Defense Advanced Research Projects AgencyTagged Content List

Technologies for Trustworthy Computing and Information

Confidence in the integrity of information and systems

Showing 8 results for Trust + Automation RSS
02/12/2013
In the world of network cyber security, the weak link is often not the hardware or the software, but the user. Passwords are often easily guessed or possibly written down, leaving entire networks vulnerable to attack. Mobile devices containing sensitive information are often lost or stolen, leaving a password as the single layer of defense.
The current standard method for validating a user’s identity for authentication on an information system requires humans to do something that is inherently unnatural: create, remember, and manage long, complex passwords. Moreover, as long as the session remains active, typical systems incorporate no mechanisms to verify that the user originally authenticated is the user still in control of the keyboard. Thus unauthorized individuals may improperly obtain extended access to information system resources if a password is compromised or if a user does not exercise adequate vigilance after initially authenticating at the console.
To be effective, Department of Defense (DoD) cybersecurity solutions require rapid development times. The shelf life of systems and capabilities is sometimes measured in days. Thus, to a greater degree than in other areas of defense, cybersecurity solutions require that DoD develops the ability to build quickly, at scale and over a broad range of capabilities.
As new defensive technologies make old classes of vulnerability difficult to exploit successfully, adversaries move to new classes of vulnerability. Vulnerabilities based on flawed implementations of algorithms have been popular targets for many years. However, once new defensive technologies make vulnerabilities based on flawed implementations less common and more difficult to exploit, adversaries will turn their attention to vulnerabilities inherent in the algorithms themselves.
Modern computing systems act as black boxes in that they accept inputs and generate outputs but provide little to no visibility of their internal workings. This greatly limits the potential to understand cyber behaviors at the level of detail necessary to detect and counter some of the most important types of cyber threats, particularly advanced persistent threats (APTs). APT adversaries act slowly and deliberately over a long period of time to expand their presence in an enterprise network and achieve their mission goals (e.g., information exfiltration, interference with decision making and denial of capability).