Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
When light is absorbed by solar cells to make electricity, electrons and “missing electrons” are generated that move through the layers of materials in typical solar cells.06.07.16Science Highlight

New See-Through Material for Electronics

A low-cost, stable oxide film is highly conductive and transparent, rivaling its predecessors. Read More »

Perovskite-based nanowire lasers are the most efficient known.06.07.16Science Highlight

World’s Most Efficient Nanowire Lasers

Materials with extraordinary performance in solar cells are discovered to be efficient, tunable lasers at room temperature. Read More »

A depiction of the experimental apparatus used to distinguish the pear shape (upper left) present in some barium nuclei from the more common spherical (upper right) or ellipsoidal (lower left) shapes characteristic of most nuclei.06.06.16Science Highlight

Confirmed: Heavy Barium Nuclei Prefer a Pear Shape

Cutting-edge experiment with a beam of radioactive barium ions provides direct evidence of nuclear pear-shape deformation. Read More »

The discovery that electrically conductive, hair-like filaments on the surface of Geobacter bacteria could mark a new paradigm for the employment of biological materials in nanoscale electron devices.06.06.16Science Highlight

Bacteria Hairs Make Excellent Electrical Wires

This discovery could lead to low-cost, non-toxic, biological components for light-weight electronics. Read More »

A vector map of the measured deflections of an atomic-sized electron beam scanned across different polar domains in the ferroelectric bismuth ferrite. The image was recorded in about a minute by the new electron microscope pixel array detector.06.06.16Science Highlight

New High-Capability Solid-State Electron Microscope Detector Enables Novel Studies of Materials

Device allows fast, precise measurements of electric and magnetic fields at the atomic level, providing insights into the next generation of electronic, energy production, and storage materials. Read More »

In the 1980s, scientists discovered that a proton's three valance quarks (red, green, blue) account for only a fraction of the proton's overall spin. New measurements from RHIC's PHENIX experiment reveal that gluons (yellow corkscrews) contribute as much as or possibly more than the quarks.06.06.16Science Highlight

Zooming in on Gluons' Contribution to Proton Spin

New data that "wimpy" gluons, the glue-like particles that bind quarks within protons, have a big impact on proton spin. Read More »

Snakes on a plane: This atomic-resolution simulation of a peptoid nanosheet reveals a snake-like structure never seen before. The nanosheet’s layers include a water-repelling core (yellow), peptoid backbones (white), and charged sidechains (magenta and cyan). The right corner of the nanosheet’s top layer has been “removed” to show how the backbone’s alternating rotational states give the backbones a snake-like appearance (red and blue ribbons). Surrounding water molecules are red and white.06.06.16Science Highlight

Understanding and Predicting Self-Assembly

Newly discovered “design rule” brings nature-inspired nanostructures one step closer. Read More »

View of the surface of a lithium pool in Lithium Tokamak Experiment, as it is heated and cleaned of oxides by a beam of high energy electrons.05.20.16Science Highlight

Hotter All The Way: Lithium Wall Contains Plasma Without Cooling It

Lithium walls open up access to new regimes for the fusion reactor. Read More »

A high-resolution photo shows the inside of the Alcator C-Mod tokamak with a representative cross-section of a fusion plasma superimposed.05.20.16Science Highlight

Supercomputers Predict New Turbulent Interactions in Fusion Plasmas

Cutting-edge simulations provide an explanation for a mystery over half a century old. Read More »

The green dot at the bottom of the glass vial is a solution containing 22 milligrams of ultra-pure 249Bk produced at ORNL’s High Flux Isotope Reactor and Radiochemical Engineering Development Center at ORNL.05.17.16Science Highlight

DOE Isotope Program Provides Target Material for the Discovery of Superheavy Elements

New element 117 and its decay products establish the existence of long-sought Island of Stability. Read More »

Last modified: 11/9/2015 8:58:42 PM