

The Discipline of Grid Architecture for Utilities, Public Policy Makers, and Stakeholders

Jeffrey D. Taft, PhD Chief Architect for Electric Grid Transformation 14 May 2015

PNNL-SA-110357

How Do We Understand Issues Like These?

- What does the control structure for the whole grid look like? How does the grid behave as a whole system?
- What limits the ability of commercial buildings to supply energy or other services to electric grids?
- How do grid controls and wholesale markets interact?
- How does DER impact regulation/oversight?
- How do DER's interact with ISO/RTO functions?
- Are electric and gas networks converging or is generation just a downstream use of gas?
- Should distribution company roles and responsibilities be changed, and if so, how does this impact grid control, markets, and oversight?

Grid Architecture is a Practical Tool

- What we need is something that shows holistic depictions of the extended grid at a systemic level, with multiple views into the various structures
- Something that enables an understandable vision of how to change and evolve a highly complex system...and how to identify/design platforms, trace value streams, etc.
- Something that puts grid modernization on a rigorous basis, not just ad hoc or bottom-up incrementalism

System Architecture Definition/Purpose

A system architecture is a set of views of a (complex) system whose purpose is to help think about the overall shape of the system, its attributes, and how the parts interact.

Some Purposes of System Architecture

- Help manage complexity (and therefore risk)
- Assist communication among stakeholders
- Remove barriers and define essential limits
- Identify gaps in theory, technology, organization, regulation...
- Identify/define interfaces and platforms
- Enable prediction of system qualities

How Do Stakeholders Benefit?

- All stakeholders, especially users/customers/prosumers:
 - Share common vision of the future grid
 - Enable stakeholder communication
- Regulators and Legislators
 - Appreciate interactions and consequences of potential changes
- Solution architects and system designers
 - Understand subsystems in whole grid context

Utility executives

- Relate proposed changes to overall utility strategy, goals and constraints
- Suppliers/product vendors/researchers
 - Benefit from reduced barriers and better grid access
 - Identify technical gaps to be filled

High Level View of the Process

- System Qualities come from the *consumer* viewpoint
- System Properties come from the provider viewpoint
- Structures and Components make up the architecture

Old and Worn

- Grids are big circuits; control is just an app
- Data tsunami
- Systems of systems
- Cylinders of excellence (i.e. siloes)
- Architectural "elegance"
- System integration

New and Way Cool

- Grid/market/control interaction
- Value Stream Analysis
- Network of Structures
- Convergence and platforms
- Architecture quantification
- Structural de-constraint

The Grid is a Complex Network of Structures

Some System Architecture Principles

- A good architecture is one that meets the needs of the stakeholders (especially the users).
- Essential functionality drives complexity, not architectural "elegance."
- The architect must be cognizant of the global system when optimizing subsystems.
- Stakeholders should be involved in the process as much as possible, giving frequent and honest feedback on all aspects of the system architecture.
- Architecture must be consumable (i.e. understandable) by the stakeholders.

Dep't of Energy Grid Architecture Work

- Done to support analysis at DOE
- Viewed as a means to understand change in the grid
- Work has started to go viral has been referenced in conferences by industry people and
- Even being used in an energy law class at GWU
- Presented to NY REV working group, resulting in engagement with NY REV on architecture
- New request to engage with a coalition of utilities working on a project with architectural implications
- On-going architecture work via Office of Electricity

Example: Industry Structure

- One way to represent is via Entity-Relationship Diagram
- Each box is a *class* of entities
- Lines represent relationships
- We break it down in layers for each type of relationship (regulatory, market, etc.)
- Diagram requires detail for drilldown to explain each relationship

Insight Example: DSO Models

Example: Typical Coordination Framework

- Structurally problematic
 - Level bypassing
- Potential reliability issues
 - For high DER penetration
- Scalability problems
- Unnecessary connectivity raises extra cyber-security issues

Example: DSO Coordination Framework

- Structurally sound
 - No level bypassing
- Clear roles
 - o Managing DER volatility
- Better scalability
- Connectivity and data flow patterns easier to secure

Value Stream Allocation and Analysis

Source: Paul De Martini, Newport Consulting Group

- Grid architecture is a discipline that helps manage the complexity of grid transformation
- It uses abstract components, structures and properties, but focuses on structure as the key definer of capabilities
- The processes and bases are rigorous but are centered around stakeholder input
- Engaging with a good architect early on provides the most value but can be helpful almost anywhere in the process

Q: How many grid architects does it take to change a light bulb?

A: Only one, but the change has to be structural and involve the whole grid.

Proudly Operated by Battelle Since 1965

thank you

Jeffrey D. Taft, PhD Chief Architect for Electric Grid Transformation Pacific Northwest National Laboratory

jeffrey.taft@pnnl.gov

