

IN REPLY

CVO-100

ENV-7.00

United States Department of the Interior

RECEIVED

BUREAU OF RECLAMATION Central Valley Operations Office 3310 El Camino Avenue, Suite 300 Sacramento, California 95821

JUN 2 5 2015

JUN 2 5 2015

Nat'l Marine Fisheries Sys. Sacramento, CA

VIA ELECTRONIC MAIL

Ms. Maria Rea Assistant Regional Administrator California Central Valley Area Office National Marine Fisheries Service 650 Capitol Mall, Suite 5-100 Sacramento, CA 95814

Subject: Contingency Plan for Water Year (WY) 2015 Pursuant to Reasonable and Prudent Alternative (RPA) Action I.2.3.C of the 2009 Coordinated Long-term Operation of the Central Valley Project (CVP) and State Water Project (SWP) Biological Opinion (NMFS 2009 BiOp) - Revised Sacramento River Water Temperature Management Plan Information

Dear Ms. Rea:

By letter dated May 18, 2015, the Bureau of Reclamation (Reclamation), in cooperation with the Department of Water Resources (DWR), submitted a Contingency Plan for operation of the CVP and SWP from July through November, 2015, in accordance with RPA Action I.2.3.C. A proposed Sacramento River Temperature Management Plan for Water Year 2015 prepared pursuant to RPA Action I.2.4 of the National Marine Fisheries Service (NMFS) 2009 BiOp was included as part of the Contingency Plan. Reclamation is now resubmitting its request for concurrence from NMFS that the operations described in the previously submitted Updated Project Description dated May 14, 2015, and supplemented by the enclosed revised Sacramento River Temperature Management Plan and Updated Biological Information, are within the limits of the Incidental Take Statement of the BiOp and serves as the Contingency Plan through November 2015.

As you are aware, Reclamation previously incorporated Sacramento River water temperature management plan information in our Updated Project Description for July -November 2015 Drought Response Actions to Support Endangered Species Act Consultations dated May 14, 2015. This information was also transmitted to the State Water Resources Control Board (State Water Board) on May 4, 2015, and which the Executive Director conditionally approved on May 14, 2015. Significant concerns were expressed regarding the temperature management plan at a public workshop held by the State Water Board on May 20, 2015, and several Board members requested that a margin of safety be added to the plan. Subsequently, new Shasta Reservoir temperature monitoring indicated lake temperatures higher than previously observed.

These increased lake temperatures are significant enough that a revised plan is warranted to best manage the limited cold-water resource at Shasta Lake. The State Water Board's letter dated May 29, 2015, temporarily suspended the May 14, 2015, conditional approval and requested an updated temperature management plan be developed. The attached temperature plan incorporates system-wide adjustments to operation of the CVP and SWP developed jointly by Reclamation, DWR, the State Water Board, NMFS, U.S. Fish and Wildlife Service, and the California Department of Fish and Wildlife. In the near future, Reclamation will also submit the Sacramento River Temperature Management Plan to the State Water Board.

The June 90 percent exceedance forecast included with the temperature plan demonstrates that the revised operation of the CVP and SWP will not result in any changes in Delta conditions (*i.e.*, the Net Delta Outflow Index [NDOI]), or in the American or Stanislaus rivers, that would require a revision of our May 18, 2015, request. Therefore, no changes to effects on listed species within these areas, as discussed in the Biological Review dated May 14, 2015, are identified. Updated biological information on effects to listed species within the Sacramento River will be provided along with Reclamation's future request for concurrence on the Sacramento River Temperature Management Plan per RPA Action I.2.4. As noted in our May 18, 2015, letter, further modifications or refinements of the May 14, 2015, Updated Project Description could occur based on new information or additional regulatory requirements. Reclamation and DWR intend to continue to refine operations of the CVP and SWP as hydrological and biological information become available, in coordination with federal and state resources agencies. If further refinements or modifications are necessary that may change the effects to listed species, Reclamation will seek consultation from NMFS to address those potential effects.

The May 14, 2015, Biological Review supports Reclamation and DWR's conclusion that the effects associated with the proposed July through November 2015 modifications to CVP and SWP operation within the Delta and within the American and Stanislaus rivers are within what was analyzed in the NMFS 2009 BiOp. Any incidental take resulting from these changes are within the existing incidental take limits in the NMFS 2009 BiOp. Because these actions are contemplated within the drought exception procedures described in the NMFS 2009 BiOp, they do not jeopardize the listed species or adversely modify or destroy designated critical habitats addressed in the NMFS 2009 BiOp. Reclamation seeks NMFS' concurrence in this determination.

We look forward to working with you and your staff as we navigate through another extremely challenging water year and appreciate your willingness to work with us on this time sensitive matter.

Sincerely,

Ronald Milligan Operations Manager

Ronall Millian

Enclosures - 1

cc: Please see next page

Continued from previous page.

cc:

Mr. Tom Howard Executive Director State Water Resources Control Board 1001 I Street Sacramento, CA 95814

Mr. Chuck Bonham Director California Department of Fish and Wildlife 1416 Ninth Street Sacramento, CA 95814

Mr. Larry Rabin
Acting Field Supervisor, Bay Delta Fish
and Wildlife Office
U.S. Fish and Wildlife Service
650 Capitol Mall, Suite 8-300
Sacramento, CA 95814

Mr. Mark Cowin Director California Department of Water Resources 1416 Ninth Street Sacramento, CA 95814 Mr. Dean Messer Chief, Environmental Services California Department of Water Resources P.O. Box 94836 West Sacramento, CA 94236-0001

Mr. John Leahigh Operations Control Office California Department of Water Resources 3310 El Camino Avenue, Suite 300 Sacramento, CA 95821

Mr. Ren Lohoefener Regional Director Pacific Southwest Region U. S. Fish and Wildlife Service 2800 Cottage Way Sacramento, CA 95825

Mr. David Murillo
Regional Director
Mid-Pacific Region
Bureau of Reclamation
2800 Cottage Way
Sacramento, CA 95825
(w/encl to each)

Attachment 1

Revised Sacramento River Water Temperature Management Plan June 2015

In May 2015, the U.S. Bureau of Reclamation (Reclamation) prepared a Sacramento River Temperature Management Plan for Water Year 2015 pursuant to the National Marine Fisheries Service (NMFS) 2009 Biological Opinion, and the State Water Resources Control Board (State Water Board) Order 90-5. Subsequent to approval of that plan, ongoing reservoir temperature monitoring at Shasta Lake have indicated reservoir water temperatures higher than expected based on the data used to develop the May Plan. These increased lake temperatures are significant enough that a revised plan is warranted to best manage the limited cold-water resource at Shasta Lake.

Reclamation, in coordination with NMFS, the U.S. Fish and Wildlife Service (USFWS), the California Department of Water Resources (DWR), the California Department of Fish and Wildlife (CDFW), and the State Water Board, has modified the previous Shasta Temperature Management Plan to better utilize the current cold-water resource and manage the seasonal temperature risks to winter-run Chinook salmon. This document outlines the components of that plan, including revised base schedule of releases at Keswick Dam, an adjusted temperature targeting strategy, additional real-time temperature management, additional fishery monitoring, and commitment to a review of modeling tools.

A. Shasta Temperature Management Plan Objectives

- Fishery objectives:
 - Attain river temperatures of 57°F at the CCR gage location, not to exceed 58°F unless going above is needed to conserve cold water pool based on real-time temperature management team guidance. This team will follow a rigorous real-time management process (see below) that carefully tracks river temperatures, air temperatures, and biological metrics to ensure that water releases are made to optimize the limited cold water pool resources throughout the season.
 - The team will also monitor in real-time temperatures near the Highway 44 bridge to assess what temperatures the majority of redds are actually exposed to (assuming spawning will be at or upstream of the Highway 44 bridge).
 - Monthly adjustments to the base operations that meet the above temperature objective and delays last TCD side gate operation until mid-October (target October 15th).

- Minimize the potential for fall-run Chinook redd dewatering in October and November due to flow reductions.
- Retain integrated system operations and flexibility for local solutions:
 - Meet modified Delta objectives (outflow and salinity) as requested in the current TUCP for Water Year 2015 operations.
 - Work to manage south of Delta exports to achieve San Joaquin Valley refuge management objectives based on allocations and delivery timing.
 - Commit to working with Sacramento River Settlement contractors and other river diverters in real-time to minimize water supply impacts.
 - Minimize effects to any non-CVP water users (e.g., State Water Project, Feather River service area contractors, or other system operators).
 - Release accumulated transfer water from Shasta Reservoir in October through November 15 whenever ambient air temperatures recede and river temperatures are suitable. This volume of water is incorporated into the current forecasted operations.
 - Reshape and augment project releases in late October, November, and December (consistent with fall-run Chinook needs) in order to facilitate waster exchanges and meet critical needs South of Delta. This volume is not currently included in our CVP operations forecast, and would be in addition to releases identified. The overall volume of water used to augment the current schedule would range up to 150,000 acre-feet.
 - Flexibly implement the Coordinated Operations Agreement in order to achieve overall system goals.

B. Shasta Temperature Management Plan Base Operations

- Establish 7,250 cubic feet per second (cfs) as a base flow from Keswick Dam in June and July.
- Modeled Keswick releases in other months that achieve the above objectives are: August: 7,250 cfs; September: 6,500 cfs; October: 5,000 cfs. These are subject to adjustment by the Real-Time Operations Team based on performance of the plan in June and July.

Attachment 1a includes estimated temperatures under the plan for both the 50% and 10% exceedance forecasts of meteorology provided by the National Weather Service in May. Attachment 1a also includes the latest operational forecast using the proposed Keswick releases noted above.

C. Shasta Temperature Management Plan Real-time Management

The criteria described above are guidelines for base operations--actual operations will be decided using a real-time monitoring and decision making process that includes representatives from the relevant Federal and State agencies. This decision making process may yield adjustments to base operations depending on real-time conditions including real-time river temperatures, resulting cold water pool volumes, and observed spawning timing and location.

Reclamation will convene the real time real-time monitoring and decision making group at least weekly, and more frequently if necessary inform decisions about temperature operations. The State and Fereral agencies also acknowledge the expertise of local water districts and irrigation districts to operate their systems in partnership with the agencies to optimize results and minimize impacts. The agencies expect to work closely during real-time operations with such districts.

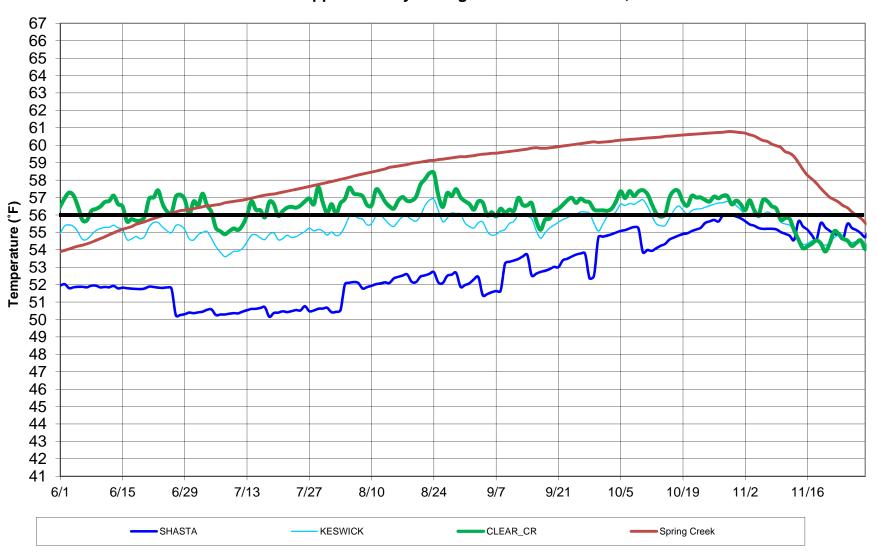
Decisions on real-time adjustments to base operations will be made using the following principles:

- Attaining temperatures as close to 57°F as possible at the CCR gate, while monitoring in realtime temperatures near the Highway 44 bridge (SAC gage) to assess what temperatures the majority of redds are actually exposed to (assuming spawning will be at or upstream of the Highway 44 bridge).
- Based on projected temperatures, and if it appears that they will exceed 58°F at CCR, Reclamation will call a meeting to determine what actions are most advisable given salmon life-stage and projected ability to withstand additional adverse effects of temperatures. Actions which could be implemented include: TCD gate changes, bypassing power and other operational adjustments, allowing short-term exceedances above 58°F at CCR as long as night-time temperatures are low, and possibly increasing Keswick releases above 7,250 cfs. Releases above the base flow have a negative cumulative effect on thermal mass, cold water and possible timing of side gate operations, and therefore require careful consideration.
- Because overall seasonal temperature management, and most importantly the timing of future side gate operations, appears very sensitive to managing through heat waves, additional consideration will be given to optimal procedures for longer heat spells which are most likely to occur in July or early August.

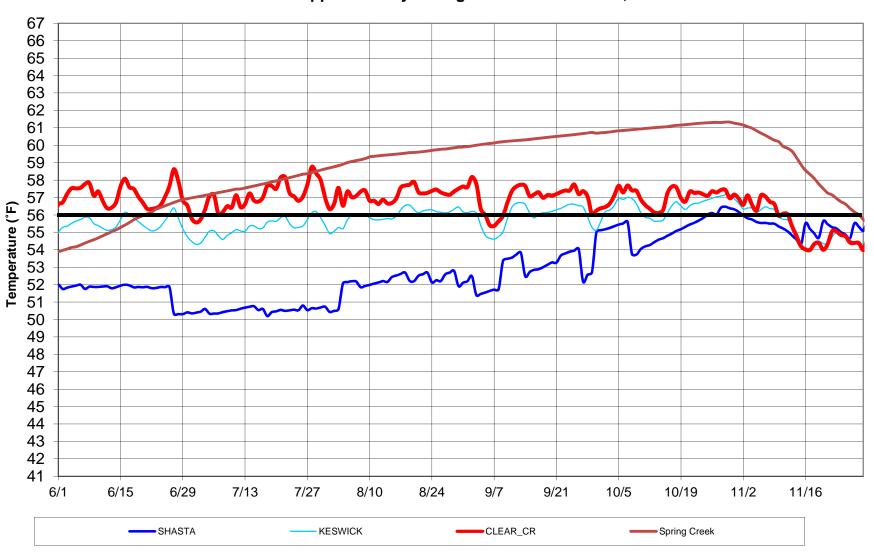
- If air temperatures are cooler, and 57°F is attainable at the CCR location, real-time adjustments may be made to reduce Keswick releases at times below 7,250 cfs in order to conserve thermal mass and cold water for later in the season, as long as 58°F at CCR is not exceeded.
- CDFW will monitor observed redd locations, particularly the most downstream redd and
 redds at risk of being dewatered and report results on a weekly basis. While this is not a
 comprehensive survey due to redds that are in deep water above Highway 44, it will provide
 a general distribution of redds. It will also provide a way of tracking the duration and peak
 of spawning which will inform temperature management decisions.
- NMFS will track temperature exposures and report on cumulative estimated mortalities on at least a bi-weekly basis. NMFS is also in the process of deploying new automated temperature fiber optic cables behind Shasta Dam and within Keswick Reservoir.

D. Additional Monitoring Commitments:

- Reclamation and NMFS will deploy new automated temperature fiber optic cables in Shasta Lake and within Keswick Reservoir to help inform management decisions.
- Reclamation will monitor temperatures near the Highway 44 Bridge (SAC gage) to assess what temperatures the majority of winter-run redds are actually exposed.
- The agencies will monitor weather conditions and forecasts, and adjust releases and TCD gate operations accordingly. For example:
 - The River Assessment for Forecasting Temperature (RAFT) model will be used to better anticipate the need for management actions and help predict effectiveness of different real-time operations options.
 - Seasonal temperature management appears to be very sensitive to short-term heatstorms, so the agencies will devise optimal procedures for longer heat spells (most likely to occur in July).
 - If air temperatures from June through August are substantially below what was forecast, there may be additional opportunities to increase releases in September and October for other purposes, while still meeting temperature objectives.
- CDFW will monitor observed redd locations, particularly the downstream distribution of redds, throughout the temperature management season, and those redds at potential risk of being dewatered as flows are ramped down in the fall.
- The agencies will meet as often as needed to share and review information, and/or make realtime decisions or adjustments, but no less than weekly.


E. Commitment to advance new peer reviewed temperature model review

- NMFS and Reclamation will co-chair a new model review technical working group that will
 identify limitations with the existing modeling tools and will make recommendation about
 short-term fixes to the current tools or defer changes to new model development efforts.
- In addition, Reclamation and NMFS-Southwest Fisheries Science Center are working on a
 multiyear effort to develop a Temperature Decision Support Tool that includes a reservoir
 temperature model coupled with the existing River Assessment for Forecasting Temperature
 (RAFT) model¹ that forecasts downstream river temperatures using real-time meteorological
 conditions. This model may have some applicability for forecasting water temperatures
 resulting from differing operational choices.
- Future efforts will incorporate NOAA Climate Prediction Center forecasts, NOAA National Weather Service assistance, and a broader range of meteorology as input to future model runs, rather than the median projections used in 2014 and prior years.
- The agencies will develop a plan for independent peer review of these models and tools.
- Through all of these steps, the agencies can and will improve on temperature management from here forward to more accurately project TCD operations and downstream river temperatures to manage potential effects on listed and special status species.


¹ http://oceanview.pfeg.noaa.gov/RAFT/stream.html

	Kes 7250 50% L3MTO 57 degree at CCR	Kes 7250 10% L3MTO 57 degree at CCR	WY 2014 Actual Data
Flows June, July and Aug	7250	7250	8900, 9100,7700
Sept and Oct Keswick flows	6500, 5000	6500, 5000	5600, 4500
Nov and Dec	4000	4000	4200, 3300
First Side Gate Used	July 7	July 6	Aug 7
Primary Reliance of Side Gate	Oct 11	Oct 9	Aug 26
End of August Volume < 54 degree	444 TAF	444 TAF	315 TAF
End of August Volume < 52 degree	349 TAF	344 TAF	278 TAF
End of August Volume < 50 degree	229 TAF	225 TAF	241 TAF
End of September Volume < 54 degree	207 TAF	207 TAF	108 TAF
End of September Volume < 52 degree	204 TAF	200 TAF	97 TAF
End of September Volume < 50 degree	74 TAF	74 TAF	72 TAF

Sacramento River Modeled Temperature 2015 May 90%-Water Ops Outlook - 50% L3MTO (May) Approximately 57 degree at CCR - Kes at 7,250 cfs

Sacramento River Modeled Temperature 2015 May 90%-Water Ops Outlook - 10% L3MTO (May) Approximately 57 degree at CCR - Kes at 7,250 cfs

Storages													
Federal End of the	Month St	orage/Elev Jun	ation (TAF/ Jul	F/Feet) Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Trinity	1024	870	745	620	530	499	467	451	458	495	562	630	560
-	Elev.	2240	2224	2205	2190	2185	2178	2175	2177	2184	2196	2207	2195
Whiskeytown	239	238	238	238	230	206	206	206	206	206	206	238	238
Chasta	Elev. 2404	1209 2196	1209 1943	1209	1207 1460	1199 1379	1199	1199 1413	1199 1534	1199 1734	1199	1209	1209 2138
Shasta	Elev.	968	954	1 687 938	923	917	1388 917	919	928	941	2061 961	2257 972	965
Folsom	535	433	238	136	120	126	139	161	194	254	377	538	576
	Elev.	408	375	349	343	345	350	357	365	379	400	421	426
New Melones	453		323	265	238	216	211	206	209	217	223	229	228
	Elev.	832	815	798	789	781	780	778	779	782	784	786	786
San Luis	305		1 00 410	24	1	20 367	11	99 413	280 446	373	410 482	402 475	327 463
Total	Elev.	443 4345	3587	380 2970	367 2579	2446	383 2421	2535	2880	469 3279	3839	4293	4066
	- I												
State End of the M Oroville	lonth Rese	ervoir Stor 1346	age (TAF) 1115	954	911	901	793	738	848	995	1212	1441	1388
Orovine	Elev.	712	681	657	650	648	630	620	640	663	695	724	717
San Luis	786	679	502	351	283	266	382	534	655	789	891	834	773
Total San	1091	900	602	274	284	206	393	633	024	1160	1301	1235	4400
Luis (TAF)				374	204	286	393	633	934	1162	1301	1235	1100
Monthly River F	Releases	(TAF/cfs))										
Trinity	TAF	47	28	28	27	23	18	18	18	17	18	32	180
	cfs	783	450	450	450	373	300	300	300	300	300	540	2,924
Clear Creek	TAF	9	7	5	9	11	10	11	11	10	11	13	13
	cfs	150	120	85	150	175	175	175	175	175	175	218	216
Sacramento	TAF cfs	431 7250	446 7250	446 7250	387 6500	307 5000	238 4000	246 4000	200 3250	180 3250	200 3250	256 4300	479 7800
American	TAF	134	222	126	30	31	30	31	31	45	49	48	136
	cfs	2250	3615	2043	501	500	504	501	505	803	800	800	2215
Stanislaus	TAF	9	9	9	9	35	12	13	16	17	17	9	9
	cfs	150	150	150	150	577	200	206	261	309	280	150	150
Feather	TAF cfs	142 2387	160 2600	101 1650	57 950	58 950	57 950	58 950	58 950	53 950	49 800	48 800	136 2216
Trinity Diversio	ns (TAF)	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау
Carr PP		116	98	97	62	15	28	19	6	1	1	38	37
Spring Crk. PP		110	90	90	60	30	19	12	3	3	10	8	30
Delta Summary	(TAF)												
		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Tracy		25	10	18	95	109	27	104	187	116	87	48	25
USBR Banks		0	0	0	0	0	0	0	0	0	0	0	0
Contra Costa		8.7	8.0	8.3	8.7	3.5	4.3	4.7	4.7	3.5	3.5	8.7	8.7
Total USBR		34	18	26	104	113	31	109	192	120	91	56	33
State Export		25	12	12	37	83	130	168	168	165	180	42	25
Total Export	1	59	30	38	141	196	161	277	360	285	271	98	58
COA Balance		-48	-81	-86	-39	0	0	0	0	0	0	0	0
Old/Middle River Std.	1	1		1	1	1		1	1		T	1	
Old/Middle R. calc.		-1,215	-832	-937	-2,276	-2,531	-2,330	-3,721	-4,714	-4,081	-3,531	-1,570	-1,136
	1									====			
Computed DOI Excess Outflow		4001	2798	2798	3009	4197 0	5093	4994	6003	7096 0	7873 765	5934 1933	4815 0
% Export/Inflow		10%	5%	7%	27%	35%	31%	47%	53%	44%	36%	17%	10%
% Export/Inflow std.		35%	65%	65%	65%	65%	65%	65%	65%	45%	35%	35%	35%
Hydrology							•						
			Trinity	T	Shasta	·	· · · · · · · · · · · · · · · · · · ·		Folsom		New Melones		
	. =\							l					
Water Year Inflow (TA Year to Date + Forecasted	AF) % of mean		877 73%		3,468 63%				864 32%		314 30%		

Methods and Modeling

Finer scale conceptual models of spawning adult and early life stages of winter-run Chinook Salmon (*Oncorhynchus tshawytscha*) were modified to identify transition linkages between these stages and the habitat attributes influenced by river environmental drivers (Figure 1-2). Keswick reservoir temperature and flow operations can interact with adult, egg, and juvenile life stages in multiple ways that impact growth, survival, and condition. An updated evaluation of discrete habitat attributes can be undertaken by documenting each of the possible mechanisms and certainty surrounding these mechanisms.

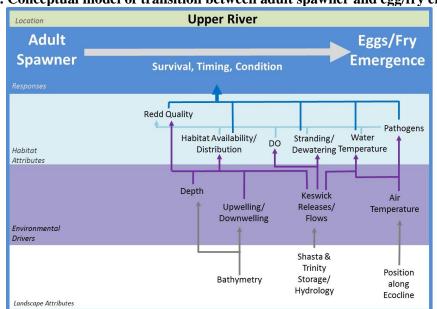
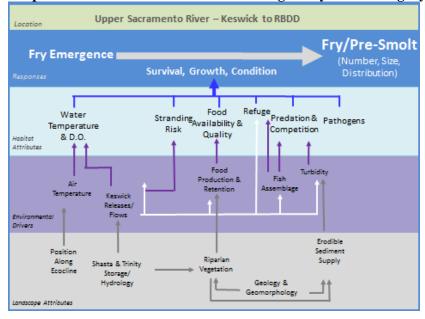



Figure 1. Conceptual model of transition between adult spawner and egg/fry emergence.

Figure 2. Conceptual model of transition between emergent fry and rearing fry/pre-smolt.

Operational Forecast Model

Changes to the meteorology and temperature profiles stimulated revisions to the temperature forecast modeling since the April 90% Temperature Forecast Model was developed and evaluated in the Biological Review submitted with the Temperature Urgency Change Petition for June 30 through November 30, 2015 (USBR 2015a),. The modeling evolved into an updated temperature forecast scenario including Shasta/Keswick average monthly releases of 7,250 cubic feet per second (cfs) during June through August and reduced releases of 6,500 cfs and 5,000 cfs during September and October, respectively. In support of the updated temperature forecast scenario, an updated Operational Forecast Model was completed to evaluate system wide operations (Table 1).

	the Month Stor	age/Lieva Jun	Jul	Aua	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
Trinity	1024	870	745	620	530	499	467	451	458	495	562	630	56
	Elev.	2240	2224	2205	2190	2185	2178	2175	2177	2184	2196	2207	219
Whiskeytown	239	238	238	238	230	206	206	206	206	206	206	238	23
,	Elev.	1209	1209	1209	1207	1199	1199	1199	1199	1199	1199	1209	120
Shasta	2404	2196	1943	1687	1460	1379	1388	1413	1534	1734	2061	2257	213
	Elev.	968	954	938	923	917	917	919	928	941	961	972	968
Folsom	535	433	238	136	120	126	139	161	194	254	377	538	57
	Elev.	408	375	349	343	345	350	356	365	379	400	421	42
New Melones	453	388	323	265	238	216	211	206	209	217	223	229	22
	Elev.	832	815	798	789	781	780	778	779	782	784	786	78
San Luis	305	220	100	24	-11	6	-3	85	265	357	395	386	311
	Elev.	443	410	380	367	364	380	411	443	465	482	476	460
Total		4345	3587	2970	2567	2432	2407	2521	2866	3263	3824	4277	4050
State End of th	ne Month Reserv	oir Storag	je (TAF) 1126	966	907	897	789	734	854	1009	1226	1455	140
Olovine	Elev.	713	683	659	649	648	629	619	641	666	696	725	71
San Luis	786	679	502	351	298	260	376	528	640	766	915	858	798
Total San	100	0.0	002	001	200	200	0.0	020	040	100	0.0	000	
Luis (TAF)	1091	900	602	374	287	266	373	613	904	1123	1309	1243	1108
` '	er Releases (T	AF/cfs)	28	28	27	23	18	18	18	17	18	32	180
Monthly Rive	er Releases (T	AF/cfs) 47 783	28 450	28 450	27 450	23 373	18 300	18 300	18 300	17 300	18 300	32 540	180 2,924
Monthly Rive	TAF ofs TAF	AF/cfs) 47 783	28 450 7	28 450 5	27 450 9	23 373 11	18 300 10	18 300 11	18 300 11	17 300 10	18 300 11	32 540 13	180 2,924 13
Monthly Rive Trinity Clear Creek	TAF ofs TAF ofs TAF ofs	AF/cfs) 47 783 9 150	28 450 7 120	28 450 5 85	27 450 9	23 373 11 175	18 300 10 175	18 300 11 175	18 300 11 175	17 300 10 175	18 300 11 175	32 540 13 218	180 2,924 13 210
Monthly Rive	TAF cfs TAF cfs TAF cfs TAF	783 9 150 431	28 450 7 120 446	28 450 5 85 446	27 450 9 150 387	23 373 11 175 307	18 300 10 175 238	18 300 11 175 246	18 300 11 175 200	17 300 10 175 180	18 300 11 175 200	32 540 13 218 256	180 2,924 13 216 478
Monthly Rive Trinity Clear Creek Sacramento	TAF cfs TAF cfs TAF cfs TAF cfs TAF cfs	47 783 9 150 431 7250	28 450 7 120 446 7250	28 450 5 85 448 7250	27 450 9 150 387 6500	23 373 11 175 307 5000	18 300 10 175 238 4000	18 300 11 175 246 4000	18 300 11 175 200 3250	17 300 10 175 180 3250	18 300 11 175 200 3250	32 540 13 218 256 4300	180 2,924 13 216 479 7800
Monthly Rive Trinity Clear Creek	TAF cfs TAF cfs TAF cfs TAF cfs TAF cfs TAF	47 783 9 150 431 7250	28 450 7 120 446 7250 222	28 450 5 85 446 7250	27 450 9 150 387 6500	23 373 11 175 307 5000	18 300 10 175 238 4000	18 300 11 175 246 4000 31	18 300 11 175 200 3250 31	17 300 10 175 180 3250 44	18 300 11 175 200 3250 49	32 540 13 218 250 4300 48	180 2,924 13 216 479 7800
Monthly Rive Trinity Clear Creek Sacramento American	TAF cfs	AF/cfs) 47 783 9 150 431 7250 134 2250	28 450 7 120 446 7250 222 3615	28 450 5 85 446 7250 126 2043	27 450 9 150 387 6500 30 503	23 373 11 175 307 5000 31	18 300 10 175 238 4000 30 504	18 300 11 175 246 4000 31 501	18 300 11 175 200 3250 31 500	17 300 10 175 180 3250 44 800	18 300 11 175 200 3250 49 800	32 540 13 218 256 4300 48	180 2,924 13 210 479 7800 130 2215
Monthly Rive Trinity Clear Creek Sacramento	TAF cts TAF	AF/cfs) 47 783 9 150 431 7250 134 2250	28 450 7 120 446 7250 222 3615 9	28 450 5 85 446 7250 126 2043	27 450 9 150 387 6500 30 503	23 373 11 175 307 5000 31 500	18 300 10 175 238 4000 30 504	18 300 11 175 246 4000 31 501	18 300 11 175 200 3250 31 500 16	17 300 10 175 180 3250 44 800	18 300 11 175 200 3250 49 800	32 540 13 218 256 4300 48 800	180 2,924 13 210 479 7800 136 2213
Monthly Rive Trinity Clear Creek Sacramento American Stanislaus	TAF cfs	AF/cfs) 47 783 9 150 431 7250 134 2250 9 150	28 450 7 120 446 7250 222 3615 9	28 450 5 85 446 7250 126 2043 9	27 450 9 150 387 6500 30 503 9	23 373 11 175 307 5000 31 500 35	18 300 10 175 238 4000 30 504 12	18 300 11 175 246 4000 31 501 13 206	18 300 11 175 200 3250 31 500 16 261	17 300 10 175 180 3250 44 800 17 309	18 300 11 175 200 3250 49 800 17 280	32 540 13 218 256 4300 48 800 9	180 2,924 13 210 470 7800 130 221
Monthly Rive Trinity Clear Creek Sacramento American Stanislaus	TAF cts TAF	AF/cfs) 47 783 9 150 431 7250 134 2250	28 450 7 120 446 7250 222 3615 9	28 450 5 85 446 7250 126 2043	27 450 9 150 387 6500 30 503	23 373 11 175 307 5000 31 500	18 300 10 175 238 4000 30 504	18 300 11 175 246 4000 31 501	18 300 11 175 200 3250 31 500 16	17 300 10 175 180 3250 44 800	18 300 11 175 200 3250 49 800	32 540 13 218 256 4300 48 800	18 2,924 1: 21: 47: 780 13: 221:
Monthly Rive Trinity Clear Creek Sacramento American	TAF cfs TAF	AF/cfs) 47 783 9 150 431 7250 134 2250 9 150 131	28 450 7 120 446 7250 222 3615 9 150	28 450 5 85 446 7250 126 2043 9 150	27 450 9 150 387 6500 30 503 9 150 71	23 373 11 175 307 5000 31 500 35 577	18 300 10 175 238 4000 30 504 12 200 57	18 300 11 175 246 4000 31 501 13 206 58	18 300 11 175 200 3250 31 500 16 261 49	17 300 10 175 180 3250 44 800 17 309	18 300 11 175 200 3250 49 800 17 280 49	32 540 13 218 256 4300 48 800 9 150 48	188 2,924 1: 211 7800 133 221: 153 221:
Monthly River Trinity Clear Creek Sacramento American Stanislaus	TAF cfs TAF	47 783 9 150 431 7250 9 2250 9 150 131 2200	28 450 7 120 446 7250 222 3615 9 150 2600	28 450 5 85 446 7250 126 2043 9 150 101 1650	27 450 9 150 387 6500 30 503 9 150 71 1200	23 373 11 175 307 5000 31 500 35 577 58 950	18 300 10 175 238 4000 30 504 12 200 57 950	18 300 11 175 246 4000 31 13 206 58 950	18 300 11 175 200 3250 31 500 16 261 49 800	17 300 10 175 180 3250 44 800 17 309 44 800	18 300 11 175 200 3250 49 800 17 280 49 800	32 540 13 218 256 4300 48 800 150 48 800	1108 180 2,924 13 218 479 78000 136 2215 6 2216 May

Table 1. Forecasted Federal and State Storages and Monthly Flow Releases for Updated Temperature Forecast Scenario.

Sacramento River Temperature Forecast Model

The Sacramento River Temperature Forecast Model is a HEC-5Q model that represents operational outlooks, discharge, lake stratification, meteorology, in river temperature gains, and temperature control device (TCD) gate operation in relationship to river temperatures. The temperature model uses a monthly water operation outlook to generate monthly discharge from Shasta, Trinity, Keswick, Spring Creek and Carr Powerplants, and monthly evaporation estimates from Shasta, Trinity and Whiskeytown reservoirs. The monthly data are disaggregated into daily estimates for use in the model, which typically represent month long blocks of constant

daily input. Reservoir temperature profiles and starting pool elevations are inputs generated by Reclamation staff once per month during the non-temperature management season and usually twice per month during the April-October time frame.

A meteorological forecast data set is selected, and an average year's information is used until the May through August temperature forecasts. For forecasts completed in these months, a procedure developed by Reclamation's Technical Service Center uses "current" meteorological conditions to attempt to select a subset of "best candidate" historic years that seem to fit the current year. In river temperature gains have been identified as a source of inaccuracy in the model (USBR 2015b). The model used for the 2015 forecasting has recently been modified to better reflect the observed 1.3°F difference between Sacramento River water temperatures just downstream of Keswick Dam (KWK, RM302) and above Clear Creek (CCR, RM 292). This allows some basis for considering using a warmer (or cooler) data set than the average meteorological forecast for the subsequent three months. Also, the updated temperature forecast scenario incorporates a 10% Local 3-month temperature outlook (L3MTO). The HEC-5Q output is plotted and can be plotted visually to evaluate temperatures at the various compliance locations. Output files also provide a forecast for the end-of-September profile, cold water volume, and TCD gate sequence.

Uncertainty in the Sacramento River temperature forecast model is due to the simplification of the input data, the unknowns regarding future meteorological conditions, and actual TCD operations do not provide infinite adjustability. Thus, forecasts are useful for considering broad brush evaluation of temperatures due to possible temperature operations and also relative comparisons between model runs. It does not provide sufficient precision to define specific daily future operations

Winter-run Chinook Salmon Juvenile Production Model

Egg and egg-to-fry mortality can be estimated using a dynamic simulation framework developed by Cramer Fish Science (CFS 2010). This model was originally developed to estimate winter-run Chinook Salmon juvenile production, but provides discretized mortality rate estimates for specific life stages. Relationships for daily temperature-induced mortality of incubating eggs and rearing juveniles (Bartholow and Heasley 2006) are parameterized with results from temperature mortality studies undertaken by the U.S. Fish and Wildlife Service (USFWS 1999). 2014 winter-run Chinook Salmon carcass data was used to reflect spawning time, in which the date of egg deposition was shifted 14 days before a carcass was observed (K. Niemela, pers. comm. in CFS 2010). Thus, daily cohorts of incubating eggs experience the temperature and flow conditions entered from observations or the Sacramento River Temperature Forecast Model to estimate egg mortality and total egg to fry survival.

Differences between estimates of temperature-related egg mortality and egg-to-fry mortality are due to the total egg-to-fry mortality incorporating mortality that occurs 'naturally' without high temperature effects over the entire incubation period. The temperature-related egg mortality estimate reflects effects of extreme temperatures that may be outside the data sets used to derive the egg-to-fry survival function. The function for egg-to-fry survival was based on a stock-recruitment relationship, using escapement and fry production above Red Bluff Diversion Dam from 1996-1999 and 2002-2007. The model runs on a daily time step, and a mean proportional mortality of the incubating eggs is estimated from the daily water temperature using a

polynomial daily mortality relationship. The model was run for 100 iterations and the estimates are reported for egg and egg-to-fry stages.

For water year (WY) 2014, results were estimated using the April 2014 temperature forecast scenario's flow and temperatures (USBR 2014) and also a set of 'hindcast' results using observed daily flows measured at Freeport during WY 2014 with temperatures observed at CCR and Bend Bridge (BND, RM 258). For WY 2014, results were estimated from the May 2015 temperature management plan (USBR 2015c, April temperature forecast scenario) and the updated 2015 temperature management scenario. For these, the model used Keswick releases and Clear Creek and Bend Bridge temperatures from the updated temperature forecast scenario past June 1 and observed temperatures and flows for the period between April 1 and May 31.

There remains uncertainty with the results from this model of egg and egg-to-fry mortality. In 2014, the observed temperature difference between KWK and CCR averaged 1.3°F cooler during the temperature control period than observed, and this is not observed in the modeled results for Clear Creek or Bend Bridge temperatures. This positively biases results from the April 2014 temperature forecast scenario. In recent years, modeled egg-to-fry mortality appeared to more closely reflect observed juvenile production and estimated mortality upstream of Red Bluff Diversion Dam when the temperature compliance point was further downstream and poorly reflect the observed juvenile production and mortality estimate when the temperature compliance is further upstream (USBR 2015d). These biases suggest that using temperatures reflecting alevin and fry rearing habitat may be important for accurately estimating egg-to-fry survival. It is not assumed that all mortality of these life stages is directly linked to temperature mortality, and Reclamation (USBR 2015d) suggested that the monitoring strategy consider potential indirect effects linked to temperature (such as increased predation mortality, increase disease mortality, and increased stranding mortality) to understand multiple stressors of the drought mediated by temperature. Additionally, there is uncertainty due to the potential for actual operations during late summer deviating from the temperature management plan if actual storage and temperature conditions in Trinity and Shasta reservoirs are different from the modeled conditions.

RAFT Model

The River Assessment for Forecasting Temperature (RAFT) model makes physically-based predictions of water temperature according to governing 1-dimensional hydrodynamic and heat transport equations (Pike et al. 2013). The model tracks heat movement through processes such as advection, longitudinal dispersion, atmospheric heat fluxes, lateral inflows, streambed heat exchange, and unsteady non-uniform flows. Outputs include a fine scale temperature landscape of the Sacramento River downstream of Keswick Dam with a spatial resolution of 2 km, and temporal resolution of 15 minutes. Mean prediction error is on the order of 0.25°C, depending on the distance from the upstream boundary.

For the purpose of this assessment, RAFT was used to forecast water temperatures for the June-November 2015 period, using flow and temperature estimates at Keswick Dam from the updated temperature forecast scenario (provided by USBR) as upstream boundary conditions. To provide a range of estimates that account for uncertainty in weather, RAFT was run multiple times using meteorology data for the previous 25 years. The relevant meteorological inputs were obtained from the National Center for Environmental Prediction's North American Regional Reanalysis

(NARR) project and downscaled accordingly. When comparing the forecasted biological effects of water temperature to observed 2014 data, the 2014 meteorology was used.

RAFT's fine scale temperature output was used in conjunction with California Department of Fish and Wildlife's 2014 weekly aerial surveys of redds to calculate several biological metrics. Mean maturation rates and mean incubation times were calculated using mean daily temperatures at the redd locations, according to a linear relationship between maturation rate and temperature (Zeug et al. 2012). Temperature exposure was summarized for the calculated incubation times, as well as the first 45 days following emergence for temperatures at the redds and also at Bend Bridge. The temperature landscape for redd and fry assumed the 2014 redd distribution, that redds were deposited on the day they were observed (sampling was done approximately weekly) and that all redds experienced the mean incubation length times from their temperature exposure.

Biological Metrics

Results from the Juvenile Production and RAFT models provide results regarding a number of useful metrics (Table 2). These are used to quantify differences between the proposed temperature management plan's temperature profile, WY 2014 observed and estimated biological metrics, and various flow and temperature compliance location scenarios modeled recently in consideration of the proposed temperature management plan.

Metric	Source	Habitat Attribute considered
Egg mortality	Juvenile Production Model	Temperature, Flow
Egg to fry mortality	Juvenile Production Model	Temperature, Flow
Date of final shutter operation	Sacramento River	Temperature
	Temperature Forecast Model	
End of September Storage	Sacramento River	Temperature, Flow
<56°F	Temperature Forecast Model	
Kilometers of river below	River Assessment for	Refuge, Temperature
17°C post emergence (45	Forecasting Temperature	
days)		
Temperature-Redd Landscape	River Assessment for	Refuge, Temperature
	Forecasting Temperature	
Daily Mean Temperature, 45d	River Assessment for	Temperature
Post-Emergence (redd and	Forecasting Temperature	
Bend Bridge locations)		
Development Daily Mean	River Assessment for	Temperature
Temperature (redd locations)	Forecasting Temperature	

Table 2. Metric, Source of information, and Conceptual Model Habitat Attribute Considered in the Biological Review

Biological Review

Providing for optimal protection from fertilization through initial fry development requires that constant or acclimation temperatures be maintained below 50°F (10°C) and that individual daily maximum temperatures generally not exceed 56.3°F (13.5°C) (Summarized in NMFS 2015a). Myrick and Cech (2004) published a water temperature review, summarizing a number of studies conducted on the Central Valley Chinook Salmon. Hinze (1959) found that American River fallrun Chinook Salmon eggs incubated in water warmer than 62°F (16.7°C) experienced 100% mortality before reaching the eyed stage. Slater (1963) reported that suitable hatching temperatures for Sacramento River winter-run Chinook Salmon eggs are limited to 42 to 57°F (5.6 to 14°C). Healy (1979) found the highest survival (97%) occurred where the daily maximum exceeded 55°F (12.8°C) only a few times during the first 2 week of development, and noted that survival was still very good (90%-94%) where the initial temperatures were between 55 and 57.5°F (12.8 and 14.2°C). Healey (1979) reported that Sacramento River fall-run Chinook Salmon egg mortality rates exceeded 82% at temperatures over 57°F (13.9°C) and that posthatching mortality was also higher at the elevated temperatures. Healey (1979) also stated that Sacramento River Chinook Salmon eggs did not appear to be any more tolerant of elevated water temperatures than eggs from more northern races. US Fish and Wildlife Service (1999) reported that fall-run egg mortality increased at temperatures greater than 54°F (12.2°C) and winter-run Chinook Salmon egg mortality increased at temperatures over 56°F (13.3°C). Specifically, winter-run Chinook Salmon cumulative mortality through rearing nearly doubled from 56 to 58°F (13.3 to 14.4°C).

Once alevin emerge from the gravel as fry, temperature continues to affect the survival and growth during this stage. Brett (1952) found the upper lethal temperature of juvenile Chinook Salmon was 77°F (25.1°C) and the preferred temperature range for fry acclimated to temperatures between 50 and 74°F (10-24°C) was 53 to 55°F (12-13°C). Thus, sublethal effects occur between the preferred temperature range (53 to 55°F) and the lethal temperature (77°F). These sublethal effects do not result in immediate mortality of embryos and alevins, but may lead to delayed mortality prior to reproduction due to reduced fry and smolt sizes. Temperatures greater than 60°F have higher risk of warm water disease mortalities and the greater the thermal stress during the fry life stage (McCollough 1999).

Thermal stress can act in a cumulative manner between the feeding limit (temperatures exceeding 66°F lead to limits in growth) and the upper lethal temperature. One mechanism influencing growth is behavior, and Brett et al. (1982) observed feeding behavior declined when temperatures exceeded 73°F. Combined effects of stressors such as food limitation, low oxygen concentration, high turbidity, and competition can result in increased mortality. Marine and Cech (1998) assessed that growth rates of fall-run Chinook under sublethal temperatures (70 to 75°F) were substantially reduced from growth rates exhibited at 55 to 60°F. In the Sacramento River, fry typically are exposed to controlled water temperature upstream of Red Bluff into late October, at which time the majority of winter-run Chinook fry have moved passed Red Bluff Diversion Dam. To evaluate temperature effects on refugial rearing habitat quantity, we considered 62.6°F (17°C) a threshold value for when water temperatures have mortality risks related to disease and other associated thermal stressors.

There is uncertainty in how this information translates to field observations since they are from laboratory studies under constant temperature conditions that allow both acclimation and exposure temperatures to be precisely controlled. Acclimation and exposure temperatures can be made either constant or fluctuating, and if fluctuating, they can conform to precise, repeatable cyclic patterns. In river conditions include temperature fluctuation with a maximum temperature in late afternoon and a minimum temperature in early morning. From day to day, these values change, resulting in continually changing conditions in the stream. Fluctuating temperature conditions make it difficult to predict thermal effects. In addition, embryos and alevins are also affected by other factors, including dissolved oxygen and the size of substrate particles. Thus, the combined effects during thermal acclimation and exposure likely result in greater mortality under field conditions than in laboratory settings, in which multiple stressors are limited.

Shasta Operation

Winter-run Chinook Salmon

The updated temperature forecast scenario suggests Shasta and Keswick water operations cannot meet a temperature target of 56°F throughout the temperature compliance season in the Sacramento River above Clear Creek (CCR) location through October. Thus, the updated temperature forecast scenario was developed to achieve maximum duration of the limited cold water reserves in Shasta reservoir. The highest priority for cold water management will be to maintain cold water temperatures in the upper Sacramento River for protection of egg and fry life stages of winter-run Chinook Salmon.

The Juvenile Production Model was used during WY 2014 and 2015 to estimate temperature-related egg mortality and egg-to-fry mortality. As mentioned, the model results from WY2014's April 2014 temperature forecast scenario were positively biased compared to the modeled results from the WY 2014's observed temperature and flow data due to a couple possible explanations. The "hindcast" 2014 egg-to-fry survival estimate of 9% was closest to the 5% estimated by NMFS (Table 3), based on the Red Bluff rotary screw trap estimated juvenile production index (NMFS 2015b), and suggests that modeled results likely overestimate survival even with observed temperatures.

	Updated Temperature Forecast Scenario		Semperature April 2015 Temperature Plan Temper		ratures	April 20 Tempera	14 50% ture Plan	Observed 2014 (measured)	
	Clear Ck	Bend Bridge	Clear Ck	Bend Bridge	Clear Ck	Bend Bridge	Clear Ck	Bend Bridge	Red Bluff Diversion Dam
Termperature- related Egg mortality	8.4%	85.4%	0.0%	49.3%	9.0%	60.1%	1.0%	56.0%	N/A
Egg to Fry survival	19.4%	3.1%	22.0%	11.0%	36.0%	8.5%	29.0%	12.0%	5%

Table 3. Temperature-related egg mortality and egg to fry survival resulting from the Cramer Fish Science model (CFS 2009).

For WY 2015, egg-to-fry survival was estimated to be 19% for the updated temperature forecast scenario when using Clear Creek temperatures and 3% for the same scenario when using Bend Bridge temperatures (Table 3). These survival estimates are less than the survival estimates from the April 2015 temperature forecast model (USBR 2015c). Based on the April 2015 temperature forecast scenario (USBR 2015c), egg-to-fry survival was estimated to be 36% using the Clear Creek temperatures and 9% using the Bend Bridge temperatures. These WY 2015 egg-to-fry survival estimates suggest that a range of survival estimates resulting from temperature management may occur, and are dependent upon the location of spawning and rearing winter-run Chinook salmon. Currently, the majority of winter-run Chinook salmon are spawning very high in the upper Sacramento and this may reduce water temperature's effect of temperature-related egg mortality compared to the temperature-related egg mortality estimates derived from the scenario's Clear Creek temperature data (Figure 3). The updated temperature forecast scenario's approach to stabilize water temperatures throughout both the egg and fry life stages may prove critical to ensuring egg-to-fry survival, rather than focusing on maintaining colder temperature during an egg incubation period and allowing warmers temperatures during the fry emergence and rearing period.

The updated temperature forecast scenario estimates the Shasta reservoir end of September volume below 56°F to be approximately 265 thousand acre feet (TAF). For comparison, the 2014 May operational forecast's temperature scenario predicted end of September storage below 56°F to be 135 TAF. The updated temperature forecast scenario may allow later operation of the temperature control device's (TCD's) side gate, which decreases the risk associated with temperature control through the TCD (USBR 2015b). Under the updated temperature forecast scenario, the coldest gate configurations (i.e. full gate use) are modeled to occur between October 1 and 9. The 2014 May temperature model scenario has the coldest gate configuration occurring around September 7, while the actual 2014 TCD side gate operations began in late August.

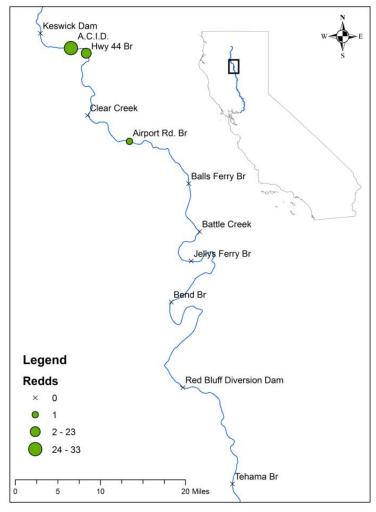


Figure 3. Location of winter-run Chinook Salmon redds in the upper Sacramento River¹.

As mentioned in the Method section, the temperature mortality model appears to underpredict mortality of egg and fry. There is uncertainty if this is related to sources of mortality not directly estimated by the model, actual operations during late summer deviating from the temperature management plan, and actual storage and temperature conditions in Trinity and Shasta reservoirs deviating from the temperature management plan modeling, or some combination of these factors.

Dissolved Oxygen

Expanded monitoring during WY 2014 focused on measuring dissolved oxygen levels during the winter-run, spring-run, and fall-run Chinook Salmon redd incubation periods (Jason Roberts, CDFW, pers. comm.). In 2014, ten dissolved oxygen measuring stations were placed near winter-run Chinook Salmon redds in the ten miles downstream of Keswick Dam, where redds were located. In addition, two real time gages on the California Data Exchange Center (CDEC) were considered at KWK and CCR. Results from these loggers indicated that dissolved oxygen levels in the Sacramento River were likely not detrimental to winter-run Chinook Salmon egg

¹ Redd distribution data provided by California Department of Fish and Wildlife on June 18, 2015.

and fry survival. Dissolved oxygen conditions are likely to be the same in WY 2015 compared to WY 2014. While there remains uncertainty in what actual conditions will be in WY 2015, observations about dissolved oxygen at KWK and CCR may provide real time information for further tracking this water quality concern.

Redd dewatering/stranding

During recent water years, California Department of Fish and Wildlife completed redd dewatering and stranding surveys to determine the effects of reduced Keswick releases on dewatered redds and stranded juveniles in disconnected habitats (USBR 2015d). During fall 2014, minimal redd dewatering was observed to have occurred (Jason Roberts, pers comm.). The proposed timing of reduced releases during Fall 2015 contains similar Keswick releases and is unlikely to dewater winter-run Chinook Salmon redds. The effect of juvenile stranding is unknown, this is due to the location of rearing fish, geology, and geomorphology greatly affecting this habitat attribute. Ramping of decreasing flows through Keswick in the fall will implemented based on the operational guidelines to minimize flow fluctuation effects the NMFS Biological Opinion (NMFS 2011).

Habitat Distribution/ Refuge

Current distribution of redds show a majority of the redds upstream of the Highway 44 bridge (Figure 3). Differences are observed between the daily mean temperature during the egg development and 45 day post emergence periods with the updated temperature forecast scenario (identified as 10pct7250cfs in figures) compared to the observed 2014 temperatures. These differences include slightly higher temperatures of eggs in the redd but lower temperatures during the post-emergence period close to the redds and even downstream at Bend Bridge during 2015 compared to 2014 (Figure 4-6). These results suggest that winter-run Chinook Salmon eggs were exposed to lower temperatures during the developmental period in 2014 than what they are likely to encounter during the updated forecast scenario's summer 2015 temperature control period. Also, the winter-run Chinook salmon in 2014 that emerged were exposed to much greater temperatures during the post-emergence period than what is likely to be encountered during the updated forecast scenario's summer 2015 temperature control period. These results suggest that the range of operations considered for summer 2015 are likely to be more stable throughout the egg development and fry rearing period upstream of Bend Bridge, than the variable conditions observed over these periods in 2014. While forecasted 2015 water temperatures are at the upper extent of the optimal range for eggs and excursions into temperatures causing egg mortality are predicted to occur, the Shasta temperature management plan remains in a range that avoids loss of temperatures during the rearing period and greater loss of alevin and fry during the late summer and fall.

Development Daily Mean Temperature 58 57.5 57 56.5 55.5 55 10pct7250cfs 2014

Figure 4. Daily Mean Water Temperature During Development²

Daily mean temperature values, in degrees Fahrenheit, during the development period. Calculated using 2014 redd distribution and 2014 meteorology.

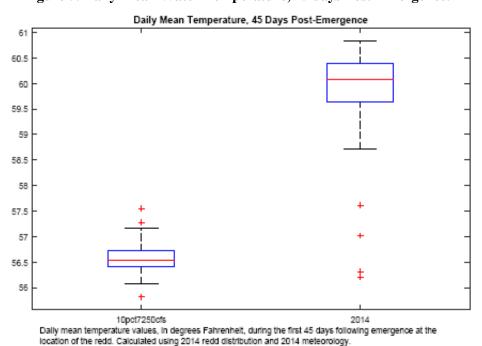


Figure 5. Daily Mean Water Temperature, 45 days Post-Emergence. ³

² Figure provided by NMFS-SWFSC on June 18, 2015. ³ Figure provided by NMFS-SWFSC on June 19, 2015.

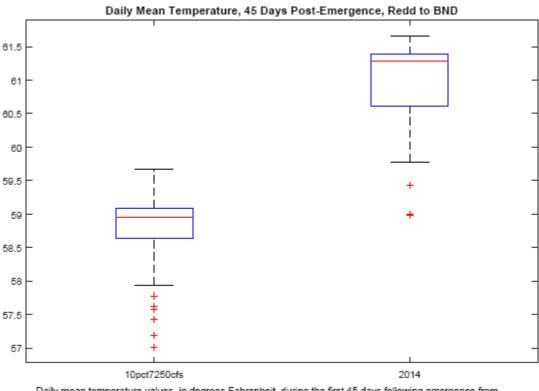
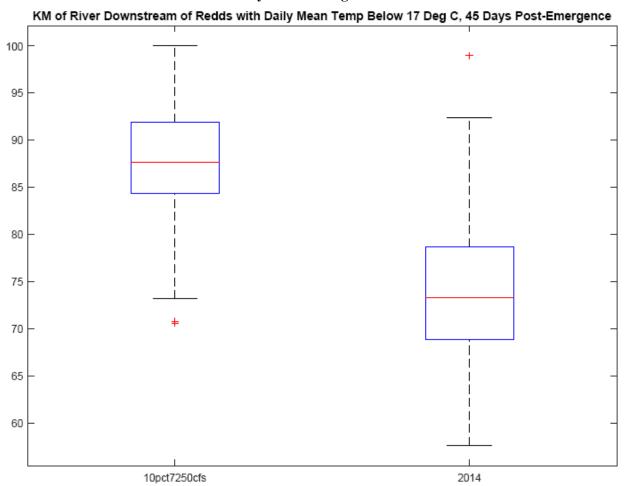


Figure 6. Daily Mean Water Temperature, 45 days Post-Emergence at Bend Bridge ⁴

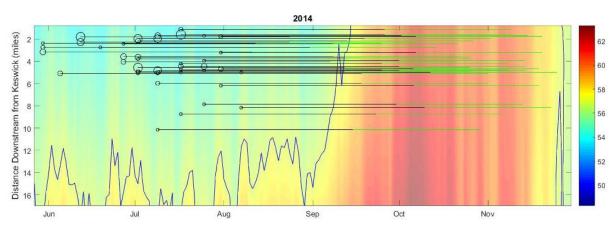
Daily mean temperature values, in degrees Fahrenheit, during the first 45 days following emergence from the location of the redd to BND. Calculated using 2014 redd distribution and 2014 meteorology.


Food availability and quality, refuge, predation and competition, and pathogens

The conceptual model indicates that other hypothesized mechanisms influence mortality, growth, and maturation may be influenced by Shasta discharge and temperature management. However, how they are influenced are not well documented or understood with regards to the upper Sacramento River environment and winter-run Chinook Salmon. These mechanisms include food availability and quality, refuge, predation and competition, and pathogens.

The RAFT model output for the updated temperature forecast scenario and the WY2014 observed temperature were summarized in a box plot of the number of kilometers downstream of redds with daily mean temperature below 62.6°F (17°C). This box plot shows that the updated temperature forecast scenario is predicted to provide greater cold water habitat (refuge) than was observed in WY2014 (Figure 5 and 6). There remains uncertainty in these results since winterrun Chinook Salmon continue to build redds, at the time of this review, and the redd distribution used to evaluate the length of cold water refuge was based on the WY2014 winter-run Chinook Salmon redd distribution.

⁴ Figure provided by NMFS-SWFSC on June 19, 2015.


Figure 5. Kilometers of River Downstream of Redds with Daily Mean Temperature Below 17°C 45 $\,$ Days Post-Emergence 5

Mean number of kilometers downstream from redds with a daily mean temperature value below 17 degrees Celsius, during the first 45 days following emergence. Calculated using 2014 redd distribution and 2014 meteorology.

 $^{^{\}rm 5}$ Figure provided by NMFS-SWFSC on June 18, 2015.

Figure 6. Temperature Landscapes for Eggs and Fry in the Updated Temperature Forecast Scenario and Actual Observed during 2014⁶.

Temperature, in degrees Fahrenheit, below Keswick Dam. The isoline represents 57 degrees. Circles represent redd deposition time, location, and relative number. Black lines show the length of time of incubation, and green lines show the first 45 days following emergence. Calculations were done using the 2014 redd distribution and 2014 meteorology.

While the relationship of predation, competition and pathogen are hypothesized to be negative as water temperature increases, the magnitude of these effects are unknown. Recently, pathogens have been documented to impact migrating salmonid in the Klamath, Sacramento and Fraser rivers (Ray et al. 2013, Foote et al 2013, and Jeffries et al. 2014), and is hypothesized to become a greater threat due to climate change (Miller et al 2014). As water temperatures increase, it is hypothesized that food availability and quality increase. Alternately, increasing stream temperature is hypothesized not to lead to increases in the abundance of drifting macroinvertebrates (McCollough 1999). Regardless, increased temperature will increase metabolic demand, and increase competition for a limited food base. While this directly may reduce growth, it may also cause displacement to habitats with more competitors or predators. The magnitudes of these effects are unknown. Thus, cumulatively these attributes are more likely to have a negative impact on survival and growth than result in a positive effect.

⁶ Figure provided by NMFS-SWFSC on June 18, 2015

American River Operation

Conditions in the American River have met the criteria for a conference year under the flow management standard in compliance with the RPA. Therefore, operations will continue to be adaptively managed in partnership with the fishery agencies and the Water Forum to best meet needs under the extreme drought conditions.

Summary

Water temperatures will directly and indirectly affect winter-run Chinook survival this year. While a range of cold water management outcomes is possible, the forecasted meteorology and the quantity and profile of cold water create a situation where modeling does not predict average levels of egg-to-fry survival are achievable. Egg-to-fry survival has ranged from 15% to 49% (average = 26%) between 2002 and 2013 (USBR 2015d) based on juvenile production at Red Bluff Diversion Dam. Although the updated temperature forecast scenario provides cooler water temperatures throughout the egg incubation and fry rearing period, these temperatures are likely to cause egg-to-fry mortality, such that egg-to-fry survival will be measurably lower than average and likely similar to the observed low survival estimates from between 2002 and 2013.

The biological modeling suggests a range of outcomes that depend upon the locality of incubating eggs and rearing fry which reflect possible WY 2015 egg-to-fry survival in the range of what was observed in WY 2014. The current redd distribution is very close to Keswick Dam, which suggests predicted temperatures or management of temperatures at Clear Creek may not reflect the true egg mortality experienced by winter-run Chinook salmon. The water temperatures close to Keswick Dam, just upstream of the location of most of the current redds, are likely to be the coldest in the Sacramento River accessible to winter-run Chinook spawners. The locality of rearing winter-run Chinook salmon fry remains, and will remain, unknown but will influence fry survival based on the range of predicted temperatures occurring downstream of redds late in the summer. Based on a later date for the last TCD gate opening and greater end of September storage predicted with the updated temperature forecast scenario, it is unlikely that egg-to-fry survival in WY 2015 will be as low as the estimated 5% during WY 2014. The updated temperature forecast scenario's approach to maintaining cooler temperatures late in the summer compared to what winter-run Chinook salmon experienced in WY 2014 is likely to provide better fry survival than experienced in WY2014.

Citations

- Brett, J.R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Can. 9(6):265-323.
- Brett, J.R., W.C. Clarke, and J.E. Shelbourn. 1982. Experiments on thermal requirements for growth and food conversion efficiency of juvenile chinook salmon, Oncorhynchus tshawytscha. Canadian Technical Report Fisheries Aquatic Science 1127. 29 p.
- Cramer Fish Sciences. 2010. A Revised Sacramento River Winter Chinook Salmon Juvenile Production Model. Prepared for NOAA. 30 p.

- Bartholow, J. M. and J. Heasley. 2006. Evaluation of Shasta Dam scenarios using a salmon production model. U.S. Geological Survey, Reston, Virginia.
- Foote, J.S. 2014. Sacramento and Feather River Juvenile Chinook Pathogen Survey, Spring 2014. Report for National Wild Fish Health Survey. CA-NV Fish Health Center, USFWS, Anderson, CA. July 28, 2014. 11 p.
- Healey, T.P. 1979. The effect of high temperature on the survival of Sacramento River chinook (king) salmon, *Oncorhynchus tshawystscha*, eggs and fry. Sacramento: California Department of Fish and Game, 1979.
- Hinze, J.A. 1959. Annual Report Nimbus Salmon and Steelhead Hatchery Fiscal Year of 1957-58. Sacramento: California Department of Fish and Game, 1959. 21.
- Jeffries, K.M., S.G. Hinch, M.K. Gale, T.D. Clark, A.G. Lotto, M.T. Casselman, S. Li, E.L. Rechisky, A.D. Porter, D.W. Welch, and K.M. Miller. 2014. Immune response gene and pathogen presence predict migration survival in wild salmon smolts. Molecular Ecology 23:5803-5815.
- Miller, K.M, A. Teffer, S. Tucker, S. Li, A.D. Schulze, M. Trudel, F. Juanes, A. Tabata, K.H. Kaukinen, N.G. Ginther, T.J. Ming, S.J. Cooke, J.M. Hipfner, D.A. Patterson, and S.G. Hinch. 2014. Infectious disease, Shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evolutionary Applications 7: 812–855
- Pike, A. E. Danner, D. Boughton, F. Melton, R. Nemani, B. Rajagopalan, and S. Lindley. 2013. Forecasting River Temperatures in Real Time Using a Stochastic Dynamics Approach. Water Resources Research 49: 1-15.
- McCullough, D.A. 1999. A Review and Synthesis of Effects of Alterations to the Water Temperature Regime on Freshwater Life Stages of Salmonids, with Special Reference to Chinook Salmon. Prepared for the U.S. Environmental Protection Agency. 291 p.
- Marine, K.R. and J.J. Cech, Jr. 1998. Effects of elevated water temperature on some aspects of the physiological and ecological performance of juvenile Chinook salmon (Oncorhynchus tshawytscha): implications for management of California's Chinook salmon stocks. Stream temperature monitoring and assessment workshop. January 12-14, 1998. Sacramento, California. Forest Science Project, Humboldt State University, Arcata, California.
- Myrick, C. A. and J. J. Cech. 2004. Temperature effects on juvenile anadromous salmonids in California's central valley: what don't we know? Reviews in Fish Biology and Fisheries 14:113-123.
- National Marine Fisheries Service. 2011. Amended Biological and Conference Opinion on the Long-Term Operations of the Central Valley Project and State Water Project. Central Valley Office, Sacramento CA.
- National Marine Fisheries Service (NMFS). 2015a. Evaluation of Alternatives for Sacramento River Water Temperature Compliance for Winter-run Chinook salmon. Report to State

- Water Resources Control Board. April 2015. Prepared by California Central Valley Area Office.
- National Marine Fisheries Service (NMFS). 2015b. Letter from Mrs. Maria Rea to Mr. Ron Milligan. Estimated number of juvenile Sacramento River winter run Chinook salmon to enter the Delta during water year 2015. Prepared by California Central Valley Area Office.
- Ray, R.A., R.W. Perry, N.A. Som, and J.L. Bartholomew. 2014. Using cure models for analyzing the influence of pathogens on salmon survival. Transactions of the American Fisheries Society 142: 387-398.
- Slater, D.W. 1963. Winter-run Chinook salmon in the Sacramento River, California with notes on water temperature requirements at spawning. Washington, D.C.: U.S. Fish and Wildlife Service, 1963.
- United States Fish and Wildlife Service (USFWS). 1999. Effect of temperature on early-life survival of Sacramento River fall- and winter-run Chinook salmon. Red Bluff, CA: Northern Central Valley Fish and Wildlife Office, January 1999.
- United States Bureau of Reclamation (USBR). 2014. Letter from Mr. Ron Milligan to Mrs. Maria Rea. Contingency Plan for Water Year (WY) 2014 Pursuant to Reasonable and Prudent Alternative (RPA) Action 1.2.3.C of the 2009 Coordinated Long-term Operation of the Central Valley Project (CVP) and State Water Project (SWP) Biological Opinion (NMFS 2009 BiOp).
- United States Bureau of Reclamation (USBR). 2015a. Letter from Mr. David Murillo to Mr. Thomas Howard. Re: Temporary Urgency Change Petition June 30 through November 30, 2015. Available at: http://www.waterboards.ca.gov/waterrights/water_issues/programs/drought/docs/tucp/2015/tucp052115.pdf
- United States Bureau of Reclamation (USBR). 2015b. Initial Hindcast of Temperature Performance Sacramento River 2014. Report to State Water Resources Control Board. March 2015. Prepared by Mid-Pacific Region, Central Valley Operations Office.
- United States Bureau of Reclamation (USBR). 2015c. Biological Review for Updated Project Description for July November 2015 Drought Response Actions to Support Endangered Species Act Consultations. Attachment B. Submitted to State Water Resources Control Board. May 2015.
- United States Bureau of Reclamation (USBR). 2015d. Drought monitoring and assessment report. Brood Year 2013 winter-run Chinook Salmon drought operation and monitoring assessment. Report. Mid-Pacific Region, Sacramento CA. March 2015.
- Zeug, S.C., P.S. Bergman, B.J. Cavallo, and K.S. Jones. 2012. Application of a life cycle simulation model to evaluate impacts of water management and conservation actions on an endangered population of Chinook salmon. Environmental Modeling & Assessment 17(5): 455-467.