Great Lakes Economies and Ecosystems: will extreme low water levels leave them high and dry?

Steve Gill<sup>1</sup>, Drew Gronewold<sup>2</sup>, and Thomas Landon<sup>1</sup> stephen.gill@noaa.gov, drew.gronewold@noaa.gov, thomas.landon@noaa.gov

National Oceanic and Atmospheric Administration

<sup>1</sup>Center for Operational Oceanographic Products and Services (COOPs) <sup>2</sup>Great Lakes Environmental Research Laboratory (GLERL)

> NOAA Central Library Brown Bag Seminar Silver Spring, MD April 23, 2013

> > Image: A matrix and a matrix



## Outline





# Outline







# Outline





Great Lakes water levels





# Outline











# Outline



- 2 Great Lakes water levels
- Impacts on economy and ecosystems
- 4 Regional collaborative modeling and forecasting







▲□▶ ▲圖▶ ▲臣▶ ▲臣▶





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <





★ロト ★課 ト ★注 ト ★注 ト

From: USEPA, Great Lakes Atlas



### **U.S. Great Lakes Coastline Comparison**







| Name             | Country         | Surface area       |                    | Volume             |                    |
|------------------|-----------------|--------------------|--------------------|--------------------|--------------------|
|                  |                 | (km <sup>2</sup> ) | (mi <sup>2</sup> ) | (km <sup>3</sup> ) | (mi <sup>3</sup> ) |
| Michigan–Huron   | U.S. and Canada | 117,702            | 45,445             | 8,458              | 2,029              |
| Superior         | U.S. and Canada | 82,414             | 31,820             | 12,100             | 2,900              |
| Victoria         | Multiple        | 69,485             | 26,828             | 2,750              | 660                |
| Tanganyika       | Multiple        | 32,893             | 12,700             | 18,900             | 4,500              |
| Baikal           | Russia          | 31,500             | 12,200             | 23,600             | 5,700              |
| Great Bear Lake  | Canada          | 31,080             | 12,000             | 2,236              | 536                |
| Malawi           | Multiple        | 30,044             | 11,600             | 8,400              | 2,000              |
| Great Slave Lake | Canada          | 28,930             | 11,170             | 2,090              | 500                |
| Erie             | U.S. and Canada | 25,719             | 9,930              | 489                | 117                |
| Winnipeg         | Canada          | 23,553             | 9,094              | 283                | 68                 |
| Ontario          | U.S. and Canada | 19,477             | 7,520              | 1,639              | 393                |

Table: Water volume and surface area of the earth's highest surface area unfrozen fresh water bodies.



æ

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □

| Name             | Country         | Surface area       |                    | Volume             |                    |
|------------------|-----------------|--------------------|--------------------|--------------------|--------------------|
|                  |                 | (km <sup>2</sup> ) | (mi <sup>2</sup> ) | (km <sup>3</sup> ) | (mi <sup>3</sup> ) |
| Michigan–Huron   | U.S. and Canada | 117,702            | 45,445             | 8,458              | 2,029              |
| Superior         | U.S. and Canada | 82,414             | 31,820             | 12,100             | 2,900              |
| Victoria         | Multiple        | 69,485             | 26,828             | 2,750              | 660                |
| Tanganyika       | Multiple        | 32,893             | 12,700             | 18,900             | 4,500              |
| Baikal           | Russia          | 31,500             | 12,200             | 23,600             | 5,700              |
| Great Bear Lake  | Canada          | 31,080             | 12,000             | 2,236              | 536                |
| Malawi           | Multiple        | 30,044             | 11,600             | 8,400              | 2,000              |
| Great Slave Lake | Canada          | 28,930             | 11,170             | 2,090              | 500                |
| Erie             | U.S. and Canada | 25,719             | 9,930              | 489                | 117                |
| Winnipeg         | Canada          | 23,553             | 9,094              | 283                | 68                 |
| Ontario          | U.S. and Canada | 19,477             | 7,520              | 1,639              | 393                |

Table: Water volume and surface area of the earth's highest surface area unfrozen fresh water bodies.



æ

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □



Introduction: Great Lakes take home messages

• Earth's largest (by surface area) unfrozen freshwater system



- Earth's largest (by surface area) unfrozen freshwater system
- Significant human population, ecosystem, and economy



- Earth's largest (by surface area) unfrozen freshwater system
- Significant human population, ecosystem, and economy
- Collectively managed and utilized by two nations



- Earth's largest (by surface area) unfrozen freshwater system
- Significant human population, ecosystem, and economy
- Collectively managed and utilized by two nations
- NOAA plays critical role in collaborative monitoring and modeling



Water level monitoring infrastructure Water level drivers Water level data

# Outline





- Impacts on economy and ecosystems
- 4 Regional collaborative modeling and forecasting



Water level monitoring infrastructure Water level drivers Water level data





æ

Water level monitoring infrastructure Water level drivers Water level data



Source: Great Lakes information network (GLIN)



イロト イロト イヨト イヨト

Water level monitoring infrastructure Water level drivers Water level data

Water levels: drivers and dynamics (short-term)



Water level monitoring infrastructure Water level drivers Water level data

### Water levels: drivers and dynamics (short-term)



Courtesy Living with the Lakes, copyright 2000. USACE-Detroit District and Great Lakes Commission

イロト イポト イヨト イヨト



Water level monitoring infrastructure Water level drivers Water level data

### Water levels: drivers and dynamics (short-term)





Water level monitoring infrastructure Water level drivers Water level data

Water levels: drivers and dynamics (mid-term)



Water level monitoring infrastructure Water level drivers Water level data

イロト イロト イヨト イヨト

æ

### Water levels: drivers and dynamics (mid-term)





Water level monitoring infrastructure Water level drivers Water level data

Water levels: drivers and dynamics (long-term)



Water level monitoring infrastructure Water level drivers Water level data

## Water levels: drivers and dynamics (long-term)





æ

イロト イロト イヨト イヨト

From: Mainville & Craymer, 2005

Water level monitoring infrastructure Water level drivers Water level data

### Water levels: data (long-term)





1918 2013





RESTORATION



RESTORATION





CILER

Great Lakes

RESTORATION

GLERL



Great Lakes 🚡 RESTORATION

CILER

GLERL

Water level monitoring infrastructure Water level drivers Water level data

## Water levels: take home messages


Introduction Water levels

Water level data

Water levels: take home messages



Below average levels on Lakes Superior, Michigan, and Huron



Water level monitoring infrastructure Water level drivers Water level data

- Below average levels on Lakes Superior, Michigan, and Huron
- Average water levels on Lakes Erie and Ontario



Water level monitoring infrastructure Water level drivers Water level data

- Below average levels on Lakes Superior, Michigan, and Huron
- Average water levels on Lakes Erie and Ontario
- Lakes Michigan-Huron recently hit all-time and monthly lows



Water level monitoring infrastructure Water level drivers Water level data

- Below average levels on Lakes Superior, Michigan, and Huron
- Average water levels on Lakes Erie and Ontario
- Lakes Michigan-Huron recently hit all-time and monthly lows
- NOAA (and partners): water level and water budget monitoring



Water level monitoring infrastructure Water level drivers Water level data

- Below average levels on Lakes Superior, Michigan, and Huron
- Average water levels on Lakes Erie and Ontario
- Lakes Michigan-Huron recently hit all-time and monthly lows
- NOAA (and partners): water level and water budget monitoring
- Multi-agency and international frameworks:



Water level monitoring infrastructure Water level drivers Water level data

- Below average levels on Lakes Superior, Michigan, and Huron
- Average water levels on Lakes Erie and Ontario
- Lakes Michigan-Huron recently hit all-time and monthly lows
- NOAA (and partners): water level and water budget monitoring
- Multi-agency and international frameworks:
  - IJC, CCGLBHHD, IWRSS, NACSP, GLWQA (among others)



Commerce Nearshore habitat Recreation

# Outline





Impacts on economy and ecosystems

4 Regional collaborative modeling and forecasting



Commerce Nearshore habitat Recreation

#### Great Lakes economy and ecosystems



Adapted from Field et al.<sup>164</sup>

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト



ъ

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: commerce overview



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: commerce overview

### • 50% of U.S. steel-making capacity



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: commerce overview

- 50% of U.S. steel-making capacity
- 70% of U.S. auto manufacturing



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: commerce overview

- 50% of U.S. steel-making capacity
- 70% of U.S. auto manufacturing
- 55% of all manufacturing



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: commerce overview

- 50% of U.S. steel-making capacity
- 70% of U.S. auto manufacturing
- 55% of all manufacturing
- Shipping is an integral component...



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

It creates:

• 227,000 jobs



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

- 227,000 jobs
- \$33.5 billion in business revenue



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

It creates:

- 227,000 jobs
- \$33.5 billion in business revenue
- \$14.1 billion in annual personal income



< < >> < </p>

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

- 227,000 jobs
- \$33.5 billion in business revenue
- \$14.1 billion in annual personal income
- \$6.4 billion in local purchases



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

- 227,000 jobs
- \$33.5 billion in business revenue
- \$14.1 billion in annual personal income
- \$6.4 billion in local purchases
- \$4.6 billion in tax revenue

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Great Lakes shipping integral to U.S. and Canadian economies.

- 227,000 jobs
- \$33.5 billion in business revenue
- \$14.1 billion in annual personal income
- \$6.4 billion in local purchases
- \$4.6 billion in tax revenue
- \$3.6 billion in transportation rate savings



Commerce Nearshore habitat Recreation

#### Great Lakes economy and ecosystems: shipping





ъ

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

• Mostly U.S. to U.S. within the upper four Lakes



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

## U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

• Trade between Duluth/Superior and Sept Iles



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade



Commerce Nearshore habitat Recreation

< ロ > < 同 > < 回 > .

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:



Commerce Nearshore habitat Recreation

< ロ > < 同 > < 回 >

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:

Import specialty and finished steel products

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:

- Import specialty and finished steel products
- Export grain



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:

- Import specialty and finished steel products
- Export grain
- Canadian-owned; flagged foreign with international crews



(日)

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:

- Import specialty and finished steel products
- Export grain
- Canadian-owned; flagged foreign with international crews



(日)

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

U.S.-flag trade = 115 million tons:

- Mostly U.S. to U.S. within the upper four Lakes
- Cargo typically includes iron ore, coal, and limestone

Canadian-flag trade = 65 million tons:

- Trade between Duluth/Superior and Sept Iles
- Inbound ore from Gulf of St. Lawrence, grain backhaul
- 82% of "Cross-lake" (U.S.-Canada) trade
- 52% of total is to or from U.S.

Oceangoing or "salty" trade - 17 million tons:

- Import specialty and finished steel products
- Export grain
- Canadian-owned; flagged foreign with international crews



ヘロト ヘ戸ト ヘヨト ヘ
Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: shipping





イロト イポト イヨト イ

э

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Every inch counts:



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Every inch counts:

• 56 "Lakers" are enrolled in Lake Carriers Association (LCA)



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Every inch counts:

- 56 "Lakers" are enrolled in Lake Carriers Association (LCA)
- Fleet forfeits 8,000 tons/trip per inch of draft "lost"



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Every inch counts:

- 56 "Lakers" are enrolled in Lake Carriers Association (LCA)
- Fleet forfeits 8,000 tons/trip per inch of draft "lost"



Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: shipping

Every inch counts:

- 56 "Lakers" are enrolled in Lake Carriers Association (LCA)
- Fleet forfeits 8,000 tons/trip per inch of draft "lost"

Source: Great Lakes Maritime Task Force 2013



Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: shipping

#### **FY13 Dredging Requirements**



Source: Great Lakes Maritime Task Force 2013

イロト イポト イヨト イヨト



Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: shipping



- Levels below Chart Datum could limit use of Sault St. Marie for deep draft vessels
- Maximum project depths are 28 feet



(日)

Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: shipping





Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: shipping



### Present conditions: locks at St. Marys Falls canal (levels below chart datum)

Source: NOAA NOS COOPs physical oceanographic real-time system (http://tidesandcurrents.noaa.gov)



ヘロト ヘ戸ト ヘヨト ヘヨ

Introduction Water levels Impacts

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: nearshore habitat



Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: nearshore habitat



Figure 12. Profile of a typical coastal marsh from lake to upland showing changes in plant communities related to lake-level history (from Environment Canada, 2002).

Source: USGS Circular 1311 Lake -Level Variability and Water Availability in the Great Lakes

A D > A P > A E



3

Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: nearshore habitat



Figure 11. Simplified diagram of the effects of water-level fluctuations on coastal wetland plant communities (from Maynard and Wilcox, 1997).



æ

イロト イポト イヨト イヨト

Commerce Nearshore habitat Recreation

Great Lakes economy and ecosystems: property and recreation



Commerce Nearshore habitat Recreation

### Great Lakes economy and ecosystems: property and recreation



Source: IJC adaptive management task team



э

A B > A
B > A
B

### Outline



- 2 Great Lakes water levels
- Impacts on economy and ecosystems
- 4 Regional collaborative modeling and forecasting



### Water Level models (seasonal)





### LAKES MICHIGAN-HURON WATER LEVELS - APRIL 2013

\*\* Average. Maximum and Minimum for period 1918-2012

http://www.lre.usace.army.mil/Missions/GreatLakesInformation/GreatLakesWaterLevels/ WaterLevelForecast/MonthlyBulletinofGreatLakesWaterLevels.aspx

# Great Lakes Hydro-Climate Dashboard (Beta)

Download Data

Screenshot



## Great Lakes Hydro-Climate Dashboard (Beta)

Screenshot Down



## Great Lakes Hydro-Climate Dashboard (Beta)



## Great Lakes Hydro-Climate Dashboard (Beta)

Download Data

Screenshot

? To ft & in Toggle Fullscreen Contacts About 🗹 Superior 🗹 Michigan-Huron 🔚 St. Clair 🗹 Erie 📕 Ontario Legend and Menu 184.2 Water Level Observations 183.8 Monthly Level Forecasts 183.4 Superiol Current Forecasts 183 10 month forecast Surface water elevation (meters: IGLD 85) (AHPS r÷ 182.6 Experimental) Archived Forecasts 182.2 3 month forecast 181.8 (AHPS - $\checkmark$ Experimental) 6 month forecast (AHPS - $\checkmark$ 177.4 Experimental) <u>Michigan-Huron</u> 177 Info on monthly forecasts 176.6 176.2 175.8 175.4 175.2 174.8 174.4 Multi-Decadal Level Forecasts <u>Erie</u> Paleological Reconstructions 174 Hydrological/Climatological Data 173.6 Ice Cover 173.2 Return Series to Default Colors 172.8 Dark Background Zoom 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Pan Tue Mar 5 2013 02:45:21 AM Timespan 1996 2015 Great Lakes RESTORATIO Equalize vertical scale

## Great Lakes Hydro-Climate Dashboard (Beta)

Dowr

Screenshot



Equalize vertical scale

Surface water elevation (meters: IGLD 85)

HTML 5

## Great Lakes Hydro-Climate Dashboard (Beta)

RESTORATIO

Download Data

 $\checkmark$ 

 $\checkmark$ 

 $\checkmark$ 

Ţ

L÷

L.

÷

Ŀē

Ļ

Ţ

Ţ

Ţ

w.



Water level models (multi-decadal forecasts)



From: Hayhoe, et al., (2010)



э

## Great Lakes Hydro-Climate Dashboard (Beta)

Screenshot Dou











Models and forecasting: take home messages



Models and forecasting: take home messages

### • Continuous model skill assessment and improvements



Models and forecasting: take home messages

- Continuous model skill assessment and improvements
- Maintain and expand monitoring infrastructure



Models and forecasting: take home messages

- Continuous model skill assessment and improvements
- Maintain and expand monitoring infrastructure
- Multiple models, multiple model inputs range of results



### Conclusions



### Conclusions

### • Current low water levels: economic and ecosystem impacts




## Conclusions

- Current low water levels: economic and ecosystem impacts
- Lots of variability (and uncertainty) in long-term forecasts





## Conclusions

- Current low water levels: economic and ecosystem impacts
- Lots of variability (and uncertainty) in long-term forecasts
- More at "glerl.noaa.gov" and "tidesandcurrents.noaa.gov"



## Acknowledgements





## Acknowledgements

## • NOAA-GLERL: T. Hunter, A. Clites, J. Smith, F. Quinn, M. Lansing





## Acknowledgements

- NOAA-GLERL: T. Hunter, A. Clites, J. Smith, F. Quinn, M. Lansing
- NOAA-COOPs: J. Oyler, C. Wong, T. Landon, C. Roche, L. Austin





## Acknowledgements

- NOAA-GLERL: T. Hunter, A. Clites, J. Smith, F. Quinn, M. Lansing
- NOAA-COOPs: J. Oyler, C. Wong, T. Landon, C. Roche, L. Austin
- USEPA (GLRI), USGS, USACE, and EC



Great Lakes Economies and Ecosystems: will extreme low water levels leave them high and dry?

Steve Gill<sup>1</sup>, Drew Gronewold<sup>2</sup>, and Thomas Landon<sup>1</sup> stephen.gill@noaa.gov, drew.gronewold@noaa.gov, thomas.landon@noaa.gov

National Oceanic and Atmospheric Administration

<sup>1</sup>Center for Operational Oceanographic Products and Services (COOPs) <sup>2</sup>Great Lakes Environmental Research Laboratory (GLERL)

> NOAA Central Library Brown Bag Seminar Silver Spring, MD April 23, 2013

> > Image: A matrix and a matrix



### Water levels: observations (paleo)



Figure 8. Hydrograph of late Holocene lake level and historical lake level for Lake Michigan-Huron. The red line is interpreted from beach-ridge studies, whereas the lower black line is an inferred lower limit using the range of the historical record as a guide.



æ

イロト イポト イヨト イヨト

Great Lakes economy and ecosystems: shipping

#### Impact of Dredging Crisis on Per-Trip Carrying Capacity Major Great Lakes Vessel Classes

| Major Great Lakes Vessel Classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vessel<br>Length<br>(feet) | Per-Trip<br>Carrying<br>Capacity<br>(net tons) | Capacity<br>Per Fool<br>Of Draft<br>(net tons) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|------------------------------------------------|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000                      | 69,664                                         | 3,204                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 806                        | 34,720                                         | 1,752                                          |
| Accessory of the second s | 767                        | 28,336                                         | 1,524                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 730                        | 27,558                                         | 1,380                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 635                        | 22,064                                         | 1,284                                          |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 501<br>Source: Great Lake  | 13,776<br>s Maritime Task F                    | 852<br>orce 2013                               |



イロト イロト イヨト イヨト

## Water levels: data (long-term)





ъ



## Huron: Spectacle Reef

Courtesy: P. Blanken (UC Boulder)

## Superior: Stannard Rock

a car

MARRIN

## Measurements at Stannard Rock



# June 7, 2012

- Land Warmer than Lakes:
- Clear-skies over lakes (subsidence H pressure)
- cumulous clouds
  over land (convective
  surface L)
- •Lake-breeze fronts (NW Superior Shore)



Courtesy: P. Blanken (UC Boulder)

# December 13, 2010

- Lakes (ice-free) Warmer than Land:
- Cloudy over lakes (cloud streets)
- Downwind Lakeeffect snow
- Massive quantity of heat and moisture removed from lakes



## Seasonal Evaporative Water Loss

