2011 Coastal Construction Manual (CCM) - Calculator

The equations in this spreadsheet are equations in Volume 2 of the CCM

In order to avoid the user from accidentally erasing the formula in a cell, all the cells in each of the worksheets, except those requiring user input, are protected (with no password).

On each of the worksheets, the material on the right-hand side (Column J - Q) are reference material to help the user with input to the equation.

Each of the worksheets is set to print only the left hand side (Columns A-I).

List of equations included in this workbook is given in the "LIST" Worksheet.

List of Equations - CCM Volume 2

	Page No.
Chapter 8 - Determining Site-Specific Loads	
Equation 8.1 Design Stillwater Flood Depth	8-10
Equation 8.2. Design Flood Velocity	8-16
Equation 8.3. Lateral Hydrostatic Load	8-18
Equation 8.4. Vertical (Buoyant) Hydrostatic Force	8-19
Equation 8.5. Breaking Wave Load on Vertical Piles	8-21
Equation 8.6. Breaking Wave Load on Vertical Walls	8-22
Equation 8.7. Lateral Wave Slam	8-26
Equation 8.8. Hydrodynamic Load (for All Flow Velocities)	8-29
Equation 8.9. Debris Impact Load	8-32
Equation 8.10. Localized Scour Around a Single Vertical Pile	8-35
Equation 8.11. Total Localized Scour Around Vertical Piles	8-36
Equation 8.12. Total Scour Depth Around Vertical Walls and Enclosures	8-37
Equation 8.13. Velocity Pressure	8-50
Equation 8.14. Design Wind Pressure for Low-Rise Buildings	8-50
Equation 8.15. Seismic Base Shear by Equivalent Lateral Force Procedure	8-69
Equation 8.16. Vertical Distribution of Seismic Forces	8-70

Chapter 10 - Designing the Foundation

Equation 10.1. Sliding Resistance 10-2	10
Equation 10.2. Ultimate Compression Capacity of a Single Pile 10-2	14
Equation 10.3. Ultimate Tension Capacity of a Single Pile 10-2	15
Equation 10.4. Load Application Distance for an Unbraced Pile 10-2	19
Equation 10.5. Determination of Square Footing Size for Gravity Loads 10-4	40
Equation 10.6. Determination of Soil Pressure 10-4	43

Chapter 13 - Constructing the Building

Equation 13.1. Pile Driving Resistance for Drop Hammer Pile Drivers	13-8
---	------

Equation 8.1 Design Stillwater Flood Depth

Equation 8.1

$$d_s = E_{sw} - GS$$

Eq. 8.1

where:

d_s	=	design stillwater flood depth (ft)
E_{sw}	=	design stillwater flood elevation in ft above datum (e.g., NGVD, NAVD)
GS	=	lowest eroded ground elevation, in ft above datum, adjacent to a building, excluding effects of localized scour around the foundation

Calculation

Input:

E_{sw}	=	10.10 ft
GS	=	5.50 ft

Output:

d_s	=	4.60 ft

Eq. 8.1

Equation 8.2. Design Flood Velocity

Equation 8.2

Lower bound	$V = \frac{d_s}{t}$	Eq. 8.2A
Upper bound	$V = (gd_s)^{0.5}$	Eq. 8.2B

where:

V	=	design flood velocity (ft/sec)
d_s	=	design stillwater flood depth (ft) - from Eq. 8.1
t	=	1 sec.
g	=	gravitational constant (32.2 ft/sec ²)

Calculation

Input:

$$d_s = \frac{4.60}{\text{ft}} \text{ft}$$

$$g = \frac{32.20}{\text{ft/sec}^2}$$

$$V$$
=**4.60** ft/secEq. 8.2ALower bound V =**12.17** ft/secEq. 8.2BUpper bound

Equation 8.3. Lateral Hydrostatic Load

Equation 8.3

$$f_{sta} = (1/2) \Upsilon_w d_s^2$$
 Eq. 8.3 A

$$F_{sta} = f_{sta} (w)$$
 Eq. 8.3 B

where:

f_{sta}	=	hydrostatic force per unit width (lb/ft) resulting from flooding against vertical element
γ _w	=	specific weight of water (62.4 lb/ft^3 for fresh water and 64.0 lb/ft^3 for saltwater)
d_s	=	design stillwater flood depth (ft) - from Eq. 8.1
F_{sta}	=	total equivalent lateral hydrostatic force on a structure (lb)
w	=	width of vertical element (ft)

Calculation

Input:

$$d_{s} = 4.60 \text{ ft}$$

$$\gamma_{w} = 64.00 \text{ lb/ft}^{3}$$

$$w = 0.67 \text{ ft}$$

Output:

$$f_{sta} =$$
 677.12 lb/ft Eq. 8.3 A
 $F_{sta} =$ **453.67** lb Eq. 8.3 B

(flood load on only one side of vertical component)

Equation 8.4. Vertical (Buoyant) Hydrostatic Force

Equation 8.4

$$F_{buoy} = \Upsilon_w (Vol)$$
 Eq.

where:

F buoy	, =	vertical hydrostatic force (lb) resulting from the displacement of a given volume of floodwater
у и	, =	specific weight of water (62.4 lb/ft^3 for fresh water and 64.0 lb/ft^3 for saltwater)

$$Vol = Volume of floodwater displaced by a submerged object (ft3)$$

Calculation

Input:

$$\begin{array}{rcl} \gamma_w &=& 64.00 \\ Vol &=& 20.00 \\ \mathrm{ft}^3 \end{array}$$

Output:

$$F_{buoy} = 1280.00$$
 lb

Eq. 8.4

8.4

Equation 8.5. Breaking Wave Load on Vertical Piles

Equation 8.5

$$F_{brkp} = (1/2) C_{db} \Upsilon_w DH_b^2$$
 Eq. 8.5

where:

F brkp	=	drag force (lb) acting at the stillwater elevation
C_{db}	=	breaking wave drag coefficient (recommended value are 2.25 for square piles and 1.75 for round piles)
γ_w	=	specific weight of water (62.4 lb/ft^3 for fresh water and 64.0 lb/ft^3 for saltwater)
D	=	pile diameter (ft) for a round pile or 1.4 times the width of the pile or column for a square pile
H_b	=	breaking wave height (0.78 d_s) in ft. where d_s = design stillwater depth in ft

Calculation

Input:

"round" or "square" pile ?squareif round pile, enter diameter of pileftif square, enter the width of pile0.67
$$\gamma_w = 64.00$$
lb/ft³ $d_s = 4.60$ ftstillwater depth (From Eq 8.1)

Output:

$$C_{db} = 2.25$$
 squar

$$D = 0.94$$
 ft (pile

$$H_{b} = 3.59$$
 ft (0.78)

$$F_{brkp} = 869.44$$
 lb
(on one pile)

square pile (pile diameter or 1.4 * width of pile) (0.78 * design stillwater depth, d_s)

Eq. 8.5

Equation 8.6. Breaking Wave Load on Vertical Walls

Equation 8.6a (enclosed dry space behind wall)

$$f_{brkw} = 1.1 C_p \Upsilon_w d_s^2 + 2.4 \Upsilon_w d_s^2$$
 Eq. 8.6a

Equation 8.6b (equal stillwater elevation on both sides of the wall)

$$f_{brkw} = 1.1 C_p \Upsilon_w d_s^2 + 1.9 \Upsilon_w d_s^2$$
 Eq. 8.6b

Equation 8.6c

$$F_{brkw} = f_{brkw} (w)$$
 Eq. 8.6c

where:

$f_{\it brkw}$	=	total breaking wave per unit length of wall (lb/ft) acting at the stillwater elevation
C_p	=	dynamic pressure coefficient from Table 8-1
γ _w	=	specific weight of water (62.4 lb/ft^3 for fresh water and 64.0 lb/ft^3 for saltwater)
d_s	=	design stillwater flood depth in ft (From Eq. 8.1)
F brkw	=	total breakwater wave load (lb) acting at the stillwater elevation
W	=	width of wall in ft

Calculation

Input:

$$C_{p} = 2.8$$

$$\gamma_{w} = 64$$

$$d_{s} = 4.60$$

$$w = 2.00$$

ft

(From Eq 8.1)

Output:

$$f_{brkw} = 7,421.24$$
 lb/ft
 $f_{brkw} = 6,744.12$ lb/ft
 $F_{brkw} = 14,842.47$ lb
 $F_{brkw} = 13,488.23$ lb

Eq. 8.6a enclosed dry space behind wall

Eq. 8.6b equal stillwater elevation both sides

Eq. 8.6c enclosed dry space behind wall

Eq. 8.6c equal stillwater elevation both sides

Equation 8.7. Lateral Wave Slam

Equation 8.7

$$F_{s} = f_{s}w = (1/2) \Upsilon_{w}C_{s}d_{s}hw$$
 Eq. 8.7

where:

F_{s}	=	lateral wave slam (lb)
f_s	=	lateral wave slam (lb/ft)
C_s	=	slam coefficient incorporating effect of slam duration and surface stiffness for typical residential structure (recommended value is 2.0)
γw	=	specific weight of water (62.4 lb/ft^3 for fresh water and 64.0 lb/ft^3 for saltwater)
d_s	=	design stillwater flood depth in ft (From Eq. 8.1)
h	=	vertical distance (ft) the wave crest extends above the bottom of the floor joist or floor beam
W	=	length (ft) of the floor joist or floor beam struck by wave crest

Calculation

Input:

γw	=	64.00 lb/ft ³
C_s	=	2.00
d_s	=	7.00 ft
h	=	0.90 ft
W	=	50.00 ft

$$f_s = 403.20$$
 lb/ft
 $F_s = 20,160.00$ lb Eq. 8.7

Equation 8.8. Hydrodynamic Load (for All Flow Velocities)

Equation 8.8

$$F_{dyn} = (1/2) C_d \rho V^2 A$$
 Eq. 8.8

where:

F _{dyn}	=	horizontal drag force (lb) acting on the stillwater mid-depth (half way between the stillwater level and the eroded ground surface)
C_d	=	drag coefficient (recommended coefficient are 2.0 for square or rectangular piles and 1.2 for round piles; for other obstructions, see Table 8-2)
ρ	=	mass density of fluid (1.94 $slugs/ft^2$ for fresh water and 1.99 $slugs/ft^2$ for saltwater)
V	=	Velocity of water (ft/sec); see Equation 8.2
A	=	surface area of obstruction normal to flow $(ft^2) = (w)(d_s)$ if object is not fully immersed, see figure 8-13 or $(w)(h)$ if the object is completely immersed
h	=	the height of the object (ft) if the object is completely immersed in water
d_s	=	stillwater flood depth of the water (ft) if the object is not fully immersed

Calculation

Input:

C_d	=	2.00		
ρ	=	1.99	slugs/ft ²	
V	=	12.20	ft/sec	from Eq. 8.2
W	=	0.67	ft	
h	=		ft	Leave blank i
d_s	=	4.60	ft	

Leave blank if object is not completely immersed.

$$A = 3.082 \text{ ft}^2$$
 (A = d_s*w or h*w)
 $F_{dyn} = 912.86 \text{ lb}$ Eq. 8.8

Equation 8.9. Debris Impact Load

Equation 8.9

$$F_i = WVC_D C_B C_{Str}$$

Eq. 8.9

where:

F_i	=	impact force acting at the stillwater elevation (lb)
W	=	weight of the object (lb)
V	=	velocity of water (ft/sec), approximated by $1/2(gd_s)^{1/2}$
C_D	=	depth coefficient (see Table 8-3)
C_B	=	blockage coefficient (taken as 1.0 for no upstream screening, flow path greater than 30 ft; see below for more information)
C _{Str}	=	Building structure coefficient (sec/ft)
		 0.2 for timber pile and masonry column supported structures 3 stories or less in height above grade 0.4 for concrete pile or concrete or steel moment resisting frames 3 stories or less in height above grade 0.8 for reinforced concrete foundation walls (including insulated concrete forms)

Calculation

Input:

$$W = \frac{1000.00}{12.20} \text{ lb}$$

$$V = \frac{12.20}{12.20} \text{ ft/sec}$$

$$C_D = \frac{0.75}{C_B} = \frac{1.00}{C_{Str}} \text{ sec/ft}$$

$$F_i =$$
 1830.00 lb

Eq. 8.9

Equation 8.10. Localized Scour Around a Single Vertical Pile

Equation 8.10

$$S_{max} = 2.0a$$
 Eq.

where:

 S_{max} = maximum localized scour depth (ft) a = diameter of a round foundation element or the maximum diagonal cross-section dimension for a rectangular element

Calculation

Input:

a = 0.88 ft

Output:

$$S_{max} = 1.76$$
 ft

Eq. 8.10

8.10

Equation 8.11. Total Localized Scour Around Vertical Piles

Equation 8.11

$S_{TOT} = 6a + 2 ft$	(if grade beam and/or slab-on-grade present)	Eq. 8.11a
$S_{TOT} = 6a$	(if no grade beam or slab-on-grade present)	Eq. 8.11b
where:		
S_{TOT} =	total localized scour depth (ft)	

D TOT	=	total localized scour depth (It)
а	=	diameter of a round foundation element or the maximum diagonal cross- section dimension for a rectangular element
2 ft	=	allowance for vertical scour due to presence of grade beam or slab-on- grade

Calculation

Input:

$$a = 0.88$$
 ft

$$S_{TOT} =$$
 7.28 ft Eq. 8.11a
 $S_{TOT} =$ **5.28** ft Eq. 8.11b

Equation 8.12. Total Scour Depth Around Vertical Walls and Enclosures

Equation 8.12

$$S_{TOT} = 0.15L$$
 Eq. 8.12

where:

 S_{TOT} = total localized scour depth (ft), maximum value is 10 ft

L = horizontal length (ft) along the side of the building or obstruction exposed to flow and waves

Calculation

Input:

$$L = 10.00 \, \text{ft}$$

Output:

S _{TOT}	=	1.50 ft	Eq. 8.12
------------------	---	----------------	----------

Check Total localized scour depth is less than 10 ft - OK

Equation 8.13. Velocity Pressure

Equation 8.13

$$q_z = 0.00256 K_z K_{zt} K_d V^2$$
 Eq. 8.13

where:

q_z	=	Velocity pressure evaluated at height z (psf)
K_{z}	=	velocity pressure exposure coefficient evaluated at height z
K_{zt}	=	topographic factor
K_d	=	wind directionality factor
V	=	basic wind speed (mph) (3-sec gust speed at 33 ft above ground in Exposure Category C)

Calculation

Input:

K_{z}	=	1.00
K_{zt}	=	1.00
K_d	=	0.85
V	=	150.00 mph

Output:

$$q_z = 48.96 \text{ psf}$$

Eq. 8.13

Equation 8.14. Design Wind Pressure for Low-Rise Buildings

Equation 8.14

$$p = q_h [GC_{pf} - GC_{pi}]$$
 Eq. 8.14

where:

Р	=	design wind pressure (psf)
q _h	=	Velocity pressure (psf) evaluated at mean rood height h, (see Fig 8-18
		for an illustration of mean roof height)
GC _{Pf}	_	External pressure coefficient for C & C loads or MWERS loads per low-
		rise building provisions, as applicable
66	=	External pressure coefficient based on exposure classification as
GC _{Pi}		applicable, GC _{Pi} for enclosed building is +/- 0.18

Calculation

Input:

$$q_{h} = 29.38 \text{ psf}$$

 $GC_{Pf} = -0.69 \text{ }$
 $GC_{Pi} = 0.18 \text{ }$

Output:

Eq. 8.14

Equation 8.15. Seismic Base Shear by Equivalent Lateral Force Procedure

Equation 8.15

$$V = C_s W$$
Eq. 8.16a
$$C_s = \frac{S_{DS}}{(R/I)}$$
Eq. 8.16b

where:

V	=	Seismic base shear (lb)
C_{s}	=	Seismic response coefficient
<i>S</i> ₁	=	the mapped maximum considered earthquake spectral response acceleration parameter
S _{DS}	=	design spectral response acceleration parameter in the short period range, 5 percent damped
S_{D1}	=	the design spectral response acceleration parameter at a period of 1.0 second
R	=	response modification factor
Ι	=	occupancy importance factor

W = effective seismic weight, kip

T = the fundamental period of the structure(s)

 T_L = long-period transition period(s)

Calculation

Input:

S_1	=	0.2	g
S_{DS}	=	0.33	g
S_{D1}	=	0.13	g
R	=	6.00	
Ι	=	1.00	
W	=	6816.00	kips
Т	=	0.35	sec
T_L	=	8.00	sec

Output:

$C_s =$	0.055	Eq. 8.15b
---------	-------	-----------

Use Check C_s (see right hand side)

$$C_s = 0.055$$

 $V = 374.88$ kips Eq. 8.15a

Equation 8.16. Vertical Distribution of Seismic Forces

Equation 8.16

$$F_x = C_{vx} V$$
 Eq. 8.16a

$$C_{VX} = \frac{w_{x} h_{x}^{k}}{\sum_{i=1}^{n} w_{i} h_{i}^{k}}$$
Eq. 8.16b

where:

F_x	=	lateral seismic force induced at any level			
C_{vx}	=	vertical distribution factor			
V	=	seismic base shear (kips)			
w_i and w_x	=	portion of the total effective seismic weight of the structure (w) located or assigned to level i or x			
		height (ft) from the base to Level i or x			
k	=	exponent related to the structure period; for structures having a period of 0.5 sec or less, $k=1$			
		Number of storys (assume not more than 2 storys in this worksheet)			

Calculation

Input:

For two-story structure, 1 is the lowest level

V	=	374.88 kips
k	=	1.00
w_1	=	0.33
W_2	=	0.33
h_1	=	13 ft
h_2	=	26 ft

Output:

$$w_{1}h_{1}^{k} = 4.29$$

$$w_{2}h_{2}^{k} = 8.58$$

$$C_{vx1} = 0.33$$

$$F_{x1} = 124.96$$
kips
kips
kips

-

Equation 10.1. Sliding Resistance

Equation 10.1

$$F = tan(\phi) (N)$$
 Eq. 10.1

where:

F = resistance to sliding (lb)

 ϕ = angle of internal friction in degrees

N = normal force on the footing (lb)

Calculation

Input:

$$\phi = 10.00 \text{ degree}$$

$$N = 3000.00 \text{ lb}$$

$$F = 528.98$$
 psf Eq. 10.1

Equation 10.2. Ultimate Compression Capacity of a Single Pile

Equation 10.2

$$Q_{ULT} = P_T N_q A_T + \sum K_{HC} P_0 Ds \tan(\delta)$$
Eq 10.2

$$\sum \text{ summation over the different layers of soil. Set at maximum of 4 in this worksheet}$$

Where:

Q_{ult}	=	ultimate load capacity in compression (lb)
P_T	=	effective vertical stress at pile tip (lb/ft^2)
N_q	=	bearing capacity factor (see Table 10-4)
A_T	=	area of pile tip (ft ²)
K_{HC}	=	earth pressure coefficient in compression (see Table 10-5)
P_0	=	effective vertical stress over the depth of embedment, D (lb/ft ²)
δ	=	friction angle between pile and soil in degrees (see Table 10-6)
S	=	surface area of pile per unit length (ft ²)
D	=	depth of embedment (ft)

Calculation

Input:

$$P_{T} = 975 \text{ lb/ft}^{2}$$

$$N_{q} = 21 \text{ A}_{T} = 0.79 \text{ ft}^{2}$$

Enter soil information from top layer down. Leave blank if less than 4 layers

Linter boir in	in or maa		, hay of a o with		in ii iess uie	ur i lagers
Soil Layer	K_{HC}	P_0 (lb/ft ²)	δ (degree)	s (ft ² /ft)	$D(\mathrm{ft})$	$K_{HC}P_{0}Dstan(\delta)$
1 (Top)	1.00	975.00	22.50	3.14	15.00	19021.72
2						0.00
3						0.00
4						0.00
					Total =	19021.72

Output:

Q_{ult}	=	35196.97 lb
Q_{all}	=	11732.32 lb

Eq. 10.2 Allowable compression capacity with a safety factor of 3

Equation 10.3. Ultimate Tension Capacity of a Single Pile

Equation 10.3

$$T_{ult} = \sum K_{HT} P_0 Ds \tan(\delta)$$
 Eq. 10.3

 $\boldsymbol{\Sigma}\,$ - summation over the different layers of soil. Set at maximum of 4 in this worksheet

Where:

T_{ult}	=	ultimate load capacity in tension (lb)
K_{HT}	=	earth pressure coefficient in tension (see Table 10-5)
P_0	=	effective vertical stress over the depth of embedment, $D (lb/ft^2)$
δ	=	friction angle between pile and soil in degrees (see Table 10-6)
S	=	surface area of pile per unit length (ft ² /ft or ft)
D	=	depth of embedment (ft)

Calculation

Input:

Enter soil information from top layer down. Leave blank if less than 4 layers.

Soil Layer	K_{HT}	P_0 (lb/ft ²)	δ (degree)	s (ft ² /ft)	$D(\mathrm{ft})$	$K_{HT}P_0$ Dstan(δ)
1 (Top)	0.60	975.00	22.50	3.14	15.00	11413.03
2						0.00
3						0.00
4						0.00
					Total =	11413.03

T _{ult}	=	11413.03 lb	Eq. 10.3
T _{allow}	=	3804.34 lb	Allowable tension capacity
			with a safety factor of 3.0

Equation 10.4. Load Application Distance for an Unbraced Pile

Equation 10.4

$$L = H + d/12$$
 Eq 10.4

where:

 $L = \frac{\text{distance between the location where the lateral force in applied and the point of fixity (i.e., moment arm) (ft)}{}$

$$d = \text{depth from grade to inflection point (in);} \quad d = 1.8 \left[\frac{EI}{n_h}\right]^{1/5}$$

- E = modulus of elasticity of the pile material, (lb/in²)
- I = moment of inertia of pile material (in⁴)
- n_h = modulus of subgrade reaction (lb/in³), see Table 10-8
- H = distance above grade where the lateral load is applied (ft)

<u>Calculation</u> Input:

$$E = 1500000 \text{ lb/in}^2$$

$$I = 322 \text{ in}^4$$

$$n_h = 700 \text{ lb/in}^3$$

$$H = 11.3 \text{ ft}$$

$$d = 26.49$$
 in
 $L = 13.51$ ft Eq. 10.4

Equation 10.5. Determination of Square Footing Size for Gravity Loads

Equation 10.5

$$L = \left[\frac{P_a + (h_{col} + x - t_{foot})W_{col}t_{col}w_c}{q - t_{foot}w_c}\right]^{0.5}$$
Eq. 10.5

where:

L	=	square footing dimension (ft)			
P_a	=	gravity load on pier (lb)			
h_{col}	=	height of pier above grade (ft)			
x	=	distance from grade to bottom of footing (ft)			
W_{col}	=	column width (ft)			
t _{col}	=	column thickness (ft)			
W_c	=	unit weight of column and footing material (lb/ft ³)			
q	=	soil bearing pressure (psf)			
t_{foot}	=	footing thickness (ft)			

Calculation

Input:

$$P_{a} = 500.00 \text{ lb}$$

$$h_{col} = 12.00 \text{ ft}$$

$$x = 5.00 \text{ ft}$$

$$W_{col} = 2.00 \text{ ft}$$

$$t_{col} = 2.00 \text{ ft}$$

$$w_{c} = 150.00 \text{ lb/ft}^{3}$$

$$q = 2000.00 \text{ psf}$$

$$t_{foot} = 1.00 \text{ ft}$$

$$L = 2.34$$
 ft Eq. 10.5

Equation 10.6. Determination of Soil Pressure

Equation 10.6

$$q = \frac{P_l}{L^2} \pm 6\frac{M}{L^3}$$

where:

q

 $= \frac{\text{minimum and maximum soil bearing pressures at the edges of the footing}}{(\text{lb/ft}^2)}$

Eq. 10.6

- P_t = total vertical load for the load combination being analyzed (lb)
- applied moment P_{l} ($h_{col}+x$) (ft-lbs) where x and h_{col} are as defined in $M = \sum_{i=1}^{n} 10.21 \text{ m/s}$
 - Figure 10-21 and P_l is the lateral load applied at the top of the column

Calculation

Input:

P_t	=	10710.00	lbs input negtive for uplift load (\uparrow)
P_l	=	989.00	lbs lateral force
L	=	8.50	ft footing dimension
h_{col}	=	13.30	ft height of pier above grade
X	=	1.50	ft length below grade

Output:

M	=	14637.20 ft	-lbs $(P_1 * (h_{col} + x))$))
q _{max}	=	291.24 lb	/ft ² E	q. 10.6
q _{min}	=	5.23 lb	$/ft^2$ E	q. 10.6

Check eccentricity

$$e = \frac{M}{P_t}$$
 (see Figure 10-21)

$$e = \text{eccentricity, cannot exceed L/6}$$

Output:

$$e = 1.37$$
 ft
L/6 = 1.42 ft

e < L/6 - acceptable

downward load, no need to check uplift resistance

Equation 13.1. Pile Driving Resistance for Drop Hammer Pile Drivers

Equation 13.1

$$Q_{all} = \frac{2WH}{(S+1)}$$
 Eq. 13.1

Where:

Q_{all}	=	allowable pile capacity (lb)
W	=	weight of the striking parts of the hammer (lb)
H	=	effective height of the fall (ft)
S	=	average net penetration, given as in per blow for the last 6 in. of driving

Calculation

Input:

W	=	1000.00 lb
Η	=	5.00 ft
S	=	1.00 ft

$$Q_{all} = 5000.00$$
 lb

Eq. 13.1