2011 Coastal Construction Manual (CCM) - Calculator

The equations in this spreadsheet are equations in Volume 2 of the CCM

In order to avoid the user from accidentally erasing the formula in a cell, all the cells in each of the worksheets, except those requiring user input, are protected (with no password).

On each of the worksheets, the material on the right-hand side (Column $\mathrm{J}-\mathrm{Q}$) are reference material to help the user with input to the equation.

Each of the worksheets is set to print only the left hand side (Columns A-I).

List of equations included in this workbook is given in the "LIST" Worksheet.
List of Equations - CCM Volume 2
Page No.
Chapter 8 - Determining Site-Specific Loads
Equation 8.1 Design Stillwater Flood Depth 8-10
Equation 8.2. Design Flood Velocity 8-16
Equation 8.3. Lateral Hydrostatic Load 8-18
Equation 8.4. Vertical (Buoyant) Hydrostatic Force 8-19
Equation 8.5. Breaking Wave Load on Vertical Piles 8-21
Equation 8.6. Breaking Wave Load on Vertical Walls 8-22
Equation 8.7. Lateral Wave Slam 8-26
Equation 8.8. Hydrodynamic Load (for All Flow Velocities) 8-29
Equation 8.9. Debris Impact Load 8-32
Equation 8.10. Localized Scour Around a Single Vertical Pile 8-35
Equation 8.11. Total Localized Scour Around Vertical Piles 8-36
Equation 8.12. Total Scour Depth Around Vertical Walls and Enclosures 8-37
Equation 8.13. Velocity Pressure 8-50
Equation 8.14. Design Wind Pressure for Low-Rise Buildings 8-50
Equation 8.15. Seismic Base Shear by Equivalent Lateral Force Procedure 8-69
Equation 8.16. Vertical Distribution of Seismic Forces 8-70
Chapter 10 - Designing the Foundation
Equation 10.1. Sliding Resistance $10-10$
Equation 10.2. Ultimate Compression Capacity of a Single Pile 10-14
Equation 10.3. Ultimate Tension Capacity of a Single Pile 10-15
Equation 10.4. Load Application Distance for an Unbraced Pile 10-19
Equation 10.5. Determination of Square Footing Size for Gravity Loads 10-40
Equation 10.6. Determination of Soil Pressure 10-43
Chapter 13 - Constructing the Building
Equation 13.1. Pile Driving Resistance for Drop Hammer Pile Drivers 13-8

Equation 8.1 Design Stillwater Flood Depth

Equation 8.1

$$
\begin{equation*}
d_{s}=E_{s w}-G S \tag{Eq. 8.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
d_{s} & =\text { design stillwater flood depth (ft) } \\
E_{s w} & =\text { design stillwater flood elevation in } \mathrm{ft} \text { above datum (e.g., NGVD, NAVD) } \\
G S & =\begin{array}{l}
\text { lowest eroded ground elevation, in } \mathrm{ft} \text { above datum, adjacent to a building, } \\
\text { excluding effects of localized scour around the foundation }
\end{array}
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& E_{s w}=\square 10.10 \mathrm{ft} \\
& G S=[5.50 \mathrm{ft}
\end{aligned}
$$

Output:

$$
d_{s}=\square 4.60 \mathrm{ft}
$$

$$
\text { Eq. } 8.1
$$

Equation 8.2. Design Flood Velocity

Equation 8.2

Lower bound $\quad V=\frac{d_{s}}{t}$
Eq. 8.2 A

Upper bound $\quad V=\left(g d_{s}\right)^{0.5}$
Eq. 8.2B
where:

$$
\begin{aligned}
V & =\text { design flood velocity }(\mathrm{ft} / \mathrm{sec}) \\
d_{s} & =\text { design stillwater flood depth }(\mathrm{ft})-\text { from Eq. } 8.1 \\
t & =1 \text { sec. } \\
g & =\text { gravitational constant }\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& d_{s}={ }^{2} \\
& g= \\
& \mathrm{ft} \\
& \mathrm{ft} \\
& \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

Output:

$$
\begin{aligned}
V & =\square \mathbf{4 . 6 0} \mathrm{ft} / \mathrm{sec} \\
V & =\square \mathbf{1 2 . 1 7} \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Eq. 8.2A Lower bound

Eq. 8.2B Upper bound

Equation 8.3. Lateral Hydrostatic Load

Equation 8.3

$$
f_{s t a}=(1 / 2) \Upsilon_{w} d_{s}{ }^{2}
$$

$$
F_{\text {sta }}=f_{\text {sta }}(w)
$$

Eq. 8.3 A

Eq. 8.3 B
where:

$$
\begin{aligned}
f_{s t a} & =\begin{array}{l}
\text { hydrostatic force per unit width (lb/ft) resulting from flooding } \\
\text { against vertical element }
\end{array} \\
\gamma_{w} & =\begin{array}{l}
\text { specific weight of water }\left(62.4 \mathrm{lb} / \mathrm{ft}^{3} \text { for fresh water and } 64.0 \mathrm{lb} / \mathrm{ft}^{3}\right. \\
\text { for saltwater) }
\end{array} \\
d_{s} & =\text { design stillwater flood depth (ft) - from Eq. } 8.1 \\
F_{s t a} & =\text { total equivalent lateral hydrostatic force on a structure (lb) } \\
w & =\text { width of vertical element }(\mathrm{ft})
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& d_{s}=r^{2.60} \\
& \gamma_{w}=\mathrm{ft}^{64.00} \\
& w=\mathrm{lb}_{\mathrm{ft}} \\
& \mathrm{ft}^{3}
\end{aligned}
$$

Output:

$$
\begin{array}{ll}
\boldsymbol{f}_{\text {sta }}=\boxed{677.12} \mathrm{lb} / \mathrm{ft} & \text { Eq. } 8.3 \mathrm{~A} \\
\boldsymbol{F}_{\text {sta }}=\$ \mathrm{453.67} \mathrm{lb} & \text { Eq. } 8.3 \mathrm{~B}
\end{array}
$$

(flood load on only one side of vertical component)

Equation 8.4. Vertical (Buoyant) Hydrostatic Force

Equation 8.4

$$
\begin{equation*}
F_{\text {buoy }}=\Upsilon_{w}(\mathrm{Vol}) \tag{Eq. 8.4}
\end{equation*}
$$

where:

$$
\begin{aligned}
F_{\text {buoy }} & =\begin{array}{l}
\text { vertical hydrostatic force (lb) resulting from the displacement of a given } \\
\text { volume of floodwater }
\end{array} \\
\gamma_{w} & =\begin{array}{l}
\text { specific weight of water }\left(62.4 \mathrm{lb}_{\mathrm{ft}}{ }^{3} \text { for fresh water and } 64.0 \mathrm{lb} / \mathrm{ft}^{3}\right. \text { for } \\
\text { saltwater })
\end{array} \\
V o l & =\text { Volume of floodwater displaced by a submerged object }\left(\mathrm{ft}^{3}\right)
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
\gamma_{w} & =\square 64.00 \\
\text { Vol } & =\square 20.00 \mathrm{ft}^{3}
\end{aligned}
$$

Output:

$$
\begin{equation*}
F_{\text {buoy }}=\square \mathbf{1 2 8 0 . 0 0} \mathrm{lb} \tag{Eq. 8.4}
\end{equation*}
$$

Equation 8.5. Breaking Wave Load on Vertical Piles

Equation 8.5

$$
\begin{equation*}
F_{b r k p}=(1 / 2) C_{d b} \Upsilon_{w} D H_{b}{ }^{2} \tag{Eq. 8.5}
\end{equation*}
$$

where:

$$
F_{b r k p}=\text { drag force (lb) acting at the stillwater elevation }
$$

$$
C_{d b}=\begin{aligned}
& \text { breaking wave drag coefficient (recommended value are } 2.25 \text { for square } \\
& \text { piles and } 1.75 \text { for round piles) }
\end{aligned}
$$

$$
\gamma_{w}=\begin{aligned}
& \text { specific weight of water }\left(62.4 \mathrm{lb} / \mathrm{ft}^{3} \text { for fresh water and } 64.0 \mathrm{lb} / \mathrm{ft}^{3}\right. \text { for } \\
& \text { saltwater })
\end{aligned}
$$

$$
D=\begin{aligned}
& \text { pile diameter }(\mathrm{ft}) \text { for a round pile or } 1.4 \text { times the width of the pile or } \\
& \text { column for a square pile }
\end{aligned}
$$

$$
H_{b}=\text { breaking wave height }\left(0.78 \mathrm{~d}_{\mathrm{s}}\right) \text { in } \mathrm{ft} \text {. where } \mathrm{d}_{\mathrm{s}}=\text { design stillwater depth in } \mathrm{ft}
$$

Calculation

Input:

Output:
square pile
(pile diameter or $1.4 *$ width of pile) ($0.78 *$ design stillwater depth, d_{s})

Eq. 8.5

$$
\begin{aligned}
& \begin{aligned}
& C_{d b}={ }^{2.25} \\
& D=0.94 \\
& \mathrm{ft} \\
& H_{b}=03.59 \mathrm{ft}
\end{aligned} \\
& F_{b r k p}=\frac{8869.44}{(\text { on one pile })} \text { (b }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r|r|}
\text { "round" or 'square" pile ? } & \text { square } \\
\cline { 2 - 3 } & \\
\text { if round pile, enter diameter of pile } \\
\text { if square, enter the width of pile } & \\
\cline { 2 - 3 } &
\end{array} \\
& \begin{array}{ll}
\gamma_{w}= \\
d_{s} & =-64.00 \\
\mathrm{lb} / \mathrm{ft}^{3} & \\
4.60 & \mathrm{ft} \\
\end{array}
\end{aligned}
$$

Equation 8.6. Breaking Wave Load on Vertical Walls

Equation 8.6a (enclosed dry space behind wall)

$$
f_{b r k w}=1.1 C_{p} \Upsilon_{w} d_{s}^{2}+2.4 \Upsilon_{w} d_{s}^{2}
$$

Equation 8.6b (equal stillwater elevation on both sides of the wall)

$$
f_{b r k w}=1.1 C_{p} \Upsilon_{w} d_{s}^{2}+1.9 \Upsilon_{w} d_{s}^{2}
$$

Equation 8.6c

$$
F_{b r k w}=f_{b r k w}(w)
$$

where:

$$
\begin{aligned}
& f_{\text {brkw }}=\begin{array}{l}
\text { total breaking wave per unit length of wall (lb/ft) acting at the stillwater } \\
\text { elevation }
\end{array} \\
& C_{p}=\text { dynamic pressure coefficient from Table 8-1 } \\
& \gamma_{w}=\quad \text { specific weight of water }\left(62.4 \mathrm{lb} / \mathrm{ft}^{3} \text { for fresh water and } 64.0 \mathrm{lb} / \mathrm{ft}^{3}\right. \text { for } \\
& d_{s}=\text { design stillwater flood depth in } \mathrm{ft} \text { (From Eq. 8.1) } \\
& F_{\text {brkw }}=\text { total breakwater wave load (lb) acting at the stillwater elevation } \\
& w=\text { width of wall in } \mathrm{ft}
\end{aligned}
$$

Calculation

Input:

Output:

$f_{\text {brkw }}$	7,421.24	$\mathrm{lb} / \mathrm{ft}$	Eq. 8.6a	enclosed dry space behind wall
$f_{\text {brkw }}$	6,744.12	$\mathrm{lb} / \mathrm{ft}$	Eq. 8.6b	equal stillwater elevation both sides
$\boldsymbol{F}_{\text {brkw }}$	14,842.47	1 b	Eq. 8.6c	enclosed dry space behind wall
$\boldsymbol{F}_{\text {brkw }}$	13,488.23	1 b	Eq. 8.6c	equal stillwater elevation both sides

Equation 8.7. Lateral Wave Slam

Equation 8.7

$$
\begin{equation*}
F_{s}=f_{s} w=(1 / 2) \Upsilon_{w} C_{s} d_{s} h w \tag{Eq. 8.7}
\end{equation*}
$$

where:
$F_{s}=$ lateral wave slam (lb)
$f_{s}=$ lateral wave slam (lb/ft)
$C_{s}=\quad$ slam coefficient incorporating effect of slam duration and surface stiffness for typical residential structure (recommended value is 2.0)
$\gamma_{w}=$ specific weight of water $\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right.$ for fresh water and $64.0 \mathrm{lb} / \mathrm{ft}^{3}$ for saltwater)
$d_{s}=$ design stillwater flood depth in ft (From Eq. 8.1)
$h=\quad$ vertical distance (ft) the wave crest extends above the bottom of the floor joist or floor beam
$w=$ length (ft) of the floor joist or floor beam struck by wave crest

Calculation

Input:

Output:

$$
\begin{aligned}
f_{s} & =4 \mathbf{4 0 3 . 2 0} \mathrm{lb} / \mathrm{ft} \\
\boldsymbol{F}_{s} & =\mathbf{2 0 , 1 6 0 . 0 0} \mathrm{lb}
\end{aligned}
$$

Eq. 8.7

Equation 8.8. Hydrodynamic Load (for All Flow Velocities)

Equation 8.8

$$
\begin{equation*}
F_{d v n}=(1 / 2) C_{d} \rho V^{2} A \tag{Eq. 8.8}
\end{equation*}
$$

where:

$$
\left.\left.\begin{array}{rl}
F_{d y n} & =\begin{array}{l}
\text { horizontal drag force (lb) acting on the stillwater mid-depth (half way } \\
\text { between the stillwater level and the eroded ground surface) }
\end{array} \\
C_{d} & =\begin{array}{l}
\text { drag coefficient (recommended coefficient are } 2.0 \text { for square or rectangular } \\
\text { piles and } 1.2 \text { for round piles; for other obstructions, see Table 8-2) }
\end{array} \\
\rho & =\begin{array}{l}
\text { mass density of fluid (1.94 slugs } / \mathrm{ft}^{2} \text { for fresh water and } 1.99 \text { slugs } / \mathrm{ft}^{2} \text { for } \\
\text { saltwater) }
\end{array} \\
V & =\text { Velocity of water (ft/sec); see Equation } 8.2
\end{array}\right]=\begin{array}{l}
\text { surface area of obstruction normal to flow }\left(\mathrm{ft}^{2}\right)=(\mathrm{w})\left(\mathrm{d}_{\mathrm{s}}\right) \text { if object is not fully } \\
A
\end{array}=\begin{array}{l}
\text { immersed, see figure 8-13 or }(\mathrm{w})(\mathrm{h}) \text { if the object is completely immersed }
\end{array}\right\}
$$

Calculation

Input:

Output:

$$
\begin{array}{rlr}
A & =\square 3.082 \mathrm{ft}^{2} & \left(\mathrm{~A}=\mathrm{d}_{\mathrm{s}}^{*} \mathrm{w} \text { or } \mathrm{h}^{*} \mathrm{w}\right) \\
\boldsymbol{F}_{d y n} & =\square \mathbf{9 1 2 . 8 6} \mathrm{lb} & \text { Eq. } 8.8
\end{array}
$$

Equation 8.9. Debris Impact Load

Equation 8.9

$$
\begin{equation*}
F_{i}=W V C_{D} C_{B} C_{S t r} \tag{Eq. 8.9}
\end{equation*}
$$

where:

$$
\begin{aligned}
F_{i}= & \text { impact force acting at the stillwater elevation (lb) } \\
W= & \text { weight of the object (lb) } \\
V= & \text { velocity of water (ft/sec), approximated by } 1 / 2\left(g d_{s}\right)^{1 / 2} \\
C_{D}= & \text { depth coefficient (see Table 8-3) } \\
C_{B}= & \text { blockage coefficient (taken as } 1.0 \text { for no upstream screening, flow path } \\
C_{S t r}= & \text { greater than } 30 \mathrm{ft} ; \text { see below for more information) } \\
& 0.2 \text { for timber pile and masonry column supported structures } 3 \text { stories or } \\
& \text { less in height above grade } \\
& 0.4 \text { for concrete pile or concrete or steel moment resisting frames } 3 \text { stories } \\
& \text { or less in height above grade } \\
& 0.8 \text { for reinforced concrete foundation walls (including insulated concrete } \\
& \text { forms) }
\end{aligned}
$$

Calculation

Input:

W	$=$	1000.00
lb		
V	$=$	12.20
$\mathrm{ft} / \mathrm{sec}$		
C_{D}	$=$	0.75
C_{B}	$=$	1.00
$C_{S t r}$	$=$	0.20
$\mathrm{sec} / \mathrm{ft}$		

Output:

$$
F_{i}=1830.00 \mathrm{lb}
$$

Eq. 8.9

Equation 8.10. Localized Scour Around a Single Vertical Pile

Equation 8.10

$$
\begin{equation*}
S_{\max }=2.0 a \tag{Eq. 8.10}
\end{equation*}
$$

where:

$$
\begin{aligned}
& S_{\max }=\text { maximum localized scour depth (ft) } \\
& a=\begin{array}{l}
\text { diameter of a round foundation element or the maximum diagonal }
\end{array} \\
& \text { cross-section dimension for a rectangular element }
\end{aligned}
$$

Calculation

Input:

$$
a=0.88 \mathrm{ft}
$$

Output:

$$
S_{\max }=\square 1.76 \mathrm{ft}
$$

Eq. 8.10

Equation 8.11. Total Localized Scour Around Vertical Piles

Equation 8.11

$$
S_{\text {TOT }}=6 a+2 f t \quad \text { (if grade beam and/or slab-on-grade present) } \quad \text { Eq. 8.11a }
$$

$S_{\text {TOT }}=6 a \quad$ (if no grade beam or slab-on-grade present) \quad Eq. 8.11b
where:

$$
\begin{aligned}
S_{T O T} & =\text { total localized scour depth (ft) } \\
a & =\begin{array}{l}
\text { diameter of a round foundation element or the maximum diagonal cross- } \\
\text { section dimension for a rectangular element }
\end{array} \\
2 f t & =\begin{array}{l}
\text { allowance for vertical scour due to presence of grade beam or slab-on- } \\
\text { grade }
\end{array}
\end{aligned}
$$

Calculation

Input:

$$
a=\quad 0.88 \mathrm{ft}
$$

Output:

$$
\begin{aligned}
& S_{\text {TOT }}=\boxed{7.28} \mathrm{ft} \\
& S_{\text {TOT }}=\square \mathrm{5.28} \mathrm{ft}
\end{aligned}
$$

Eq. 8.11a

Eq. 8.11 b

Equation 8.12. Total Scour Depth Around Vertical Walls and Enclosures

Equation 8.12

$$
\begin{equation*}
S_{T O T}=0.15 L \tag{Eq. 8.12}
\end{equation*}
$$

where:

$$
\begin{aligned}
& S_{T O T}=\text { total localized scour depth (} \mathrm{ft} \text {), maximum value is } 10 \mathrm{ft} \\
& L=\text { horizontal length (} \mathrm{ft} \text {) along the side of the building or obstruction exposed } \\
& \text { to flow and waves }
\end{aligned}
$$

Calculation

Input:

$$
L=\quad 10.00 \mathrm{ft}
$$

Output:

$$
S_{\text {TOT }}=\square \mathbf{1 . 5 0} \mathrm{ft} \quad \text { Eq. } 8.12
$$

Check Total localized scour depth is less than 10 ft - OK

Equation 8.13. Velocity Pressure

Equation 8.13

$$
q_{z}=0.00256 K_{z} K_{z t} K_{d} V^{2}
$$

Eq. 8.13
where:

$$
\begin{aligned}
q_{z} & =\text { Velocity pressure evaluated at height } \mathrm{z}(\mathrm{psf}) \\
K_{z} & =\text { velocity pressure exposure coefficient evaluated at height } \mathrm{z} \\
K_{z t} & =\text { topographic factor } \\
K_{d} & =\text { wind directionality factor } \\
V & =\text { basic wind speed (mph) (3-sec gust speed at } 33 \mathrm{ft} \text { above ground in } \\
& \text { Exposure Category } \mathrm{C})
\end{aligned}
$$

Calculation

 Input:$$
\begin{array}{rl|}
K_{z} & = \\
K_{z t} & = \\
K_{d} & =1.00 \\
V & =1.00 \\
& =150.05 \\
\cline { 2 - 3 } & \mathrm{mph}
\end{array}
$$

Output:

$$
\begin{equation*}
\boldsymbol{q}_{z}=\square \mathrm{48.96} \mathrm{psf} \tag{Eq. 8.13}
\end{equation*}
$$

Equation 8.14. Design Wind Pressure for Low-Rise Buildings

Equation 8.14

$$
\begin{equation*}
p=q_{h}\left[G C_{p f}-G C_{p i}\right] \tag{Eq. 8.14}
\end{equation*}
$$

where:

$$
\begin{aligned}
P & =\text { design wind pressure (psf) } \\
q_{h} & =\begin{array}{l}
\text { Velocity pressure (psf) evaluated at mean rood height } \mathrm{h}, \text { (see Fig 8-18 } \\
\text { for an illustration of mean roof height) }
\end{array} \\
G C_{P f} & =\begin{array}{l}
\text { External pressure coefficient for C \& C loads or MWFRS loads per low- } \\
\text { rise building provisions, as applicable }
\end{array} \\
G C_{P i} & =\begin{array}{l}
\text { External pressure coefficient based on exposure classification as } \\
\text { applicable, } \mathrm{GC}_{\mathrm{Pi}} \text { for enclosed building is }+/-0.18
\end{array}
\end{aligned}
$$

Calculation

Input:

q_{h}	$=\square 29.38$
$G C_{P f}$	$=1$
$G C_{P i}$	$=-0.69$

Output:

$$
\begin{equation*}
P=\square .25 .56 \mathrm{psf} \tag{Eq. 8.14}
\end{equation*}
$$

Equation 8.15. Seismic Base Shear by Equivalent Lateral Force Procedure

Equation 8.15

$$
\begin{align*}
& V=C_{s} W \\
& C_{S}=\frac{S_{D S}}{(R / I)}
\end{align*}
$$

Eq. 8.16b
where:

$$
\begin{aligned}
V & =\text { Seismic base shear (lb) } \\
C_{s} & =\text { Seismic response coefficient } \\
S_{1} & =\begin{array}{l}
\text { the mapped maximum considered earthquake spectral response acceleration } \\
\text { parameter } \\
\text { design spectral response acceleration parameter in the short period range, } 5
\end{array} \\
S_{D S} & =\text { percent damped } \\
S_{D 1} & =\text { the design spectral response acceleration parameter at a period of } 1.0 \text { second } \\
R & =\text { response modification factor } \\
I & =\text { occupancy importance factor } \\
W & =\text { effective seismic weight, kip } \\
T & =\text { the fundamental period of the structure(s) } \\
T_{L} & =\text { long-period transition period(s) }
\end{aligned}
$$

Calculation

Input:

S_{1}	0.2
$S_{\text {DS }}$	0.33
$S_{\text {Dl }}$	0.13
R	6.00
I	1.00
W	6816.00
T	0.35
T_{L}	8.00

Output:

$$
C_{s}=0.055
$$

Eq. 8.15 b

Use Check C_{s} (see right hand side)

\boldsymbol{C}_{s}	$=\boxed{0.055}$
\boldsymbol{V}	$=\boxed{374.88} \mathrm{kips}$

Eq. 8.15 a

Equation 8.16. Vertical Distribution of Seismic Forces

Equation 8.16

$$
\begin{align*}
F_{x} & =C_{v x} V \\
C_{V X} & =\frac{w_{x} h_{x}{ }^{k}}{\sum_{i=1}^{n} w_{i} h_{i}{ }^{k}}
\end{align*}
$$

Eq. 8.16 b
where:

$$
\begin{aligned}
& F_{x}=\text { lateral seismic force induced at any level } \\
& C_{v x}=\text { vertical distribution factor } \\
& V=\text { seismic base shear (kips) } \\
& w_{i} \text { and } w_{x}=\begin{array}{l}
\text { portion of the total effective seismic weight of the structure (w) located } \\
\text { or assigned to level i or } \mathrm{x}
\end{array} \\
& h_{i} \text { and } h_{x}=\text { height (ft) from the base to Level } i \text { or } x \\
& k=\begin{array}{l}
\text { exponent related to the structure period; for structures having a period of } \\
n
\end{array} \\
&=\text { Number of storys (assume not more than } 2 \text { storys in this worksheet) }
\end{aligned}
$$

Calculation

Input:
For two-story structure, 1 is the lowest level

Output:

$$
\begin{aligned}
& \begin{array}{ll}
w_{1} h_{1}{ }^{k}= \\
w_{2} h_{2}{ }^{k}=4.29 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{F}_{x 1}=\$ \mathbf{1 2 4 . 9 6} \mathrm{kips} \\
\boldsymbol{F}_{x 2}=\mathbf{2 4 9 . 9 2} \mathrm{kips}
\end{array}
\end{aligned}
$$

Equation 10.1. Sliding Resistance

Equation 10.1

$$
F=\tan (\phi)(N)
$$

Eq. 10.1
where:

$$
\begin{aligned}
F & =\text { resistance to sliding (lb) } \\
\phi & =\text { angle of internal friction in degrees } \\
N & =\text { normal force on the footing (lb) }
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
\phi & = \\
N & =10.00 \\
& 300.00 \mathrm{lb}
\end{aligned}
$$

Output:

$$
\boldsymbol{F}=\boxed{528.98} \mathrm{psf}
$$

Eq. 10.1

Equation 10.2. Ultimate Compression Capacity of a Single Pile

Equation 10.2

$Q_{U L T}=P_{T} N_{q} A_{T}+\sum K_{H C} P_{0} D s \tan (\delta)$
Σ - summation over the different layers of soil. Set at maximum of 4 in this worksheet

Where:

$$
\begin{aligned}
Q_{u l t} & =\text { ultimate load capacity in compression (lb) } \\
P_{T} & \left.=\text { effective vertical stress at pile tip (lb/ft}{ }^{2}\right) \\
N_{q} & =\text { bearing capacity factor (see Table 10-4) } \\
A_{T} & =\text { area of pile tip }\left(\mathrm{ft}^{2}\right) \\
K_{H C} & =\text { earth pressure coefficient in compression (see Table 10-5) } \\
P_{0} & =\text { effective vertical stress over the depth of embedment, } D\left(\mathrm{lb} / \mathrm{ft}^{2}\right) \\
\delta & =\text { friction angle between pile and soil in degrees (see Table 10-6) } \\
S & =\text { surface area of pile per unit length }\left(\mathrm{ft}^{2}\right) \\
D & =\text { depth of embedment (} \mathrm{ft})
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& P_{T}={ }^{2}=2 \mathrm{lb} / \mathrm{ft}^{2} \\
& N_{q}=21 \\
& A_{T}=\mathrm{ft}^{2}
\end{aligned}
$$

Enter soil information from top layer down. Leave blank if less than 4 layers
Soil Layer $K_{H C} \quad P_{0}\left(\mathrm{lb} / \mathrm{ft}^{2}\right) \quad \delta($ degree $) \quad s\left(\mathrm{ft}^{2} / \mathrm{ft}\right) \quad D(\mathrm{ft}) \quad K_{H C} P_{0} \operatorname{Dstan}(\delta)$

Output:

$$
\begin{aligned}
& Q_{\text {ult }}=\mathbf{3 5 1 9 6 . 9 7} \mathrm{lb} \\
& Q_{\text {all }}=\mathbf{1 1 7 3 2 . 3 2} \mathrm{lb}
\end{aligned}
$$

Eq. 10.2
Allowable compression capacity with a safety factor of 3

Equation 10.3. Ultimate Tension Capacity of a Single Pile

Equation 10.3

$$
\begin{equation*}
T_{u l t}=\sum K_{H T} P_{0} D s \tan (\delta) \tag{Eq. 10.3}
\end{equation*}
$$

\sum - summation over the different layers of soil. Set at maximum of 4 in this worksheet
Where:

$$
\begin{aligned}
T_{u l t} & =\text { ultimate load capacity in tension (lb) } \\
K_{H T} & =\text { earth pressure coefficient in tension (see Table 10-5) } \\
P_{0} & =\text { effective vertical stress over the depth of embedment, D }\left(\mathrm{lb} / \mathrm{ft}^{2}\right) \\
\delta & =\text { friction angle between pile and soil in degrees (see Table 10-6) } \\
s & =\text { surface area of pile per unit length }\left(\mathrm{ft}^{2} / \mathrm{ft} \text { or } \mathrm{ft}\right) \\
D & =\text { depth of embedment }(\mathrm{ft})
\end{aligned}
$$

Calculation

Input:
Enter soil information from top layer down. Leave blank if less than 4 layers.

Output:

$$
\begin{aligned}
T_{\text {ult }} & =11413.03 \mathrm{lb} \\
T_{\text {allow }} & =\mathbf{3 8 0 4 . 3 4} \mathrm{lb}
\end{aligned}
$$

Eq. 10.3
Allowable tension capacity with a safety factor of $\mathbf{3 . 0}$

Equation 10.4. Load Application Distance for an Unbraced Pile

Equation 10.4

$L=H+d / 12$
where:

$$
\begin{aligned}
L & =\begin{array}{l}
\text { distance between the location where the lateral force in applied and } \\
\text { the point of fixity (i.e., moment arm) (ft) }
\end{array} \\
d & =\text { depth from grade to inflection point (in); } \quad d=1.8\left[\frac{E I}{n_{h}}\right]^{1 / 5} \\
E & =\text { modulus of elasticity of the pile material, (lb/in }{ }^{2} \text {) } \\
I & \left.=\text { moment of inertia of pile material (in }{ }^{4}\right) \\
n_{h} & =\text { modulus of subgrade reaction (lb/in }{ }^{3} \text {), see Table 10-8 } \\
H & =\text { distance above grade where the lateral load is applied (ft) }
\end{aligned}
$$

Calculation

 Input:
Output:

$$
\begin{aligned}
& d=\square 26.49 \\
& L=\square 13.51 \\
& \mathrm{ft}
\end{aligned}
$$

Equation 10.5. Determination of Square Footing Size for Gravity Loads

Equation 10.5

$$
\begin{equation*}
L=\left[\frac{P_{a}+\left(h_{c o l}+x-t_{\text {foot }}\right) W_{\text {col }} t_{c o l} w_{c}}{q-t_{\text {foot }} w_{c}}\right]^{0.5} \tag{Eq. 10.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
L & =\text { square footing dimension (ft) } \\
P_{a} & =\text { gravity load on pier (lb) } \\
h_{c o l} & =\text { height of pier above grade (ft) } \\
x & =\text { distance from grade to bottom of footing (ft) } \\
W_{c o l} & =\text { column width (ft) } \\
t_{c o l} & =\text { column thickness (ft) } \\
w_{c} & \left.=\text { unit weight of column and footing material (lb/ft }{ }^{3}\right) \\
q & =\text { soil bearing pressure (psf) } \\
t_{\text {foot }} & =\text { footing thickness (ft) }
\end{aligned}
$$

Calculation

Input:

Output:

$$
L=\square 2.34 \mathrm{ft}
$$

Eq. 10.5

Equation 10.6. Determination of Soil Pressure

Equation 10.6

$$
\begin{equation*}
q=\frac{P_{l}}{L^{2}} \pm 6 \frac{M}{L^{3}} \tag{Eq. 10.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
q & =\begin{array}{l}
\text { minimum and maximum soil bearing pressures at the edges of the footing } \\
\left(\mathrm{lb} / \mathrm{ft}^{2}\right)
\end{array} \\
P_{t} & =\text { total vertical load for the load combination being analyzed (lb) } \\
M & =\begin{array}{l}
\text { applied moment } P_{l}\left(\mathrm{~h}_{\text {col }}+x\right)(\mathrm{ft}-\mathrm{lbs}) \text { where } x \text { and } \mathrm{h}_{\text {col }} \text { are as defined in } \\
\text { Figure } 10-21 \text { and } P_{l} \text { is the lateral load applied at the top of the column }
\end{array}
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& P_{t}=\quad 10710.00 \mathrm{lbs} \quad \text { input negtive for uplift load (} \uparrow \text {) } \\
& P_{l}=\quad 989.00 \mathrm{lbs} \quad \text { lateral force } \\
& \begin{array}{rl|rl}
L & = & 8.50 & \mathrm{ft} \\
h_{\text {col }} & = & \text { footing dimension } \\
x & =13.30 & \mathrm{ft} & \\
\hline 1.50 & \mathrm{ft} & & \text { height of pier above grade } \\
\text { length below grade }
\end{array}
\end{aligned}
$$

Output:

$$
\begin{array}{rl|ll}
\boldsymbol{M} & = & \mathbf{1 4 6 3 7 . 2 0} & \mathrm{ft}-\mathrm{lbs} \\
\boldsymbol{q}_{\max }= & \left(\mathrm{P}_{1} *\left(\mathrm{~h}_{\mathrm{col}}+\mathrm{x}\right)\right) \\
\boldsymbol{q}_{\text {min }} & =\mathbf{2 9 1 . 2 4} & \mathrm{lb} / \mathrm{ft}^{2} & \text { Eq. } 10.6 \\
\mathrm{lb} / \mathrm{ft}^{2} & \text { Eq. } 10.6
\end{array}
$$

Check eccentricity

$$
\begin{equation*}
e=\frac{M}{P_{t}} \tag{seeFigure10-21}
\end{equation*}
$$

$e=$ eccentricity, cannot exceed L/6

Output:

$$
\begin{aligned}
\boldsymbol{e} & =\boxed{1.37} \mathrm{ft} \\
\mathbf{L} / \mathbf{6} & =\boxed{\mathrm{ft}} \quad \mathbf{e}<\mathbf{L} / \mathbf{6}-\text { acceptable }
\end{aligned}
$$

downward load, no need to check uplift resistance

Equation 13.1. Pile Driving Resistance for Drop Hammer Pile Drivers

Equation 13.1

$$
\begin{equation*}
Q_{\text {all }}=\frac{2 W H}{(S+1)} \tag{Eq. 13.1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
Q_{\text {all }} & =\text { allowable pile capacity }(\mathrm{lb}) \\
W & =\text { weight of the striking parts of the hammer }(\mathrm{lb}) \\
H & =\text { effective height of the fall }(\mathrm{ft}) \\
S & =\text { average net penetration, given as in per blow for the last } 6 \mathrm{in} . \text { of driving }
\end{aligned}
$$

Calculation

Input:

$$
\begin{aligned}
& W=r^{1000.00} \mathrm{lb} \\
& H= \\
& S=5.00 \\
& \mathrm{ft} \\
& \mathrm{ft} \\
& \mathrm{ft}
\end{aligned}
$$

Output:

$$
Q_{\text {all }}=55000.00 \mathrm{~b}
$$

Eq. 13.1

