

Clean Air Status & Trends Network (CASTNET) Workshop

August 20 and 21, 2009

Research Triangle Park, North Carolina, USA

CASTNET: A broad perspective

Continue to provide measurements to support environmental and program assessment

> Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2009 Tele Atlas © 2009 Europa Technologies Image USDA Farm Service Agency

6


Bowker/Bowersox

Overview Background EPA goals NPS goals Modeling

Welcome, Introductions, and Purpose

Purpose:

Provide input to EPA and NPS on modernizing CASTNET's monitoring approach to reflect advances in monitoring technology and assessment needs.

Overview of workshop:

Part 1: Strengthening the foundation

•Background and description of EPA, NPS, and modeling needs and objectives

Statement of network objective questions for community

Introduction of network design tools

Breakout session 1

Reporting of breakout group results

Synthesis of results and recommendations

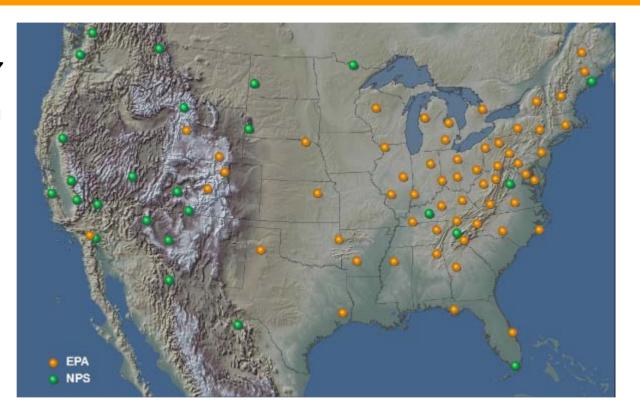
Part 2: Building on the foundation •Background for breakout session 2. •Breakout session 2. Reporting of breakout group results

•Synthesis of results

- Objectives
- History
- Lessons Learned

Background and objectives of CASTNET

Objectives

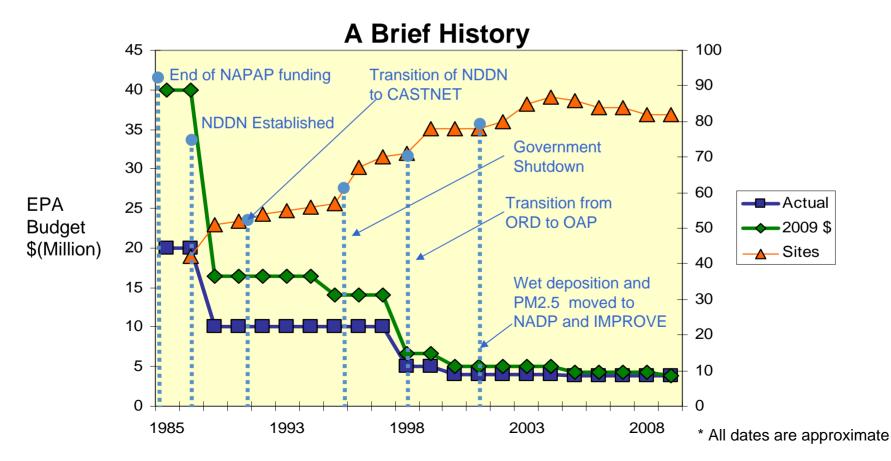

- Monitor the status and trends in regional air quality and atmospheric deposition
- Provide information on the contribution of atmospheric pollution to ecosystem conditions
- Provide measurements for validating and improving atmospheric models

OverviewBackgroundEPA goalsNPS goalsModelingCurrent CASTNET MonitoringProgram

• Operating since 1987

Lear

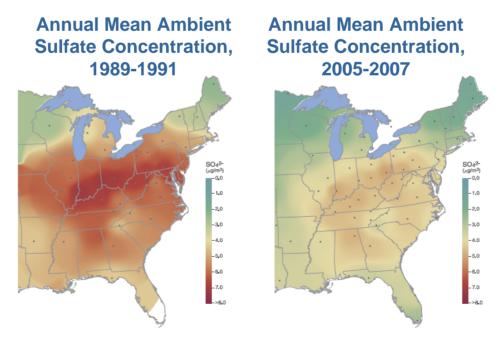
- Currently 80+ sites in 40 states (2 collocated)
- Weekly ambient concentrations of gaseous (HNO3 &SO2) and particle species
- Continuous (hourly) meteorology & O3



- Sites are located in rural and often ecologically important locations, including 27 National Parks
- Dry deposition is estimated using an inferential model

What do we do well?

Lear

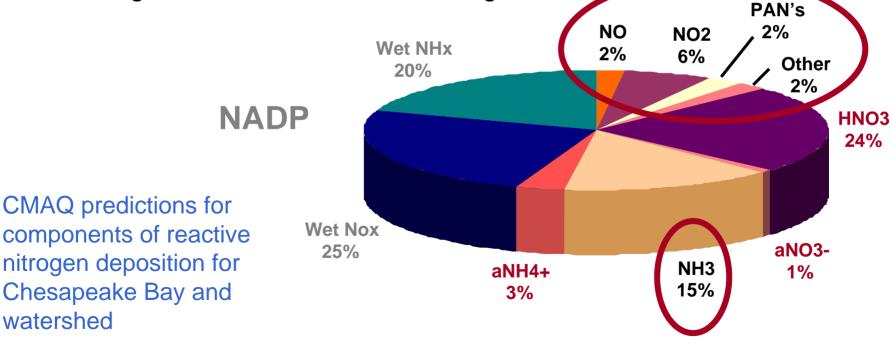

• Relatively inexpensive (or learning to do more with less)

Background and objectives of CASTNET

What do we do well?

- Relatively inexpensive
- Consistent measurements for over 20 years (see above)
 - Measurements are comparable over temporal and spatial scales
 - Many long-term sites

Background and objectives of CASTNET


What do we do well?

- Relatively inexpensive
- Consistent measurements for over 20 years (see above)
 - Measurements are comparable over temporal and spatial scales
 - Many long-term sites
- We do sulfur well (Not so much N species)
- Suite of collocated measurements
 - Rural ozone
 - Continuous meteorology
 - Major ions
- Rural measurements
 - Regionally representative
 - Less affected by local sources

Background and objectives of CASTNET

What are the limitations?

- Consistent measurements over 20 years
 - Outdated measurements, known problems
- Missing substantial fraction of N budget

CASTNET

Background and objectives of CASTNET

What are the limitations?

- Consistent measurements over 20 years
 - Outdated measurements, known problems
- Missing substantial fraction of N budget
- Undefined bias in nitrate/nitric acid fractions

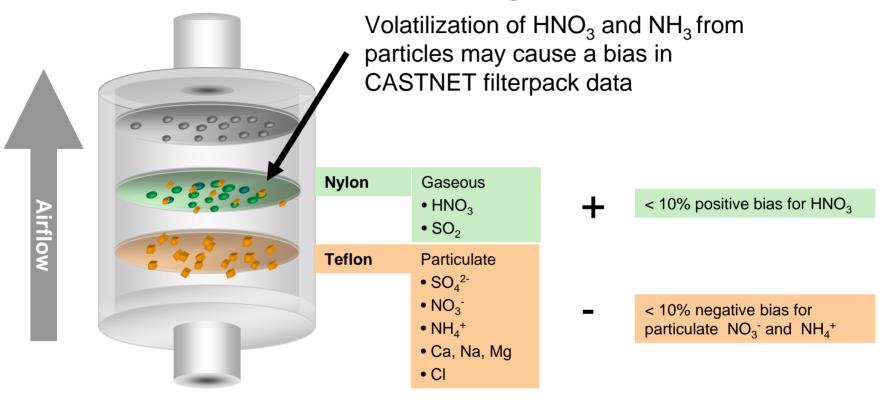
CASTNET 3-Stage Filterpack

Gas and particle concentrations in air are measured by filter packs and then used to estimate daily dry deposition

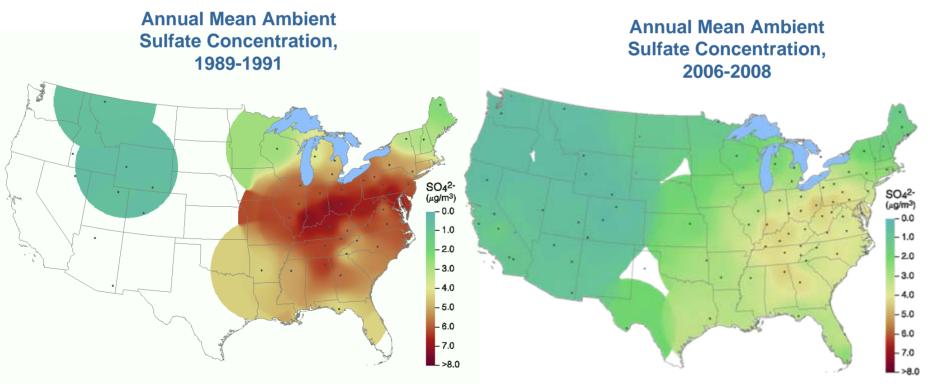
Whatman	Gaseous • SO ₂
Nylon	Gaseous • HNO ₃ • SO ₂
Teflon	Particulate • SO_4^{2-} • NO_3^{-} • NH_4^{+} • Ca, Na, Mg • Cl

Gases and Particles

rtio


- Filter packs are open-faced, with no size exclusion
- 20% of S and N deposition can be from coarse particles
- HNO₃ reacts with inlets

CASTNET filter pack assembly


CASTNET 3-Stage Filterpack

Background and objectives of CASTNET

What are the limitations?

• Limited geographic extent

Background and objectives of CASTNET

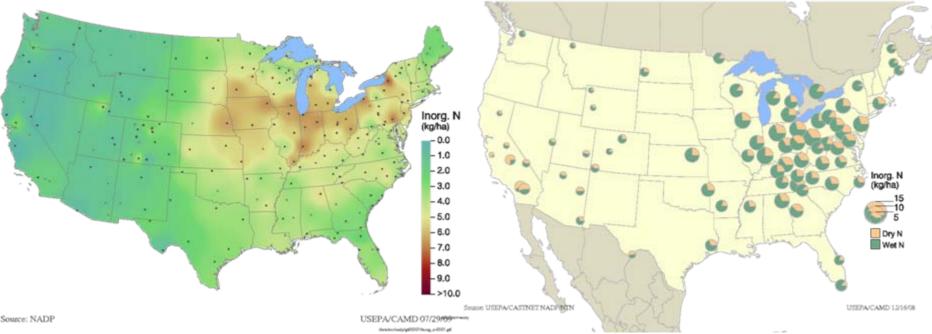
What are the limitations?

- Consistent measurements over 20 years
 - Outdated measurements, known problems
- Missing substantial fraction of N budget
- Undefined bias in nitrate/nitric acid fractions
- Limited geographic extent
- Point estimates of dry deposition on a continuous landscape
- We don't measure dry deposition
 - No verification of dry deposition models through direct measurement
- Weekly air quality measurements
- Poorly defined community of users/stakeholders
 - Legacy issues (acid rain)

Background and objectives of CASTNET

What are the limitations?

- Consistent measurements over 20 years
 - Outdated measurements, known problems
- Missing substantial fraction of N budget
- Undefined bias in nitrate/nitric acid fractions
- Limited geographic extent
- Point estimates of dry deposition on a continuous landscape
- We don't measure dry deposition
 - No verification of dry deposition models through direct measurement
- Weekly air quality measurements
- Poorly defined community of users/stakeholders
 - Legacy issues (acid rain)


Background and objectives of CASTNET

What are the limitations?

Point estimates of dry deposition on a continuous landscape •

> **Annual Mean Wet** Inorganic Nitrogen, 2005-2007

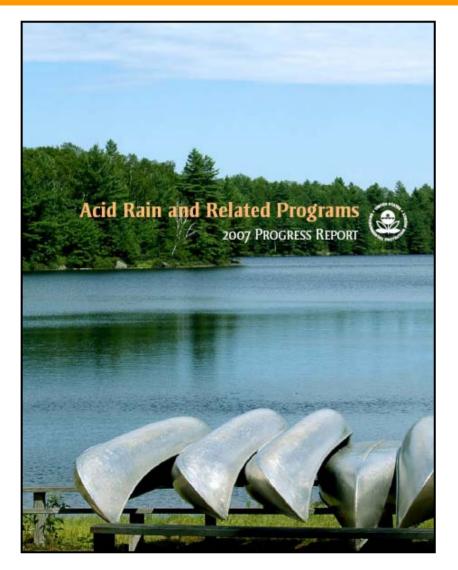
Annual Mean Wet+Dry Deposition, 2005-2007

Background and objectives of CASTNET

What are the limitations?

- Consistent measurements over 20 years
 - Outdated measurements, known problems
- Missing substantial fraction of N budget
- Undefined bias in nitrate/nitric acid fractions
- Limited geographic extent
- Point estimates of dry deposition on a continuous landscape
- We don't measure dry deposition
 - No verification of dry deposition models through direct measurement
- Weekly air quality measurements
- Poorly defined community of users/stakeholders
 - Legacy issues (acid rain)

Lear/Haeuber


OverviewBackgroundEPA goalsNPS goalsModeling

EPA program assessment

Program assessment:

Acid Rain Program NOx Budget program Ozone Ecological assessment

EPA program assessment

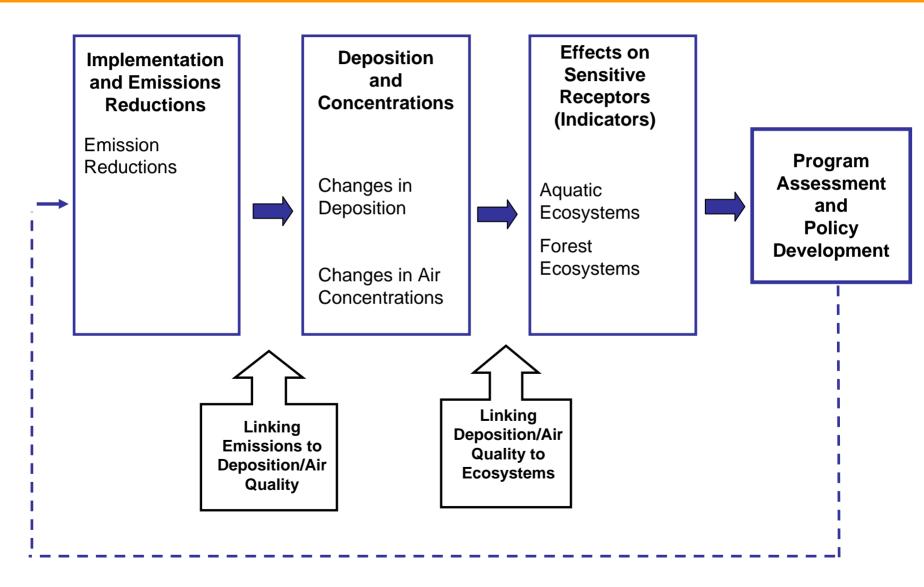
Environmental Analyses and Assessment

Acid Rain Program
NOx Budget Trading Program
Other programs. E.g., Clean Air Interstate Rule

Lear/	Haeuber	Overview	Background	EPA goals	NPS goals	Modeling
		What do	we mean b	by "accoul	ntability"?	

•Accountability refers to tracking and evaluating environmental results to assess the efficacy of air pollution control efforts

•Two key questions for policy analysis and program accountability


–Has a policy/program achieved the intended environmental and human health goal?

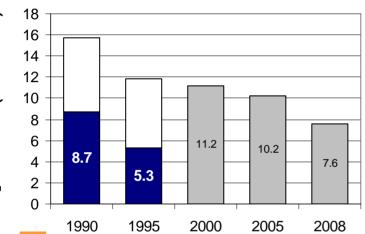
-Are further emissions reductions necessary to achieve intended results (e.g., ecosystem protection)?

Lear/Haeuber

 Overview
 Background
 EPA goals
 NPS goals
 Modeling

 Framework for Program Assessment and Accountability
 (Ecosystem Assessment Example)

Relationships of Concern for Accountability

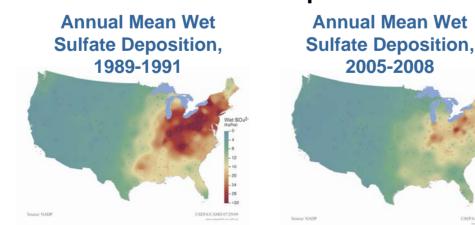

- ●Emission controls → Emissions
- •Emissions → Ambient concentrations of precursors
- Ambient concentrations of precursors → Air Quality/Deposition
- ●Air quality/Deposition → Exposure

Lear/Haeuber

Overview Background EPA goals NPS goals Modeling

Accountability: An Acid Rain Example

SO₂ Emissions Under the ARP

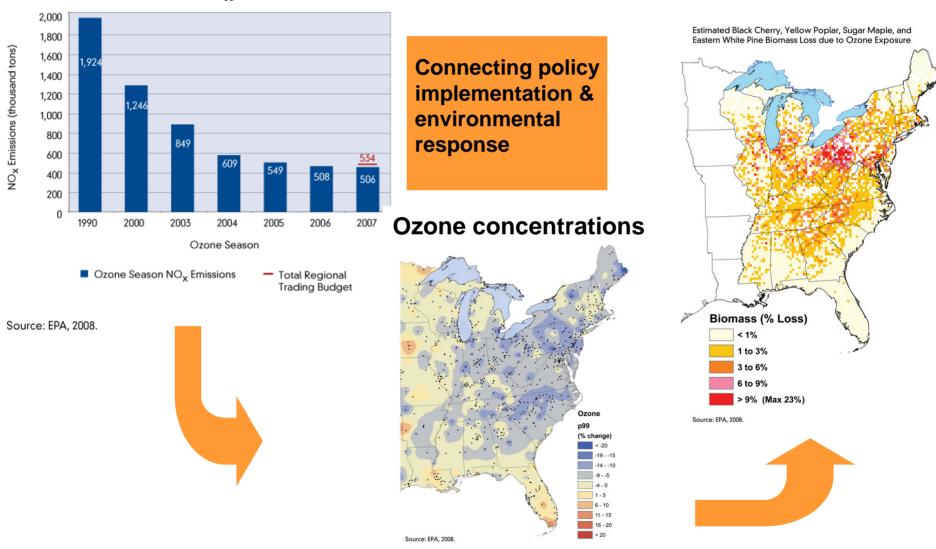

Data comes from many partners and is transparent and accessible for all to use

Acid Lake Response

Trend Slopes for LTM Sites in Four Eastern U.S. Regions, 1990–2006

Region	Sulfate SLOPE	Nitrate SLOPE	ANC SLOPE	
New England	-2.3	-0.02	0.185	
Adirondacks	-2.23	-0.31	0.82	
Appalachian Plateau	-2.36	-0.18	0.80	
Ridge/Blue Ridge	0.10	-0.125	0.03	

Wet Sulfate Deposition


USEPA/CAMD 08:101

SO₂ Emissions (million tons)

Ecological Response

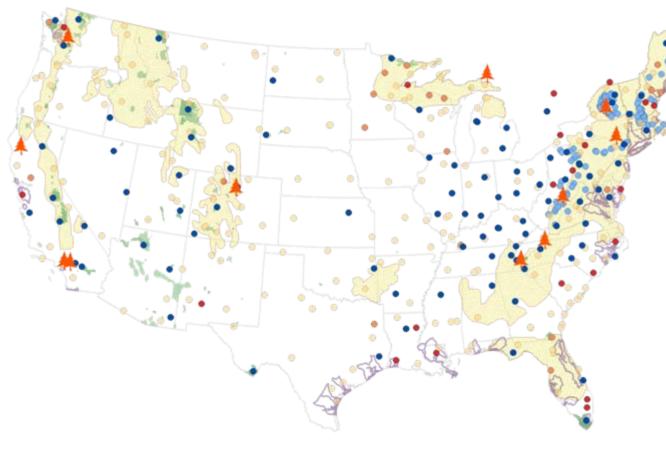
Accountability: An NBP Example

Ozone Season NO_x Emissions

What Does the Future Look Like?

•Further substantial regional and national $SO_2 \& NO_X$ reductions – what role for CASTNET?

- -Acid Rain Program and Clean Air Transport Rule
- -Utility MACT
- -Ozone and PM NAAQS
- -Secondary SOx/NOx NAAQS?
- -Potential multi-pollutant control legislation?
- •Thinking bigger ammonia? Total reactive N?
- •And bigger Climate change?
- •And biggest coupled biogeochemical cycles?
 - -C, N, S separate in policy, but not in nature


The Big Challenge for Environmental Monitoring?

Lear/Haeuber

Overview Background EPA goals NPS goals Modeling

Environmental Monitoring Networks

Long-Term Monitoring

- NADP/NTN (wet deposition)
- NADP/MDN (mercury deposition)
- TIME/LTM (surfacewater acidity)
- CASTNET (dry deposition/ozone)

Ecological Resources

- 😂 Acidic Surface Waters
- 🛕 N-Saturated Forest
- 👐 Class I Areas
- 😂 Highly Eutrophic Estuaries

.....To this?

Overview Background EPA goals NPS goals Modeling

NPS Program Assessment

NPS Perspective – Use of CASTNet Data

- Ecosystem Assessment
 - determine compliance with current and future NAAQS secondary standards for ozone and NOx/SOx
 - estimate dry portion of total deposition
 - develop critical loads
 - relate on-site air concentration and deposition data to ecosystem health
 - inputs to ecological models that determine critical loads
 - validate CMAQ modeling output which can provide deposition estimates at many parks

NPS Program Assessment

Use of CASTNet Data (continued)

- Temporal and Spatial Trends
 - provides information on changing air quality
- Source Apportionment Modeling
 - attribution of each species to its source is needed to develop emission control strategies
- Assessment of other effects of these species in NPS units (visibility, human health, etc.)

Overview Background EPA goals NPS goals Modeling

NPS program assessment

Issues

- Important species are not measured
- Accuracy with which some species are measured
- Time scale of measurement (doesn't support source attribution, models)
- Deposition is not measured but estimated for points
- Spatial representation is poor
 - network distribution is uneven
 - deposition data can't be interpolated
- Inferential model not useful for ecosystem approach

NPS program assessment

NPS Operational Constraints

- Retain enough ozone monitors for rural representation (most of NPS sites)
- NPS does not have highly trained operators complexity of sites must be considered
- Budget is flat no new initiative funds

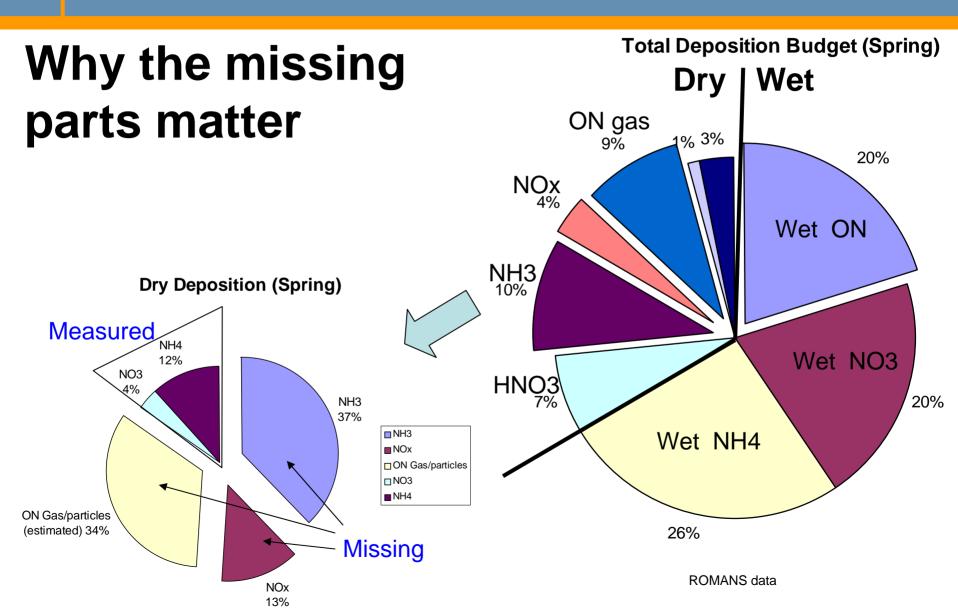
Overview Background EPA goals NPS goals Modeling

NPS program assessment

Species of interest

- Dry Species (Measured)
 - SO₂, SO₄
 - HNO₃, NO₃
 - NH_4
- Dry Species (Missing)
 - NH_3
 - NO_x (NO and NO_2)
 - Reduced organic gases (Aliphatic amines)
 - Oxidized organic gases (PAN alkyl nitrates ...)
 - Reduced and oxidized organic nitrogen containing particulates

Overview Background EPA goals NPS goals Modeling


NPS program assessment

Accuracy/Uncertainty

- SO₂/SO₄ measured reasonable well for both wet and dry
- Nitrogen is problematic across the board
 - Cut-point is ill defined (coarse vs fine)
 - $-HNO_3/NO_3$ split has large error
 - NH₄ error (underestimated) may be on order of 20-50%

Overview Background EPA goals NPS goals Modeling

NPS program assessment

NPS program assessment

Some Possible Changes

- Drop model and calculate deposition from average Vd and concentrations
 - Eliminate met monitoring at most locations
- Add a filter to the existing filter pack to get NH₃
- Replace current filter pack with automated system for better time resolution
- Use combined networks: Add NH₃, SO₂, and HNO₃ to the IMPROVE
- Measure total ON gas/particles at some sites

Overview Background EPA goals NPS goals Modeling

NPS program assessment

Other Recommendations

- Use EPA NCORE network to get Total Chemically Reactive Nitrogen (NOy + NHx)
- Put more emphasis on Class I areas, parks, wilderness areas, etc
- Redistribute the sites for complete and better spatial representation

Model uses and evaluation

Definitions/Components of Evaluation Uses

- Operational Evaluation:
 - Are we getting the right answer?
- Dynamic Evaluation:
 - Are we getting the right amount of change across time?
- Diagnostic Evaluation:
 - Are we getting the right/wrong answer for the right reason (also, understanding the Operational and Dynamic results)
- Inverse Modeling:
 - Assuming the transport, transformation and deposition are correct, are we inputting the right emissions?
- Module Evaluation:
 - Are the loss processes/amounts correct?

Dennis/Schwede

Overview Background EPA goals NPS goals Modeling

Model uses and evaluation

Current Uses of CASTNET for Model Evaluation

- Operational Evaluations:
 - Air Concentrations
 - •O₃, NH₄+, T-NO3, SO₂, SO₄=
 - •Biases in NO_3^- and HNO_3^- are of concern

•Dynamic Evaluations

- Air Concentrations
 - •Total S and O_3
- •Cannot Do:
 - Inverse modeling
 - Dynamic evaluation on oxidized-N or reduced-N
 - Diagnostic evaluation
 - Dry deposition module evaluation

Model uses and evaluation

Desired Uses of CASTNET for Model Evaluation

Support All 5 Components of Model Evaluation

- Operational, Inverse, Dynamic Evaluations:
 - Need spatial coverage
- Diagnostic, Module Evaluations:
 - Need species completeness and high temporal resolution
- Operational/Diagnostic/Dynamic Evaluations:
 - Need spatial gradients for more stringent testing
- Dry Deposition Module Evaluation
 - Need a roving surface flux site capability

=> Need a mix of station types in the design (\$ constraints)

Dennis/Schwede

Overview Background EPA goals NPS goals Modeling

Model uses and evaluation

Desired Uses of CASTNET for Model Evaluation (cont.)

- Fill in major gap of NH₃ for Operational Evaluation and Inverse Modeling
 - Need NH_3 and NH_{χ} (monthly, state of atmosphere all inorganic species)
 - Would like NO_{Y} + all basic inorganic species for Dynamic Evaluations
- Modernize to allow Diagnostic Evaluation with Hourly Data There are nighttime issues (diurnal patterns)
 Day-to-day variation: well mixed is best test period, currently Support for diagnostic tests on state of the atmosphere
 - All inorganic gas & particle S&N species + total oxidized N (i.e., NO_Y)
 - Fill in deposition budget gaps: NH₃, NO_X, NO_Y, PAN
 - Fill in diagnostic test gaps: NO_X , NO_Y ($NO_Z = NO_Y NO_X$), NH_3 (Gas Ratio)
 - Fill in dynamic evaluation gaps (nitrogen): NO_Y , NO_X , NH_3 , PAN