SNP DISCOVERY: CHAIN TERMINATION SEQUENCING Discovery and characterization of single-nucleotide polymorphisms in steelhead/rainbow trout, Oncorhynchus mykiss

ALICIA ABADÍA-CARDOSO,*† ANTHONY J. CLEMENTO* + and JOHN CARLOS GARZA* \dagger
*Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA 95060, USA, +University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

Abstract

Single-nucleotide polymorphisms (SNPs) have several advantages over other genetic markers, including lower mutation and genotyping error rates, ease of inter-laboratory standardization, and the prospect of high-throughput, low-cost genotyping. Nevertheless, their development and use has only recently moved beyond model organisms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to the North Pacific rim that has now been introduced throughout the world for fisheries and aquaculture. The anadromous form of the species is known as steelhead. Native steelhead populations on the west coast of the United States have declined and many now have protected status. The nonanadromous, or resident, form of the species is termed rainbow, redband or golden trout. Additional life history and morphological variation, and interactions between the forms, make the species challenging to study, monitor and evaluate. Here, we describe the discovery, characterization and assay development for 139 SNP loci in steelhead/rainbow trout. We used EST sequences from existing genomic databases to design primers for 480 genes. Sanger-sequencing products from these genes provided 130 KB of consensus sequence in which variation was surveyed for 22 individuals from steelhead, rainbow and redband trout groups. The resulting TaqMan assays were surveyed in five steelhead populations and three rainbow trout stocks, where they had a mean minor allele frequency of $0.15-0.26$ and observed heterozygosity of $0.18-0.35$. Mean F_{ST} was 0.204. The development of SNPs for O. mykiss will help to provide highly informative genetic tools for individual and stock identification, pedigree reconstruction, phylogeography and ecological investigation.

Keywords: Oncorhynchus mykiss, rainbow trout, single-nucleotide polymorphism, steelhead
Received 24 July 2010; revision received 9 November 2010; accepted 17 November 2010

Introduction

The development of highly informative molecular markers is an important first step in the investigation of population, ecological, evolutionary and conservation genetic questions. Several types of molecular markers have been widely used since the development of the polymerase chain reaction (PCR), including randomly amplified polymorphic DNA, amplified fragment length polymorphisms, mitochondrial DNA sequences and variable number of tandem repeat markers, such as microsatellites and minisatellites. More recently, single nucleotide polymorphisms (SNPs) have begun to see use in population genetics, although primarily for model organisms. SNPs are nucleotide variants found at particular genomic

Correspondence: John Carlos Garza, Fax: 831-420-3977;
E-mail: carlos.garza@noaa.gov
locations and are normally bi-allelic (Vignal et al. 2002). SNPs have several advantages over other markers, including that they are the most abundant polymorphisms in eukaryotic genomes, with an approximate density of 10^{-3} SNPs per base pair (Wang et al. 1998; Smith et al. 2005), they are found in both coding and noncoding regions (Brumfield et al. 2003), and they have a lower mutation rate (Brumfield et al. 2003), which is an important source of error in many applications. The use of SNP markers with humans and other model organisms is extensive and has focused on genetic mapping, disease diagnosis, toxicology and pharmacogenomics (Wang et al. 1998; McCarthy \& Hilfiker 2000; Sachidanandam et al. 2001). Conversely, in nonmodel organisms, such as salmonid fishes, the use of SNP markers is quite recent and has focused more on population identification and ecological genetic questions (Narum et al. 2008).

Oncorhynchus mykiss is a salmonid species native to the North Pacific rim. Its current native distribution extends from the Kamchatka Peninsula in north-eastern Asia to northern Mexico in North America. However, it has been introduced throughout the world for recreational fisheries and aquaculture, and there are now naturalized populations of the species in the southern hemisphere (e.g. Pascual et al. 2001) and in Europe (Fausch 2007). Two widespread and phylogenetically distinct lineages of O. mykiss have been identified in North America, and they correspond approximately to inland and coastal groups separated by the Cascades mountain range (Burgner et al. 1992; Busby et al. 1996), although the full phylogenetic picture is more complicated (McCusker et al. 2000). In addition, many ecotypes and life history strategies are present in the species. Generally, the anadromous form of the species is termed steelhead and the nonanadromous freshwater form rainbow, golden or redband trout. Steelhead spend from 1 to 7 years in fresh water and then migrate to the ocean where they spend from 1 to 3 years before returning to fresh water to spawn. However, life history strategy in O. mykiss is governed by a complex mix of environmental and heritable factors, such that a single interbreeding population can contain individuals expressing nearly every possible combination of years in fresh and salt water (Shapovalov \& Taft 1954). There are also several ecotypes of steelhead that can coexist as distinct temporal 'runs' or 'races' that are defined by the season (spring, summer, fall or winter) of peak river entry and associated reproductive maturity (Busby et al. 1996).

This life history complexity makes monitoring and evaluation of the species, and its multitude of managed populations and stocks, difficult. Such assessment has become increasingly important, because salmonid populations on the west coast of the United States have declined dramatically during the past few decades and many steelhead populations are now protected under the United States Endangered Species Act (ESA; NOAA 2006). The most important causes for this decline include habitat loss, habitat degradation, recreational harvest and hatchery operations. In addition, genetically depauperate hatchery rainbow trout have been stocked in great numbers in basins containing native steelhead. Introgression by these trout has been reported and may pose a substantial threat to at least some steelhead populations (Garza \& Pearse 2008; Clemento et al. 2009).

One of the most important methods for monitoring the effects of such threats on fish populations, and for providing other types of biological inference about them, is the use of molecular population genetic analysis. Microsatellite loci have seen widespread use with O. mykiss and have proven powerful in studying population structure and interactions among different groups (Beacham
et al. 2000; Narum et al. 2004; Aguilar \& Garza 2006; Pearse et al. 2007; Clemento et al. 2009). Fortunately, due primarily to the importance of O. mykiss in aquaculture, many additional genomic resources have been developed for the species, including expressed sequence tag (EST) databases and linkage maps (Rexroad et al. 2008).

These resources are allowing more detailed analyses of ecological and conservation genetic questions than previously possible (e.g. Martínez et al. in press). They also allow the identification and development of SNP markers for salmonid species that can be surveyed on a large scale (Smith et al. 2005; Castaño-Sánchez et al. 2009). Such markers will allow large-scale monitoring and will further elucidate some of the pressing questions regarding O. mykiss ecology and life history evolution, through both traditional population genetic analyses and large-scale parentage inference (Anderson \& Garza 2006), particularly with the advent of high-throughput genotyping methods.

In this study, we describe the discovery, characterization and development of assays for a large number (139) of SNP loci for steelhead/rainbow trout. We exploited EST databases to design nearly 500 primer sets for functional genome regions. PCR products resulting from these genes, which include both exonic and intronic regions, were then sequenced in an ascertainment panel of 22 fish designed to simultaneously represent some of the phylogenetic diversity of the species and to provide polymorphic markers for focal populations in California. Such 'balanced' ascertainment is intended to reduce the bias against polymorphism in other populations and lineages of a species when only particular groups are used in marker discovery (Clark et al. 2005). These SNP markers represent a valuable resource for studying ecological interactions, phylogeography and conservation status, as well as for pedigree reconstruction, individual and genetic stock identification and, eventually, for linkage mapping.

Methods

Ascertainment panel

Individuals from multiple populations and lineages of O. mykiss were chosen for the ascertainment panel. A total of 22 fish from five distinct steelhead populations or rainbow trout strains were included: 10 anadromous adult steelhead from Scott Creek, four anadromous adult steelhead from the Middle Fork Eel River summer run, two redband trout (O. mykiss newberrii) from the Upper Klamath River basin and six hatchery rainbow trout raised at Fillmore Hatchery on the Santa Clara River near Los Angeles, CA. Three of these trout were from either the Virginia or Wyoming strains, and three were from
the Mt. Whitney Strain (Busack \& Gall 1980). In addition, two coastal cutthroat trout (O. clarki clarki) from Little River, Humbolt County, CA were included in the ascertainment panel, to detect and avoid designing assays for polymorphisms that might be because of past hybridization between steelhead and cutthroat trout (Young et al. 2001).

Genetic analysis

Tissue samples were digested with proteinase K, followed by DNA extraction with a semi-automated mem-brane-based system (DNeasy 96 Tissue Kit, QIAGEN Inc.) on a QIAGEN BioRobot 3000. All of these samples had been previously genotyped with microsatellites, so that DNA quality was known to be high. Purified DNA was diluted 1:20 in $\mathrm{ddH}_{2} 0$ for PCR.

A total of 480 O. mykiss ESTs were selected using a random number generator from the rainbow trout 'Gene Index' online database hosted at the Dana-Farber Cancer Institute and Harvard School of Public Health (http:// compbio.dfci.harvard.edu/tgi/; accessed on December 8, 2006). Primers were designed using the program primer3 v. 0.4.0 (Rozen \& Skaletsky 2000) for each of these loci. PCR amplifications were conducted using the following parameters: 0.041 U AmpliTaq DNA polymerase (Applied Biosystems Inc.), 1.5 $\mu \mathrm{L}$ PCR buffer (Applied Biosystems Inc.), $0.9 \mathrm{~mm} \mathrm{MgCl} 2,0.5 \mathrm{~mm}$ dNTPs, $5 \mu \mathrm{~mol}$ of each primer and $4 \mu \mathrm{~L}$ of DNA template. Thermal cycling conditions employed a 'touchdown' protocol and were as follows: an initial denaturation of 3 min at $94^{\circ} \mathrm{C}$, then 2 min at $63^{\circ} \mathrm{C}$ and 1 min at $72{ }^{\circ} \mathrm{C}$, followed by [$94{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min$] \times 12$ $\left(-1{ }^{\circ} \mathrm{C} /\right.$ cycle), $\left[94{ }^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 48^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}] \times 11,\left[94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 48{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}(+10 \mathrm{~s} /$ cycle) $] \times 9$ and finally 5 min at $72{ }^{\circ} \mathrm{C}$. PCR products were surveyed by gel electrophoresis in 2% agarose. PCR products that exhibited a single robust band were purified using an Exo-SAP protocol (USB Inc): $5 \mu \mathrm{~L}$ of PCR product, 0.15 mL of Exonuclease I ($20 \mathrm{U} / \mathrm{mL}$), $1 \mu \mathrm{~L}$ of shrimp alkaline phosphatase ($1 \mathrm{U} / \mathrm{mL}$), $0.5 \mu \mathrm{~L}$ of $10 \times$ buffer and $3.36 \mu \mathrm{~L}$ of deionized water were incubated at $37^{\circ} \mathrm{C}$ for 60 min and then $80^{\circ} \mathrm{C}$ for 20 min with a cool down to $4^{\circ} \mathrm{C}$. Clean products were then Sanger sequenced on both the forward and reverse strands using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems Inc.). Sequencing reaction products were purified using 6% Sephadex columns and visualized by capillary electrophoresis on a 3730 DNA Analyzer (Applied Biosystems Inc.).

All sequences from each locus were aligned and assembled into contigs using Sequencher 4.9 (Gene Codes Corporation). Where the alignments indicated a polymorphism, the chromatograms were visually exam-
ined for verification. To consider a polymorphism for development as a SNP assay, we used the criterion that all three genotypes (the homozygotes for both alleles and the heterozygote) for that site must have been observed at least once in the ascertainment panel. No distinction was made with respect to the population or strain in which the genotypes were found. This ascertainment criterion was employed to reduce the identification of sequencing artefacts as SNPs and to select the nucleotide sites that had the highest probability of being sufficiently polymorphic for downstream applications. A BLAST search was also performed on each consensus sequence to determine whether the EST corresponded to an identified gene and to ensure that each SNP marker would represent a novel assay in an independent gene. We chose one potential SNP for each EST analysed to reduce the probability of markers in linkage disequilibrium. The site with the highest minor allele frequency in the ascertainment sample that also met the assay design criteria (e.g. more than 25 bp from the end of the sequence, no adjacent polymorphism) was chosen for assay design.

SNP assay development and validation

Consensus sequences, with the selected nucleotide sites indicated, were submitted for the design of 5^{\prime} nuclease allelic discrimination, or TaqMan, assays (Applied Biosystems Inc.). When it was not possible to design an assay for a selected site and another nucleotide in the consensus sequence met both the ascertainment and design criteria, a second attempt was made to design an assay for that locus.

Single-nucleotide polymorphism assays were validated by genotyping a total of 186 fish from the following eight steelhead populations or rainbow trout strains: Scott Creek $(n=46)$, Klamath River-Kelsey Creek ($n=23$), Eel River-Middle Fork summer run ($n=24$), Sacramento River-Battle Creek ($n=23$), Columbia RiverWillamette River ($n=23$), Kamloops Strain-Hot Creek Hatchery $(n=15)$, Mount Whitney Strain-Fillmore Hatchery $(n=16)$ and Eagle Lake Strain-American River Hatchery $(n=16)$. SNP genotyping was carried out in 96.96 Dynamic Genotyping Arrays on an EP1 Genotyping System (Fluidigm Corporation), which uses nanofluidic circuitry to simultaneously interrogate up to 96 loci in 96 individuals.

Statistical analysis

Deviations from Hardy-Weinberg and gametic phase (linkage) equilibrium were evaluated with GENEPOP 4.0 (Rousset 2008). Observed and expected heterozygosity (Nei 1978), the fixation index F_{ST} (Weir \& Cockerham
1984) and allele frequencies were estimated using GENETIX 4.05 (Belkhir et al. 1996-2004).

Results

Of the 480 primer pairs designed from O. mykiss ESTs, 264 produced a single-sized PCR product in most or all fish in the ascertainment panel. Of these 264 ESTs, 236 yielded sequence at one or more individuals. All PCR products were subjected to sequencing, even if a band was not visible for every individual on an agarose gel. A mean of 18 (range 1-22) individuals produced sequence for each locus, and most of these resulted in broadly or completely overlapping forward and reverse sequences. Because EST sequences are derived from mRNA and therefore lack intronic regions, many of the PCR products were larger than the predicted size and several of them did not have overlapping forward and reverse strand sequences. None of the ESTs were identified as coming from the same gene in a BLAST search (Appendix S1), nor did they match any published SNP assays for O. mykiss.

More than 2.3 MB of genomic sequence was produced and aligned (Table 1), or 4.6 MB when both strands were considered separately, and a composite consensus sequence of 130 KB (mean $551 \mathrm{bp} /$ locus) was used for discovery and the determination of density. To account for the lack of sequence for all individuals in all sequences and the consequent decrease in probability of finding variability, we calculated a consensus length weighted by the number of individuals for which sequence was obtained. The weighted consensus sequence was 120 KB (mean $513 \mathrm{bp} /$ locus). In other words, 92.3% ($120 \mathrm{~KB} / 130 \mathrm{~KB}$) of the entire consensus sequence from these 236 loci was obtained for all 22 indi-
viduals in the ascertainment panel. The density of all nucleotide sites with apparent substitutions was 0.0111, or one every 111 bp . When weighted by the number of fish for which sequenced was obtained, the density of substitutions was 0.0122 or one every 122 bp .

A total of 175 sequences were submitted for assay design. In addition, one sequence (GHPROM1) with a SNP identified in a previous effort (Aguilar \& Garza 2008) was submitted for design. Of those, 167 yielded designs suitable for assay manufacture. From these 167, we then eliminated 28 because of problems with genotype calling or because the assay was not interrogating a single Mendelian locus (all apparent homozygotes or heterozygotes).

This elimination process left 139 SNP assays for further validation and characterization. A list of these assays, with primer/probe information and with the variable base indicated, is found in Table 2. To evaluate the utility of these loci in different parts of the species' geographic range and for both natural populations and hatchery/aquaculture rainbow trout, we genotyped all 139 loci in eight steelhead populations or rainbow trout strains (Table 3). Several loci were not in Hardy-Weinberg equilibrium for some populations or strains, but only four loci deviated from equilibrium in more than one group and no locus deviated in more than three populations or strains. Very little linkage disequilibrium between markers was found. Three markers (Omy_ 114448-87, Omy_121006-131 and Omy_127236-583) were in complete disequilibrium, in spite of the fact that they were designed from unique ESTs, but aside from those three, only eight pairs of markers (out of a total of 9005 pairs), were in significant linkage disequilibrium ($P<0.001$; 53 more pairs if $P<0.01$), which is similar to the number expected by chance alone.

Table 1 Summary of EST sequencing effort

EST loci sequenced	Total	Mean [Range] per locus
Base pairs sequenced	236	522269
Length of consensus sequence (base pairs)	130025	550.95 [109-1417]
Weighted consensus (base pairs)	119969	512.69
Number of observed substitutions	1366	5.84 [0-21]
Number of SNPs (all three genotypes observed)	506	2.16 [0-10]
Loci with no variable sites	10	182
Insertions/deletions (indels)	676	681
Transitions (A-G or C-T)	14	9
Transversions (A-C or G-C or A-T or G-T)	1548	
Possible duplicated genes		0.0111
Sites with 3 nucleotides observed	0.0122	
Total number of substitutions + indels		
Density of substitutions in consensus sequences		
Density of substitutions in weighted consensus sequences		

Table 2 SNP type, forward and reverse primers ($5^{\prime}-3^{\prime}$), TaqMan probes and dye, length of consensus sequences, GenBank accession numbers and dbSNPaccession numbers for the

	Assay			Cons. (arget	Primers (5'-3')	Probes (5'-3')

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	DBSNP No.
Omy_101704-329	A/C	F: TGTGTGTTTAACTGACAGAGATGCT	VIC: CACCTCCTCTCGGCTGT	591	HR504830	275517410
		R: GGAGCAGGAGCTCAAGGA	FAM: CTCCTCGCGGCTGT			
Omy_101770-410	T/C	F: GTTTTCTATGAGCAGGAGAGGGTTAA	VIC: CCTGTCTTTCAAAACTAA	795	HR504831	275517411
		R: CTTAGAAAGTACTTCTTTAAATATCAAATGCATTCAGT	FAM: CTGTCTTTCAGAACTAA			
Omy_101832-195	A/C	F: TGGCTCTGGACCTGTTGAGA	VIC: TGTAGTCTTTCAGAGTAGTATG	611	HR504832	275517412
		R: CGTCACAGCTATTTTAGGCGTAGT	FAM: TAGTCTTTCAGAGGAGTATG			
Omy_101993-189	A/T	F: ACAAAACACAGTGGAATTACAATTAACGTT	VIC: CTTGATTTGCAGCTTGTCAA	782	HR504833	275517413
		R: GGAAGTTAAATTTCGCTTCGTCAGAA	FAM: TGATTTGCAGCATGTCAA			
Omy_102213-204	T/G	F: AGATGTTAACTACATTCCATGACAATGATTGA	VIC: CTAAAAACCCATTAATTCAAT	640	HR504834	275517414
		R: GAGTATCTCATTCGCAACACTATGGT	FAM: AAAACCCATTCATTCAAT			
Omy_102420-634	T/G	F: GGTCGTAGTACACACCTGAGTAAAT	VIC: CCTAAAGCGCTTATCTTAA	732	HR504835	275517415
		R: CACGACACATGCCAGTAGACT	FAM: CTAAAGCGCTTCTCTTAA			
Omy_102457-423	T/G	F: CGATGAGTCAAGATAGTCGCTACT	VIC: CCCCCAAAAATGTC	584	HR504836	275517416
		R: GGCGTATGGAATTTAGTAGACTAGATTTTCA	FAM: CCCCCAAAATGTC			
Omy_102505-102	A/G	F: CTGCAAACTGACATGGTAGCAAAA	VIC: AACAGGATGTTTTTGC	150	HR504837	275517417
		R: TGCTTGCTTTTTAAAAACAATCTCCCA	FAM: CAGGATGCTTTTGC			
Omy_102510-682	T/G	F: AAGATCAGTGTGGCATCAATGTCA	VIC: TTGTCCTCAATATTCAC	732	HR504838	275517418
		R: TCGTGCCTGGATGTAAGTTAACTG	FAM: TTGTCCTCACTATTCAC			
Omy_102867-443	T/G	F: CATTTGTTTAATTTGATTTGGCACAACTTCA	VIC: TTTGGGTACATAATTTTT	443	HR504839	275517419
		R: CCCTAGTTCTGTAACACAAGACGTAA	FAM: TGGGTACATCATTTTT			
Omy_103350-395	A/C	F: CGCGTGTTGAACCTAGAATGAC	VIC: AGAACCAGGAAATTAACTAC	471	HR504840	275517420
		R: GGAAAATTCCTGCCAATGACACATG	FAM: CCAGGAAATGAACTAC			
Omy_103577-379	T/A	F: GGAGTGATCCAAGGTTATGTACCAA	VIC: AAGTGTGCACACGTTCA	759	HR504841	275517421
		R: CCAGCAATTTCCTTTCGAATCATTGA	FAM: AAGTGTGCACTCGTTCA			
Omy_103705-558	T/C	F: CTCCAATCGCAAATACCCAGACT	VIC: AGACTTACCCAGAGTGAGAG	658	HR504842	275517422
		R: CGCAGGAGACGGATGCC	FAM: ACTTACCCAGGGTGAGAG			
Omy_103713-53	T/G	F: TCATGAGTGAAGCGCACAGAA	VIC: AGGTTACTGGAGAAATCT	423	HR504843	275517423
		R: CTTTAGTAGGAGGTTGTAACCAAGTCA	FAM: ACTGGCGAAATCT			
Omy_104519-624	T/C	F: CGTGTGAGTTTGCGGTAAAGAC	VIC: CAGCAGGATACATCCGACT	1061	HR504844	275517424
		R: TGACGAGTCCGTCTTATCATCCT	FAM: AGCAGGATACGTCCGACT			
Omy_104569-114	A/C	F: CCGAGGCCGACGTGATC	VIC: CGCCACTCCGACGCC	565	HR504845	275517425
		R: GCGCCTCGCTCATCATCA	FAM: CCACGCCGACGCC			
Omy_105075-162	T/G	F: GGAGAAGGACAAGGACATTGGTAAT	VIC: СТTTCTCTCСTACTTTCC	443	HR504846	275517426
		R: AAAGCAGACCACACCATACTTCTC	FAM: СТТТСТСТССТССТТTСС			
Omy_105105-448	C/T	F: CAATTTGCAAGCAGGGAAAGGTTAT	VIC: AAGGAGAATGCATAATC	810	HR504847	275517427
		R: GTGATGGGCTGCAATTGCTT	FAM: TGAAAGGAGAATACATAATC			
Omy_105115-367	C/G	F: GCTCCCTCCGAAGAAATCTCA	VIC: CATGCTGGAGCGCAAT	401	HR504848	275517428
		R: CATACTCGTCAATCACCCAAGCT	FAM: CATGCTGGACCGCAAT			
Omy_105235-713	C/T	F: AGGCCATAAAATCAGGCATTAGGAT	VIC: AGAGAGTCAATCGTTGCAAA	788	HR504849	275517429
		R: TGGGCTCTGCAAAGACAAGA	FAM: AGAGAGTCAATCATTGCAAA			

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	DBSNP No.
Omy_105385-406	T/C	F: ACCTACCCTCACCTGAACTTCA	VIC: CTTGGAACCATTGCTAC	691	HR504850	275517430
		R: CGCTCTTCTGGGCGTATCG	FAM: TTGGAACCGTTGCTAC			
Omy_105386-347	A/C	F: CCAGGAAATCGTCAGCTCTATTTAATACAT	VIC: ACATTTCAACTCAATTAATAATTA	438	HR504851	275517431
		R: GAAACCTCCTTCAACCTCTGGATAA	FAM: TACATTTCAACTCAATGAATAATTA			
Omy_105401-363	A/G	F: GGCACCCTCATTCACACATACTAT	VIC: CCAAGTACCCTAGGTTGG	419	HR504852	275517432
		R: GTCTTCTCAAATAACCCCTGTGGAT	FAM: CAAGTACCCCAGGTTGG			
Omy_105407-74	T/G	F: GGATGGCTTGGAATGTGCAA	VIC: CTCTTTGCGTTTAGTCCTA	472	HR504853	275517433
		R: GCGGATGTACACAAAATACACTCAA	FAM: TCTTTGCGTTTCGTCCTA			
Omy_105714-265	C/T	F: CCACTCAGTGCAAGCATGGA	VIC: CTGTTGTTTGAGGTTCAG	476	HR504854	275517434
		R: GCTTTCAATCCTTGGCTCCAATATC	FAM: TGTTGTTTGAGATTCAG			
Omy_105897-101	T/A	F: GAACCAATACACAATGCCAAGGATT	VIC: TСТСТССАСАGTTCTC	382	HR504855	275517435
		R: GCTAGGGCTGCTATCTTTGTGATG	FAM: TCTCTCCACTGTTCTC			
Omy_106172-332	T/G	F: CCACTTTGTTACTAAATGTTCCCATGAC	VIC: ATGAACAGAATGTAATCTAG	467	HR504856	275517436
		R: ACATTCCAAAGACTGTCACATTCCA	FAM: TGAACAGAATGTCATCTAG			
Omy_106313-445	T/G	F: CCAACTGTTGTGTCTTGATTTGTGA	VIC: TTGATTTTTCCAAACCATGTGTG	729	HR504857	275517437
		R: GTTCTGTGTCTGAAGTCCATTGGT	FAM: TTGATTTTTCCAAACCCTGTGTG			
Omy_106560-58	C/T	F: CCACCCAGCCATCAACGA	VIC: CTCAGAGCGCAGGCC	387	HR504858	275517438
		R: CGTTCTTTCCCAGCGAGTGA	FAM: CTCAGAGCACAGGCC			
Omy_106747-707	A/G	F: CCGTTAAGAAAGGGTGACATCATGT	VIC: CGATACTCACACTGGCCTG	753	HR504859	275517439
		R: AGATCCATGGCCCCAGTCT	FAM: ATACTCACACCGGCCTG			
Omy_107031-704	C/T	F: GGCTTTCGGATACTGAGCAACAA	VIC: TGGACATGATTGCATAGAC	798	HR504860	275517440
		R: TGAACTCACTGTTGGTATGGACTAGA	FAM: CTGGACATGATTACATAGAC			
Omy_107074-217	A/G	F: CCGGGCTGTCATGTGACT	VIC: CCCTGGTCTTGACCC	397	HR504861	275517441
		R: CTGCTGACAGGCCTGAGA	FAM: CCTGGCCTTGACCC			
Omy_107285-69	C/G	F: GCCCTTGTGACAATGCACTGTTATA	VIC: ATACGTTACTTTTGACCTTGT	704	HR504862	275517442
		R: AGGTCTAGACAGTGTGCCATTTG	FAM: ACGTTACTTTTCACCTTGT			
Omy_107336-170	C/G	F: GCCCTCTCACTCATGACATCAAC	VIC: CACTCCTGGGTGCAGAA	471	HR504863	275517443
		R: GCTCCAGCCACTCGCA	FAM: ACTCCTGCGTGCAGAA			
Omy_107607-137	T/G	F: TGAGACAACCCAAAGCTTTAAGGAA	VIC: ATGTTCCGACAATAAAT	517	HR504864	275517444
		R: CAACGCACACTATCAGATCACATC	FAM: TGTTCCGACCATAAAT			
Omy_107786-314	G/A	F: TGGTTGTCCAAAGCTTTCTTCAGAA	VIC: САССТСАСССТССТСС	635	HR504865	275517445
		R: GCTGATACTACAGCATCCAAGGT	FAM: AССТСАССТTССТСС			
Omy_107786-584	T/G	F: GGACACAAGTGGGTACTATTCCATT	VIC: CAATGGTAAGATTTTG	635	HR504866	275517446
		R: AGTCAGTCAAGCTCTCTGGAGATAG	FAM: CAATGGTACGATTTTG			
Omy_107806-34	C/T	F: TCTTTGTCCATGCACATTGATATT	VIC: ATTGGATGTCAGTGTCATT	983	HR504867	275517447
		R: AGCACATTTAGTTAGCAGTGATGGA	FAM: ATTGGATGTCAATGTCATT			
Omy_108007-193	A/G	F: GTGAATACCACCCAGGCTTGT	VIC: ATGTTTTCTCCCTACTTAAC	441	HR504868	275517448
		R: GTCCCTTCCCCAGTTTCACTTAATT	FAM: TTTTCTCCCCACTTAAC			
Omy_108735-311	C/T	F: GTTTAATCCTGACTTTTCACTTTTGTCATCT	VIC: AACGCCTCGTGACAAT	428	HR504869	275517449
		R: GCGTGCCCTCAATTCCATT	FAM: AACGCCTCATGACAAT			

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	$\begin{aligned} & \text { DBSNP } \\ & \text { No. } \end{aligned}$
Omy_108820-85	T/G	F: CACCAACAACGTGTAGATTTCCTTAAAATATT	VIC: TTGATATGTGAATTTTG	397	HR504870	275517450
		R: TTTGGTTGGTTGTTTTTATCATTGATACAGTT	FAM: TTGATATGTGCATTTTG			
Omy_109243-222	A/C	F: ATGTGCACCTCTTAAATTGTAAGTAAAATGT	VIC: TGTTCATTAAATTGACTTTTT	521	HR504871	275517451
		R: ACCCTATATTCAGTGGCAAGATTGC	FAM: TTCATTAAATGGACTTTTT			
Omy_109390-341	C/T	F: ATTACAAACACAAGTCCTCATACAAGTGA	VIC: CATTTTGGCGGTCCAGAA	426	HR504872	275517452
		R: TGTAGGCAACGTTGGTTTATGGT	FAM: CATTTTGGCGATCCAGAA			
Omy_109525-403	A/G	F: CCTCATTCTCATTGGTGAGTTGTCT	VIC: ССTACACCTCTTTTTTCCACA	1045	HR504873	275517453
		R: TGTAAGATCTGACCACATGAGTATAACCA	FAM: ССТАСАССТСТTTTCTCСАСА			
Omy_109651-445	C/T	F: CCTGATTTTGCCCACATTTCAAGAA	VIC: CATATGTTAACGTGGGCTAT	615	HR504874	275517454
		R: GCTGTTGTCATATCATCCCGTTAAC	FAM: CATATGTTAACATGGGCTAT			
Omy_109693-461	T/A	F: GCCTCACCTGATGCCCATT	VIC: ACGACAGCCACACACAG	474	HR504875	275517455
		R: TGGAGGATTCAGCATTTGGATACC	FAM: ACGACAGCCTCACACAG			
Omy_109874-148	A/G	F: GTATGTGTGAGTATGTAATGACTGTATTTAGGA	VIC: ACAGCATTGATTTTGTCACC	392	HR504876	275517456
		R: CTCCTCCCTCAGTGCATTACATTTT	FAM: CAGCATTGATTTCGTCACC			
Omy_109894-185	T/C	F: CGGTGTCATTATGGTTGTCATTGTG	VIC: CTCCCTGATCCCCC	581	HR504877	275517457
		R: GGGAGGAATTGGAATGACAGATTAAC	FAM: CTCCCTGGTCCCCC			
Omy_109944-74	T/G	F: CCGGGACCAATTGAGAAATCGATAA	VIC: ACGTGACTGTATAGAGACT	116	HR504878	275517458
		R: GGGTTCAAGAGTACACGCCAA	FAM: ACGTGACTGTATCGAGACT			
Omy_110064-419	T/G	F: GTGCAAGGGACCTAGCTAATCC	VIC: ACGTTAGCTTTTAATTTC	798	HR504879	275517459
		R: TCTGAACTGACACTGAAGAACAAAGAA	FAM: AACGTTAGCTTTTCATTTC			
Omy_110078-294	A/G	F: GCAGTAAATCAGCAGAGACCTACA	VIC: TGTCTACGGATGACTTC	478	HR504880	275517460
		R: CCTTAAGCTCAGATTTAAACGATCAAAACA	FAM: TCTACGGACGACTTC			
Omy_110201-359	T/G	F: GGTAAGGCCTGTCTGACTATTTTGA	VIC: TTTGGCTATTGAAATTATACATT	588	HR504881	275517461
		R: AGAGGTCAATGGATGCCAGTTT	FAM: TTGGCTATTGAAATTCTACATT			
Omy_110362-585	G/A	F: GCAGCCAAGATGAACGAAAACTTC	VIC: CACCGCCCTGCCCGT	653	HR504882	275517462
		R: CCGGCCTGGGTCTCAATG	FAM: CACCGCCTTGCCCGT			
Omy_110571-386	C/T	F: CACTTGGCTCTGCACTAGCA	VIC: CTGTGTAAAATCCATGTCAACA	479	HR504883	275517463
		R: GGGTTGTTAAGAGTCCATTAGAAAGAAC	FAM: TGTGTAAAATCCATATCAACA			
Omy_110689-148	A/C	F: GTGTGTGGCAGAGAACTAACTGAT	VIC: CAAATGAACACATTATTTATC	379	HR504884	275517464
		R: GGTTAAGACATTAACATAACACTGGACTCT	FAM: ATGAACACATGATTTATC			
Omy_111005-159	C/T	F: ATCTGTCAGACAGTTGTGGATAATGTC	VIC: AGTCAAAAGGGCACAAAA	463	HR504885	275517465
		R: TCGATGACCAACATTGTAGTGTTAAATACA	FAM: AAGTCAAAAGAGCACAAAA			
Omy_111084-526	A/C	F: CACCACACCAAGCAACTATTTCATT	VIC: CCAGTGAAATTTATTTTT	709	HR504886	275517466
		R: ACCCAACTACTGTCCCATTTTTCAT	FAM: CAGTGAAATGTATTTTT			
Omy_111383-51	C/T	F: CACGCGCAATCTCTCGTTTTAC	VIC: ACCTAGTGCGCTTGCT	495	HR504887	275517467
		R: TCTTTAGGCAACAAGCGTGTCA	FAM: ACCTAGTGCACTTGCT			
Omy_111666-301	T/A	F: GGGTGAAAAGAGTGGGACATTTACA	VIC: AGTATAACACAGTAAGACAAT	639	HR504888	275517468
		R: GTCAATTTCAAGGCACCAGACAAT	FAM: AGTATAACACAGTTAGACAAT			
Omy_111681-432	C/T	F: GGCGGTTTAAGCAGCAGAAATAC	VIC: TCCCTCTCGGGTGCTG	693	HR504889	275517469
		R: GTGGATCATGCTCGCTAGGT	FAM: СССTCTCAGGTGCTG			

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	$\begin{aligned} & \text { DBSNP } \\ & \text { No. } \end{aligned}$
Omy_112208-328	T/C	F: GTCAACAGTTGGACGTAGATGCT	VIC: CTGACAGTGATTATTTTGT	904	HR504890	275517470
		R: CCTTCAGCTTGATCACCTCATAGG	FAM: TGACAGTGATTGTTTTGT			
Omy_112301-202	T/G	F: GTAAACCCTGCCCACATAATTAGGT	VIC: AATGCGAAGACAAACT	1146	HR504891	275517471
		R: CTGAGACACTGCTCCAAGGT	FAM: AATGCGAAGCCAAACT			
Omy_112820-82	G/A	F: ССТTTCСTTTTGCATTTCCTCTACTTATTTATTT	VIC: CGCCGCCAAGTTA	393	HR504892	275517472
		R: AAATGAACTCACGTTGACCTCTGA	FAM: CGCCGCTAAGTTA			
Omy_112876-45	T/C	F: GGACTACATGAAGGCGTGAGT	VIC: TTTTAGTGACGAGTGTCTG	805	HR504893	275517473
		R: ATCAGTCCTAGCCCAAACACATG	FAM: TAGTGACGGGTGTCTG			
Omy_113109-205	T/G	F: GTGGGCACTGTTACACAAAGTTC	VIC: CGTCATCTTAAATTATCTTTG	416	HR504894	275517474
		R: CCAGTCAACTTACAAACAAGCCATT	FAM: CGTCATCTTAAATTCTCTTTG			
Omy_113128-73	C/G	F: ССТССTACTCTGATCTAAAGATTACAGAA	VIC: TGGCAGGGTTTCCGG	374	HR504895	275517475
		R: TTCTCTGCCCTCTCGATTTTGG	FAM: TGGCAGGCTTTCCGG			
Omy_113242-163	T/C	F: TGGTGGACTGATCTGATGATGAAAG	VIC: TCTGAGACAACACGCTAT	389	HR504896	275517476
		R: CCTCGTCCATATTTTCCTCCTCAA	FAM: CTGAGACAACGCGCTAT			
Omy_113490-159	C/T	F: CATAGTACATTTACAGATAATGTTTTAAAGTGCATGT	VIC: CATCTGTTTTGGTTTAGC	288	HR504897	275517477
		R: CGAGATACCAAAATGCCACAGTTACAT	FAM: CATCTGTTTTAGTTTAGC			
Omy_114315-438	T/G	F: CCTCACCGATCTAGTCAACTTCATC	VIC: TTATGGGCTTAAGGGTC	555	HR504898	275517478
		R: AGGAGGCTGAGGGAGATTCTAG	FAM: TTATGGGCTTACGGGTC			
Omy_114448-87	C/T	F: GCCGAAAGGTAAAATCCACAAATCC	VIC: TGGTTGATCGAACATTT	530	HR504899	275517479
		R: GGACTAGGCTAACAGGAGAAGCT	FAM: TGGTTGATCAAACATTT			
Omy_114587-480	T/G	F: CAGATTACGTTATTACGTTTGGGAAATTTTTAAGT	VIC: CCTGTCCAAAATTGT	1266	HR504900	275517480
		R: GTGAAAGAGTGGGAAATATAATTATAAGGTCAGA	FAM: CCTGTCCACAATTGT			
Omy_114976-223	T/G	F: GACAAACAGCACTTCATTGCAGTAA	VIC: ACCGATGGAACAATC	735	HR504901	275517481
		R: GTTGCTCCAGCACCAGGT	FAM: CCGATGGCACAATC			
Omy_115987-812	C/T	F: GAGCTCCTGAAGACCTATAAGAATGTT	VIC: CTGAAAAGACTGCTCCAC	1166	HR504902	275517482
		R: GGTCGAGGAAGAGCTCAATGC	FAM: CTGAAAAAACTGCTCCAC			
Omy_116104-229	T/C	F: GCTAGAAGATAACAGGCCACACT	VIC: TGACAAGTTTAAGCTTG	513	HR504903	275517483
		R: ATGGTATTCAATGGCATTTTCAGTTTCAAA	FAM: TGACAAGTTTAGGCTTG			
Omy_116362-467	T/G	F: CTGGATCCAAGAGGCTGTTCT	VIC: CTCACCTGAATCCAG	508	HR504904	275517484
		R: TGCCTGCTATAGTTCCATGTCAAAA	FAM: CTCACCTGCATCCAG			
Omy_116733-349	C/T	F: GAAATGGACATGCCTACAAATTGCT	VIC: AGAGAATCTGATAGTATTTC	641	HR504905	275517485
		R: GATGTGATCAGTTTAGGCAAGGC	FAM: AGAGAATCTGATAATATTTC			
Omy_116938-264	A/G	F: GTTCATTCATGTTGAAGTGCGACAT	VIC: ССTTGTCTCAATTTTTCCTCT	530	HR504906	275517486
		R: CTCTGCATGCTCCCATCCT	FAM: СTTGTCTCAATTTCTCCTCT			
Omy_117242-419	G/A	F: GTСТТСТСТСТТТСТСТСССТСТСт	VIC: ССТСССТGССТССС	479	HR504907	275517487
		R: CCACTGGCCTTCAATTGTAACAG	FAM: ССТСССТGTCTCССТ			
Omy_117259-96	T/C	F: CAAGGGAAGAGCTCTGAGATGAG	VIC: CGTCATGCCATCATGT	409	HR504908	275517488
		R: GGGATCAGTGGCAGGTAGAG	FAM: CGTCATGCCGTCATGT			
Omy_117286-374	A/T	F: TGATGTGTTGTTCCTCATGGCTTA	VIC: CTTTCCTCATCATACTCTATGG	453	HR504909	275517489
		R: CTGTGCATTTATTCTTGTGATGCTAGG	FAM: TCCTCATCATACACTATGG			

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	DBSNP No.
Omy_117370-400	A/G	F: TGCAAACACAGAGGAAAGGGATTT	VIC: CAACTCCAATGAATTAA	596	HR504910	275517490
		R: GGCTTATTTGTTCCGTACTTGCATT	FAM: AACTCCAACGAATTAA			
Omy_117432-190	C/T	F: GGAGAACGCCTTGAGGTTGT	VIC: TCATGGTGGATCCTGG	441	HR504911	275517491
		R: TGCCTCATCCTTGGGACTGAT	FAM: TCATGGTGAATCCTGG			
Omy_117540-259	T/G	F: GGCAGGTTAACACAGTCATCTACTATAAA	VIC: TGTCACTTCAAAGTTTG	575	HR504912	275517492
		R: CAGCATGTTGCTTTAATCCTTCACA	FAM: TGTCACTTCAACGTTTG			
Omy_117549-316	A/G	F: CCAGTACCCTTACATCTGAGAACCA	VIC: CTGCCCTTGCTGGC	425	HR504913	275517493
		R: GGCCTTGGTTGTAGTTGTCACT	FAM: TGCCCCTGCTGGC			
Omy_117743-127	C/T	F: ACCTGCACCTTGTAAATAATTTATATAGTAG CTAAATAATT	VIC: ACATACAGAACGTTCACTG	477	HR504914	275517494
		R: GCCTGCCTGTGAACAACAC	FAM: ACATACAGAACATTCACTG			
Omy_117815-81	C/T	F: CTGCTTTATGCACACCACATTGT	VIC: CTATACGGAGACCAGC	402	HR504915	275517495
		R: GCTCTTTCTGGAGAACAAGGTACTG	FAM: CTATACGGAAACCAGC			
Omy_118175-396	T/A	F: AGGCTTCACACACACATGCA	VIC: CTCTTGCAGACATACCCGTA	463	HR504916	275517496
		R: GACGCGCAACCTCTAGATTATACTT	FAM: CTCTTGCAGACATTCCCGTA			
Omy_118205-116	A/G	F: CTGCGGTGGGCTACACA	VIC: CTACTGAGGCTGAGTGCT	485	HR504917	275517497
		R: CGCAGCTGCGGATGAG	FAM: TACTGAGGCCGAGTGCT			
Omy_118654-91	A/G	F: CAGCGTAGACCGTTTCCTCATTAT	VIC: TCAGCTTGTCTTGCCGC	454	HR504918	275517498
		R: GCGCCGATGAGCAGCTT	FAM: CAGCTTGTCCTGCCGC			
Omy_118938-341	A/T	F: GAGGGACAGACTTCAAGATTTCATGA	VIC: TGTTGTTCAGATTGTAAAAA	625	HR504919	275517499
		R: AGTCATCATAAAGACTTGTTCATTAAGGAAGG	FAM: TGTTGTTCAGATAGTAAAAA			
Omy_119108-357	T/C	F: GGTAGAAGCAGCCCATGCA	VIC: CGCGTCCAAGCAG	949	HR504920	275517500
		R: TGTGGCAAGGACATGTGTGA	FAM: CGCGTCCAGGCAG			
Omy_119892-365	T/G	F: GGTTATAGGTTCGTCACCATCCAAA	VIC: AATTCTACCTACAGCTAACA	755	HR504921	275517501
		R: TTGTCTGTGGTGTTATGTCTAATTTCAAG	FAM: ATTCTACCTACCGCTAACA			
Omy_120255-332	A/T	F: GGCTACAGGGACTTTACAATGGG	VIC: ACTATGCCATGAAGTTA	601	HR504922	275517502
		R: GCTAGCTAACATTGAAGGGTGGAAT	FAM: ACTATGCCAAGAAGTTA			
Omy_120950-569	T/G	F: TCACACTCAGATTATTGTGGCGATT	VIC: ATTGTTTAACCTAAAAGCTT	759	HR504923	275517503
		R: GCTGACTCATAAAAATGTTGGTAATGCT	FAM: TGTTTAACCTACAAGCTT			
Omy_121006-131	T/G	F: ACAGTGAATCAGCGGAGAAACA	VIC: TTCGTACGAGACCAAAG	505	HR504924	275517504
		R: AGTCCGTTTCCTGTTAGTGTAAGC	FAM: TCGTACGAGCCCAAAG			
Omy_121713-115	T/A	F: TGTGACAGAGCCAAGGAAAACC	VIC: TCAGGTTGAGTATTGC	501	HR504925	275517505
		R: TGGGCTAGTGAGGGAGTGA	FAM: TCAGGTTGTGTATTGC			
Omy_123044-128	C/T	F: CTGGGTGAGTGAGTTGACTATACAC	VIC: ATTTCTGGCGGTCCGG	784	HR504926	275517506
		R: CGGGTGTGCATGAGAAAATGAC	FAM: ATTTCTGGCAGTCCGG			
Omy_123048-119	C/T	F: ATGTATCTGGTGCATTGGGATGATT	VIC: ACTTGCCCGATACTT	797	HR504927	275517507
		R: ACAGCCACATGTACAGGGAAAAA	FAM: ACTTGCCCAATACTT			
Omy_123921-144	T/C	F: AACTCTGAAGTGGGATGTGATGTTC	VIC: CTAAGGTTCAGGACTTGGA	1045	HR504928	275517508
		R: GGATGATGTTACAAAAGGAGAGCATGT	FAM: AAGGTTCAGGGCTTGGA			

Table 2 Continued

Assay name	Assay target	Primers ($5^{\prime}-3^{\prime}$)	Probes ($5^{\prime}-3^{\prime}$)	Cons. Length	GenBank No.	DBSNP No.
Omy_124774-530	A/T	F: AGTACCACCGCCGTCTGATATAT	VIC: CAAATAAAAGGCTAAATAAA	705	HR504929	275517509
		R: CCAGAGCAAAGCATGTCCTCAAATA	FAM: AAATAAAAGGCAAAATAAA			
Omy_125998-61	T/G	F: GGTGTCCAGCCACAGTACAG	VIC: TGACCTCCATCCCCC	459	HR504930	275517510
		R: TGTTCCTTTATTGGGCCTGCATA	FAM: ATGACCTCCCTCCCCC			
Omy_126160-242	T/G	F: CAAGGGAGTGACCGGAATGTTATAT	VIC: CAATCATGTGTTAACACTAA	648	HR504931	275517511
		R: GCCCAGACATTTACAGCAGTATCA	FAM: ATCATGTGTTCACACTAA			
Omy_127236-583	C/G	F: TGGATCAAGACAGATTTCCCCTACA	VIC: ATTGTGAAACGGCCCCT	685	HR504932	275517512
		R: GCCACCAGTGAGATGTCTTTGAAA	FAM: ATTGTGAAACCGCCCCT			
Omy_127510-920	C/T	F: GTGTTATGCCAACAAGGCTTGT	VIC: AACAAATAACAGACGACATTA	1182	HR504933	275517513
		R: TTTGACAATATCAATATCATGAAAATGTTTGTGAGT	FAM: ACAAATAACAGACAACATTA			
Omy_127645-308	A/T	F: ACACTGATATTAACATGGCACAAGTCA	VIC: AAGTTTGTTACATATTTTG	401	HR504934	275517514
		R: CAGGGCCGGTCGTAGATTTT	FAM: TTTGTTACAAATTTTG			
Omy_127760-385	A/T	F: CGGCTATTCTCGCGTAAAAGCT	VIC: TCCTTATCCAAAATTATTGTGC	756	HR504935	275517515
		R: AAATGCAACCAGAAACGGAATGTC	FAM: CTTATCCAAAATAATTGTGC			
Omy_128302-430	C/T	F: GTATGGCATTTTTGTTCCCAAGGT	VIC: CATCATCGTAAATCAG	1025	HR504936	275517516
		R: CATGTGGTTGCCCTCCTTATAGAG	FAM: CATCATCATAAATCAG			
Omy_128693-755	A/C	F: GATACACTCTACTGACTAGTCCATCCA	VIC: CTCTGACCATTATTTTGTC	869	HR504937	275517517
		R: GTCCTGAAAGAGAGAAACACAGACA	FAM: CTGACCATTAGTTTGTC			
Omy_128851-273	T/A	F: GTACAGATGAATGTGTTTTATTTGGCATTG	VIC: CCTGTCAAATAAAG	348	HR504938	275517518
		R: CTGCCCATCAAGGTCTTCATCTTAT	FAM: СССTGTCTAATAAAG			
Omy_128923-433	T/C	F: ACGTTTCTTTGGGCTGAGACTTATT	VIC: CTTCATTTTCATTCACTGTTTT	505	HR504939	275517519
		R: CTATGTCCTTGGCAGAAGTCTACA	FAM: CATTTTCATTCGCTGTTTT			
Omy_128996-481	T/G	F: CTCATCCACACTGTACAGTACAAGT	VIC: CTTGTGGTTGAGGTTTG	515	HR504940	275517520
		R: CATGCCTTCGTCTCATCAATAACAC	FAM: TTGTGGTTGCGGTTTG			
Omy_129170-794	T/G	F: GTTAGAAACCATGACTCACCATCCA	VIC: CCCTGTGGAGTGTCAG	830	HR504941	275517521
		R: CTGTAGCAGTGATGCTATGGAATAGG	FAM: CCTGTGGCGTGTCAG			
Omy_129870-756	C/T	F: TCGTTATTTTGCCTCGCGGTA	VIC: ACAGGTATTTCGTGAAATG	965	HR504942	275517522
		R: TCCCATGAAGATGTATACATGTTTTGTGA	FAM: CAGGTATTTCATGAAATG			
Omy_130295-98	A/C	F: GGGACCACAGAATATTTTTCTTGTTCAT	VIC: CTTATGCCTTTTCTAATTCTGTA	583	HR504943	275517523
		R: TGGACAGAATGTTCTACAAGTTGCA	FAM: TTATGCCTTTTCTAAGTCTGTA			
Omy_130524-160	C/G	F: CGAAGGTAGCGATTGGTCGTT	VIC: ATGGCTTGATCCTCA	388	HR504944	275517524
		R: TGTCTGTTCTGCTGTGTGCTT	FAM: ATGGCTTCATCCTCA			
Omy_130720-100	C/T	F: CGGTCATTGTAAATGTCAACGGTTT	VIC: ACCTGTCCCGTTCCCA	547	HR504945	275517525
		R: TGCTTGCATGTTCTTGGTGTAGTA	FAM: ССTGTCCCATTCCCA			
Omy_131460-646	C/T	F: GTGAAAAGGAATGGAGGAGTACAGT	VIC: AATAAAGCAGAATTTGTTACTG	1276	HR504946	275517526
		R: TGCTAGGACAGGAAGATCATTTGTG	FAM: AAAGCAGAATTTATTACTG			
Omy_131965-120	C/T	F: AGAGATACATTAAAGCTGTGCTCATTCA	VIC: CATTGTAAACGACCATTTT	240	HR504947	275517527
		R: GCAGAGTTGCTTCAAAACTGTTAGT	FAM: CATTGTAAACAACCATTTT			
Omy_GH1- PROM1-1	A/T	F: TCAAACTGCATTTGATGGAAACAAACAT	VIC: TAGTGTTCACTGACTTCA	n / a	J03797	n / a
		R: AGGACAATTCTAAGTGACCTCAAACTG	FAM: TAGTGTACACTGACTTCA			

Table 3 Summary statistics of 139 SNP assays in 5 steelhead populations and 3 hatchery rainbow trout strains. The allele frequency reported for all groups is the minor allele ($P \leq 0.5$) in Scott Creek. He is expected heterozygosity, and Ho is the proportion of observed heterozygotes

Assay Name	Scott Creek			Klamath RiverKelsey Creek			Eel River-Middle Fork (summer)			Sacramento River-Battle Creek			Columbia RiverWillamette River			Kamloops Strain-Hot Creek Hatchery			Mount Whitney Strain-Fillmore Hatchery			Eagle Lake Strain-American River Hatchery			$\mathrm{F}_{\text {ST }}$
	$N=46$			$N=23$			$N=24$			$N=23$			$N=23$			$N=15$			$N=16$			$N=16$			
	Allele Freq.	He	Но	Allele Freq.	He	Ho	Allele Freq	He	Ho	Allele Freq.	He	Ho	Allele Freq.	He	Ho	Allele Freq	He	Ho	Allele Freq.	He	Но	Allele Freq.	He	Ho	
Omy_95318-147	0.500	0.51	0.	0.087	0.16	0.17	0.063	0.12	0.13	0.146	0.25	0.29	0.587	0.50	0.65	0.800	0.33	0.40	0.469	0.51	0.56	0.133	0.24	0.27	0.277
Omy_95442-108	0.174	0.29	0.26	0.043	0.09	0.09	0.021	0.04	0.04	0.152	0.26	0.30	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.031	0.06	0.06	0.073
Omy_95489-423	0.337	0.45	0.37	0.976	0.05	0.05	0.438	0.50	0.46	0.609	0.49	0.43	1.000	0.00	0.00	0.867	0.24	0.27	0.125	0.23	0.25	0.906	0.18	0.19	0.404
Omy_96158-277	0.455	0.50	0.55	0.182	0.30	0.36	0.021	0.04	0.04	0.348	0.46	0.61	0.000	0.00	0.00	0.133	0.24	0.27	0.250	0.39	0.50	0.344	0.47	0.56	0.161
Omy_96222-125	0.256	0.38	0.29	0.595	0.49	0.62	0.167	0.28	0.33	0.109	0.20	0.13	0.091	0.17	0.09	0.067	0.13	0.13	0.031	0.06	0.06	0.000	0.00	0.00	0.195
Omy_96529-231	0.111	0.20	0.18	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.077
Omy_96899-148	0.389	0.48	0.56	0.913	0.16	0.17	0.667	0.45	0.42	0.545	0.51	0.64	0.848	0.26	0.30	0.567	0.51	0.47	0.313	0.44	0.63	0.375	0.48	0.50	0.182
Omy_97077-73	0.250	0.38	0.45	0.043	0.09	0.09	0.500	0.51	0.58	0.283	0.41	0.39	0.130	0.23	0.26	0.000	0.00	0.00	0.313	0.44	0.50	0.000	0.00	0.00	0.153
Omy_97660-230	0.058	0.11	0.12	0.000	0.00	0.00	0.271	0.40	0.29	0.174	0.29	0.26	0.364	0.47	0.45	0.700	0.43	0.47	0.188	0.31	0.25	0.094	0.18	0.19	0.231
Omy_97865-196	0.057	0.11	0.11	0.000	0.00	0.00	0.000	0.00	0.00	0.087	0.16	0.17	0.000	0.00	0.00	0.000	0.00	0.00	0.267	0.40	0.13	0.375	0.48	0.25	0.185
Omy_97954-618	0.360	0.47	0.35	0.023	0.05	0.05	0.500	0.51	0.50	0.717	0.41	0.30	0.000	0.00	0.00	0.367	0.48	0.33	0.719	0.42	0.56	0.156	0.27	0.31	0.294
Omy_98188-405	0.378	0.48	0.58	0.045	0.09	0.09	0.063	0.12	0.13	0.196	0.32	0.39	0.217	0.35	0.35	0.300	0.43	0.20	0.063	0.12	0.13	0.188	0.31	0.13	0.090
Omy_98409-549	0.489	0.51	0.50	0.261	0.39	0.35	0.333	0.45	0.58	0.310	0.44	0.43	0.087	0.16	0.17	0.000	0.00	0.00	0.000	0.00	0.00	0.250	0.39	0.38	0.152
Omy_98683-165	0.337	0.45	0.50	1.000	0.00	0.00	0.478	0.51	0.52	0.609	0.49	0.43	0.957	0.09	0.09	0.867	0.24	0.27	0.594	0.50	0.44	0.750	0.39	0.38	0.270
Omy_99300-202	0.171	0.29	0.34	0.022	0.04	0.04	0.000	0.00	0.00	0.217	0.35	0.43	0.174	0.29	0.26	0.500	0.52	0.47	0.313	0.44	0.38	0.156	0.27	0.31	0.122
Omy_100771-63	0.250	0.38	0.27	0.000	0.00	0.00	0.833	0.28	0.33	0.565	0.50	0.26	0.114	0.21	0.23	0.067	0.13	0.13	0.000	0.00	0.00	0.625	0.48	0.38	0.409
Omy_100974-386	0.167	0.28	0.24	0.190	0.32	0.29	0.188	0.31	0.29	0.391	0.49	0.43	0.023	0.05	0.05	0.100	0.19	0.20	0.469	0.51	0.44	0.219	0.35	0.44	0.089
Omy_101119-554	0.000	0.00	0.00	0.068	0.13	0.14	0.000	0.00	0.00	0.326	0.45	0.30	0.000	0.00	0.00	0.067	0.13	0.13	0.063	0.12	0.13	0.281	0.42	0.44	0.191
Omy_101341-188	0.239	0.37	0.35	0.000	00	0.00	0.271	0.40	0.38	0.043	0.09	0.09	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.158
Omy_101554-306	0.478	0.50	0.47	0.048	0.09	0.10	0.354	0.47	0.46	0.217	0.35	0.35	0.022	0.04	0.04	0.267	0.40	0.40	0.563	0.51	0.75	0.688	0.44	0.25	0.209
Omy_101704-329	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.304	0.43	0.43	0.000	0.00	0.00	0.133	0.24	0.13	0.469	0.51	0.44	0.063	0.12	0.13	0.287
Omy_101770-410	0.211	0.34	0.33	0.182	0.30	0.36	0.208	0.34	0.33	0.217	0.35	0.35	0.130	0.23	0.26	0.233	0.37	0.20	0.125	0.23	0.25	0.375	0.48	0.50	0.006
Omy_101832-195	0.433	0.50	0.51	0.870	0.23	0.26	0.708	0.42	0.42	0.717	0.41	0.39	0.196	0.32	0.22	0.567	0.51	0.60	0.969	0.06	0.06	0.906	0.18	0.19	0.265
Omy_101993-189	0.478	0.50	0.48	0.977	0.05	0.05	0.958	0.08	0.08	0.417	0.50	0.42	0.023	0.05	0.05	0.700	0.43	0.47	0.125	0.23	0.13	0.406	0.50	0.44	0.418
Omy_102213-204	0.125	0.22	0.20	0.972	0.06	0.06	0.125	0.22	0.25	0.304	0.43	0.26	0.022	0.04	0.04	0.033	0.07	0.07	0.313	0.44	0.50	0.767	0.37	0.33	0.480
Omy_102420-634	0.341	0.45	0.45	0.696	0.43	0.26	0.438	0.50	0.54	0.761	0.37	0.39	0.848	0.26	0.22	0.533	0.51	0.53	0.719	0.42	0.44	0.938	0.12	0.13	0.186
Omy_102457-423	0.211	0.34	0.11	0.425	0.50	0.35	0.636	0.47	0.27	0.717	0.41	0.30	0.909	0.17	0.09	0.767	0.37	0.33	0.577	0.51	0.23	0.438	0.51	0.38	0.222
Omy_102505-102	0.228	0.36	0.37	0.130	0.23	0.17	0.229	0.36	0.29	0.022	0.04	0.04	0.250	0.38	0.41	0.067	0.13	0.13	0.156	0.27	0.31	0.000	0.00	0.00	0.051
Omy_102510-682	0.067	0.13	0.13	0.130	0.23	0.26	0.125	0.22	0.25	0.217	0.35	0.43	0.043	0.09	0.09	0.000	0.00	0.00	0.313	0.44	0.38	0.063	0.12	0.13	0.064
Omy_102867-443	0.273	0.40	0.45	1.000	0.00	0.00	0.708	0.42	0.42	0.783	0.35	0.35	1.000	0.00	0.00	0.967	0.07	0.07	0.219	0.35	0.44	1.000	0.00	0.00	0.498
Omy_103350-395	0.283	0.41	0.35	0.182	0.30	0.27	0.625	0.48	0.50	0.652	0.46	0.43	0.087	0.16	0.17	0.167	0.29	0.20	0.406	0.50	0.81	0.767	0.37	0.33	0.227
Omy_103577-379	0.291	0.42	0.26	0.045	0.09	0.09	0.083	0.16	0.17	0.065	0.12	0.13	0.184	0.31	0.26	0.000	0.00	0.00	0.313	0.44	0.50	0.031	0.06	0.06	0.098
Omy_103705-558	0.337	0.45	0.40	0.152	0.26	0.30	0.250	0.38	0.42	0.130	0.23	0.26	0.239	0.37	0.30	0.200	0.33	0.40	0.000	0.00	0.00	0.094	0.18	0.06	0.052

Table 3 Continued

	Scott Creek	Klamath River- Kelsey Creek	Eel River-Middle Fork (summer)	Sacramento River-Battle Creek	Columbia RiverWillamette River	Kamloops Strain-Hot Creek Hatchery	Mount Whitney Strain-Fillmore Hatchery	Eagle Lake Strain-American River Hatchery
	$N=46$	$N=23$	$N=24$	$N=23$	$N=23$	$N=15$	$N=16$	$N=16$
Assay Name	Allele Freq. He	Allele Freq. He Ho	Allele Freq He Ho	Allele Freq. He	Allele Freq. He Ho	Allele Freq He Ho	Allele Freq. He Ho	Allele Freq. He Ho

Omy 103713-53	0.464	0.50	0.50	0.022	0.04	0.04	0.229	0.36	0.29	0.542	0.51	0.42	0.	0.00	0.00	0.1	0.30	0.21	0.250	0.39	0.38	0.156	0.27		0
-624	0.272	0.40	0.33	0.739	0.39	0.43	0.813	0.31	0.29	0.674	0.45	0.57	0.717	0.41	0.39	0.533	0.51	0.40	0.625	0.48	0.50	0.625	0.48	0.38	0.15
my_104569-114	0.152	0.26	0.26	0.523	0.51	0.50	0.292	0.42	0.33	0.217	0.35	0.4	0.0	0.00	0.0	0.0	0.07	0.07	0.133	0.24	0.2	0.0	0.00	0.00	
62	0.315	0.44	0.50	0.409	0.49	0.55	0.104	. 19	0.21	0.152	. 26	0.22	0.26	0.39	0.35	0.033	0.07	0.07	0.00	0.00	0.00	0.000	. 00	. 00	0.12
my_105105-448	0.078	0.15	0.07	0.705	43	41	396	0.49	0.46	0.23	0.37	0.3	0.65	0.4	0.17	0.567	0.51	0.47	0.4	0.51	0.6	0.06	0.12	0.13	
105115-367	0.289	0.42	0.44	0.205	0.33	0.41	0.229	0.36	0.38	0.125	0.22	0.25	0.022	0.04	0.04	0.133	0.24	0.13	0.067	. 1	0.13	0.156	0.27	0.31	0.04
ny_105235-713	0.23	0.37	0.38	0.000	00	. 00	0.208	0.34	0.3	0.06	0.12	0.1	0.00	0.0	0.00	0.000	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	.
-	0.21	0.34	0.2	0.61	0.49	. 32	0.30	0.43	0.26	0.37	. 48	0.55	0.39	0.4	0.61	0.70	0.4	0.47	0.75	0.3	0.50	0.375	0.48	0.38	
ny_105386-34	0.33	0.45	0.44	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.12	0.1	0.000	0.00	0.00	0.00	0.00	0.0	0.65	0.47	0.19	. 36
105401-36	0.444	0.50	0.49	0.023	0.05	0.05	0.35	0.47	0.46	0.17	. 29	0.26	0.00	. 0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	
my_105407-74	0.35	0.47	0.33	0.571	50	0.4	0.58	0.50	0.58	0.609	0.49	0.78	1.0	0.00	0.0	1.00	0.00	0.00	0.50	. 5	0.50	0.375	0.48	50	. 230
my_105714-265	0.300	0.42	0.38	0.848	0.26	22	0.250	0.38	0.42	0.391		0.35	0.95	0.09	0.0	0.16	0.29	0.33	0.25	. 3	0.38	0.81	0.31	0.38	
my_105897-101	0.011	0.02	0.02	0.022	0.04	04	0.000	0.00	00	0.208	0.34	0.3	0.0	0.00	0.00	0.100	0.19	0.2	0.0	0.18	0.1	0.0	0.18	0.19	
my_106172-332	0.00	0.00	00	0.34	46	26	083	0.16	0.17	0.13	0.23	0.26	0.00	0.0	0.00	0.03	0.0	0.0	0.1	. 2	0.2	0.00	0.00	0.00	
my_106313-445	0.39	0.48	0.51	0.652	46	52	83	28	. 33	0.37	0.48	0.39	1.00	0.0	0.00	0.86	0.2	0.1	0.4	0.5	0.4	0.96	0.06	0.06	0.29
Omy_106560-58	0.222	0.35	0.36	0.022	0.04	. 04	188	. 31	0.29	0.34	. 46	0.43	0.00	0.00	0.00	0.033	0.07	0.07	0.21	0.3	0.4	0.59	0.50	. 56	
my_106747-707	0.31	0.44	0.45	0.52	51	52	542	51	. 75	. 38	0.49	0.32	0.47	0.51	0.61	0.76	0.37	0.4	0.56	0.51	0.3	0.	0.5	0.38	0.0
my_107031-704	0.044	0.09	0.00	0.109	0.20	0.13	0.083	0.16	0.17	0.37	0.48	0.42	0.40	0.49	0.73	0.86	0.24	0.27	0.37	0.4	0.5	0.125	0.23	. 25	
my_107074-217	0.109	0.20	. 13	0.978	04	04	458	. 51	0.58	. 84	. 26	0.30	1.00	0.00	0.00	1.00	. 0	0.00	0.3	0.4	0.5	0.93	0.1	0.13	
my_107285-69	0.267	0.40	0.40	0.087	0.16	0.17	208	0.34	0.42	0.565	0.50	0.52	0.3	0.46	0.4	0.23	0.37	0.33	0.5	0.51	0.69	0. 12	0.23	0.25	. 1
my_107336-170	0.00	0.00	0.00	0.109	20	22	000	0.00	00	0.23	0.37	0.48	0.04	0.09	0.09	0.26	0.4	0.27	0.00	0.0	0.00	0.28	0.4	0. 44	. 1
_107607-13	0.189	0.31	0.33	0.023	0.05	0.05	0.375	0.48	0.50	0.130	0.23	0.26	0.522	0.51	0.5	0.167	0.29	0.20	0.156	0.27	0.31	0.031	0.06	0.06	. 1
my_107786-314	0.12	0.21	0.15	0.109	20	22	0.104	0.19	0.21	0.71	0.41	0.39	0.91	0.16	0.17	0.90	0.19	0.07	0.4	0.5	0.56	0.30	0.43	33	
my_107786-58	0.089	0.16	0.13	0.119	0.21	0.24	0.109	0.20	0.22	0.525	0.51	0.65	0.900	0.18	0.20	0.500	0.52	0.47	0.250	0.39	0.38	0.313	0.44	0.38	
my_107806-34	08	0.15	0.02	0.56	50	59	0.021	04	. 04	0.39	0.49	0.43	0.40	0.49	0.30	0.50	0.52	0.47	0.8	0.27	0.1	0.87	0.23	0.25	0.38
my_108007-193	0.011	0.02	0.02	0.114	0.21	23	0.479	0.51	0.54	0.348	. 46	0.52	0.23	0.37	0.4	0.23	0.37	0.47	0.5	0.52	0.63	0.7	0.39	0.38	. 2
my_108735-311	0.19	0.32	0.26	0.39	0.49	47	0.375	0.48	0.42	0.47	. 51	0.70	0.58	0.5	0.48	0.83	0.29	0.33	0.40	0.5	0.4	0.75	0.39	0.25	0.16
my_108820-85	0.000	0.00	00	0.130	0.23	0.26	0.000	00	00	0.15	. 26	0.2	0.02	0.0	0.04	0.10	0.1	0.20	0.15	0.2	0.3	0.33	0.46	0.53	.
Omy_109243-222	0.122	0.22	0.24	0.39	0.49	0.26	125	0.22	0.25	0.	51	0.4	0.08	0.1	0.09	0.067	0.1	0.1	0.53	0.5	0.4	0.81	0.31	0.25	0.28
Omy_109390-341	0.196	32	0.26	0.000	0.00	0.00	0.283	0.41	0.30	0.261	0.39	0.52	0.000	0.00	0.00	0.233	0.37	0.33	0.46	0.5	0.5	0.18	0.3	38	. 1
Omy_109525-403	0.378	0.48	0.49	0.350	0.47	0.40	0.271	0.40	0.38	0.739	0.39	0.43	0.477	0.51	0.50	0.500	0.52	0.60	0.56	0.51	0.50	0.906	0.18	. 19	0.1
Omy_109651-445	0.238	0.37	0.48	0.000	0.00	0.00	0.021	0.04	0.04	0.021	0.04	0.04	0.000	0.00	0.00	0.000	0.00	0.00	0.438	0.51	0.38	0.000	0.00	0.00	0.24
Omy_109693-461	0.405	. 49	0.48	0.913	0.16	0.17	0.479	0.51	0.38	0.913	0.16	0.17	0.978	0.04	0.04	1.000	0.00	0.00	0.563	0.51	0.38	0.625	0.48	0.63	0.2
Omy_109874-148	0.244	0.37	0.36	0.000	0.00	0.00	0.083	0.16	0.17	0.022	0.04	0.04	0.065	0.12	0.13	0.000	0.00	0.00	0.094	0.18	0.19	0.000	0.00	0.00	

Table 3 Continued

Assay Name	Scott Creek			Klamath River- Kelsey Creek			Eel River-Middle Fork (summer)			Sacramento River-Battle Creek			Columbia RiverWillamette River			Kamloops Strain-Hot Creek Hatchery			Mount Whitney Strain-Fillmore Hatchery			Eagle Lake Strain-American River Hatchery			
	$N=$			$N=$			$N=2$			$N=23$			$N=23$			$N=$			N			$N=$			
	Allele Freq.	He	Ho	Allele Freq.	He	Ho	Allele Freq	He	Ho	Allele Freq.	He	Ho	Allele Freq.	He	Но	Allele Freq	He	Ho	Allele Freq.	He	Ho	Allele Freq.	He	Но	$\mathrm{F}_{\text {ST }}$
Omy_10989	0.136	0.2	0.2	0.278	41	0.11	0.12	22	0.17	0.457	0.51	0.39	0.238	0.37	0.3	0.429	0.51	0.57	0.094	0.18	0.1	0.656	0.47	0.69	0.1
Omy_109944-74	0.033	0.07	0.07	0.065	0.12	0.13	0.167	0.28	0.25	0.409	0.49	0.36	0.000	0.00	0.00	0.000	0.00	0.00	0.156	0.27	0.31	0.844	0.27	0.31	0.4
Omy_110064-419	0.300	0.42	0.33	0.196	0.32	0.30	0.091	0.17	0.18	0.304	0.43	0.52	0.000	0.00	0.00	0.233	0.37	0.33	0.375	0.48	0.25	0.094	0.18	0.19	0.07
Omy_110078-294	0.315	0.44	0.37	0.783	0.35	0.35	0.104	0.19	0.21	0.457	0.51	0.48	0.891	0.20	0.22	0.800	0.33	0.40	0.300	0.43	0.33	0.063	0.12	0.13	0.35
Omy_110201-359	0.500	0.51	0.41	0.478	0.51	0.43	0.458	0.51	0.50	0.804	0.32	0.39	0.696	0.43	0.52	0.900	0.19	0.20	0.656	0.47	0.44	0.813	0.31	0.38	0.09
Omy_110362-585	0.326	0.44	0.48	0.043	0.09	0.09	0.438	0.50	0.46	0.391	0.49	0.61	0.109	0.20	0.04	0.200	0.33	0.40	0.000	0.00	0.00	0.125	0.23	0.25	0.12
Omy_110571-386	0.000	0.00	0.00	0.283	0.41	0.39	0.000	0.00	0.00	0.022	0.04	0.04	0.087	0.16	0.17	0.700	0.43	0.60	0.094	0.18	0.19	0.000	0.00	0.00	0.41
Omy_110689-148	0.489	0.51	0.53	0.477	0.51	0.41	0.458	0.51	0.42	0.391	0.49	0.52	0.500	0.51	0.39	0.167	0.29	0.33	0.563	0.51	0.50	0.313	0.44	0.50	0.02
Omy_111005-159	0.011	0.02	0.02	0.881	0.21	0.24	0.229	0.36	0.46	0.435	0.50	0.52	0.391	0.49	0.61	0.000	0.00	0.00	0.719	0.42	0.31	0.406	0.50	0.69	0.4
Omy_111084-526	0.109	0.20	0.22	0.043	0.09	0.09	0.021	0.04	0.04	0.152	0.26	0.22	0.130	0.23	0.26	0.100	0.19	0.20	0.000	0.00	0.00	0.375	0.48	0.38	0.08
Omy_111383-51	0.152	0.26	0.26	0.409	0.49	0.55	0.292	0.42	0.50	0.435	0.50	0.61	0.717	0.41	0.30	0.633	0.48	0.73	0.281	0.42	0.31	0.469	0.51	0.31	0.1
Omy_111666-301	0.456	0.50	0.56	0.283	0.41	0.30	0.583	0.50	0.50	0.543	0.51	0.48	0.022	0.04	0.04	0.233	0.37	0.47	0.438	0.51	0.25	0.500	0.52	0.50	0.12
Omy_111681-432	0.000	0.00	0.00	0.043	0.09	0.09	0.000	0.00	0.00	0.152	0.26	0.22	0.000	0.00	0.00	0.033	0.07	0.07	0.031	0.06	0.06	0.250	0.39	0.50	0.12
Omy_112208-328	0.341	0.45	0.64	0.543	0.51	0.48	0.271	0.40	0.46	0.696	0.43	0.52	0.306	0.44	0.39	0.200	0.33	0.40	0.250	0.39	0.38	0.813	0.31	0.25	0.1
Omy_112301-202	0.054	0.10	0.02	0.364	0.47	0.45	0.250	0.38	0.42	0.261	0.39	0.26	0.909	0.17	0.18	0.867	0.24	0.27	0.469	0.51	0.69	0.688	0.44	0.50	0.40
Omy_112820-82	0.178	0.30	0.27	0.286	0.42	0.48	0.146	0.25	0.29	0.413	0.50	0.39	0.957	0.09	0.09	0.933	0.13	0.13	0.250	0.39	0.38	0.167	0.29	0.20	0.4
Omy_112876-45	0.500	0.51	0.96	0.217	0.35	0.43	0.438	0.50	0.88	0.739	0.39	0.52	0.523	0.51	0.86	0.600	0.50	0.80	0.750	0.39	0.50	0.781	0.35	0.31	0.1
Omy_113109-205	0.300	0.42	0.47	0.000	0.00	0.00	0.042	0.08	0.08	0.326	0.45	0.39	0.000	0.00	0.00	0.100	0.19	0.20	0.563	0.51	0.50	0.250	0.39	0.21	0.1
Omy_113128-73	0.456	0.50	0.47	0.152	0.26	0.22	0.333	0.45	0.42	0.065	0.12	0.13	0.000	0.00	0.00	0.033	0.07	0.07	0.063	0.12	0.13	0.094	0.18	0.19	0.20
Omy_113242-163	0.044	0.09	0.00	0.065	0.12	0.13	0.000	0.00	0.00	0.087	0.16	0.17	0.000	0.00	0.00	0.033	0.07	0.07	0.000	0.00	0.00	0.406	0.50	0.31	0.1
Omy_113490-159	0.000	0.00	0.00	0.500	0.51	0.50	0.167	0.28	0.33	0.174	0.29	0.35	0.364	0.47	0.64	0.367	0.48	0.47	0.406	0.50	0.44	0.344	0.47	0.44	0.16
Omy_114315-438	0.411	0.49	0.47	0.152	0.26	0.30	0.125	0.22	0.25	0.348	0.46	0.52	0.043	0.09	0.09	0.133	0.24	0.27	0.156	0.27	0.31	0.063	0.12	0.00	0.1
Omy_114448-87	0.185	0.30	0.28	0.682	0.44	0.55	0.313	0.44	0.46	0.587	0.50	0.57	1.000	0.00	0.00	1.000	0.00	0.00	0.438	0.51	0.63	0.938	0.12	0.13	0.42
Omy_114587-480	0.228	0.36	0.33	0.068	0.13	0.14	0.000	0.00	0.00	0.022	0.04	0.04	0.174	0.29	0.26	0.033	0.07	0.07	0.000	0.00	0.00	0.063	0.12	0.13	0.08
Omy_114976-223	0.352	0.46	0.43	0.043	0.09	0.09	0.167	0.28	0.33	0.065	0.12	0.13	0.043	0.09	0.09	0.333	0.46	0.53	0.438	0.51	0.63	0.031	0.06	0.06	0.15
Omy_115987-812	0.380	0.48	0.37	0.205	0.33	0.41	0.271	0.40	0.54	0.375	0.48	0.67	0.065	0.12	0.13	0.067	0.13	0.13	0.094	0.18	0.19	0.031	0.06	0.06	0.1
Omy_116104-229	0.045	0.09	0.09	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.01
Omy_116362-467	0.000	0.00	0.00	0.022	0.04	0.04	0.000	0.00	0.00	0.239	0.37	0.39	0.000	0.00	0.00	0.033	0.07	0.07	0.688	0.44	0.50	0.375	0.48	0.50	0.4
Omy_116733-349	0.413	0.49	0.52	0.795	0.33	0.23	0.125	0.22	0.25	0.565	0.50	0.52	0.609	0.49	0.43	0.900	0.19	0.20	0.625	0.48	0.38	0.906	0.18	0.19	0.2
Omy_116938-264	0.000	0.00	0.00	0.065	0.12	0.13	0.000	0.00	0.00	0.261	0.39	0.43	0.022	0.04	0.04	0.100	0.19	0.20	0.688	0.44	0.38	0.219	0.35	0.44	0.3
Omy_117242-419	0.398	0.48	0.57	0.457	0.51	0.39	0.413	0.50	0.48	0.565	0.50	0.26	0.341	0.46	0.50	1.000	0.00	0.00	0.281	0.42	0.44	0.406	0.50	0.56	0.1
Omy_117259-96	0.307	0.43	0.48	0.087	0.16	0.17	0.229	0.36	0.38	0.065	0.12	0.13	0.261	0.39	0.43	0.000	0.00	0.00	0.063	0.12	0.13	0.000	0.00	0.00	0.10
Omy_117286-374	0.256	0.38	0.42	0.022	0.04	0.04	0.021	0.04	0.04	0.087	0.16	0.17	0.043	0.09	0.09	0.167	0.29	0.33	0.031	0.06	0.06	0.063	0.12	0.13	0.08
Omy_117370-400	0.466	0.50	0.30	0.348	0.46	0.43	0.333	0.45	0.33	0.435	0.50	0.43	0.370	0.48	0.39	0.667	0.46	0.53	0.469	0.51	0.44	0.750	0.39	0.38	0.

Table 3 Continued

my 117432-19	0.076	0.14	0.02	0.109	0.20	22	0.12	0.22	0.25	0.043	0.09	0.0	0.00	0.00	0.00	0.23	0.3	0.3	0.00	0.00	0.0	0.500	0.52	0.38	
my_117540-259	0.411	0.49	0.56	0.786	0.34	0.33	0.56	0.50	0.43	0.7	0.41	0.39	0.97	0.04	0.04	0.7	0.43	0.07	0.844	0.27	0.31	0.906	0.18	0.19	
Omy_117549-316	0.26	0.39	0.39	0.022	04	04	. 188	31	. 38	0.65	0.46	0.41	0.00	0.0	0.00	0.13	0.2	0.27	0.83	0.29	0.20	0.68	0.44	0.38	0.38
my_117743-127	0.000	0.00	0.00	000	. 00	. 0	0.000	0.00	0.00	0.130	0.23	0.2	0.0	0.00	0.0	1.00	0.00	0.00	1.000	0.00	0.00	1.000	0.00	0.00	
Omy_117815-81	0.15	0.26	0.30	0.457	0.51	48	. 18	0.31	0.38	0.36	0.47	0.45	0.32	0.45	0.57	0.100	. 1	. 20	0.37	0.48	0.5	0.06	0.12	0.1	0.08
my_118175-396	0.1	0.32	0.30	0.130	0.23	0.17	0.354	0.47	0.54	12	0.22	0.25	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.18	0.06	
118205-11	0.48	0.51	0.62	0.632	0.48	63	0.39	0.49	0.43	0.69	0.43	. 26	0.95	. 0	0.09	0.90	. 19	0.2	0.65	0.47	0.5	0.34	0.47	0.31	.172
my_118654-91	0.26	0.40	0.40	0.870	0.23	0.26	0.708	0.42	0.5	0.47	0.51	0.43	0.5	0.5	0.5	0.86	0.24	0.27	0.50	0.52	0.38	0.43	0.51	0.38	
my_118938-34	0.08	0.16	0.18	0.	0.47	40	104	0.19	0.21	0.41	. 50	65	0.00	. 00	0.00	0.06	0.1	0.1	0.00	. 0	0.0	0.00	0.00	0.00	
my_119108-357	0.322	0.44	0.47	0.06	0.12	0.13	0.10	0.19	0.13	0.23	0.37	0.39	0.00	0.0	0.0	0.00	0.00	0.00	0.50	0.52	0.5	0.21	0.35	0.31	
my_119892-36	0.116	0.21	0.19	0.325	0.45	0.55	0.326	0.45	0.48	. 19	0.32	0.30	0.13	. 23	0.26	0.00	0.00	0.0	0.40	0.5	0.5	0.1	0.23	0.25	. 08
my_120255-332	0.268	0.40	0.34	0.075	0.14	0.15	0.18	0.31	0.21	0.13	0.23	0.17	0.19	0.3	0.3	0.00	. 0	0.00	0.15	0.2	0.1	0.313	0.44	0.38	. 02
my_120950-569	0.1	0.21	0.19	0.159	. 27	32	47	. 51	. 4	0.36	. 47	0.3	0.37	0.4	0.25	0.13	0.24	0.1	0.43	0.5	0.63	0.81	0.31	0.38	
my_121006-131	0.217	0.34	0.30	0.717	0.41	0.48	0.37	0.48	0.42	0.60	0.49	0.4	1.00	0.0	0.00	1.00	0.0	0.0	0.37	0.48	0.6	0.93	0.12	0.13	
my_121713-115	0.1	0.18	0.16	0.17	0.29	0.35	0.146	. 25	0.29	0.261	0.39	0.52	0.50	0.5	0.11	0.76	0.37	0.20	0.28	0.42	0.1	0.18	0.31	0.38	
my_123044-128	0.	0.50	0.43	0.833	0.28	0.33	0.70	0.42	0.42	0.717	0.41	0.48	1.00	0.00	0.0	1.00	0.00	0.00	0.68	0.44	0.38	0.8	0.27	0.31	0.1
my_123048-119	0.04	0.09	0.00	0.000	0.00	00	0.000	0.00	0.00	0.37	0.48	0.4	0.00	0.0	0.00	0.13	0.2	0.2	0.40	. 5	0.5	0.167	0.2	0.07	
_123921-144	0.193	0.32	0.25	0.318	0.44	0.55	0.271	0.40	0.54	0.152	0.26	0.30	0.413	0.50	0.65	0.3	0.46	0.27	0.031	0.06	0.06	0.031	0.06	0.06	. 0
my_124774-530	0.45	0.50	0.62	0.89	0.20	0.22	0.39	0.49	0.71	0.26	0.39	0.3	0.93	. 12	0.1	0.80	0.33	0.2	0.62	0.48	0.50	0.2	0.4	0.5	. 26
my_125998-61	0.30		0.30	0.957	0.09	0.09	0.438	0.50	0.46	0.739	0.39	0.35	1.00	0.00	0.00	0.767	0.37	0.47	0.50	0.52	0.38	0.781	0.35	0.44	
my_126160-242	0.3	0.47	0.59	0.00	0.00	0.00	130	0.23	0.26	0.022	0.04	0.04	0.00	0.00	0.00	1.00	0.00	0.00	1.00	. 0	0.0	1.0	0.00	0.00	
ny_127236-583	0.2	0.37	0.36	0.	0.43	0.52	0.39	0.49	0.46	0.77	. 36	0.3	1.0	0.00	0.0	1.0	0.00	0.00	0.844	0.27	0.31	0.9			
_12	0.222	0.35	0.31	0.239	0.37	0.39	0.375	0.48	0.50	0.522	0.51	0.52	0.152	0.26	0.13	0.5	0.52	0.33	0.5	0.52	0.50	0.906	0.18	0.19	
my_127645-308	0.012		0.02	0.000	0.00	0.00	0.000	0.00	0.00	0.304	. 43	0.43	0.000	0.00	0.0	0.03	0.07	0.07	0.0	0.00	0.00	0.7	0.42	0.44	
my_12	0.17		0.31	0.000	0.00	0.00	0.229	0.36	0.38	0.10	. 19	0.21	0.000	0.00	0.00	0.000	0.00	0.00	0.219	0.35	0.31	0.063	0.12	0.13	
my_128302-430	. 000	0.00	0.00	0.000	0.00	0.00	10	0.19	0.	0.000	. 00	0.00	0.0	0.09	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.000	0.00	0.00	. 0
my_128693-755	267	0.40	0.44	0.70	0.43	0.40	0.417	50	0.33	26	. 40	0.52	0.26	0.40	0.33	0.00	0.00	0.00	. 0	0.00	0.00	. 43	0.51	0.63	
my_128851-273	0.217	0.34	0.09	0.	0.00	00	25	38	0.00	0.10	. 20	0.22	0.00	0.0	0.0	0.00	0.00	0.00	0.3	0.47	0.3	0.0	0.00	0.00	
my_128923-433	0.130	23	26	048	. 09	10	0.065	. 12	. 04	0.022	0.04	. 0	0.09	0.17	0.18	0.50	0.52	. 6	0.18	0.31	0.3	0.167	0.2	0.2	.
Omy_128996-481	0.186	0.31	0.33	0.50	0.51	0.52	125	22	0.25	0.500	0.51	0.39	0.47	0.5	0.70	0.000	0.00	0.00	0.12	0.23	0.25	0.28	0.	31	0.14
my_129170-794	0.380	48	0.54	0.022	0.04	0.04	0.104	0.19	0.21	0.109	0.20	0.13	0.000	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.219	0.35	0.19	. 1
Omy_129870-756	0.244	0.3	0.44	0.614	0.49	0.68	0.417	0.50	0.67	0.239	0.37	0.39	0.652	0.46	0.35	0.833	0.29	0.20	0.250	0.3	0.38	0.563	0.51	0.50	0.17
my_130295-98	0.122	0.22	0.16	0.357	0.47	0.52	0.250	0.38	0.42	0.326	0.45	0.48	0.652	0.46	0.17	0.633	0.48	0.33	0.156	0.27	0.31	0.906	0.18	0.19	. 2
my_130524-16	0.4	0.	0.43	0.	0.49	0.55	0.521	0.51	0.54	33	0.45	0.42	0.391	0.49	0.78	0.367	0.48	0.47	0.750	0.39	0.38	0.719	0.42	0.31	

Table 3 Continued

Assay Name	Scott Creek			Klamath River- Kelsey Creek			Eel River-Middle Fork (summer)			Sacramento River-Battle Creek			Columbia RiverWillamette River			Kamloops Strain-Hot Creek Hatchery			Mount Whitney Strain-Fillmore Hatchery			Eagle Lake Strain-American River Hatchery			$\mathrm{F}_{\text {ST }}$
	$N=46$			$N=23$			$N=24$			$N=23$			$N=23$			$N=15$			$N=16$			$N=16$			
	Allele Freq.	He	Ho	Allele Freq.	He	Ho	Allele Freq	He	Ho	Allele Freq.	He	Ho	Allele Freq.	He	Ho	Allele Freq	He	Ho	Allele Freq.		Ho	Allele Freq.		Ho	
Omy_130720-100	0.500	0.51	0.42	0.143	0.25	0.29	0.583	0.50	0.58	0.630	0.48	0.39	0.000	0.00	0.00	0.100	0.19	0.07	0.625	0.48	0.50	0.781	0.35	0.44	0.281
Omy_131460-646	0.380	0.48	0.54	0.022	0.04	0.04	0.542	0.51	0.50	0.087	0.16	0.17	0.022	0.04	0.04	0.133	0.24	0.27	0.031	0.06	0.06	0.188	0.31	0.25	0.224
Omy_131965-120	0.389	0.48	0.33	0.350	0.47	0.50	0.396	0.49	0.54	0.565	0.50	0.52	0.109	0.20	0.22	0.167	0.29	0.20	0.563	0.51	0.50	0.406	0.50	0.44	0.079
Omy_GH1PROM1-1	0.256	0.38	0.38	0.196	0.32	0.30	0.313	0.44	0.46	0.500	0.51	0.52	0.043	0.09	0.09	0.067	0.13	0.13	0.344	0.47	0.31	0.094	0.18	0.19	0.100
Mean	0.238	0.32	0.31	0.168	0.24	0.24	0.221	0.30	0.31	0.260	0.35	0.35	0.132	0.18	0.18	0.148	0.22	0.21	0.237	0.31	0.31	0.185	0.27	0.25	0.204
Polymorphic loci (\%)	91.4				84.2			86.3			97.1			65.5			73.4			82.0			84.9		

Mean minor allele frequency averaged 0.199 over all loci, with a high of 0.260 in the Sacramento River-Battle Creek population and a low of 0.132 in the Columbia River-Willamette River populations. The proportion of polymorphic loci averaged 83.1% and varied from 97.1% in Battle Creek to 65.5% in the Willamette River. Expected and observed heterozygosity were generally very similar within each test sample, never differing more than 0.014 (i.e. 1.4%). Observed heterozygosity varied between 0.352 in Battle Creek and 0.182 in the Willamette River. Thus, all measures of genetic variability were consistent in identifying the Sacramento River-Battle Creek population as the most diverse and the Columbia River-Willamette River population as the least diverse. Mean F_{ST} was 0.204 and ranged from 0.006 to 0.606 at different loci.

Discussion

We report the discovery and development of assays for 139 novel single-nucleotide polymorphisms in the species O. mykiss, steelhead/rainbow trout, through sequence analysis of 236 ESTs with a total consensus length of 130 KB . We demonstrate how ESTs from existing public databases and directed Sanger sequencing of PCR products can be used to identify large numbers of SNPs in nonmodel organisms. In species and populations with large effective sizes, such sequencing from existing genomic information uncovers sufficient polymorphism that a preliminary screen of loci for potential polymorphism, using methods such as single-strand conformation polymorphism or high-resolution melt analyses, can be avoided, because nearly every locus will contain some variants.

The 139 SNP loci described here are broadly polymorphic in the species and should prove useful for a variety of applications, including phylogeography, genetic stock identification, individual identification, behavioural ecology and pedigree reconstruction. The availability of large numbers of SNPs known to be polymorphic in populations of steelhead and rainbow trout will allow the implementation of intergenerational genetic tagging through large-scale parentage inference, because this requires only about 100 SNP loci for sufficiently low tag recovery error rates (Garza \& Anderson 2007). Such parentagebased tagging will allow an unprecedented level of monitoring and evaluation of natural and hatchery/aquaculture populations, including estimation of variance in reproductive success, migration rates, effective population sizes, life-stage-specific mortality rates and other population parameters. Parentage-based tagging is based on the principle that genotyping fish from the parental generation, either in a hatchery, an aquaculture operation or a natural population, provides intergenerational
genetic tags for their progeny that can be retrieved through large-scale parentage inference (Anderson \& Garza 2006; Garza \& Anderson 2007). Such pedigree reconstruction is greatly facilitated by the low genotyping error/mutation rates of SNP loci. In addition, as more SNP loci are described and more assays become available for the species, it will be possible to construct secondgeneration genetic linkage maps and high-density SNP genotyping microarrays. In conjunction with the pedigrees resulting from PBT, these will enable detailed understanding of the genetic architecture of phenotypic traits in the species. Because of its importance in recreational fisheries and in aquaculture, as well as the ESA protection of many populations, the species O. mykiss is among the most economically significant fishes in the world, and an increased understanding of its phenotypic variation is of great value.

During the past decade, microsatellite markers have dominated population genetic work in salmonids, because of their high variability and conservation among related species (Landry \& Bernatchez 2001; Narum et al. 2004; Aguilar \& Garza 2006; Clemento et al. 2009; Pearse et al. 2009). However, microsatellites have significant drawbacks, among them relatively high genotyping error/mutation rates, significant staff time necessary for data generation and allele calling and homoplasy. Moreover, the results obtained with microsatellites in one laboratory are not directly combinable with data generated in other laboratories, even when using the same instrumentation, because of subtle differences in electrophoretic conditions and consequent data output (Seeb et al. 2007). The requirement for a standardization process to be able to combine microsatellite data between laboratories adds significant time and expense to collaborative projects.

Conversely, data obtained from SNP loci are easily portable and combinable between laboratories, as long as the same primer/probe sequences and/or reporting conventions are used. This will allow large multilateral databases to be developed for applications in fishery management, ecological investigation and aquaculture/hatchery broodstock management using both standard (e.g. Seeb et al. 2007) and pedigree-based approaches (Anderson \& Garza 2006). Moreover, the advent of new technologies, such as nanofluidic circuitry and spotted arrays, for thermal cycling and genotyping now allows the examination of a large number of SNPs in a large number of individuals in a short time period and at relatively low cost. This provides the prospect of SNP genotyping as a routine, and very valuable, tool for monitoring and evaluation of steelhead and rainbow trout populations throughout the world.

As SNP loci are typically bi-allelic, the amount of information per locus is more limited than for most mul-
tiallelic loci, such as microsatellites or amplified fragment length polymorphisms. In the future, however, analysis of haplotypes of tightly linked SNPs may provide additional information for many questions, including in phylogeography and pedigree resolution. Because we discovered many additional polymorphic sites in these genes, it would be possible to design additional assays for many of these sites and perform haplotype analyses. More complete analyses of this sequence variability will be reported elsewhere.

The number and density of substitutions and SNPs discovered here were consistent with what has been reported for other salmonids (e.g. Smith et al. 2005), but it is difficult to draw direct comparisons between different SNP discovery efforts, because the density of polymorphic sites uncovered depends critically on the number and phylogenetic diversity of the individuals in the ascertainment panel, the set of genes or genomic sequences interrogated for SNP discovery and accuracy of the sequencing method employed. Our ascertainment approach and stringent design criterion for SNP discovery were intended to fulfil several objectives. Included in the ascertainment panel were both representatives from populations in California where we are actively working and intend to apply the resulting markers, as well as from rainbow trout strains commonly used throughout the world for fishery stocking and/or aquaculture. By designing assays for variable sites only when all three genotypes were observed, and without regard to which individuals carried them, we selected both for markers with a higher mean minor allele frequency and markers that were more likely to be broadly useful in the species. This was intended to provide markers useful for study and management of both native steelhead populations and the millions of rainbow trout cultured for food and fisheries. However, it will also underrepresent rare variants, which could result in biases in phylogenetic and evolutionary applications of these markers. Still, it is important to point out that sets of microsatellite and other population genetic markers developed for salmonids and other nonmodel organisms suffer from the same biases. Therefore, applications of these SNP markers that depend upon a representative sampling of the site frequency spectrum in focal populations or lineages should ideally employ markers ascertained using diverse ascertainment populations and strategies.

Our ascertainment panel included fish from three coastal steelhead populations from several closely related lineages, a highly divergent population of redband trout and several rainbow trout strains domesticated from distinct lineages. This diverse ascertainment panel was intended to reduce ascertainment bias in populations in the southern part of the North American range. Nevertheless, because of the extensive phylogeographic
diversity in this species and the large amount of directed DNA sequencing involved in our discovery strategy, it was not possible to include a sufficient number and diversity of fish in our sequencing effort to completely eliminate ascertainment bias in this discovery. So additional effort will be necessary to identify additional SNPs for more phylogenetically distinct lineages, such as those in northern Mexico, interior Canada and Russia (McCusker et al. 2000; Hendrickson et al. 2002; McPhee et al. 2007).

Acknowledgements

We thank other members of the Molecular Ecology and Genetic Analysis Team of the Southwest Fisheries Science Center in Santa Cruz for their assistance, particularly Hilary Starks, Libby Gilbert-Horvath and Devon Pearse. Additional thanks to Andy Aguilar, Nate Campbell, Greg Charrier, Chris Donohoe, George Edwards, Heidi Fish, Sean Hayes, Andrew Matala and Paul Moran for help with protocol development, supplying samples or insightful discussions. Several anonymous reviewers and Lisa Seeb provided helpful comments that improved the manuscript.

Conflict of interest

The authors have no conflict of interest to declare and note that the sponsors of the issue had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

Aguilar A, Garza JC (2006) A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum). Molecular Ecology, 15, 923-937.
Aguilar A, Garza JC (2008) Isolation of 15 single nucleotide polymorphisms from coastal steelhead, Oncorhynchus mykiss (Salmonidae). Molecular Ecology Resources, 8, 659-662.
Anderson EC, Garza JC (2006) The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics, 172, 2567-2582.
Beacham TD, Pollard S, Le KD (2000) Microsatellite DNA population structure and stock identification of steelhead trout (Oncorhynchus mykiss) in the Nass and Skeena Rivers in northern British Columbia. Marine Biotechnology, 2, 587-600.
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology \& Evolution, 18, 249-256.
Burgner RL, Light JT, Margolis Let al. (1992) Distribution and origins of steelhead trout Oncorhynchus-mykiss in offshore waters of the north Pacific Ocean. International North Pacific Fisheries Commission Bulletin, 51, 1-92.
Busack CA, Gall GAE (1980) Ancestry of artificially propagated California rainbow trout strains. California Fish and Game, 66, 17-24.
Busby PJ, Wainwright TC, Bryant GJ et al. (1996) Status Review of West Coast Steelhead from Washington, Idaho, Oregon, and California. NOAA Technical Memorandum NMFS-NWFSC-27.

Castaño-Sánchez C, Smith TPL, Wiedmann RT et al. (2009) Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library. BMC Genomics, 10, doi:10.1186/1471-2164-10-559.
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Research, 15, 1496-1502.
Clemento AJ, Anderson EC, Boughton D, Girman D, Garza JC (2009) Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California. Conservation Genetics, 10, 1321-1336.
Fausch KD (2007) Introduction, establishment and effects of non-native salmonids: considering the risk of rainbow trout invasion in the United Kingdom. Journal of Fish Biology, 71, 1-32.
Garza JC, Anderson EC (2007) Large scale parentage inference as an alternative to coded-wire tags for Salmon fishery management In: Pacific Salmon Commission GSI Workshops: Logistics Workgroup Final Report and Recommendations, p. 55.
Garza JC, Pearse DE (2008) Population genetic structure of Oncorhynchus mykiss in the California Central Valley. Report to the California Department of Fish and Game p. 54.
Hendrickson DA, Perez HE, Findley LT et al. (2002) Mexican native trouts: a review of their history and current systematic and conservation status. Reviews in Fish Biology and Fisheries, 12, 273-316.
Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographic scales at Major Histocompatibility Complex and microsatellite Atlantic salmon (Salmo salar). Molecular Ecology, 10, 2525-2540.
Martínez A, Garza JC, Pearse DE (in press) A microsatellite genome screen identifies chromosomal regions under differential selection in steelhead and rainbow trout (Oncorhynchus mykiss). Transactions of the American Fisheries Society.
McCarthy JJ, Hilfiker R (2000) The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology, 18, 505-508.
McCusker MR, Parkinson E, Taylor EB (2000) Mitochondrial variation in rainbow trout Oncorhynchus mykiss across its native range: testing biogeographical hypotheses and their relevance to conservation. Molecular Ecology, 9, 2089-2108.
McPhee MV, Utter F, Stanford JA et al. (2007) Population structure and partial anadromy in Oncorhynchus mykiss from Kamchatka: relevance for conservation strategies around the Pacific Rim. Ecology of Freshwater Fish, 16, 539-547.
Narum SR, Powell MS, Talbot AJ (2004) A distinctive microsatellite locus that differentiates ocean-type from stream-type Chinook salmon in the interior Columbia River basin. Transactions of the American Fisheries Society, 133, 1051-1055.
Narum SR, Banks M, Beacham TD et al. (2008) Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Molecular Ecology, 17, 3464-3477.
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590.
NOAA-National Oceanographic and Atmospheric Administration (2006) Endangered and threatened species: final listing determinations for 10 distinct population segments of West Coast Steelhead. US Federal Register 71, 833-862.
Pascual M, Bentzen P, Rossi CR et al. (2001) First documented case of anadromy in a population of introduced rainbow trout in Patagonia, Argentina. Transactions of the American Fisheries Society, 130, 53-67.
Pearse DE, Donohoe CJ, Garza JC (2007) Population genetics of steelhead (Oncorhynchus mykiss) in the Klamath River. Environmental Biology of Fishes, 80, 377-387.
Pearse DE, Hayes SA, Bond MH et al. (2009) Over the falls? Rapid evolution of ecotypic differentiation in steelhead/rainbow trout (Oncorhynchus mykiss) Journal of Heredity, 100, 515-525.
Rexroad CE, Palti Y, Gahr SA, Vallejo RL (2008) A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genetics, 9, doi:10.1186/1471-2156-9-74.

Rousset F (2008) GENEPOP '007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103-106.
Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds Krawetz S \& Misener S), pp. 365-386. Humana Press, Totowa, NJ.
Sachidanandam R, Weissman D, Schmidt SC et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928-933.
Seeb LW, Antonovich A, Banks MA et al. (2007) Development of a standardized DNA database for Chinook salmon. Fisheries, 32, 540-552.
Shapovalov LEO, Taft AC (1954) The life histories of the steelhead rainbow trout (Salmo gairdneri gairdneri) and silver salmon (Oncorhynchus kisutch) with special reference to Waddell Creek, California, and recommendations regarding their management. California Department of Fish and Game Fish Bulletin, 98, 5-375.
Smith CT, Elfstrom CM, Seeb LW, Seeb JE (2005) Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Molecular Ecology, 14, 4193-4203.
Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34, 275-305.
Wang DG, Fan JB, Siao CJ et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280, 1077-1082.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Young WP, Ostberg CO, Keim P, Thorgaard GH (2001) Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Molecular Ecology, 10, 921-930.

Supporting Information

Additional supporting information may be found in the online version of this article.

Appendix S1 Blast results for all consensus sequences used in SNP assay development.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

