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Ab initio thermal transport in compound semiconductors
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We use a recently developed ab initio approach to calculate the lattice thermal conductivities of compound
semiconductors. An exact numerical solution of the phonon Boltzmann transport equation is implemented, which
uses harmonic and anharmonic interatomic force constants determined from density functional theory as inputs.
We discuss the method for calculating the anharmonic interatomic force constants in some detail, and we describe
their role in providing accurate thermal conductivities in a range of systems. This first-principles approach obtains
good agreement with experimental results for well-characterized systems (Si, Ge, and GaAs). We determine the
intrinsic upper bound to the thermal conductivities of cubic aluminum-V, gallium-V, and indium-V compounds as
limited by anharmonic phonon scattering. The effects of phonon-isotope scattering on the thermal conductivities
are examined in these materials and compared to available experimental data. We also obtain the lattice thermal
conductivities of other technologically important materials, AlN and SiC. For most materials, good agreement
with the experimental lattice thermal conductivities for naturally occurring isotopic compositions is found. We
show that the overall frequency scale of the acoustic phonons and the size of the gap between acoustic and optic
phonons play important roles in determining the lattice thermal conductivity of each system. The first-principles
approach used here can provide quantitative predictions of thermal transport in a wide range of systems.
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I. INTRODUCTION

Semiconductor materials have played an important role
in the advancement of new technologies and devices. With
the growing demand for more efficient, lower-cost, reduced-
size electronic devices, consideration and manipulation of
the constituent material properties is essential. As devices
become smaller and faster, thermal management has become
an increasingly important issue. High thermal conductivities
are needed for passive heat spreading, and low thermal conduc-
tivities play an important role in high efficiency thermoelectric
materials. In semiconductors, around room temperature and
higher, lattice vibrations (phonons) carry the majority of heat
while electronic contributions to the thermal conductivity
often are negligible. The lattice thermal conductivity κL is
limited mainly by intrinsic phonon-phonon scattering which
arises from crystal anharmonicity and from extrinsic scattering
processes such as point defects and boundaries.1

To understand rigorously how material properties deter-
mine κL and to devise mechanisms by which to manipulate
thermal transport, accurate representation of the intrinsic
phonon-phonon scattering is important. Until recent years,
full microscopic descriptions of this scattering have been
unavailable, and many theories of κL resorted to simple
models involving a number of ad hoc approximations. Among
them, the Debye approximation for phonon dispersions was
often used, neglecting dispersion in the acoustic branches
and ignoring optic phonons altogether, and mode averaged
Grüneisen constants were often used to estimate the intrinsic
phonon scattering rates.1–5 Such approximations are of ques-
tionable validity, and because such models are typically fit to
experimental data, they lack predictive power. Finally, in cases
where the extrinsic scattering is not well known, these models
can misrepresent the intrinsic phonon-phonon scattering when
obtaining parameters from experiment.

Recently, first-principles approaches based on the solution
of the phonon Boltzmann transport equation (BTE)6 have been
developed, which provide accurate results for the intrinsic
phonon-phonon scattering and κL for a number of bulk
semiconductor systems, and have demonstrated good agree-
ment with measured data using no adjustable parameters.7–17

In these approaches interatomic force constants (IFCs) that
are required to calculate phonon frequencies and scattering
rates are generated using density functional theory18,19 (DFT)
and/or density functional perturbation theory (DFPT).20 This
approach has the advantage of being predictive and can readily
and accurately be applied to many materials in contrast to
empirical interatomic potentials. We note that other methods
such as molecular dynamics within the Green-Kubo formalism
have also been developed to calculate κL using IFCs from
DFT.21 In some sense, the BTE and molecular dynamics
approaches are complementary: The BTE directly calculates
quantum mechanical scattering rates, but it includes only
lowest order phonon-phonon interactions and so becomes
less accurate at very high temperatures where higher order
processes can become important. The molecular dynamics
approach includes anharmonicity to all orders, but it is based
on a classical picture and so less valid at lower temperatures.
Accurate results for κL with molecular dynamics methods
have been obtained and depend on system size and sampling
methods, which can become computationally costly. Until now
first-principles methods have been applied to relatively few
systems, including silicon (Si), germanium (Ge), and their
alloys,7,8 diamond,9–11 GaAs,12 magnesium oxide (MgO),13

half-Heusler compounds,14 lead selenide (PbSe), lead telluride
(PbTe), and their alloys,15 gallium nitride (GaN),16 magnesium
silicide (Mg2Si), magnesium stannide (Mg2Sn), and their
alloys.17 In this paper we apply a first-principles BTE approach
to determine κL in a range of technologically important
compound semiconductors.
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In Sec. II we briefly describe the BTE thermal transport
theory and discuss details of our real-space DFT calculations
for determining the anharmonic IFCs that govern phonon-
phonon scattering. The calculated κL for the test cases, Si,
Ge, and GaAs, are presented in Sec. III with discussion of the
effects of supercell size, enforcement of symmetry conditions,
and interaction radii on the anharmonic IFCs and κL. Results
and discussion are given for aluminum-V, gallium-V, and
indium-V cubic compounds in Sec. IV and for cubic silicon
carbide (3C-SiC) and wurtzite aluminum nitride (AlN) in
Sec. V. A summary and conclusions are given in Sec. VI. We
compare the calculated phonon dispersions for the materials
studied in this paper with available experimental data in the
Appendix.

II. THERMAL TRANSPORT AND ANHARMONIC IFCs

Quantitative understanding of κL requires an accurate
microscopic description of the intrinsic anharmonic phonon-
phonon scattering. Here we briefly discuss the phonon
Boltzmann transport equation approach used to determine
rigorously κL. Details of this approach can be found in
Refs. 7,9–11,16, and 22–24. The thermal conductivity tensor
is

καβ = 1

V

∑
λ

(
∂n0

λ/∂T
)
h̄ωλvλαvλβτλα, (1)

where V is the crystal volume, α and β are Cartesian directions,
n0

λ is the Bose distribution function, τλα is the phonon
lifetime, ωλ is the phonon frequency, and vλα = dωλ/dqα is
the component of the phonon velocity in the αth direction.
Here, λ = (�q,j ) designates a phonon with wave vector �q in
branch j . For the systems examined here καβ is diagonal and
can be described by a scalar for cubic structures and by in-
and out-of-plane components for wurtzite structures.25 The
phonon frequencies are determined by diagonalization of the
dynamical matrix (see the Appendix).

We consider κL to be limited by intrinsic three-phonon
scattering and by extrinsic point defect scattering by isotopic
impurities. For high quality semiconductors these are the
dominant scattering mechanisms for phonons above a few
tens of kelvin.1 The intrinsic anharmonic scattering rates
1/τ anh

λ (Ref. 16) are determined from scattering processes
involving three phonons that satisfy conservation of energy
and momentum: ωλ ± ωλ′ = ωλ′′ and �q ± �q ′ = �q ′′ + �K . The
± signs correspond to the two types of possible three-phonon
processes, and �K is a reciprocal lattice vector, which is
zero for normal (N) processes and nonzero for umklapp (U)
processes.1 The isotope scattering rates 1/τ iso

λ are determined
from perturbation theory.26,27 The phonon scattering time
within the single mode relaxation time approximation (RTA)
τRTA
λ = [1/τ anh

λ + 1/τ iso
λ ]−1 can be determined from these

scattering rates alone, however, the full solution of the BTE
is required to determine the actual phonon transport time
τλα .7,9–11,16,22–24,28,29 Using τRTA

λ in the calculation of the
thermal conductivity κRTA, the N phonon-phonon scattering
processes are incorrectly treated as resistive.1 The full BTE
solution corrects for this and therefore gives a larger κL. The
difference between κL from the full solution and κRTA gives
a measure of the importance of the N scattering relative to

U scattering. In most of the materials considered here, the
U scattering is relatively strong around room temperature,
so κRTA does not differ much from the full solution to the
BTE. Similar behavior has been previously noted in Si and
Ge.7,30 For systems with very strong N scattering relative
to U scattering, such as in diamond,9–11 graphene,31,32 and
carbon nanotubes,22,33 the full solution to the BTE is required
to accurately determine κL.

The BTE formalism requires harmonic IFCs, 	αβ(lκ,l′κ ′),
as inputs to determine the phonon frequencies, eigenvectors,
and velocities. The anharmonic IFCs, 	αβγ (lκ,l′κ ′,l′′κ ′′),
are required to determine the phonon-phonon scattering
rates.7,9–11,16,22–24 All IFCs were calculated using norm-
conserving pseudopotentials in the local density approx-
imation (LDA) with the plane-wave QUANTUM ESPRESSO

package.34,35 The ground-state configuration of each system
was determined by adjusting the structural lattice constants
(a for cubic, a and c for wurtzite) to find the minimum energy.36

The harmonic IFCs were calculated using standard DFPT.
Typically, convergence was achieved with 80 Ryd plane-
wave cutoffs and 6 × 6 × 6 k-point meshes for electronic and
phonon calculations.

Calculation of the anharmonic IFCs is not part of typical
electronic structure packages. The anharmonic IFCs used in
this work were calculated using a real-space “frozen phonon”
approach within DFT.16,37 We define a nearest neighbor cutoff
radius for which interactions between atoms separated by a
distance larger than the cutoff are taken to be zero. A large num-
ber of anharmonic three-phonon elements, 	αβγ (0κ,l′κ ′,l′′κ ′′),
need to be determined, which can be computationally costly.
Fortunately, symmetry considerations establish relationships
between IFCs and limit the number of independent elements
to be calculated.37–39 We use symmetry conditions to identify
a set of independent IFCs, φi , from which all anharmonic IFCs
can be linearly constructed:

	αβγ (lκ,l′κ ′,l′′κ ′′) =
∑

i

φi�i(lκ,l′κ ′,l′′κ ′′). (2)

The sum in Eq. (2) runs over all independent anharmonic
IFCs and �i(lκ,l′κ ′,l′′κ ′′) are constants determined by the
symmetry operations that establish the relationship of each
φi with each anharmonic IFC. For cubic crystals there is a
simple one-to-one correspondence between anharmonic IFCs
giving �i(lκ,l′κ ′,l′′κ ′′) = 0 for all but one element for which
�i(lκ,l′κ ′,l′′κ ′′) = ±1. For structures with less symmetry,
such as hexagonal lattices, there is not necessarily a one-to-one
correspondence between IFCs and the �i(lκ,l′κ ′,l′′κ ′′) are not
simple integers.

For each independent IFC element, pairs of atoms (one
from the unit cell and one of its neighbors depending on
the element) were systematically perturbed from equilibrium
by a small distance within a large ground-state supercell.
These supercells must be sufficiently large so that interactions
with perturbed periodic supercell images do not contribute
significantly to the calculations. The resulting Hellmann-
Feynman forces34 on all the atoms were calculated via -point
self-consistent calculations for four different perturbations
to obtain numerical derivatives of the forces and thus the
anharmonic IFC element. Since the forces for all of the
atoms are calculated for a given perturbation, this method
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overdetermines the independent IFC elements. We find that
numerical differences between calculated elements that should
be the same by symmetry are typically small and subsequently
use their average.

Before applying symmetry operations to the independent
IFC elements to determine the dependent IFCs, other important
symmetry properties need to be considered. In particular, the
truncation of anharmonic interactions to a finite number of
neighbors breaks translational invariance (TI) of the crystal.
Translational invariance can play an important role in deter-
mining the scattering properties of long-wavelength acoustic
phonons and thus in determining κL. The TI conditions can be
written as17,38

∑
l′′κ ′′

	αβγ (0κ,l′κ ′,l′′κ ′′) =
∑

j

φjAij = Bi = 0. (3)

Due to derivative permutation symmetry there is also a set of
equations for the sum over l′κ ′. Each i represents a separate TI
equation for each combination of variables that is not summed
over. Bi is the sum for each TI condition that should be zero for
perfect translational invariance, and we use the more compact
notation Aij = ∑

l′κ ′ or l′′κ ′′ �j (0κ,l′κ ′,l′′κ ′′) to write Eq. (3) in
terms of the independent IFCs, φi . We employed and tested
three different procedures for enforcing the TI conditions: (i)
simple acoustic sum rule (ASR), (ii) χ2 minimization, and
(iii) Lagrange multipliers. For the ASR method, a subset of
anharmonic IFCs is defined in terms of the others,

	αβγ (0κ,l′κ ′,0κ) = −
∑

l′′κ ′′ �=0κ

	αβγ (0κ,l′κ ′,l′′κ ′′), (4)

as well as permutations. Using the ASR method has the advan-
tage of being simple and guarantees that the TI conditions are
met. However, it does not enforce derivative permutation and
point group symmetries of the system. For the second method
we use a numerical algorithm40 to minimize the function
χ2 = ∑

i B
2
i by adding a small compensation to each φi . This

procedure and the Lagrange multipliers method (described in
Refs. 17 and 41) change only the independent IFCs and thus
maintain all symmetry properties of the crystal while enforcing
the TI conditions. Given the set of independent IFCs, the
symmetry operations can then be used to determine all other
anharmonic IFCs.

III. TEST CASES (Si, Ge, AND GaAs)

Here we present calculated results for κL of Si, Ge,
and GaAs and quantify our discussion of various aspects
of the anharmonic calculations in terms of their effects
on κL. These materials have been extensively studied and
reliable measurements of κL for both isotopically enriched
and naturally occurring isotope concentrations are available.

Figure 1 shows the calculated κL versus temperature for Si.
Solid curves are calculated κL for isotopically pure Si, κpure,
and dashed curves are calculated κL with naturally occurring
Si isotope concentrations, κnatural. Circles42 are experimental
κL for isotopically enriched Si and triangles42 and squares43,44

are experimental κnatural. We note that the κL data from Ref. 42
agree well with the data from Ref. 45 (not shown) taken
from three different laboratories. The black and red curves
are for κL determined with anharmonic IFCs calculated in

0

200

400

600

800

1000

1200

100 150 200 250 300 350 400

th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

-1
K

-1
)

temperature (K)

Si

FIG. 1. (Color online) Calculated κL vs temperature for Si with
experimental data for isotopically enriched Si [circles (Ref. 42)] and
for naturally occurring Si concentrations [triangles (Ref. 42) and
squares (Refs. 43 and 44)]. Solid curves correspond to calculated
κpure and dashed curves correspond to κnatural. κL was determined with
anharmonic IFCs calculated in a 64 atom supercell (black curves) and
a 216 atom supercell (red curves). The calculated κnatural for a 64 atom
supercell without enforcing TI is given by the green dashed curve.

a 64 atom supercell and a 216 atom supercell, respectively.
All calculations include anharmonic IFCs out to third nearest
neighbors and the TI conditions enforced using the χ2

minimization procedure. The green dashed curve (lowest) is
κnatural determined with anharmonic IFCs calculated in a 64
atom supercell but without enforcing the symmetry conditions.
The red curves (216 atom supercell) show excellent agreement
with the κL data from Ref. 42 over a wide temperature range
without use of adjustable parameters. We also calculated
κL for isotopically purified Si (99.983% 28Si, 0.014% 29Si,
and 0.003% 30Si) corresponding to experiment42 and find
negligible difference with κpure over the entire temperature
range. The black curves (64 atom supercell) demonstrate good
agreement with the red curves even though a much smaller
supercell was used to calculate the anharmonic IFCs. The green
curve for κnatural without enforcing the TI conditions on the
anharmonic IFCs is significantly lower than the red and black
curves and experiment. The absence of TI causes an artificial
enhancement of low frequency scattering of heat-carrying
acoustic phonons and thus reduces κL.

Figure 2 shows the calculated κpure (solid curves) and
κnatural (dashed curves) for Ge with experimental values for
isotopically purified Ge (circles) and with naturally occur-
ring isotopic abundances (triangles).46 The red, black, and
purple curves correspond to κL determined with translational
invariance enforced via the χ2 minimization procedure, the
Lagrange multiplier method, and the simple ASR method,
respectively. The green dashed curve corresponds to κnatural

without symmetry conditions enforced on the anharmonic
IFCs. As with Si, the κnatural of Ge as calculated without

165201-3



L. LINDSAY, D. A. BROIDO, AND T. L. REINECKE PHYSICAL REVIEW B 87, 165201 (2013)

0

50

100

150

200

250

300

350

100 150 200 250 300 350 400

th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

-1
K

-1
)

temperature (K)

Ge

FIG. 2. (Color online) Calculated κL vs temperature for Ge with
experimental data for isotopically enriched Ge (circles) and for
naturally occurring Ge concentrations (triangles) (Ref. 46). κL was
determined with TI enforced via the χ 2 minimization procedure
(red curves), the Lagrange multiplier method (black curves), and the
simple ASR method (purple curves). κpure is given by solid curves and
κnatural is given by dashed curves. The green dashed curve corresponds
to κnatural without TI conditions enforced.

enforcing the TI conditions is much less than experiment and
the other calculations. The calculated κnatural using the simple
ASR (purple dashed curve) to enforce TI, which results in
violation of other crystal symmetries, also falls significantly
below both experiment and the corresponding black and red
curves. The κL calculated using the χ2 minimization procedure
(red curves) and the Lagrange multipliers method (black
curves) are in good agreement with each other and with
experiment. Figures 1 and 2 demonstrate that TI plays an
important role in determining κL and show that as long as TI
and the point group and permutation symmetries are satisfied,
the method for TI enforcement is not a critical issue.

We test the effects of the nearest neighbor cutoff radius
on κL for GaAs in Fig. 3. Since GaAs is a polar compound
with long range Coulomb interactions, the calculation of κL

in GaAs may be more sensitive to the cutoff radius than Si
or Ge. Figure 3 shows the calculated κnatural for GaAs with
different nearest neighbor cutoff radii along with experimental
data for κnatural (green triangles47 and black triangles48) and
κL for isotopically purified GaAs (green circles47 and black
circles48). The calculated curves included second (green), third
(solid black), fourth (red), and fifth (blue) nearest neighbors
for the anharmonic IFCs. The second, third, fourth, and fifth
nearest neighbor cutoff radii were 0.75a, 0.85a, 1.05a, and
1.1a, respectively, which included interactions of unit cell
atoms with 16, 28, 34, and 46 surrounding atoms, respectively.
Here a is the lattice constant (see Table I). We found that
including only first nearest neighbors required very large
changes to the anharmonic IFCs in order to enforce the TI
conditions and thus was not included here. We have also used
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FIG. 3. (Color online) Calculated κnatural vs temperature for GaAs
with experimental data for isotopically enriched GaAs [green circles
(Ref. 47) and black circles (Ref. 48)] and for naturally occurring
Ga concentrations [green triangles (Ref. 47) and black triangles
(Ref. 48)]. The calculated curves included second (green), third (solid
black), fourth (red), and fifth (blue) nearest neighbors for determining
the anharmonic IFCs. The dashed black curve gives κnatural for GaAs
using IFCs determined from DFPT to seventh nearest neighbors and
with long range Coulomb interactions included (described in text).

a reciprocal-space DFPT approach (black dashed curve) to
calculate the anharmonic IFCs and to calculate κnatural, which
extends the interactions to seventh nearest neighbors and
includes long range Coulomb interactions.7,9–11,49,50 As can
be seen in Fig. 3, the calculated κnatural is fairly insensitive to
the nearest neighbor cutoff radius. The inset to Fig. 3 gives an
expanded view of the curves around room temperature. With
an increasing number of nearest neighbors, the magnitudes of
the anharmonic IFCs obtained from both real-space and DFPT
approaches involving distant atoms become smaller, which
provides more potential for accuracy errors. Nevertheless, the
variation in the room temperature GaAs κL values shown for
the different cases in the inset to Fig. 3 is less than 4%.
We find that the DFPT approach gives a similar variation of
κL for different numbers of nearest neighbors (not shown).
This suggests a robustness of the first-principles real-space
approach for κL presented here. All of the theoretical curves lie
above the experimental data from Ref. 48 and agree somewhat
better with the data from Ref. 47. We also note that κL of GaAs
does not have much enhancement with isotopic purification,
∼5% at room temperature.

We have shown through these test cases (Si, Ge, and GaAs)
that calculations of κL are fairly insensitive to reasonable
choices of supercell size and nearest neighbor cutoff distance.
We have also demonstrated that it is important to enforce
translational invariance conditions while maintaining the point
group and derivative permutation symmetries to accurately
determine κL.
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IV. III-V CUBIC SEMICONDUCTORS

In this section we apply the first-principles approach for
κL discussed in Sec. II and tested on well-studied Si, Ge, and
GaAs to the III-V cubic compound materials. For all cases, we
used 216 atom supercells with an interaction cutoff to include
third nearest neighbors for calculating anharmonic IFCs. We
enforced translational invariance via the χ2 minimization pro-
cedure. The lattice constants used to calculate the harmonic and
anharmonic IFCs were determined by energy minimization
except for InP, InAs, and InSb (discussed below). For each
material in this paper, the lattice constants and mass variance
parameters26 used in the calculations of κL and the calculated
κpure, κnatural, and percent isotope effect (percent increase in
κpure compared to κnatural) P = 100 × (κpure/κnatural − 1) are in
Table I. Also in Table I is the percent increase to the room
temperature κpure from the full solution to the BTE compared
to the RTA solution S = 100 × (κpure/κRTA − 1). For small S,
U phonon-phonon scattering is large and the RTA solution
to the BTE is a good approximation for κL. For large S, N
phonon-phonon scattering processes are important and the
fully iterated solution is required to accurately give κL.

The calculated κpure for the different materials is limited
by only three-phonon scattering and represents the intrinsic

upper bound to κL. To compare better with experiment we also
include isotopic impurity scattering to determine κnatural for
systems composed of elements with differing natural isotopic
abundances. We note that experimental samples may contain
defects (dislocations, substitutions, other impurities, etc.).
Further, at low temperatures, sample size and grain boundaries
can play a significant role in determining κL. These scattering
mechanisms are not considered in this work, but they can
significantly lower κL below the values obtained here.

A. Aluminum-V compounds

Here we examine κL of AlP, AlAs, and AlSb. Figure 4
shows calculated κL versus temperature for isotopically pure
AlP (solid green curve), AlAs (solid red curve), and AlSb
(solid black curve). Phonon-isotope scattering is particularly
important in AlSb in part due to the large isotope mixture of Sb
(57.21% 121Sb and 42.79% 123Sb) while the isotope mixtures
for Al, P, and As are negligible. Thus, the calculated κnatural

is shown only for AlSb by the dashed black curve in Fig. 4.
The circles correspond to experimental data for κnatural of AlP
(solid green51) and AlSb (solid black51 and open black52). An
experimental data point for κL of AlAs at T = 300 K (Ref. 53)
(not shown) lies directly on the solid green circle. Optic

TABLE I. Experimental and calculated lattice constants determined by energy minimization, mass variance parameters, κpure, κnatural, and
percent isotope effect (P ) at T = 300 K for materials considered in this work. Also included is a comparison of the room temperature
κpure determined by the BTE and the thermal conductivity determined by the RTA, κRTA, for each material. The difference is given by
S = 100 × (κpure/κRTA − 1).

acalc (aexp) (Å) gcation (ganion) ( × 10−4) κpure (W m−1 K−1) κnatural (W m−1 K−1) P S

Diamonda 3.53 (3.57) 0.75 (0.75) 3450 2290 51 50
Si 5.37 (5.43) 2.01 (2.01) 155 144 8 2.4
Ge 5.61 (5.65) 5.87 (5.87) 74 60 23 6.9
3C-SiC 4.34 (4.36) 2.01 (0.75) 572 479 20 6.7
AlP 5.40 (5.45) − ( − ) 90 – – 3.0
AlAs 5.61 (5.66) − ( − ) 105 – – 0.5
AlSb 6.10 (6.14) − (0.66) 118 86 36 39
c-GaNb 4.42 (4.50) 1.97 ( − ) 362 215 68 13
GaPc 5.34 (5.45) 1.97 ( − ) 153 131 16 4.8
GaAsc 5.55 (5.65) 1.97 ( − ) 56 54 4 5.6
GaSbc 6.00 (6.10) 1.97 (0.66) 48 45 6 3.1
InPb 5.79 (5.87) 0.12 ( − ) 91 89 2 2.4
InAsb 5.97 (6.06) 0.12 ( − ) 36 36 .5 2.8
InSbb 6.39 (6.48) 0.12 (0.66) 20 20 2 3.9
w-GaNb,d 3.13 (3.19) 1.97 ( − ) 401 (385)g 242 (239)g 66 7.2

5.10 (5.19)e

0.377 (0.377)f

w-AlN 3.05 (3.11) − ( − ) 322 (303)g – – 14
4.81 (4.98)e

0.387 (0.382)f

aCalculated in Ref. 11.
bThese calculated lattice constants determined by energy minimization were increased to better fit the phonon dispersions when calculating κL

for these systems, as explained in the text.
cThe κL and P values presented here slightly differ from the calculated results from Ref. 16 which used ∼0.2% increase to the lattice constants
to account for zero-point and finite temperature atomic motion.
dCalculated in Ref. 16.
eCalculated and experimental lattice constant c for the wurtzite structure.
fCalculated and experimental internal parameter u for the wurtzite structure.
gOut-of-plane component to κL along the c axis.
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FIG. 4. (Color online) Calculated κpure vs temperature for AlP
(solid green curve), AlAs (solid red curve), and AlSb (solid black
curve). Experimental data for κL of AlP are solid green circles
(Ref. 51) and for κL of AlSb are solid (Ref. 51) and open (Ref. 52)
black circles. An experimental data point for κL of AlAs at T = 300 K
(Ref. 53) (not shown) lies directly on the solid green circle. Calculated
κnatural for AlSb is given by the dashed black curve. The acoustic-only
contribution to κnatural for AlSb is given by the dotted black curve. The
inset gives κpure (black curve), the acoustic contribution to κpure (red
curve), and the optic contribution to κpure (green curve) vs temperature
for AlSb.

phonons play an important role in determining κL for all of
the materials considered in this work, but especially so when
comparing κL of the aluminum-V compounds. We note that
the importance of optic phonon scattering of heat-carrying
acoustic phonons has been previously discussed in a number
of papers, including Refs. 11, 15–17, 22, 28, 29, 51, and 54.
In AlSb the large mass mismatch of Al and Sb atoms results
in a substantial frequency gap between acoustic and optic
branches (see Fig. 13 in the Appendix). Important phonon
scattering processes of the type acoustic + acoustic ↔ optic
(aao) are completely forbidden by energy conservation
due to the large gap in AlSb. Further, energy conservation
forbids ooo scattering in all the materials considered here
and the phase space for aoo scattering in AlSb is very small
due to the frequency gap. These restrictions become less
severe as the mass differences between Al and anions decrease
and the frequency gaps decrease51,55 (see Figs. 11–13 in the
Appendix).

At T =100 K the optic phonons are not significantly
thermally populated, and so they do not provide much
scattering resistance to the lower frequency acoustic phonons
regardless of the frequency gap. In this temperature regime
aaa scattering provides the dominant thermal resistance in
all materials. AlP generally has the weakest aaa scattering
of these compounds due to a higher frequency scale of the
acoustic phonons, which decreases phonon populations and
limits the phase space for this scattering. Further, AlP has

the highest acoustic velocities. Thus, at 100 K, κpure for AlP
is 2.2 times higher than κpure for AlSb and is the highest of
the three materials. With increasing temperature anharmonic
phonon scattering becomes greater and κL decreases, as can
be seen for all the curves in Fig. 4. The κpure for AlP decreases
faster with increasing temperature than κpure for AlAs and
AlSb due to stronger aao scattering in AlP as optic phonons
are increasingly thermally populated. At T = 300 K, AlP has
the lowest κpure of the three materials due to having the smallest
frequency gap and thus stronger acoustic-optic scattering.

AlSb has the highest κL at room temperature due to the
severely restricted acoustic-optic scattering compared to the
other materials, which leads to both increased acoustic phonon
lifetimes and increased optic phonon lifetimes. Unlike all of the
other materials in this work, the phase space for three-phonon
scattering of optic phonons in AlSb is so restricted that the
optic modes provide significant contributions to κL despite
having lower velocities than typical acoustic phonons. Since
aao and ooo scattering channels are completely forbidden by
energy conservation, aoo scattering provides the only intrinsic
resistance for optic phonons in AlSb. The phase space for aoo
scattering is sensitive to the splitting of the longitudinal optic
(LO) branch and the transverse optic (TO) branch which arises
from long range Coulomb interactions. Increased LO/TO
splitting leads to a larger phase space for aoo scattering and
reduces optic phonon contributions to κL, while having little
effect on the acoustic phonon contributions.

We note that in PbTe,15 Mg2Si,17 and single-walled carbon
nanotubes,22,33 optic phonon contributions to κL were also
found to be significant. However, in those cases the large
contributions stemmed from optic branches that were relatively
dispersive and resided at lower frequencies rather than from
a restricted phase space for scattering. The inset to Fig. 4
shows the κpure versus temperature for AlSb (black curve)
with the contributions to κpure from the acoustic phonons (red
curve) and the optic phonons (green curve). For T > 250 K
the optic modes actually provide the dominant contribution
to κL. As the temperature decreases, the contributions to κL

from both acoustic and optic modes increase as anharmonic
scattering gets smaller, but the acoustic phonon contribution to
κL continues to increase while the optic phonon contribution
peaks at T = 175 K and then drops. This reflects the significant
decrease in the optic phonon population with decreasing
temperature due to their higher frequencies, which reduces
their contributions to κL. The large gap in AlSb substantially
weakens the U scattering compared to N scattering for the optic
modes. Thus, κpure from the full solution to the BTE is 40%
higher than κRTA (see Table I). The acoustic contributions to
κL of AlSb only give S = 2%, while the optic modes give S =
116%. In contrast, the total increase is only S = 3% for AlP.

We find good agreement with the experimental κL data
for AlP and AlAs, however, the calculated κnatural for AlSb
is ∼50% above experiment at T = 300 K. The experimental
κL data was taken from an AlSb sample believed to have
had appreciable amounts of impurities.52 We note that
point defects can be particularly effective at scattering
high frequency optical phonons. The dotted black curve in
Fig. 4 gives the acoustic-only contribution (assuming that
additional defects eliminate the optic contributions as in
typical materials) to κnatural of AlSb, which is in excellent
agreement with the experimental data.
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FIG. 5. (Color online) Calculated κL vs temperature for GaSb
(black curve), GaAs (green curve), GaP (red curves), and cubic GaN
(blue curves). The solid curves give κpure and the dashed curves
give κnatural. Experimental data is shown for κL of GaSb [black
circles (Ref. 56)], GaAs [green circles (Ref. 47) and green triangles
(Ref. 48)], and GaP [red circles (Ref. 51) and red triangles (Ref. 52)].

B. Gallium-V compounds

We previously presented results for κL and P for wurtzite
GaN and compared those results with the calculated P for
GaAs, GaSb, GaP, and cubic GaN.16 Here we give κL for
these cubic compounds. Figure 5 shows the calculated κnatural

versus temperature for GaSb (black dashed curve), GaAs
(green dashed curve), GaP (red dashed curve), and cubic
GaN (blue dashed curve). Also shown are κpure for GaP (red
solid curve) and cubic GaN (blue solid curve). Experimental
data is shown for κL of GaSb (black circles56), GaAs (green
circles47 and green triangles48), and GaP (red circles51 and red
triangles52). For GaN the lattice constant determined by energy
minimization was increased ∼1% to give better agreement
with the experimental phonon dispersion as discussed in
Ref. 16 and discussed below for the indium-V materials. We
used the lattice constants determined by energy minimization
for GaAs, GaP, and GaSb, which gave good agreement for the
phonon dispersions (see Figs. 14–16 in the Appendix).

GaN has the largest frequency gap between acoustic and
optic phonons and the largest acoustic frequency scale of
the gallium-V materials (see Figs. 14–17 in the Appendix).
These properties give higher phonon velocities and weaker
anharmonic phonon scattering in GaN and thus significantly
larger κL than the other materials in Fig. 5. κpure for GaN
is over two times larger than κpure for GaP over the entire
temperature range. We also note that the full BTE solution
for κpure of GaN is 13% higher than the RTA result at T =
300 K. For the other materials the difference is around 5% or
less (see Table I). A disparity exists between the calculated
κnatural for GaP and the experimental results from Ref. 52,
the calculated result being 20% higher at room temperature.
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FIG. 6. (Color online) Calculated isotope effect P vs temperature
for cubic GaN (solid black curve), wurtzite GaN (dashed black curve),
GaP (green curve), GaSb (orange curve), diamond (gold curve), Ge
(red curve), AlSb (brown curve), and 3C-SiC (blue curve).

The samples studied in Ref. 52 were believed to have had
appreciable amounts of impurities which may be the cause of
the differences. The calculated κnatural for GaAs and GaSb are
in good agreement with experiment.

Due to the large frequency gap and frequency scale in
GaN, the anharmonic phonon scattering is relatively weak
and phonon-isotope scattering is relatively more important for
limiting κL than in materials with stronger phonon-phonon
scattering. The isotope effect in GaN is very large, with P =
68% at T = 300 K and increases with decreasing temperature
as the anharmonic phonon scattering gets weaker. Figure 6
shows previously published16 calculated isotope effects P

versus temperature for cubic GaN (solid black curve), wurtzite
GaN (dashed black curve), GaP (green curve), and GaSb
(orange curve) with the addition of the calculated P for
diamond11 (gold curve), Ge (red curve), AlSb (brown curve),
and 3C-SiC (blue curve). The room temperature P for all
the materials studied in this work are also given in Table I.
At T = 300 K, GaN has the largest isotope effect which
can be understood in terms of the large Ga isotope mixture,
the large frequency gap, and the high frequency scale in
GaN.16 Though diamond has a smaller isotopic mass variance
than GaN and no frequency gap between acoustic and optic
phonons, it also has a large isotope effect, P = 51% at T =
300 K. Anharmonic phonon coupling is very weak in diamond
at T = 300 K, making phonon-isotope scattering important.
The weak anharmonic coupling arises from a small unit cell
mass and strong covalent bonding which gives diamond a very
high acoustic frequency scale, ∼3.5 times higher than GaN
(compare Fig. 17 in the appendix of this work and Fig. 1 of
Ref. 9). These properties give diamond a high κL and P .9,11

Despite having a smaller isotopic mass variance and
relatively small frequency scale (roughly half that of GaN),
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AlSb has P = 36% at T = 300 K. The large isotope effect and
its temperature dependence are a consequence of significant
optic phonon contributions to κL discussed above. The weak
anharmonic scattering leads to significantly increased optic
phonon lifetimes and larger contributions to κpure compared to
other materials. The isotope scattering rates scale roughly as
ω2D(ω),26 where D(ω) is the phonon density of states which
is large for the relatively flat optic branches. Thus, isotope
scattering strongly suppresses the optic phonon contributions
to κnatural, leading to a large percentage isotope effect P .
Unlike the other curves in Fig. 6, the P for AlSb has a peak at
175 K and decreases with decreasing temperature below the
peak. As the temperature decreases below the peak, the optic
phonons become less thermally populated and contribute
less to κL than the acoustic phonons despite weakening
anharmonic scattering. Since the acoustic phonons have lower
frequencies and are less affected by the isotope scattering
than the optic phonons, P is reduced.

C. Indium-V compounds

As discussed in Sec. III, the LDA approach to calculate
the harmonic and anharmonic IFCs tends to overbind atoms,57

and corrections for zero-point and nonzero temperature atomic
motion58 account for only a small fraction of the difference. For
most of the systems examined in this work, excellent agree-
ment with the experimental phonon dispersions (see figures
in the Appendix) is achieved in spite of this underestimation
of the lattice constants. However, similar to previous work
calculating phonon dispersions and κL of GaN, we find the
calculated optic phonon frequencies for InP, InAs, and InSb are
higher than the experimental dispersions, leading to artificially
weakened acoustic-optic phonon scattering.

Energy minimization gives lattice constants aInP = 5.79 Å,
aInAs = 5.97 Å, and aInSb = 6.39 Å while measured values are
1.43%, 1.53%, and 1.40% higher, respectively. Further, the
optic phonon branches given by these lattice constants (red
curves in Figs. 18–20 in the Appendix) lie above the experi-
mental phonon dispersions. The black curves in these figures
correspond to the calculated phonon dispersions using lattice
constants that were increased by 1.5% for InP and 1.0% for
InAs and InSb. Similar to GaN, the increased lattice constants
for the indium-V systems lower the high-lying optic phonon
branches and give better agreement with the experimental data.
The calculated κnatural given by the different lattice constants
for each indium-V compound are compared in Fig. 7.

Figure 7 shows the calculated κL versus temperature for
the indium-V compounds with experimental data for InP
(black circles,59 squares,60 diamond,61 and triangle62), InAs
(red circles,63 squares,64 diamond,65 and triangles66), and
InSb (blue circles,56 squares,67 and triangles68). The isotope
effect is small in the indium-V compounds so we show
only the calculated κnatural in Fig. 7. The dashed black curve
corresponds to κnatural for InP with harmonic and anharmonic
IFCs determined using the lattice constant from minimization
of energy, aInP = 5.79 Å. The solid black curve corresponds
to κnatural for InP using the corrected lattice constant aInP =
5.87 Å. The calculated κnatural of InAs is given by the dashed
[aInAs = 5.97 Å (energy minimization)] and solid [aInAs =
6.03 Å (corrected)] red curves and κnatural of InSb is given
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FIG. 7. (Color online) Calculated κL vs temperature for the
indium-V compounds with experimental data for InP [black circles
(Ref. 59), squares (Ref. 60), diamond (Ref. 61), and triangle
(Ref. 62)], InAs [red circles (Ref. 63), squares (Ref. 64), diamond
(Ref. 65), and triangles (Ref. 66)], and InSb [blue circles (Ref. 56),
squares (Ref. 67), and triangles (Ref. 68)]. The dashed black curve
corresponds to κnatural for InP with harmonic and anharmonic IFCs
determined using the lattice constant from energy minimization,
aInP = 5.79 Å. The solid black curve corresponds to κnatural using
the corrected lattice constant, aInP = 5.87 Å. Calculated κnatural of
InAs is given by the dashed [aInAs = 5.97 Å (energy minimization)]
and solid [aInAs = 6.03 Å (corrected)] red curves and κnatural of InSb
is given by dashed [aInSb = 6.39 Å (energy minimization)] and solid
[aInSb = 6.45 Å (corrected)] blue curves.

by dashed [aInSb = 6.39 Å (energy minimization)] and solid
[aInSb = 6.45 Å (corrected)] blue curves.

For all indium-V compounds the κnatural given by the
corrected lattice constants (solid curves) lie below the κnatural

given by the lattice constants determined by energy mini-
mization (dashed curves). With the increased lattice constants
the higher-lying optic modes are shifted to lower frequencies
which provide stronger scattering channels for the heat-
carrying acoustic phonons and thus reduced κL. At T = 300
K, κnatural determined by the corrected lattice constants are
3%, 8%, and 5% lower in InP, InAs, and InSb, respectively,
which gives somewhat better agreement with experiment. In
general, the calculated κnatural for InSb is in good agreement
with experiment. The calculated κnatural for InAs is higher than
experiment throughout the temperature range, suggesting that
a crystal with fewer defects could lead to modest improvements
in κL. κnatural for InP is in agreement with the experimental data
point at T = 300 K given in Ref. 62, but is higher than the other
experimental data throughout the temperature range. We also
note that the RTA solution to the BTE is a good approximation
in the indium-V compounds and gives κRTA only a few percent
below the full BTE solution.

κL in the compound semiconductors depends critically on
the anharmonic three-phonon scattering rates determined from
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perturbation theory:


(±)
λλ′λ′′ = h̄π

4N0ωλωλ′ωλ′′

{
n0

λ′ − n0
λ′′

n0
λ′ + n0

λ′′ + 1

} ∣∣	(±)
λ,±λ′,−λ′′

∣∣2

× δ (ωλ ± ωλ′ − ωλ′′) . (5)

N0 is the number of unit cells in the crystal and the ±
signs correspond to the two types of possible three-phonon
processes that satisfy conservation of crystal momentum and
conservation of energy.1 The top term in the brackets is for
the + process, and the bottom term for the − process. The
scattering matrix elements 	

(±)
λ±λ′−λ′′ depend on the lowest

order anharmonic IFCs, 	αβγ (lκ,l′κ ′,l′′κ ′′). We note that the
three-phonon scattering rates depend on both harmonic and an-
harmonic properties of each system. Stiff interatomic bonding
in systems such as diamond, SiC, AlN, and GaN not only give
large acoustic phonon velocities and high frequency scales, but
also larger anharmonic IFCs. Of all the systems we have con-
sidered, diamond has the largest κL and the largest anharmonic
IFCs, which tend to increase the three-phonon scattering rates.
However, the higher overall phonon frequencies of diamond
enter the denominator of Eq. (5) and counteract the effects
of the larger anharmonic IFCs to give lower scattering rates.
Conversely, InSb has lower overall phonon frequencies, has
generally smaller anharmonic IFCs, and has the lowest κL of
the compound systems. Further, the intrinsic phonon transport
lifetimes also depend on the phase space for allowed scattering
processes given by the conservation conditions and the
coupling of nonequilibrium phonon modes through the BTE.

V. SILICON CARBIDE AND ALUMINUM NITRIDE

Here we apply the first-principles BTE approach to
calculating κL for technologically important semiconductors,
cubic 3C-SiC and wurtzite AlN. To determine the anharmonic
IFCs for AlN we used a 108 atom supercell with an interaction
cutoff to include fourth nearest neighbors similar to that
used previously for GaN.16 For cubic SiC we used 216 atom
supercells with an interaction cutoff to include third nearest
neighbors, similar to the cubic compounds discussed above.
For each system we enforced translational invariance via the
χ2 minimization procedure. Figure 8 shows the calculated
κpure (solid black curve) and κnatural (dashed black curve) for
3C-SiC compared with experimental data given by circles.69

The calculated in-plane and out-of-plane (c-axis) κpure for
AlN are given by the red and green curves, respectively. Open
green circles are the experimental κL along the c axis for
AlN.70 The isotope mixtures for Al and N are negligible so
we do not give κnatural for AlN.

Light atomic masses and stiff atomic bonds for the Si
and C atoms give SiC large acoustic phonon velocities and
a high phonon frequency scale, though significantly smaller
than those of diamond. The relatively large Si to C mass
ratio produces an appreciable frequency gap between acoustic
and optic branches as seen in Fig. 21 in the Appendix.
These properties make SiC a high κL material with calculated
κnatural = 480 W m−1 K−1 and κpure = 570 W m−1 K−1 and a
percentage isotope effect of P = 20% at 300 K. We note that
κpure of cubic SiC is still six times smaller than that of diamond.
AlN is also a relatively high κL material with calculated κpure =
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FIG. 8. (Color online) Calculated κpure (solid black curve) and
κnatural (dashed black curve) for 3C-SiC with experimental data given
by circles (Ref. 69). The calculated in-plane and out-of-plane (c-axis)
κpure for AlN are given by the red and green curves, respectively, with
experimental data for c-axis κL (Ref. 70).

322 W m−1 K−1 at T = 300 K. For each system the calculated
κL gives good agreement with the experimental data around
and above room temperature. At lower temperatures where
scattering from defects and boundaries becomes more impor-
tant, each calculated κL is predictably higher than experiment.

We found previously that the wurtzite and cubic GaN
structures have κL that are similar and larger than the thermal
conductivities of the cubic GaX compounds (X = P, As,
and Sb).16 Similarly, wurtzite AlN has significantly higher
κL than the cubic AlX compounds discussed in the previous
section (see Table I). AlN has the largest acoustic phonon
frequency scale and the highest acoustic velocities of all the
AlX materials. Thus, at 100 K, the in-plane κpure of AlN is the
largest of these materials, over five times larger than that of AlP.
AlN does not have an appreciable gap between the acoustic
and optic branches (see Fig. 22 in the Appendix), and thus with
increasing temperature the κL of AlN decreases rapidly as aao
scattering becomes stronger. At 300 K, κpure is still more than
2.5 times larger than that for the cubic AlX compounds. The
decay of optic phonons into the heat-carrying acoustic phonons
was previously found to increase κL in AlN.54 Here, we show
that the coupling of acoustic and optic phonons reduces the κL

for the systems studied here. The coupling of different phonon
modes through the full solution to the BTE plays a significant
role in determining κL of AlN. The single mode relaxation
time approximation gives κRTA of AlN 14% smaller than that
given by the full BTE solution.

VI. SUMMARY AND CONCLUSIONS

We have presented an accurate and predictive first-
principles method for calculating the lattice thermal con-
ductivity κL for a range of semiconducting systems. This

165201-9



L. LINDSAY, D. A. BROIDO, AND T. L. REINECKE PHYSICAL REVIEW B 87, 165201 (2013)

method uses harmonic and anharmonic interatomic forces
from density functional theory calculations as inputs to the
linearized phonon Boltzmann transport equation for which an
exact numerical solution is obtained. The calculations of the
anharmonic force constants and their role in determining the
thermal conductivities of a variety of systems was discussed.
This first-principles approach was tested on well-studied
systems (Si, Ge, and GaAs) and excellent agreement with
measured κL data was found. We used this approach to examine
κL in aluminum-V, gallium-V, and indium-V compounds as
well as the technologically important materials, SiC and AlN.
The upper bound to the intrinsic κL as limited by anharmonic
phonon scattering was calculated for each system, and the role
of isotope scattering was examined. The interplay between
harmonic and anharmonic crystal properties in determining the
intrinsic phonon-phonon scattering rates was also discussed.

In general, the calculated κnatural is in good agreement with
the available experimental data for most materials. For some
compounds such as GaP, AlSb, InAs, and InP the calculated
κnatural lies above the measured data, suggesting that improved
crystal growth to reduce point defects and other extrinsic
scattering mechanisms could lead to enhancements in κL. We
have found high intrinsic κL values for 3C-SiC, AlN, and cubic
GaN ranging from around 300 to 600 W m−1 K−1 at T = 300
K, while cubic GaN and AlSb showed large isotope effects. The
frequency gap between acoustic and optic phonons plays an
important role in reducing the acoustic-optic phonon scattering
and in determining κL for compounds with large mass differ-
ences between the cations and the anions. A large acoustic-
optic frequency gap in AlSb leads to significant optic phonon
contributions to κL and to a large calculated isotope effect.

The microscopic, first-principles method presented in this
work is a powerful tool for calculating and examining κL which
is predictive and transferable to a wide range of systems.
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APPENDIX

Given a set of harmonic IFCs, 	αβ(lκ,l′κ ′), the phonon fre-
quencies are determined by diagonalization of the dynamical
matrix

Dκκ ′
αβ (�q) = 1√

m̄κm̄κ ′

∑
l′

	αβ(0κ,l′κ ′)ei �q· �Rl′ , (A1)

for a given wave vector �q. Here, m̄κ is the isotope averaged
mass of the κth atom, �Rl is the lattice vector locating the lth
unit cell, and α and β are Cartesian directions. The harmonic
IFCs for each system were calculated within the framework
of DFPT and LDA using the plane-wave QUANTUM ESPRESSO

package.34,35 For most cases we used norm-conserving pseu-
dopotentials with 80 Ryd plane-wave cutoffs and 6 × 6 × 6
Monkhorst-Pack k-point meshes for electronic and phonon
calculations. All calculations were made with pseudopotentials
from the QUANTUM ESPRESSO website34 and the names are
given in the figure captions.

Here we give the phonon dispersions in the high-symmetry
directions for all of the materials considered in this work.
Available experimental data is included for comparison with
the calculated curves (see Figs. 9–22).
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FIG. 9. Calculated phonon dispersion for Si in the indicated high
symmetry directions (black curves). The pseudopotential used in the
LDA/DFPT calculation was Si.pz-vbc.UPF (Ref. 34). Experimental
data are given by black circles (Ref. 71).
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FIG. 10. Calculated phonon dispersion for Ge in the high sym-
metry directions (black curves). The pseudopotential used in the
LDA/DFPT calculation was Ge.pz-bhs.UPF (Ref. 34). Experimental
data are given by black circles (Ref. 71).
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FIG. 11. Calculated phonon dispersion for AlP in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Al.pz-vbc.UPF and P.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 72).
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FIG. 12. Calculated phonon dispersion for AlAs in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Al.pz-vbc.UPF and As.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 73).
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FIG. 13. Calculated phonon dispersion for AlSb in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Al.pz-vbc.UPF and Sb.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 74).

0

2

4

6

8

10

12

scaled wave vector

fr
eq

ue
nc

y 
(T

H
z)

X K Γ LΓ

GaP

FIG. 14. Calculated phonon dispersion for GaP in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Ga.pz-bhs.UPF and P.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 75).
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FIG. 15. Calculated phonon dispersion for GaAs in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Ga.pz-bhs.UPF and As.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 76).
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FIG. 16. Calculated phonon dispersion for GaSb in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Ga.pz-bhs.UPF and Sb.pz-bhs.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 77).
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FIG. 17. Calculated phonon dispersion for cubic GaN in the high
symmetry directions (black curves). The pseudopotentials used in
the LDA/DFPT calculation were Ga.pz-bhs.UPF and N.pz-vbc.UPF
(Ref. 34). We note that the calculated dispersion was obtained using
a 1% increase to the lattice constant from energy minimization as
discussed in Ref. 16.
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FIG. 18. (Color online) Calculated phonon dispersion for InP
in the high symmetry directions. Red curves give dispersion using
a lattice constant determined by energy minimization and black
curves give dispersion using this lattice constant with a 1.5%
increase. The pseudopotentials used in the LDA/DFPT calculation
were In.pz-n-bhs.UPF and P.pz-bhs.UPF (Ref. 34). We note that the
indium pseudopotential included a core correction. Experimental data
are given by black circles (Ref. 78).
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FIG. 19. (Color online) Calculated phonon dispersion for InAs
in the high symmetry directions. Red curves give dispersion using a
lattice constant determined by energy minimization and black curves
give dispersion using this lattice constant with a 1% increase. The
pseudopotentials used in the LDA/DFPT calculation were In.pz-n-
bhs.UPF and As.pz-bhs.UPF (Ref. 34). We note that the indium
pseudopotential included a core correction. Experimental data are
given by black circles (Ref. 79) and black squares (Ref. 80).
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FIG. 20. (Color online) Calculated phonon dispersion for InSb
in the high symmetry directions. Red curves give dispersion using a
lattice constant determined by energy minimization and black curves
give dispersion using this lattice constant with a 1% increase. The
pseudopotentials used in the LDA/DFPT calculation were In.pz-n-
bhs.UPF and Sb.pz-bhs.UPF (Ref. 34). We note that the indium
pseudopotential included a core correction. Experimental data are
given by black circles (Ref. 81).
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FIG. 21. Calculated phonon dispersion for cubic 3C-SiC in the
high symmetry directions (black curves). The pseudopotentials used
in the LDA/DFPT calculation were Si.pz-vbc.UPF and C.pz-vbc.UPF
(Ref. 34). Experimental data are given by black circles (Ref. 82).
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FIG. 22. Calculated phonon dispersion for wurtzite AlN in the
high symmetry directions (black curves). The pseudopotentials
used in the LDA/DFPT calculation were Al.pz-vbc.UPF and N.pz-
vbc.UPF (Ref. 34). Experimental data are given by black circles
(Ref. 83).
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