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Abstract.—The number of individuals in a spawning run of

anadromous fish can be estimated by tagging juveniles with

passive integrated transponders during the freshwater phase

and the subsequent monitoring of adult upstream migrants by

use of instream tag readers. The method may enable

monitoring of steelhead Oncorhynchus mykiss in systems

where other methods are intractable. I developed a hierarchical

capture–resighting model and applied it to simulated data to

develop a relation between the number of marked juveniles

and the precision of run size estimates. Precision is primarily

controlled by the number of tagged spawners that ultimately

return and are detected; only 30–90 tagged spawners are

required to obtain relatively precise estimates of run size. For

typical marine survival rates, 0.0033–0.0330, this translates to

a tagging effort of between 3,400 and 45,000 juveniles/cohort.

Estimates are robust to imperfect detection of tagged fish if at

least two instream readers independently scan for tags. Reach

sampling allows for estimation of run size in large stream

systems. Based on my simulations, the number of reaches

could be as low as 30–40 under scenarios of high marine

survival. Computer code is provided for the estimator using

the freely available statistical software R.

Anadromous fish species typically produce annual

spawning runs, the size of which is a key metric for

tracking the health and status of populations. Spawner

abundance is not always monitored in practice,

however, because such monitoring is difficult and

expensive. A direct estimate of run size requires in situ

counting of upstream migrants or spawning adults,

usually during times when weather and stream

conditions make field work difficult or hazardous.

However, without such monitoring, the size of

anadromous fish runs must often be conjectured from

anecdotal information and indirect reasoning about

habitat conditions, and management outcomes in terms

of fish cannot be directly linked to management

actions, thus inhibiting the learning process.

Runs of winter steelhead Oncorhynchus mykiss
(anadromous rainbow trout) are especially problematic

for direct monitoring because they tend to migrate

during the season of highest flows and most turbid

conditions. In areas such as southern California, the run

sizes themselves are small and can be concentrated into

the few days after high-flow events, when the use of

weirs, redd surveys, or direct observation is impractical

(Boydstun and McDonald 2005).

An alternative to direct monitoring of steelhead runs

is to infer run sizes indirectly from estimates of juvenile

abundance. Obviously, estimates of juvenile abundance

bear some relationship to adult run size, but they

provide a reduced ability to detect trends over time

(Shea and Mangel 2001) or to estimate extinction risk;

also, because of density dependence, their relationship

to adult run size may have an unknown form.

Moreover, in steelhead populations, the abundance of

juveniles can be a misleading index of adult run sizes

because anadromous juveniles are indistinguishable

from the nonanadromous rainbow trout, with which

they often co-occur. Without the ability to distinguish

between the anadromous and nonanadromous forms,

one cannot unambiguously monitor the anadromous

component via juvenile abundances.

Even so, juvenile abundances have the advantage

that they are straightforward to estimate using well-

known methods of electrofishing that can be deployed

under benign summer low-flow conditions (e.g.,

Rosenberger and Dunham 2005; Temple and Pearsons

2006). Estimates are made by placing block nets prior

to electrofishing, which thus allows for a variety of

abundance estimators based on closed-population

assumptions. What is needed to disambiguate such

data is (1) a method for estimating the probability of

transition from juvenile steelhead to anadromous out-

migrant and (2) a method for estimating subsequent

marine survival to spawning.

Specifically, if N is the number of juvenile steelhead

in a given season (prior to out-migration), then the

number of resulting spawners can be represented as a

binomially distributed random variable:

S ; BinomialðN; s1s2Þ; ð1Þ

where s
1

is the combined survival and transition rate to

out-migration (i.e., rate of successful smolting) and s
2

is subsequent marine survival. Here, I explore the idea

that the parameters s
1

and s
2

can be estimated by

tagging juveniles with passive integrated transponder
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(PIT) tags and monitoring the adult upstream migrants.

This method of tagging juveniles and monitoring

migrants (hereafter, T-JAMM design) requires that

tagged fish be detectable during their out-migration and

return migration, a feat that is now achievable due to

recent advances in tagging technology. These advances

enable tagged fish to be detected at distances of 20–30

cm from the antennae of tag readers, suitable for a

variety of passive monitoring devices placed instream

and operated continuously at low cost (Zydlewski et al.

2006). Arrays of antennae allow estimation of per-

reader detection probabilities (Zydlewski et al. 2001,

2006; Bond et al. 2007), and the general approach has

so far been adapted to streams as wide as 4.5 m

(Ibbotson et al. 2004).

My purpose here is to explore key statistical

parameters of T-JAMM designs: namely, what scale

of tagging effort is required to obtain reasonably

precise estimates of run size? Are hundreds, thousands,

or tens of thousands of tagged fish necessary to obtain

good estimates, and what aspect of the study design or

statistical model most limits precision? Can precision

be appreciably improved through the use of hierarchi-

cal statistical models? To address these questions, I

develop a hierarchical Bayesian resighting model for

fish that are sampled from reaches that are in turn

sampled from stream networks. The supplementary

material has a computer code package, bfisher

(available at http://swfsc.noaa.gov; select Data Portal

! Research Software! bfisher), which can apply the

model to real data sets using the freely available

computer language R (R Development Core Team

2006).

Methods

Model Development

Hierarchical models.—In small stream systems, it

may be possible to electrofish the entire network of

channels, in which case it is simple to develop an

estimator for S using equation (1) as a special case of

Pollock’s (1982) robust design for mark–recapture

studies. The more typical situation, however, is a

stream network that is too extensive to permit

electrofishing of every meter of channel. A useful

strategy for such cases is a two-stage sampling scheme

(Figure 1). In a two-stage design, reaches are randomly

sampled from the stream network (reach sampling) and

then fish are sampled from the reaches (fish sampling).

The resulting data are used to make statistical

assertions about all of the fish in the entire stream

network. Typically, the reach sampling is conducted

using a computerized geographical information system

(GIS) that contains a representation of the stream

network digitally segmented into individual reaches on

the order of 100–300 m long. A set of reaches is

randomly selected and identified in the field using a

Global Positioning System unit, and fish are then

sampled from each reach using block nets and

electrofishers in the conventional way.

For two-stage sampling, it is necessary to extend

equation (1) to multiple reaches:

Sj ; BinomialðNj; s1;js2Þ; ð2Þ

where j indexes individual stream reaches and total run

size is S¼ R S
j

(for simplicity, s
2

is assumed to be the

same for all fish from all reaches). The reaches fall into

two sets: those that are in the sample (symbolized by j
2 J, where J represents the sample) and those that are

not in the sample (symbolized by j =2 J). The statistical

problem here is that the sampled fish must be used to

estimate the parameters of sampled reaches (N
j2J

and

s
1,j2J

), which must then be used to estimate the

parameters of unsampled reaches (N
j=2J

and s
1,j=2J

). This

entails a second level of statistical modeling that is not

present in the conventional robust design but that can

readily be developed using concepts such as hierarchi-

cal or multilevel generalized linear modeling (Gelman

et al. 2004; Gelman and Hill 2007). A hierarchical

model takes a Bayesian view of probability—that

parameters, not data, have probability distributions—

and explicitly models those probability distributions

using another statistical model at a second level.

In the problem here, the second level of modeling

comprises (1) a model of how juvenile abundance N
j

FIGURE 1.—Schematic diagram of a two-stage T-JAMM

(tagging juveniles and monitoring migrants) design. Reaches

are randomly sampled from the stream network. Juveniles are

sampled from these reaches, implanted with passive integrated

transponder tags, released back to their home reach, and

monitored for emigration and return migration using an array

of tag readers deployed in the main migration corridor of the

stream network.
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varies among all reaches in the stream network and (2)

a model of how s
1,j

varies for fish from different

reaches in the stream network. The flow of information

in this modeling process is

Observations of tagged fish from sampled reaches

#
Inferences about all fish from sampled reaches

ði:e:;Nj2J and s1;j2JÞ
#

Inference of second-level models for all fish

from all reaches

#
Inference about all fish from unsampled reaches

ði:e:;Nj=2J and s1;j=2JÞ:

The first two steps involve Bayesian inference,

which (except for the simplest sorts of problems)

cannot be solved analytically. However, the last 10

years have seen enormous improvements in a family of

simulation techniques, known collectively as Markov-

chain Monte Carlo (MCMC) methods, that together

with today’s fast computers have allowed complex

Bayesian inference to become a routine pursuit by

nonspecialists (see Gelman et al. 2004; Congdon

2005). Here, I use open-source MCMC algorithms

implemented in two R packages: R2WinBUGS and

BRugs.

The last step involves data augmentation (Gelman et

al. 2004), which simply means using a fitted statistical

model to generate probability distributions of ‘‘unob-

served’’ data—in this case, the abundances and fates of

untagged fish. The underlying assumption of this step

is that sampled and unsampled reaches are exchange-

able, a generalization of the ‘‘independent, identically

distributed’’ assumption of frequentist statistics that is

applicable to the case of random parameters assumed

by the Bayesian approach.

The simulation approach of Bayesian MCMC and

data augmentation, while numerically intensive, has

some attractive features. Most notably, it allows one to

dispense with normal approximations for computing

such features as means, medians, or confidence limits.

Instead, one can obtain an arbitrarily large set of

simulated ‘‘draws’’ from the probability distribution of

interest (typically 1,000 draws are used), and one can

then estimate quantities such as the median or 95%
limits directly from these draws without any assump-

tions as to the parametric form of the underlying

probability distribution. This is convenient in the

current context because many statistics for mark–

recapture models are quite nonnormal, especially when

numbers of recaptures are low (Ricker 1975).

Another feature of the approach is that results have a

simple interpretation. In contrast to conventional

frequentist statistics, which assume some ‘‘true’’

statistical model, the Bayesian approach treats models

as useful constructs for making predictions about

unobserved data. I believe that this accords better with

how most biologists view models, and thus the

interpretation of results is more intuitive than for the

frequentist approach. For example, the 95% confidence

interval for S can be interpreted simply as ‘‘There is a

95% probability that the interval contains the actual S,’’

which matches how most such results are interpreted in

practice. Under the conventional frequentist paradigm,

such an interpretation is incorrect.

The price of the Bayesian approach, which treats

parameters as random variables, is that each parameter

must be assigned a ‘‘prior probability distribution,’’ a

statement of belief about its plausible values, prior to

making any observations relevant to the parameter.

The problem is that if prior information is absent or

neutral, for many distributions (such as the multino-

mial) there is no way to specify a prior completely

devoid of information (i.e., assumptions). In practice,

this is not a terrible problem, for even though one

cannot specify a completely noninformative prior, one

can specify a relatively noninformative prior (e.g., for

mortality, a uniform probability between 0 and 1). It is

generally found that even with modest amounts of data,

the observations quickly outweigh the influence of an

uninformative prior (Jaynes 2003). Of course, when

only one or two tagged fish are recaptured, an

uninformative prior may have a notable influence on

the estimate; if zero tagged fish are recaptured, one can

still obtain an estimate, but it will be completely

dominated by the prior. In other words, one has learned

nothing from the data.

I now turn to specifying a series of Bayesian

hierarchical models for the T-JAMM design under

two-stage sampling.

Tagging phase: estimating juvenile abundances.—

Assume that fish are sampled by two electrofisher

passes over a reach that is temporarily isolated by

block nets. Juveniles captured in the first pass are

marked with PIT tags and returned to the reach prior to

the second pass. Rosenberger and Dunham (2005)

argued that this mark–recapture approach is more

robust than traditional depletion-based methods. The

data consist of counts of fish captured only in the first

pass (denoted F
j
), only in the last pass (L

j
), or in both

passes (B
j
; all j 2 J). In what follows, I make extensive

use of the equivalence of the multinomial and Poisson

distributions when conditioned on total counts (Gel-

man et al. 2004; Congdon 2005); thus, familiar

formulations of mark–recapture models based on the
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multinomial are here portrayed as sets of Poisson-

distributed variables following the example of Gelman

et al. (2004: 431).

If the probability of capture per pass (p
j
) is

exchangeable across fish and passes of the electro-

fisher, then

Fj ; Poisson kjpjð1� pjÞ
� �

Bj ; Poissonðkjp
2
j Þ j 2 J

Lj ; Poisson kjpjð1� pjÞ
� �

;

ð3Þ

from which it is possible to estimate the capture

probability (p
j
) and the expected number of fish in the

reach (k
j
). From the exchangeability assumption, it

follows that the uncaptured fish (U
j
) in reach j 2 J are

distributed as

Uj ; Poisson kjð1� PjÞ2
h i

; j 2 J; ð4Þ

which is one of the quantities of interest. Once the

parameters p
j2J

and k
j2J

have been estimated for the

sampled reaches, it is straightforward to obtain a

predictive distribution of U
j2J

using data augmentation

(Gelman et al. 2004).

The other quantity of interest is the number of

juveniles in unsampled reaches (N
j=2J

):

Nj ; PoissonðkjÞ; j =2 J; ð5Þ

which can be estimated from k
j=2J

using data augmen-

tation. This requires a second-level model for how the

expected count k
j
varies across reaches, so that the k

j=2J

of unsampled reaches can be estimated from the k
j2J

of

sampled reaches. A general-purpose model is the

lognormal linear model with covariates (e.g., Wyatt

2002, 2003):

logeðkjÞ ¼ bXj þ ej þ ek þ logeðwjÞ ð6Þ

for all reaches j. Here, X
j

is a vector of regression

covariates that can be obtained for both sampled

and unsampled reaches, such as attributes obtained

from a GIS; and b is a vector of estimated regression

weights. The middle terms denote random effects, with

e
j

being the estimated variation among reaches, e
k

being the estimated variation among groups of reaches,

and k indexing the group. This grouping effect can

be useful when different parts of the stream network

naturally group into distinct units with potentially

different character, such as different tributaries. It

thus represents a discrete form of spatial autocorrela-

tion. The last term, w
j
, is an offset provided by the user

and can be used to account for reaches of different size.

For example, the w
j

could be set to the lengths of the

reaches, in which case the other parameters are

standardized per unit length of channel rather than

per reach. The offsets must be available for the

unsampled reaches as well as the sampled ones.

This general-purpose model is easily simplified by

omitting any or all of the following: (1) the random

group effect, (2) the covariates, and (3) the offsets.

When all are omitted, the model is simply

logeðkjÞ ¼ bþ ej; ð7Þ

where b is the log-mean abundance of juveniles across

sampling units. Simpler models will often be prefera-

ble: thus, if one lacks any useful covariates, then omit

the terms for covariates; if there is no meaningful way

of grouping sample reaches (e.g., a single stream rather

than a network), then omit the group effect; and if all

sample reaches are the same length, then there is little

point in including the offset. The bfisher code allows

any combination of these three components to be

omitted if so desired. If one is unsure whether to omit a

term, both versions of the model can be fit and the best

one can be selected via some model selection criterion,

such as the deviance information criterion implemented

in R2WinBUGS and elsewhere.

The regression weights and random effects can be

estimated using standard MCMC techniques (the

bfisher code uses the packages R2WinBUGS and

BRugs; see Sturtz et al. 2005; R2WinBUGS software

and documentation are available from the Comprehen-

sive R Archive Network [CRAN 2009], as is R itself.

Unfortunately, the compiled version of BRugs is no

longer available from CRAN; I have included a copy

with the bfisher code, which can be installed using the

‘‘Packages & Data/Package Installer/Local Binary

Package’’ menu item in R. For additional information

on BRugs, see also Thomas 2009). From this, one

produces a predictive distribution of the k
j=2J

for

unsampled reaches and thence distributions of N
j=2J

using data augmentation.

The capture probability, p
j
, is a nuisance parameter,

the precision of which may limit the overall success of

the model. Indeed, Rosenberger and Dunham (2005)

conducted an extensive campaign of field sampling

and found that p
j

had stronger relationships to site-

level covariates than did rainbow trout abundance

itself. Such covariates need only be measured at the

sites actually sampled and may improve the precision

of estimates, particularly for sites with low numbers

of fish recaptured. The bfisher code allows covari-

ates for p
j
, which is implemented with a complemen-

tary log–log link but is otherwise similar to equation

(6):

loge �logeð1� pjÞ
� �

¼ bXj þ ej þ ek þ logeðwjÞ ð8Þ
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for j 2 J. The complementary log–log link on the left

side of equation (8) is attractive because it gives the

right side the interpretation of ‘‘log hazard’’—the log

of capture rate for uncaptured fish. This will often be

more intuitive than the interpretation of the familiar

logistic link, which is the log-odds that fish are

captured versus not captured. The complementary

log–log link implies that the hazard rate is a product

of the effects of the various model terms (bX
j
, e

j
, etc.)

and also allows w
j
to play the same role as in equation

(6), scaling those effects per unit channel length.

Monitoring phase: estimating survival to spawn-
ing.—The purpose of the monitoring phase is to

estimate s
1,j

, s
2
, and a set of nuisance parameters, the

per-capita detection rates achieved by instream tag

readers. Detection rates typically fall in the range of

0.55–1.00 (Zydlewski et al. 2006). Estimating detec-

tion rate requires two or more readers placed in series

along the migration corridor and negligible mortality of

migrants between the two readers; this enables the use

of closed-population assumptions.

To illustrate the model for a two-reader design, let

Ro
11

be the number of tagged out-migrants detected by

both readers, let Ro
01

be the number missed by the first

reader but detected by the second, and so forth with

subscripts indicating detection patterns. This gives the

model

where M
j

is the total number of tagged fish and is

calculated as F
j
þB

j
(note that M

j
¼F

j
þB

j
þL

j
if fish

were tagged on both electrofishing passes. M
j

would

also need to be discounted by any fish that are

collected or killed while electrofishing—see Discus-

sion); and Vo
j
¼M

j
– Roþ,j

, the number of tagged fish

that were never detected migrating out (where Roþ,j

is short-hand for Ro
01,j
þ Ro

11,j
þ Ro

10,j
). The new

parameters, d
1

and d
2
, are detection rates of tagged

out-migrants at the first and second readers, respec-

tively. The unobserved fish (Vo
j
) are actually a

mixture of fish that migrated but were not detected,

fish that never migrated (became freshwater resi-

dents), and fish that died before migrating. In

equation (9), the probability on the top right-hand

side contains a term (1 � s
1,j

) for the dead and

nonmigratory fish.

Tagged spawners returning 1 or 2 years later also

produce counts of detected fish (symbolized by Ri
01,j

,

Ri
11,j

, and Ri
10,j

) and a calculated number of unob-

served fish (Vi
j
¼M

j
– Riþ.j

). The corresponding model

is similar to equation (9) but with two differences: (1)

two new parameters (d
3

and d
4
) describe detection rates

for incoming adults at each reader and (2) all

occurrences of s
1,j

are replaced by the product s
1,j

s
2
.

The s
1,j

must be estimated for unsampled reaches as

well as sampled reaches, but one might expect this

parameter to vary quite markedly across the stream

network. This variation is addressed using a hierarchi-

cal model similar to equation (8) but with a new set of

regression parameters and with p
j

being replaced by

s
1,j

. As with equations (6) and (8), this allows one to

make estimates of a parameter in unsampled reaches

without the restrictive assumption that the parameter is

identical for all reaches in the system.

Similarly, the detection probabilities (d
1
, d

2
, d

3
. . .)

can be modeled hierarchically as a simple random

effects model,

loge �logeð1� daÞ½ � ¼ bþ ea; ð10Þ

in which a subscripts each particular reader–migrant

combination. Alternatively, the detection rates can be

assumed identical,

loge �logeð1� daÞ½ � ¼ b; ð11Þ

in which case one can refer simply to d¼ d
1
¼ d

2
¼ � � �

¼ d
a
.

Estimating Run Size

Given the model just described, S is a sum of four

quantities: (1) the known number of incoming tagged

migrants that were detected, (2) an estimate of

incoming tagged migrants that were not detected by

the readers, (3) an estimate of untagged migrants from

sampled reaches, and (4) an estimate of migrants from

unsampled reaches. The sum of the above four

quantities is

Vo
Ro01

Ro11

Ro10

2

664

3

775

j

; Multinomial Mj;

s1;jð1� d1Þð1� d2Þ þ ð1� s1;jÞ
s1;jð1� d1Þd2

s1;jd1d2

s1;jd1ð1� d2Þ

2

664

3

775

8
>><

>>:

9
>>=

>>;
ð9Þ
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S ¼
X

j2J

Riþ;j

þ
X

j2J

Binomial Vij; s1; js2ð1� d3Þð1� d4Þ
� �

þ
X

j2J

BinomialðUj; s1; js2Þ

þ
X

j=2J

BinomialðNj; s1; js2Þ;

ð12Þ

which are estimated using MCMC techniques followed

by data augmentation.

Characterizing Tagging Effort versus Precision

The cost of the T-JAMM design includes a fixed

cost of acquiring and operating the in situ tag readers

and the nonfixed costs of tagging the fish, the latter

being adjustable depending on the annual sampling

effort. Intuitively, one expects that a greater investment

in tagging will deliver a more precise estimate, but by

how much? My performance metric for this question is

relative precision (P), defined for my purposes as the

interquartile range of the estimate scaled by the median

of the estimate (i.e., P¼ [S
75%
� S

25%
]/S

50%
, analogous

to a coefficient of variation). Simulated data were used

to explore the relation between the number of fish

tagged and the resulting precision of the run size

estimate.

The full statistical model was rather numerically

intensive, so for the simulations I developed simplified

versions to examine specific tradeoffs. The simplest

model assumed that all reaches were electrofished (i.e.,

there were no unsampled reaches) and that there was

perfect detection of tagged fish by in situ readers. The

next model added imperfect detection, and the next

assumed that some reaches were unsampled.

Analyses were programmed in R using BRugs and

R2WinBUGS to iterate the Markov chains. Except for

the model with unsampled reaches, data sets were

simulated by randomly drawing parameter values from

the log-uniform distributions described in Table 1

(which corresponded to prior probabilities of the

Bayesian statistical model). All models assumed two-

pass electrofishing, with PIT tag implantation occur-

ring after the first pass.

For the model with unsampled reaches, data sets

were simulated using a predictive model of steelhead

distribution in the Arroyo Seco River system of central

California, described by Boughton et al. (2009). This

study was based on snorkel counts of juveniles in a

random sample of 31 reaches stratified into eight

creeks, and abundance was estimated using lognormal

models (Wyatt 2002). A predictive distribution was

used to generate 200 random abundance values for

each of the 1,930 unsampled reaches in the sampling

frame. From each of the 200 simulated data sets, I drew

a sample of 256 reaches and simulated mark–recapture

data. First, an estimate of S was made using the data

from the entire sample of 256 reaches. Half of the

reaches were then discarded and a new estimate was

made, iterating until the sample dropped to eight

reaches (a sampling fraction of 0.130–0.004). To

reduce computer time, detection of upstream migrants

was assumed to be error-free. For half of the 200 data

sets, I assumed a high s
2

of 0.033 (Bond 2006), and for

the other half I assumed a low s
2

of 0.0033.

Results

Simplest Model

The simplest model is somewhat unrealistic, as it

assumes that the entire stream network gets electro-

fished and that all tagged fish are detected during their

downstream and return migrations. It thus represents a

best-case scenario for achievable precision. Since

Bayesian probability can be interpreted as an optimal

TABLE 1.—Range of parameter values used to simulate data based on steelhead distribution in the Arroyo Seco River system,

California. Models are described in Methods.

Parameter

Modela

Simplest Imperfect detection Reach sampling

Detection probability (d)b d ¼ 1 0.50 , d , 0.99 d ¼ 1
Number of juveniles (N) 500 , N , 40,000 500 , N , 40,000 263,000 , N , 371,000
Capture probability (p)c 0.1 , p , 0.4 0.1 , p , 0.4 0.50 , p , 0.78
Survival to out-migration (s

1
) 0.2 , s

1
, 0.8 0.2 , s

1
, 0.8 0.2 , s

1
, 0.8

Marine survival (s
2
) 10�3 , s

2
, 10�1 10�3 , s

2
, 10�1 s

2
¼ 0.033 or 0.0033

Expected run size (S ¼ Ns
1
s

2
) 0.1 , Ns

1
s

2
, 3,200 0.1 , Ns

1
s

2
, 3,200 433 , Ns

1
s

2
, 6,121

a Population parameters (N, s
1
, s

2
) for the first two models are intended to represent a range of generic situations; parameters

for the reach sampling model represent the situation in the Arroyo Seco River system.
b Detection probability is assumed to be the same for all tag readers; hence, d

1
¼ d

2
¼ d

3
. . . ¼ d.

c For the first two models, the range of p is that obtained by Rosenberger and Dunham (2005; their Figure 1). In the reach

sampling model, the range of p is that obtained empirically for the Arroyo Seco River system.
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representation of uncertainty (Jaynes 2003; Van Horn

2003), the simplest model implies a fundamental limit

on what one can learn about run size using a T-JAMM

design.

As expected, in an analysis of 1,000 simulated data

sets, the 95% credible intervals of S contained the true

value 95% of the time, except for cases where zero

tagged fish survived to spawn (in which case the prior

probability of s
2

dominated the estimate). These zero-

spawner data sets were omitted from further analysis.

The value of P varied widely from 0.05 to 2.00. It

did not vary with most population parameters, such as

N, s
1
, or s

2
, though it was somewhat related to the total

S (Figure 2). It did not vary with juvenile tagging

probability but was weakly related to the number of

tagged juveniles and the number of spawners without

tags. However, P was closely related to the number of

tagged spawners (Figure 2, bottom right corner). The

data exhibited a memorable ‘‘30 for 30%’’ rule: to

achieve P less than 0.30, it is sufficient to recover 30

tagged spawners. However, due to the log-linear nature

of the relationship, to guarantee P less than 0.10 one

must recover a much greater number of tagged

spawners: at least 200.

Of course, the number of tagged spawners will

depend on the number of tagged juveniles, which is

generally under one’s control to some extent, but it also

depends on s
1

and s
2
. If one can make an informed

guess at s
1

and s
2

beforehand, the approximate number

of juveniles to tag is

MTotal ’
4

s1s2P1:7
: ð13Þ

Performance Cost of Imperfect Detection

Next, I simulated imperfect detection during the

monitoring phase for installations of two, three, or four

readers. Zydlewski et al. (2006) described three field

deployments in which detection probabilities of tagged

fish in freshwater creeks ranged from 0.55 to 1.00 per

detector, so I randomly selected values of d between

0.50 and 0.99 and assumed that all readers had the

same detection probability.

Figure 3 shows the influence of the number of

readers in terms of 5% exceedence curves for P. The

exceedence curves were calculated using a normal

approximation of the results from simulations. Imper-

fect detection only degrades P appreciably if just two

tag readers are deployed and if fewer than six tagged

spawners are detected. The ‘‘infinity’’ entry in Figure 3

depicts results from the simplest model of the previous

section.

In these simulations, the model assumed all readers

to have the same detection probability for all fish

(equation 11). Another model was used to explore the

importance of this assumption, incorporating random

effects of the detection probabilities (equation 10). The

results (not shown) indicated a slight cost to precision

for the case of 10 or more tagged spawners, such that

40 tagged spawners were required to guarantee a P of

0.30. Below 10 tagged spawners, one starts risking a

bad situation in which the prior for detection rates at

individual antennae sometimes dominates and in which

accuracy is unreliable.

Performance Cost of Reach Sampling

Under reach sampling, the ‘‘30 for 30%’’ rule found

earlier was changed to a ‘‘90 for 30%’’ rule when s
2

was high (0.033; left side of Figure 4). The number of

tagged juveniles necessary to guarantee a given P
would be about

MTotal ’
12

s1s2P1:7
: ð14Þ

For a P of 0.3, this translates to a tagging effort of

about 14,000 juveniles for an s
1

value of 0.2 and about

3,500 juveniles for an s
1

of 0.8, the low and high ends

of the smolt transition rates I assumed.

When s
2

was low (0.0033), the ‘‘30 for 30%’’ rule

was retained (right side of Figure 4). However, to

achieve it, one had to sample more reaches to

compensate for lower s
2
. The higher number of

sampled reaches evidently allowed the parameters of

the linear model to be estimated with high precision.

Thus, there was no performance cost for reach

sampling relative to tagging the whole stream system.

Of course, the necessary tagging effort was still much

higher than under the high s
2
, but it was only around

3.3 times higher rather than proportionate (i.e., 10

times higher). Under the ‘‘30 for 30%’’ rule (equation

13), the tagging effort would have to be around 47,000

juveniles for an s
1

of 0.2 and around 11,700 juveniles

for an s
1

of 0.8.

Discussion
Key Assumptions

In general, mark–recapture estimators of the type

described in this paper rely on six key assumptions for

their accuracy (Ricker 1975: 81–82). The six assump-

tions are listed here with a discussion of their

implications for T-JAMM designs.

Assumption 1: all tags must be detected.—This

assumption must be met during the repeat passes of the

electrofisher in the tagging phase or else estimates of

juvenile abundance can be inflated. Since fish are

physically captured during this phase, it should be

straightforward to devise handling procedures to ensure

that all tags get detected. In the monitoring phase,
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FIGURE 2.—Relative precision (P) for steelhead run size estimates using the simplest model applied to simulated data.

Horizontal axes depict various key parameters of data sets. Depicted are 421 simulated data sets (out of 1,000) in which at least

one tagged steelhead survived to spawn. All axes are on logarithmic scales.
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redundancy of tag detectors allows the assumption to

be relaxed, as described previously. However, the

estimator still makes a weaker assumption: that each

tag has an independent risk of detection failure at each

antenna, which could be violated if some tags

malfunction or if some aspect of implantation (e.g.,

location or orientation in the fish’s body cavity) affects

detection rate. One way to formally test for violations

of this assumption would be to test whether partial

detections (fish detected at some antennae but not

others) occur less frequently than expected by chance.

This would require at least three antennae in the

detection array, with more antennae providing greater

power to detect violations.

Assumption 2: negligible recruitment occurs be-

tween capture and detection sessions.—Here, ‘‘recruit-

ment’’ should be understood in a general sense as being

recruitment to the spawning run from segments of the

population not available for tagging. For example, if

some juveniles are too small to tag at the time of the

tagging phase but later become smolts, they are

effectively ‘‘recruited’’ between the tagging and

monitoring phases. Their contribution to the spawning

run cannot be estimated without introducing additional

assumptions into the models.

A common form of such recruitment arises when

steelhead spawning runs consist of fish that have

smolted at different ages and have spent different

numbers of years in the ocean. For simplicity, the

model described here did not explicitly incorporate this

heterogeneity, but it can still be used to estimate such

spawning runs by using either the covariates or the

grouping variable to separate tagged fish into different

combinations of age at tagging, year of tagging, and

years from tagging to smolt transition. This of course

FIGURE 4.—Relative precision (P) achieved under reach sampling for two scenarios of marine survival from simulated data

based on steelhead of the Arroyo Seco River, central California.

FIGURE 3.—Five-percent exceedence curves for relative

precision (P) as a function of the number of in situ tag readers

(antennae) and the number of tagged steelhead spawners. See

Table 1 for parameters of simulated data. Five-percent

exceedence is the one-tailed 95% limit for P (mean þ
1.67 � SD), meaning that only 5% of data sets would have P
exceeding the given curve. The ‘‘infinity’’ column is for a

model that assumes perfect detection of tags.
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would require an ongoing effort of tagging and

monitoring over multiple years to assemble the

required data set.

A more technical but elegant solution would be to

extend the model structure itself to allow for multiple

life history pathways. A straightforward framework for

doing so is to situate the T-JAMM models within a

broader matrix population model (Clark et al. 2005). In

this framework, the projection matrix and population

vectors can be viewed as a simple way to organize the

explosion of parameters when the full diversity of life

history paths is explicitly addressed. In addition, the

parameters of the model (transitions, survivals, and

abundances of specific life stages) can each be given a

hierarchical structure describing their evolution from

year to year. This provides a framework for modeling

environmental stochasticity and density dependence

that is ultimately useful for forecasting future run size

using the data augmentation technique.

It is beyond to scope of the paper to assess these

more complex models, but it seems likely that the

number of tagged spawners will still be the main limit

on achievable precision. This is because the number of

tagged spawners will always be much less than the

number of tagged juveniles, recaptured juveniles, or

detected out-migrants, and so the uncertainty in ocean

mortality will usually dominate the uncertainty of the

run size estimate.

Assumption 3: tagged and untagged fish have the
same vulnerability to capture.—Although stream fish

often vary in catchability, mark–recapture estimates as

used here appear to be relatively robust to violations of

this assumption. For example, in an extensive empirical

study of rainbow trout, Rosenberger and Dunham

(2005) found that unequal catchability of fish led to

large biases in depletion-based estimates of abundance

but no detectable bias in mark–recapture estimates.

Assumption 4: tagged fish become randomly mixed
with untagged fish and/or distribution of capture effort
is proportional to fish density.—In the tagging phase,

this assumption requires carefully designed procedures

for re-introducing tagged fish to the entire sampling

reach and for distributing the electrofishing effort over

the entire reach in subsequent passes. In the monitoring

phase, the chief danger is that portions of the reader

array may tend to fail during high-flow events, which

may be precisely the time that fish tend to migrate. If

so, the distribution of detection effort may be inversely
proportional to migrant density! This potential problem

emphasizes the need to meet the alternative assump-

tion, that tagged and untagged fish are randomly mixed

(i.e., migration timing is randomly intermixed).

Assuming that migration timing correlates with spatial

aspects of geography, the simplest way to achieve this

random intermixing would probably be to randomly

sample fish from across the entire watershed via reach

sampling. This idea could use empirical validation.

Assumption 5: tagged and untagged fish have the
same natural mortality.—Electrofishing and the field

implantation of radio frequency identification tags are

stressful for fish and can increase the chances of

infection or outright mortality. The effect of tag-

induced or handling-induced mortality on the estimates

of run size depends on when it occurs:

� Mortality during the first capture (e.g., during the act

of tagging the fish) effectively removes the fish from

the study and should not be included in F
j
. It thus

causes k
j

to be slightly low (by the number of

mortalities). If such mortalities occur frequently

enough, they could have an appreciable effect on

the parameters of the linear predictor (equation 6), so

that juvenile abundance is underestimated in the

unsampled reaches as well (by roughly R X
j2J

/J
juveniles per reach, where X

j2J
is the number of

mortalities in reach j 2 J).
� Tag-induced mortality between the first and second

captures of the tagging phase invisibly reduces the

number of fish available for recapture, fooling the

estimator into estimating k
j

too high (which, if

common enough, would also affect the linear

predictor). The magnitude of this effect per fish

mortality will be larger than the negative effect of

mortality during the first capture (by a factor of ;1/

p
i
); in addition, the number of such mortalities would

probably not be unobservable. Thus, it is probably a

good idea not to release tagged fish that seem to be in

poor condition, and one should instead count them as

mortalities during the first capture. If they recover in

captivity, after the second electrofishing session they

could potentially be released with the other fish and

added back into M
j
.

� Handling-induced mortality during the second cap-

ture does not affect the estimate of juvenile

abundance. However, for this case and indeed any

mortality during the tagging phase, the number of

mortalities should be subtracted from M
j

(i.e., the

number of tagged fish potentially available for

monitoring). Otherwise, s
1

would be underestimated

by approximately R X
j
/R M

j
(where X

j
represents all

handling-related mortalities at reach j).
� Tag-induced mortality during the monitoring phase

would cause underestimation of the s
1

or s
2

of

untagged fish and thus underestimation of run size.

Unfortunately, this sort of tagging mortality is

effectively unobservable under most circumstances.

On the other hand, because the bias is toward an

underestimate, it is essentially conservative in the
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realms of both risk management and harvest

management.

Assumption 6: fish do not lose their tags.—The final

key assumption is that fish do not shed their tags. From

the perspective of the estimation model, tag loss has

generally the same effect as tag-induced mortality, with

perhaps slightly larger biases being produced if loss

occurs during the tagging phase. However, shedding of

tags during the tagging phase should be observable—as

recaptured juveniles with surgery scars but no tags,

shed tags detected in the substrate of the stream, or

both. Thus, it should be possible to roughly assess the

magnitude of any tag loss that occurs.

Covariates

Covariates can improve the precision of spawner

estimates in a number of ways. First, during the tagging

phase, covariates of p
j

might improve estimates of k
j
,

particularly when small numbers of fish were caught

(Rosenberger and Dunham 2005). These covariates

need only be observed at sampled sites and include

traits such as instream wood, emergent vegetation, and

water depth. Note that the simulations had the same p
j

in all reaches, so they already indicate a best-case

scenario for precision and cannot be improved by

covariates.

Second, covariates of juvenile abundance may also

improve precision. Suitable covariates could improve

the ‘‘90 for 30%’’ rule produced by the simulations, but

they would never surpass the ‘‘30 for 30%’’ rule since

this was a fundamental ceiling on precision of the T-

JAMM design itself. Some follow-up simulations

suggested that improvements to the ‘‘90 for 30%’’ rule

would be modest at best (Figure 5). For example, a

covariate having a moderate association with juvenile

density (Pearson’s product-moment correlation coeffi-

cient r¼0.50) generally improved the P by just a factor

of 2.5% (median for the solid lines in Figure 5),

although it occasionally improved P by a factor of 15–

20% (Figure 5, solid lines). A covariate with a strong

association (Pearson’s r ¼ 0.90) generally improved P
by a factor of 14% (median), with occasional

improvements around 20–25% (Figure 5, dashed

lines). The number of reaches sampled does not appear

to have much effect on the amount of improvement

(Figure 5: compare top and bottom panels).

Practical Matters

Precision might also be improved by adjustments of

the field technique. Rosenberger and Dunham (2005)

showed that mark–recapture accuracy at individual

reaches can be improved by making four passes rather

than two passes. Temple and Pearsons (2006) con-

FIGURE 5.—Improvement in relative precision (P) when

reach-level covariates are included in the estimation process.

Shown are results for 24 simulations of the Arroyo Seco River

(California) steelhead data with covariates for juvenile density

and with marine survival set at 0.033. The strength of

association is in terms of Pearson’s product-moment correla-

tion coefficient (r) between the covariate and the log(juvenile

density) (i.e., log
e
[k

j
/w

j
]; terms are defined in Methods).

Improvement in P is calculated as [(old� new)/old] 3 100%.

The y-axis shows the probability of achieving an improvement

lower than the score on the x-axis; for example, 0.50 indicates

the median improvement (half larger, half smaller), and 0.95

indicates that nearly all improvements are smaller. Solid lines

depict a covariate with a moderate association with juvenile

abundance (r ¼ 0.50); dashed lines depict a covariate with a

strong association with juvenile abundance (r ¼ 0.90).
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ducted an experiment showing that electrofishing

passes can be separated by as little as 3 h rather than

the conventional 24 h without invalidating the key

assumption (equal catchability of tagged and untagged

fish). In fact, they showed that the conventional 24-h

wait entails significant violations of other model

assumptions (i.e., nonclosure due to fish escaping

under block nets and overnight block-net failure that is

probably nonrandom). Another advantage of the 3-h

option is that it is less time intensive and allows more

reaches and more fish to be sampled overall.

Nevertheless, the implementation of the T-JAMM

design clearly requires a spirited tagging effort. The

fundamental constraint on precision is the problem of

tagging a sufficient number of juveniles to eventually

produce around 30–90 tagged spawners/year. As a

rough guide to cost, assume about $8,000 per reader

array for a half-duplex tagging system, $2.75 per tag

for 23-mm tags, and the capability of a three-person

field crew to tag around 250 fish/d during the summer

field season (T. Williams and D. Rundio, National

Marine Fisheries Service, personal communication).

Assuming field technicians at $3,000 per month in

wages and benefits, this comes out to around $4 per

tagged fish plus the fixed cost of the reader array. The

scenarios discussed in the results range from a tagging

effort of 3,500 fish/year, which translates to an annual

cost of $22,000, to a tagging effort of 47,000 fish/year,

which translates to an annual cost of $196,000. The

middling tagging effort of 14,000 fish/year translates to

a $64,000 annual cost. These estimates omit travel and

maintenance costs and the fixed costs of maintaining

the reader array. The assumption of 250 tagged fish/d

may be too optimistic for inexperienced field crews,

remote sites that require large travel times, or streams

with low densities of juveniles.

If necessary, the tagging effort could be spread

across runs in different stream systems even if the runs

occur in separate stream basins and are considered

demographically distinct populations. For example, if

the effort to tag 14,000 juveniles/year is spread across

10 populations, it would translate to about 1,400 tagged

juveniles per population per year and 3–9 tagged

spawners per population per year. This would cause

little loss of precision in the aggregate run size of the

10 populations since the estimator involves the same

calculations as for a single population. However, it

assumes that the 10 populations experience the same

ocean mortality, so that a single parameter, s
2
, applies

to all 10 runs. This may be a restrictive assumption

when s
2

is related to watershed-dependent characteris-

tics of the fish. For example, s
2

can depend on smolt

size (Ward et al. 1989), which in turn depends on the

feeding opportunities and water temperatures experi-

enced in freshwater habitats (Harvey et al. 2005; Bond

2006; Boughton et al. 2007).

The T-JAMM design clearly has promise for

monitoring populations of anadromous fish, especially

when other methods are intractable or when the fish co-

occur with nonanadromous conspecifics. Only a

modest number of tagged spawners are needed for

reasonable estimates, but the fundamental constraint of

high ocean mortality means that many juveniles must

be tagged to achieve this modest number. This appears

to be the limiting constraint for practical implementa-

tion of T-JAMM designs.
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