.75 L/R 0 <= L/r <= 1
	2L4X4X 5/16	17.4	8.7	Ø 84.Ø	8.7	Ø 57.9	204.0	122.9	1_B2L-2	166.1	125.0	3_B2L-2	4	2	2	179.7	Ø.753C		
22L	2L4X4X 5/16	17.4	8.7	Ø 84.Ø	8.7	Ø 57.9	204.0	93.5	3_B2L-ØR	166.1	92.3	3_B2L-ØR	3	2	2	134.8	Ø.694S		7: KL/R = 60 + 0.50 L/R 0 <= L/r <= 1
	2L4X4X 3/8	18.4	9.2	Ø 89.7	9.2	Ø 6Ø.9	243.1	133.4	3_B2L-3	185.5	159.7	B2L-2	4	2	2	179.7	Ø.889S		8: KL/R = 28.6 + 0.76 L/R 120 <= L/r < 9: KL/R = 46.2 + 0.615 L/R 120 <= L/r <
	2L4X4X 3/8	18.4 17.4	9.2 8.7	Ø 89.7 Ø 67.6	9.2 8.7	Ø 60.9 Ø 46.5	243.1 4Ø3.7	123.9 251.6	B2L-2 3_B2L-2	185.5 380.1	117.6 27Ø.6	B2L-ØL 1_B2L-2		2	2	179.7 314.5	Ø.69ØS Ø.861S		
24T 24L	2L5X5X 1/2 2L5X5X 5/16	17.4	8.7	Ø 66.3	8.7	Ø 47.1	257.6	177.6	3_B2L-ØR	212.7	175.6	3_B2L-ØR	5	2	2	224.6	Ø.825C		COMPRESSION CAPACITIES DO NOT CONSIDER
25T	2L5X5X 3/8	17.4	8.7	Ø 66.8	8.7	Ø 46.9	306.8	270.6	1_B2L-2	290.7	251.6	3_B2L-2	7	2	2	314.5	Ø.882T		5. MAXIMUM TENSION AND COMPRESSION FORCES CON
25L	2L5X5X 5/16	17.4	8.7	Ø 66.3	8.7	Ø 47.1	257.6	175.6	3_B2L-ØR	212.7	177.6	3_B2L-ØR	5	2	2	224.6	Ø.835C		MODELING INFORMATION TABLE INCLUDE A PREFIX
26T	2L5X5X 1/2	9.2	9.2	Ø 71.6	9.2	Ø 49.2	403.7	262.8	3_B2L-3	368.6	306.2	1_B2L-2	8	2	2	359.4	Ø.852S		TSPAN VSPAN LOAD CASE
26L	2L5X5X 3/8	18.4	9.2	Ø 70.7 Ø 49.8	9.2 12.9	Ø 49.7 Ø 69.9	3Ø6.8 3Ø6.8	277.3 265.7	2_B2L-2 B2L-ØR	282.2	251.6 265.7	2_B2L-3 B2L-ØR		2	2	314.5 314.5	Ø.904T Ø.936C		(FT) (FT) PREFIX
3Ø 31	2L5X5X 3/8 2L5X5X 3/8	12.9 31.4	6.5 9.3	Ø 71.7	12.9	Ø 100.7	306.8	177.2	B2L-ØR	203.7	178.8	B2L-ØR	5	2	2	224.6	Ø.890C		2000 4000 NONE
	2L5X5X 5/16	20.0	10.0	Ø 76.6	20.0	Ø 1Ø8.8	257.6	128.5	B2L-ØR	143.9	129.3	B2L-ØR	4	2	2	179.7	Ø.898C		2800 2800 1_
33		14.3	14.3	Ø 183.7	7.1	Ø 146.2	46.3	4.8	A1L	9.2	5.9	2_A1	2	1	1	27.4	Ø.636C		4000 0 2_
	2L4X4X 3/8	18.8	9.4	Ø 91.7	18.8	8 >124.6	243.1	88.4	B2L-ØR	105.3	89.6	B2L-ØR	3	2	2	134.8	Ø.851C		3700 -2000 3_
	2L4X4X 5/16	18.8	9.4	Ø 91.Ø	18.8	8 >125.3	204.0	73.4	B2L-ØR	87.4	73.4 6.7	B2L-ØR	2	2	2	89.8 36.6	Ø.839C Ø.5Ø8C		
	L3 1/2 X3 1/2 X 1/4 2L4X4X 3/8	17.4 21.5	17.4 10.7	Ø 191.5 Ø 104.8	8.7 21.5	Ø 151.7 8 >142.4	71.8	5.5 69.8	3_A1 B2L-ØR	13.2 80.6	69.8	2_A1 B2L-ØR	2	2	2	89.8	Ø.865C		6. UTILIZATION IS MEMBER UTILIZATION - MAXIMUM (TENSION FORCE / TENSION CAPACITY,
	2L4X4X 5/16	21.5	10.7	Ø 104.0	21.5	8 >143.2	204.0	59.0	B2L-ØR	66.9	60.0	B2L-ØR	2	2	2	89.8	Ø.897C		COMPRESSION FORCE / COMPRESSION CAPAC
41	L4X4X 1/4	20.5	20.5	Ø 196.9	10.3	Ø 157.2	82.5	5.6	2_A1	14.3	6.9	2_A1	2	1	1	36.6	Ø.479C		MAXIMUM MEMBER FORCE / CONNECTION CAP
50	2L4X4X 5/16	7.2	7.2	Ø 69.4	7.2	Ø 47.8	204.0	102.7	3_B2L-2	189.6	162.1	B2L-2	5	2	2	224.6	Ø.855C		
	2L4X4X 3/8	6.5	3.3	Ø 31.7	6.5	Ø 43.1	243.1	204.2	3_B2L-ØR	262.8	235.7	B2L-1R	6	2	2	269.5	Ø.897C		C = COMPRESSION, T = TENSION, S = CONNECTION S
	2L5X5X 5/16 6 X 2Ø	13.Ø 13.Ø	13.Ø 13.Ø	Ø 99.4 Ø 58.6	13.Ø 13.Ø	Ø 70.6 Ø 104.0	257.6 249.5	75.8 61.9	3_B2L-Ø 3_B2L-4	162.Ø 154.9	97.3 2.7	B2L-Ø CL		2	2	134.8 Ø.Ø	Ø.722S Ø.248T		
	L4X4X 5/16	14.8	7.4	6 83.9	7.4	6 115.5	102.0	45.3	3_B2L-ØR	51.4	45.3	3_B2L-ØR	3	1	1	67.4	Ø.881C		7. CONNECTION SHEAR IS THE NUMBER OF SHEAR PLA
	2L4X4X 5/16	6.5	3.3	Ø 31.5	6.5	Ø 43.3	204.0	195.9	2_B2L-2	220.3	199.8	2_B2L-2	5	2	2	224.6	Ø.96ØT		OF BEARING SURFACES.
54A	L3 1/2 X3 1/2 X 1/4	13.0	13.0	9 >143.1	13.0	9 >226.7	71.8	9.2	CR	9.4	5.5	3_B2L	2	1	1	36.6	Ø.589C		
	L5X5X 5/16	18.4	9.2	6 83.Ø	9.2	6 113.6	128.8	52.0	3_B2L-2	67.0	57.9	B2L-2	3	1	1	67.4	Ø.864C		8. MAIN LEG AND DIAGONAL LEG MEMBER MODELING
	L4X4X 5/16	18.4	9.2	6 96.7	9.2	8 >141.2	1	30.6	3_B2L-2	34.4	32.4 69.3	B2L-1R 3_B2L-2	2	1	1	44.9 146.3	Ø.942C Ø.736T		DIFFERING LEG EXTENSIONS.
	2L3 1/2 X3 1/2 X 1/4 L4X4X 1/4	8.4 15.5	8.4 7.7	Ø 92.2 6 85.7	8.4 7.7	Ø 63.2 6 118.9	143.6 82.5	105.7 31.1	B2L-2 B2L-1	105.0 39.3	31.1	B2L-1	2	2	1	36.6	Ø.850B		
	2L2 1/2 X2 1/2 X 3/16	6.5	6.5	Ø 100.3	6.5	Ø 66.1	73.6	45.2	C	50.5	23.9	3_B2L-Ø	2	2	2	54.8	Ø.825B		
	2L3X3X 3/16	13.0	13.0	9 >166.1	13.0	Ø 113 . Ø	92.6	59.0	С	22.6	21.6	3_C	3	2	2	82.3	Ø.958C		
	2L4X4X 5/16	13.0	13.0	9 >125.8	13.0	Ø 86.7	204.0	76.5	2_B2L-4	86.7	81.7	3_B2	2	2	2	89.8	Ø.942C		
	2L3X3X 3/16	13.0	13.0	9 >166.1	13.0	Ø 113.Ø	92.6	15.6	3_B2L-4	22.6	19.3	B2	2	2	2	54.8	Ø.855C		
	2L4X4X 3/8 2L5X5X 5/16	7.9 13.Ø	7.9 13.Ø	Ø 76.8 Ø 99.4	7.9 13.Ø	Ø 52.2 Ø 70.6	243.1	141.1 70.9	3_B2L-ØL 3_B2L-Ø	212.3 162.Ø	200.1 90.5	B2L-1R B2L-Ø	0	2	2	224.6 134.8	Ø.942C Ø.672S		
	6 X 20	13.0	13.0	Ø 58.6	13.Ø	Ø 104.0	249.5	63.3	B2L-4	154.9	1.6	B2L	4	1	1	0.0	Ø.254T		
	L4X4X 5/16	15.2	7.6	6 85.2	7.6	6 117.6	102.0	40.8	3_B2L-ØR	49.7	40.8	3_B2L-ØR	2	1	1	44.9	Ø.9Ø8S		
64	2L3X3X 3/16	13.0	13.0	9 >166.1	13.0	Ø 113.Ø	92.6	23.4	B2L-4	22.6	19.6	3_B2	2	2	2	54.8	Ø.867C		
	L5X5X 5/16	18.4	9.2	6 83.0	9.2	6 113.6	128.8	42.4	3_B2L-2	67.0	42.8	B2L-2	3	1	1	67.4	Ø.639C		
	2L3 1/2 X3 1/2 X 1/4	8.5	8.5	Ø 93.8	8.5	Ø 64.3	143.6	119.6 23.9	С B2L-Ø	103.0	70.4 23.9	3_B2L-Ø B2L-Ø	4	1	2	146.3 36.6	Ø.832T Ø.907C		
	L3 1/2 X3 1/2 X 1/4 2L3 1/2 X3 1/2 X 1/4	15.5 13.Ø	7.8 13.Ø	6 94.2 9 >143.1	7.8 13.Ø	8 >135.5 Ø 98.1	71.8	91.1	62L-10	47.2	31.4	3_C	3	2	2	109.7	Ø.831B		
	2L3X3X 3/16	13.0	13.0	9 >166.1	13.0	Ø 113.Ø	92.6	22.7	1_B2	22.6	20.7	3_B2L-4	2	2	2	54.8	Ø.915C		
	L3X3X 3/16	14.5	7.3	6 100.1	7.3	8 >148.8	46.3	17.8	2_B2L-2	14.1	9.2	2_B2L-4	2	1	1	27.4	Ø.654C	с. Д	
71	L2 1/2 X2 1/2 X 3/16	6.5	6.5	7 110.6	6.5	9 >161.8	36.8	4.2	3_CL	9.8	9.0	CR	2	1	1	27.4	Ø.919C		
	L3 1/2 X3 1/2 X 1/4	18.4	9.2	6 105.9	9.2	8 >16Ø.3	71.8	19.8		18.8	15.4	3_B2L-2	2	1	1	36.6	Ø.821C		
	L5X5X 5/16	12.0	12.Ø	6 98.9 6 98.9	12.Ø 12.Ø	8 >144.9 8 >144.9	128.8 128.8	36.7 12.1	3_B2L-2 B2	41.3	37.9	2_B2L-3 3_B2L-2	2	1	1	44.9 44.9	Ø.919C Ø.294C		
	L5X5X 5/16 2L3 1/2 X3 1/2 X 1/4	12.Ø 8.5	12.Ø 4.3	6 98.9 Ø 46.8	4.3	8 >144.9 Ø 32.1	128.8	27.3	B2 B2	149.2	26.2	3_B2L-2 3_B2		2	2	73.1	Ø.2940 Ø.374B		
	2L3 1/2 X3 1/2 X 1/4	13.0	4.3 13.Ø	9 >143.1	13.0	Ø 98.1	143.6	23.9	C	47.2	12.9	3_B2R	2	2	2	73.1	Ø.327B		
	L5X5X 5/16	14.7	7.3	6 72.3	7.3	6 96.7	128.8	37.8	3_B2L-Ø	83.5	39.7	B2L-Ø	3	1	1	67.4	Ø.589S		
	L3 1/2 X3 1/2 X 1/4	17.7	8.8	6 102.9	8.8	8 >154.0	71.8	17.6	3_B2L-2	20.4	18.2	B2	2	1	1	36.6	Ø.894C		FF
<u>~</u>	L4X4X 3/8	17.7	8.8	6 94.6	8.8	8 >136.Ø	121.6	32.6	2_B2L-3	44.2	32.3	2_B2L-2	2	1	1	44.9	Ø.73ØC		1 R 00189955 UPDA
	a management of the second			0 1100 0	10.1	0 1005 0	46.3	4.4	3_B2L-4	1 7 /	5.1	B2	1 2	1	1	27.4	Ø.688C		
87	L3X3X 3/16 L2 1/2 X2 1/2 X 3/16	15.1 6.5	10.1 6.5	8 >129.3 6 105.9	6.5	8 >205.8 9 >161.8		4.2	B2	7.4 9.8	4.0	3_B2L-4	2	4	4	27.4	Ø.402C		NO. R 00233051 * C = CONTRACT CONSTRU

DSGN J.C. NUNO DRWN MF/JCN CHKD D.M. HESS REVW G.W. GREE CNCR D.E. O'CLA APPR L. KEMPNE DATE 6-15-09

I THE REDUCTION IN MEMBER AREA UMBER OF HOLES IN THE MEMBER, THE SAME AS THE DEFAULT DEL. DER CONNECTION STRENGTH.

, EQY & KL/RY FOR SHAPES OTHER THAN SINGLE ANGLES.

- L/r <= 120 LEG MEMBERS BOLTED IN BOTH FACES 0 <= L/r <= 200 UNRESTRAINED AGAINST ROTATION AT BOTH ENDS - L/r <= 120 CONCENTRIC LOAD AT ONE END, NORMAL FRAMING ECCENTRICITY AT OTHER K= L/r <= 120 NORMAL FRAMING ECCENTRICITIES AT BOTH ENDS</p>) <= L/r <= 225 PARTIALLY RESTRAINED AGAINST ROTATION AT ONE END C <= L/r <= 250 PARTIALLY RESTRAINED AGAINST ROTATION AT BOTH ENDS CONSIDER CONNECTION STRENGTH.

RCES CONSIDER ALL SPAN COMBINATIONS. LOAD CASE LABELS IN THE A PREFIX TO HELP DISTINGUISH BETWEEN THE SPAN COMBINATIONS.

> EXAMPLE: 1_A2 INDICATES THE FORCE OCCURS IN LOAD CASE A2 WITH A TSPAN OF 2800' AND A VSPAN OF 2800'.

> > •

MAXIMUM OF: ΓY. ON CAPACITY, TION CAPACITY.

INECTION SHEAR, B = CONNECTION BEARING CONTROLS.

SHEAR PLANES. CONNECTION BEARING IS THE NUMBER

IODELING INFORMATION IS NOT INCLUDED DUE TO VARIATIONS FROM

5	UPDATE	TABLE	JCN	4/22/10	JCN DMA DEO							
1		REVISION BY DATE APPROVED										
CC	NSTRUC	TION, FA = FORCE ACCOUNT, R = RE	ECOR)								
	UNITED STATES DEPARTMENT OF ENERGY BONNEVILLE POWER ADMINISTRATION HEADQUARTERS, PORTLAND, OREGON											
E EN		- 500KV DOUBLE CIRCUIT TRANSMISSION TOWER MWT = 51,000 LBS										
AIF	RE											
	550	TYPE 139D, 139DE MODELING INFORMATIO										
		Serial Source S	Size	Shee	t Revision							
		284768 LFS	A	19	1							