
Reducing the Risks of Nonstructural Earthquake Damage

A PRACTICAL GUIDE

Issued by FEMA in furtherance of the Decade for Natural Disaster Reduction

Reducing the Risks of Nonstructural Earthquake Damage

A Practical Guide

Third Edition

FEMA 74/September 1994 Supersedes 1985 Edition

Originally developed by Robert Reitherman of Scientific Service, Inc., for the Southern California Earthquake Preparedness Project (SCEPP)

Third Edition by WISS, JANNEY, ELSTNER ASSOCIATES, INC. For the Federal Emergency Management Agency (FEMA) Under the National Earthquake Technical Assistance Contract (NETAC) EMW-92-C-3852

Authors: Eduardo A. Fierro Cynthia L. Perry Sigmund A. Freeman Advisory Panel: Christopher Arnold Richard Eisner William Holmes

Robert Reitherman

TABLE OF CONTENTS

LIST OF FIGURES	V
PREFACE	vi
1. HOW TO USE THIS GUIDE	
PURPOSE	1
INTENDED AUDIENCE	1
LIMITATIONS	2
CHAPTER CONTENTS	2
2. OVERVIEW	
DEFINITIONS	4
SIGNIFICANCE OF NONSTRUCTURAL DAMAGE	- 4
CAUSES OF NONSTRUCTURAL DAMAGE	12
METHODS FOR REDUCING NONSTRUCTURAL HAZARDS	15
BUILDING CODE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS	16
SEISMIC HAZARD	18
3. NONSTRUCTURAL SURVEY PROCEDURES	
TYPICAL NONSTRUCTURAL COMPONENTS	21
FACILITY SURVEY	21
ASSESSMENT PROCEDURES	22
COMPARISON OF ALTERNATIVES	25
4. NONSTRUCTURAL EXAMPLES: EARTHQUAKE DAMAGE	
AND UPGRADE DETAILS	
NONSTRUCTURAL EXAMPLES	26
BUILDING UTILITY SYSTEMS	
Batteries and Battery Rack	. 30
Diesel Fuel Tank	31
Electrical Bus Ducts and Primary Cable System	32
Fire Extinguisher	33
Propane Tank	34
Water Heater: Corner Installation	35
Water Heater: Wall Installation	36
Piping	37
Chiller	38
Air Compressor (or other HVAC Equipment)	40
Suspended Space Heater	41
HVAC Distribution Ducts	42
Air Diffuser	43
Residential Chimney	44

ARCHITECTURAL ELEMENTS	
Built-In Partial-Height Partitions	45
Built-In Full-Height Partitions	46
Suspended T-Bar Ceilings	47
Suspended Light Fixtures	48
Pendant Light Fixtures	49
Stairways	50
Windows	51
Unreinforced Brick Parapets	52
Veneer	53
Freestanding Walls or Fences	54
Exterior Signs	55
FURNITURE AND CONTENTS	
Large Computers and Access Floors	56
Desktop Computers and Office Equipment	57
Tall Shelving: Freestanding	58
Library Stacks	59
Tall Shelving: Wall Unit	60
Tall File Cabinets	61
Flexible Connection for Gas or Fuel Lines	62
Drawer and Cabinet Latches	63
Freestanding Wood Stove	64
Compressed-Gas Cylinders	65
Containers of Hazardous Materials	66
Fragile Artwork	67
Freestanding Half-Height Partitions	68
Miscellaneous Furniture	69
INSTALLATION NOTES	70
DEVELOPING EARTHQUAKE PROTECTION PROGRAMS	
SELF-HELP VS. USE OF CONSULTANTS	76
IMPLEMENTATION STRATEGIES	77
EVALUATION	79
EMERGENCY PLANNING GUIDELINES	
IMPLICATIONS OF NONSTRUCTURAL DAMAGE	
FOR EMERGENCY PLANNING	81
EARTHQUAKE PLANS	82
TRAINING	83
EXERCISES	84
PERSONAL EMERGENCY KITS	84
MASTER EARTHQUAKE PLANNING CHECKLIST	84
FACILITIES DEVELOPMENT GUIDELINES	
NONSTRUCTURAL CONSTRUCTION GUIDELINES	87
STRUCTURAL/NONSTRUCTURAL INTERACTION	89

5.

6.

7.

iii

FEES FOR PROFESSIONAL SERVICES90GLOSSARY
REFERENCES91ANNOTATED BIBLIOGRAPHY93ANNOTATED BIBLIOGRAPHY95APPENDIXES
A: NONSTRUCTURAL INVENTORY FORM
B: CHECKLIST OF NONSTRUCTURAL EARTHQUAKE HAZARDS
C: NONSTRUCTURAL RISK RATINGSA-1
B-1
C-1

LIST OF FIGURES

		Page
1.	Nonstructural and Structural Components of a Typical Building	5
2.	Examples of Hazardous Nonstructural Damage	6
3.	Examples of Hazardous Nonstructural Damage	8
4.	Examples of Property Loss Due to Nonstructural Damage	10
5.	Examples of Loss of Function Due to Nonstructural Damage	11
6.	Effects of Earthquakes on Nonstructural Components	14
7.	Map of Probable Shaking Intensity for the United States	19
8.	Nonstructural Examples	28-29
9.	Information Gathering Checklist: Organizational Characteristics	85
10.	Master Nonstructural Earthquake Protection Checklist	86

The first edition of this guide was prepared under contract to the Southern California Earthquake Preparedness Project (SCEPP), a joint state-federal effort. It was prepared by Scientific Service, Inc., a firm specializing in engineering and emergency planning consulting related to natural and man-made hazards. It was written and researched by Robert Reitherman with the assistance of Dr. T. C. Zsutty; they provided architectural and structural engineering expertise, respectively, in the field of nonstructural earthquake damage.

The second edition was published in 1985 by the Bay Area Regional Earthquake Preparedness Project, now part of the California Office of Emergency Services, Earthquake Program. Revisions were based on the suggestions of users and a peer review committee consisting of Christopher Arnold, president, Building Systems Development, Inc.; Richard Eisner, director of BAREPP; Eric Elsesser, vice president, Forell/Elsesser; William Holmes, structural engineer, Rutherford & Chekene; John Meehan, chief, structural safety, Office of the State Architect; and Gilbert Najera, Southern California Earthquake Preparedness Project.

The revisions made in the second edition of the guide consisted primarily of modifying graphics, updating construction cost estimates, and identifying the need for engineering and architectural assistance in designing and carrying out the guide's recommendations.

This third edition was prepared by Wiss, Janney, Elstner Associates, Inc., for the Federal Emergency Management Agency (FEMA) under the National Earthquake Technical Assistance Contract (EMW-92-C-3852). The objective of this revision is to incorporate lessons learned from earthquakes that have occurred since the second edition was published, provide additional details, distinguish between do-it-yourself details and those for which there is additional engineering required, update the cost estimates presented, and incorporate new techniques and trends in earthquake engineering. The format of the document has been substantially revised. Review comments and suggestions were provided by the advisory panel, which was composed of Christopher Arnold, Richard William Holmes, Robert Eisner. and Reitherman.

Individual photo credits are provided, both for photos carried over from previous editions and for those new to the third edition. Some new anchorage or bracing details have been adapted from other publications that are listed in the References (References 16 to 21).

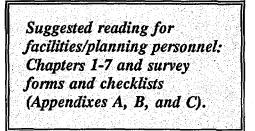
Disclaimer FEMA and Wiss, Janney, Elstner Associates have attempted to produce reliable and practical information in this publication, but neither they nor any consultants involved in preparing or reviewing material contained in this guide can guarantee that its application will safeguard people or property in case of an earthquake. The state of the art of earthquake engineering is not sufficiently developed to performance perfectly predict the of nonstructural elements or to guarantee adequate earthquake protection if these or other guidelines are followed. Professional expertise is recommended to increase the probability that intended levels of earthquake protection will be achieved. Liability for any losses that may occur in an earthquake or as a result of using this guidance is specifically disclaimed.

PURPOSE

This guide was developed to fulfill several different objectives and address a wide audience with varying needs. The primary intent is to explain the sources of nonstructural earthquake damage in simple terms and to provide information on effective methods of reducing the potential risks. The recommendations contained in this guide are intended to reduce the potential hazards but cannot completely eliminate them.

INTENDED AUDIENCE

This guide is intended primarily for use by a lay audience: building owners, facilities managers, maintenance personnel, store or office managers, corporate/agency department heads, business proprietors, homeowners, etc. Some readers may be small-business owners with a small number of potential problems that could be addressed in a few days' time by having a handyman install some of the generic details presented in this guide. Other readers may be responsible for hundreds of facilities and may need a survey methodology to help them understand the magnitude of their potential problems.


The purpose of this section is to help readers identify those portions of the guide that may be applicable to their particular situation and interests. The prospective audience can be subdivided into the four general categories described below. Each description contains a list of the chapters that may be the most useful for that group of readers. The chapter contents are also described below.

General Interest The lay reader who wants an illustrated overview of the subject of nonstructural earthquake damage. Suggested reading for the general interest reader: Chapters 1 and 2 and the nonstructural examples in Chapter 4.

Do-It-Yourself The reader who wants a general overview of the subject, help in identifying potential hazards, and specific guidance with suggested upgrade details that the reader can implement him- or herself.

Suggested reading for the do-it-yourself reader: Chapters 1, 2, 3, and 4. Chapter 4 contains some generic details and installation guidelines.

Facilities/Planning Personnel Facilities or planning personnel who need an overview of the subject as well as a survey methodology applicable to an organizational setting. This guide contains forms and checklists that can be used to survey a facility to identify potential hazards, estimate seismic vulnerability and potential earthquake losses and repair costs, and estimate the costs in implementing hazard The guide differentiates reduction methods. between methods that can be readily implemented by a handyman and those that require professional assistance. The guide also contains a discussion of various implementation strategies and general guidance on earthquake preparedness and emergency planning.

Architect/Engineer The A/E who has little or no knowledge of nonstructural earthquake damage and needs an introduction to the subject and a list of sources that will provide more detailed technical information.

> Suggested reading for architect/engineer unfamiliar with the subject matter: Chapters 1-7, survey forms and checklists (Appendixes A, B, and C), and annotated bibliography.

The categories and suggested reading above are intended to be helpful, not restrictive. Readers are encouraged to use this guide and/or adapt the forms and checklists herein in any way that is helpful to their particular circumstances. Self-diagnosis and self-implementation by the nonengineer may be adequate in many instances, and an attempt has been made to provide enough detail allow for complete to implementation of some of the simpler protective measures. However, there are limits to the self-help approach, as explicitly stated below.

LIMITATIONS

If this were a guide that explained how a person could administer his or her own physical exam, diagnose any health problems, and prescribe and carry out the appropriate treatment, certain obvious questions would arise: How far along that path can an untrained person proceed before requiring the services of a physician? Wouldn't the layperson get into trouble trying to practice self-help medical care?

There are similar limitations and caveats that must be made explicit in this guide's attempt to When in doubt, consult a civil or structural engineer.

instruct laypersons in self-help earthquake engineering. In addition to the individual notes found later, which point out specific areas where expertise is required, the general disclaimer should be made here that the use of earthquake engineering expertise is often desirable to improve the reliability of identifying and reducing earthquake risks. When in doubt about a health problem, consult a doctor. When in doubt about the "seismic health" of a facility, consult a civil or structural engineer, or an architect. On the other hand, many self-help techniques are commonly recommended by doctors, such as taking one's temperature, treating minor colds with commonsense measures rather than costly trips to the doctor, managing one's diet with only occasional professional advice, and so on. Similarly, this guide attempts to provide advice for self-help earthquake protection measures and presumes that the advice will be applied wisely and that expert assistance will be obtained where necessary.

CHAPTER CONTENTS

The material in this book is organized as follows.

Chapter 1 — How to Use This Guide Information to help readers with different interests find the relevant portions of this guide.

Chapter 2 — Overview General discussion

of the problems associated with nonstructural earthquake damage.

Chapter 3 — Survey and Assessment **Procedures** Guidelines on how to survey the nonstructural items in a facility and assess the vulnerability of these items to earthquake damage. The appendixes contain inventory forms and detailed checklists with information designed to help identify vulnerable items.

Chapter 4 — Nonstructural Examples: Earthquake Damage and Upgrade **Details** Examples for selected nonstructural items. Each example typically includes a photograph showing earthquake damage to an unanchored or inadequately anchored item and suggested upgrade details that can be used to reduce the seismic vulnerability of such items. Some of the simpler details in this chapter are marked Do-It-Yourself and can be installed by a handyman following the installation guidelines contained in the text. The details marked Engineering Required are schematic only, and design professionals should be retained to evaluate these systems and develop appropriate upgrade details. The design of upgrade details to protect against earthquake damage to these items is complicated and requires specialized professional expertise.

Chapter 5 — Developing an Earthquake Protection Program A discussion of various implementation strategies: whether to use existing staff or outside consultants; whether to embark on an ambitious upgrade program or combine the upgrades with ongoing maintenance or remodeling; how to evaluate the success of a program.

Chapter 6 — Emergency Planning Guidelines A discussion of emergency response planning, that is, how to include potential damage to nonstructural components in an emergency plan. Have emergency exits been designated that do not have glass, veneer, or heavy canopies that are vulnerable to damage? Who is responsible for shutting off the water and gas if the pipes break, and is that person-and an alternate--available 24 hours a day? Does the organization provide training for employees on what to do in an earthquake?

Chapter 7 — Facilities Development Guidelines For essential facilities and/or large organizations. In these cases, it may be appropriate to develop formal construction guidelines or specifications for the installation of nonstructural components. Such guidelines might include a statement of the desired performance for particular equipment, requirements for inspection during construction, or specification of a particular design code or force level to be used in the design of equipment anchorage.

Glossary Earthquake engineering terms used in this guide.

References References cited in the text.

Annotated Bibliography Additional references that may be useful to architects, engineers, or others seeking more detailed information about this topic.

Appendix A — Nonstructural Inventory Form

Appendix B — Checklist of Nonstructural Earthquake Hazards

Appendix C — Nonstructural Risk Ratings

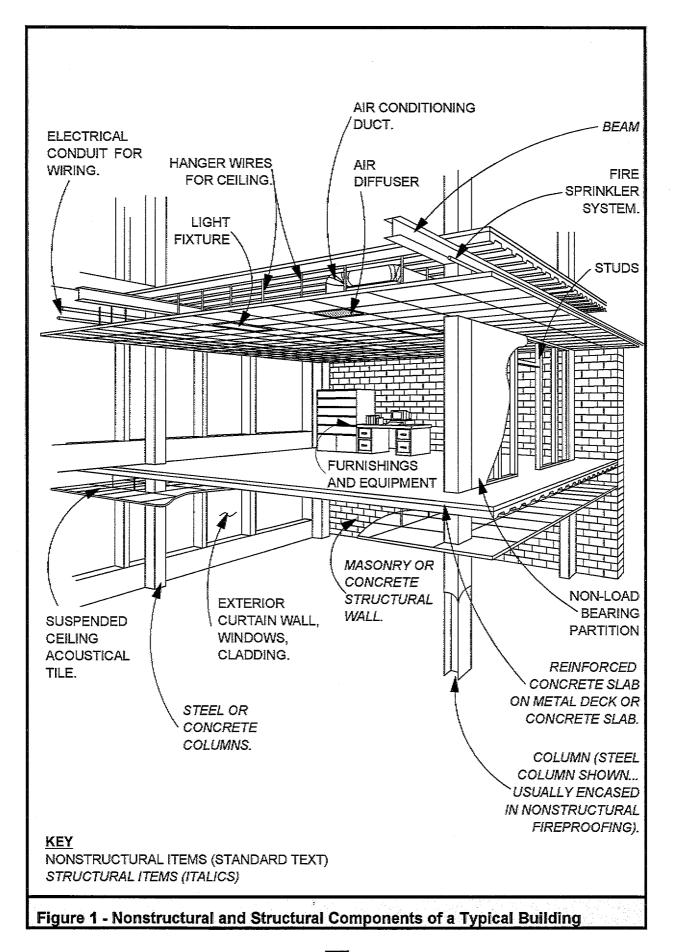
The primary focus of this guide is to help the reader understand which nonstructural items are most vulnerable in an earthquake and most likely to cause personal injury, costly property damage, or loss of function if they are damaged. In addition, this guide contains recommendations on how to implement costeffective measures that can help to reduce the potential hazards.

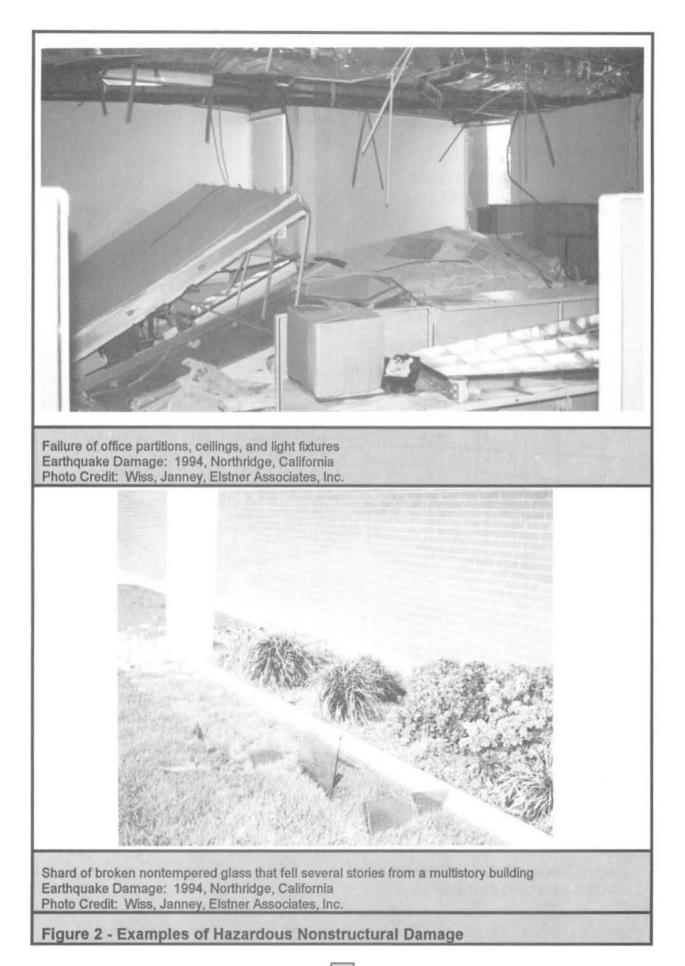
DEFINITIONS

At the outset, two terms frequently used in the earthquake engineering field should be defined.

Structural The structural portions of a building are those that resist gravity, earthquake, wind, and other types of loads. These are called structural components and include columns (posts, pillars); beams (girders, joists); braces; floor or roof sheathing, slabs, or decking; load-bearing walls (i.e., walls designed to support the building weight and/or provide lateral resistance); and foundations (mat, spread footings, piles). For buildings planned by design professionals, the structure is typically designed and analyzed in detail by a structural engineer.

Nonstructural The nonstructural portions of a building include every part of the building and all its contents with the exception of the structure--in other words, everything except the columns, floors, beams, etc. Common nonstructural components include ceilings; windows: office equipment; computers; inventory stored on shelves; file cabinets; heating, ventilating, and air conditioning (HVAC) equipment; electrical equipment; furnishings; lights; etc. Typically, nonstructural items are not analyzed by engineers and may be specified by architects, mechanical engineers


(who design HVAC systems and plumbing for larger buildings), electrical engineers, or interior designers; or they may be purchased without the involvement of any design professional by owners or tenants after construction of a building. Figure 1 identifies the structural and nonstructural components of a typical building. Note that most of the structural components of a typical building are concealed from view by nonstructural materials.


SIGNIFICANCE OF NONSTRUCTURAL DAMAGE

Why is nonstructural earthquake damage of concern? What are the direct effects of damage to nonstructural items? What are the secondary effects or potential consequences of damage?

The following discussion covers three types of risk associated with earthquake damage to nonstructural components: life safety, property loss, and interruption or loss of essential functions. Damage to a particular nonstructural item may have differing degrees of risk in each of these three categories. In addition, damage to the item may result in direct injury or loss, or the injury or loss may be a secondary effect or consequence of the failure of the item.

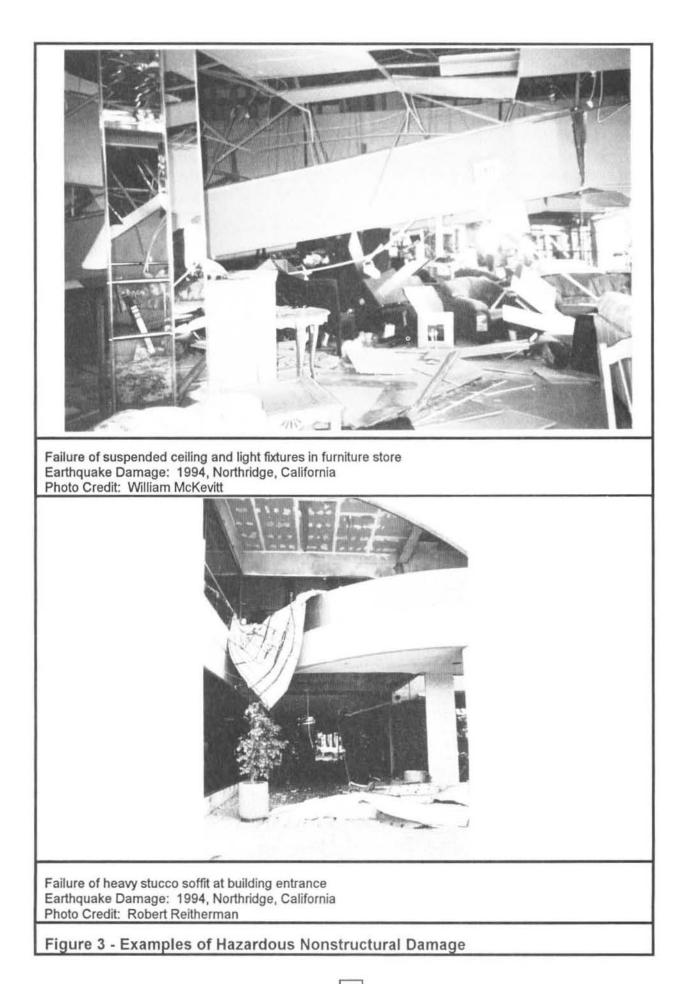
LS *Life Safety* The first type of risk is that people could be injured or killed by damaged or falling nonstructural components. Even seemingly innocuous items can be lethal if they fall on an unsuspecting victim. If a 25-pound fluorescent light fixture not properly fastened to the ceiling breaks loose during an earthquake and falls on someone's head, the potential for injury is great. Examples of potentially hazardous nonstructural damage that

has occurred during past earthquakes include broken glass, overturned tall and heavy cabinets or shelves, falling ceilings or overhead light fixtures, ruptured gas lines or other piping containing hazardous materials, damaged friable asbestos materials, falling pieces of decorative brickwork or precast concrete panels, and collapsed masonry walls or fences. (Figures 2 and 3).

Several specific examples will help to illustrate the point.

• More than 170 campuses in the Los Angeles Unified School District suffered damage--most of it nonstructural--during the 1994 Northridge earthquake. At Reseda High School, the ceiling in a classroom collapsed and covered the school desks with debris. The acoustic ceiling panels fell in relatively large pieces, approximately 3 feet or 4 feet square, accompanied by pieces of the metal ceiling runners and full-length sections of strip fluorescent light fixtures. Because the earthquake occurred at 4:31 a.m., when the building was unoccupied, none of the students were injured [1].

• A survey of elevator damage following the 1989 Loma Prieta earthquake revealed 98 instances where counterweights came out of the guide rails and 6 instances where the counterweight impacted the elevator cab, including one case where the counterweight came through the roof of the cab. Fortunately, no injuries were reported [2].


• One hospital patient on a life-support system died during the 1994 Northridge earthquake because of failure of the hospital's electrical supply [3].

• During the 1993 Guam earthquake, the firerated nonstructural masonry partitions in the exit corridors of one resort hotel were extensively cracked, causing many of the metal fire doors in the corridors to jam. Hotel guests had to break through the gypsum wallboard partitions between rooms in order to get out of the building, a process that took as long as several hours. It was fortunate that the earthquake did not cause a fire in the building, and no serious injuries were reported.

PL

Property Loss For most commercial buildings, the foundation and superstructure account for approximately 20-25% of the original construction cost, while the mechanical. electrical. and architectural elements account for the remaining 75-80%. Contents belonging to the building occupants, such as movable partitions, furniture, files, and office or medical equipment, represent a significant additional expense. Damage to the nonstructural elements and contents of a building can be costly, since these components account for the vast majority of building costs. Immediate property losses attributable to contents alone are often estimated to be one third of the total earthquake losses [4].

Property losses may be the result of direct damage to a nonstructural item or of consequential damage. As used here, the term property loss refers only to immediate, direct damage. If water pipes or fire sprinkler lines break, the overall property losses will include the cost to repair the piping plus the cost to repair water damage to the facility. If the gas line to a water heater ruptures and causes a fire, clearly the property loss will be much greater than the cost of a new pipe fitting. On the other hand, if many file cabinets overturn and all the contents end up on the floor, the direct damage to the cabinets and documents will probably be negligible (unless they are also affected by water damage), but employees may spend many hours or days refiling the documents. If a reserve water tank is situated on the roof of a building, the consequences of damage may be more severe than they would be if it were in the

basement or outside the building in the parking lot.

A few individual cases may help illustrate the potential for property loss. (See Figure 4).

• A survey of 25 commercial buildings following the 1971 San Fernando earthquake revealed the following breakdown of property losses: structural damage, 3%; electrical and mechanical, 7%; exterior finishes, 34%; and interior finishes, 56%. A similar survey of 50 high-rise buildings, which were far enough away from the earthquake fault to experience only mild shaking, showed that none had major structural damage but 43 suffered damage to drywall or plaster partitions, 18 suffered damaged elevators, 15 had broken windows, and 8 incurred damage to air conditioning systems [5].

Many offices and small businesses suffer losses as a result of nonstructural earthquake damage but may not keep track of these losses unless they have earthquake insurance that will help cover the cleanup and repair costs. The next examples, which are more dramatic, involve library and museum facilities whose function is to store and maintain valuable contents, where the nonstructural losses are easy to identify.

• Following the 1989 Loma Prieta earthquake, two libraries in San Francisco each suffered over a million dollars in damage to building contents; the money was spent primarily on reconstructing the library stacks, rebinding damaged books, and sorting and reshelving books. At one of these facilities, \$100,000 was spent rebinding a relatively small number of rare books [6, 7].

• A survey of eight museums in the San Francisco Bay Area following the 1989 Loma Prieta earthquake indicated that approximately 150 out of more than 500,000 items had suffered some type of damage, resulting in losses on the order of \$10 million. At the Asian Art Museum in San Francisco, with a collection estimated to have a market value of \$3 billion, damage to 26 items resulted in a total loss of \$3 million, or roughly 1%. All eight of these facilities had implemented some form of seismic mitigation before the earthquake, and these measures prevented more serious losses [2, 8].

LF

Loss of Function In addition to the life safety and property loss considerations, there is the additional possibility that nonstructural damage will make it difficult or impossible to carry out the functions normally accomplished in a facility. After the serious life safety threats have been dealt with, the potential for postearthquake downtime or reduced productivity is often the most important risk.

Many external factors may affect postearthquake operations, including power and water outages, damage to transportation structures, civil disorder, police lines, curfews, etc. These effects are outside the control of building owners and tenants and hence outside the scope of this discussion.

The following are examples of nonstructural damage that resulted in interruptions to postearthquake emergency operations or to business.

• During the 1994 Northridge earthquake, nonstructural damage caused temporary closure, evacuation, or patient transfer at ten essential hospital facilities. These hospitals generally had little or no structural damage but were rendered temporarily inoperable, primarily because of water damage. At over a dozen of these facilities, water leaks occurred when fire sprinkler, chilled-water, or other pipelines broke. Hospital personnel were apparently unavailable or unable to shut off the water, and

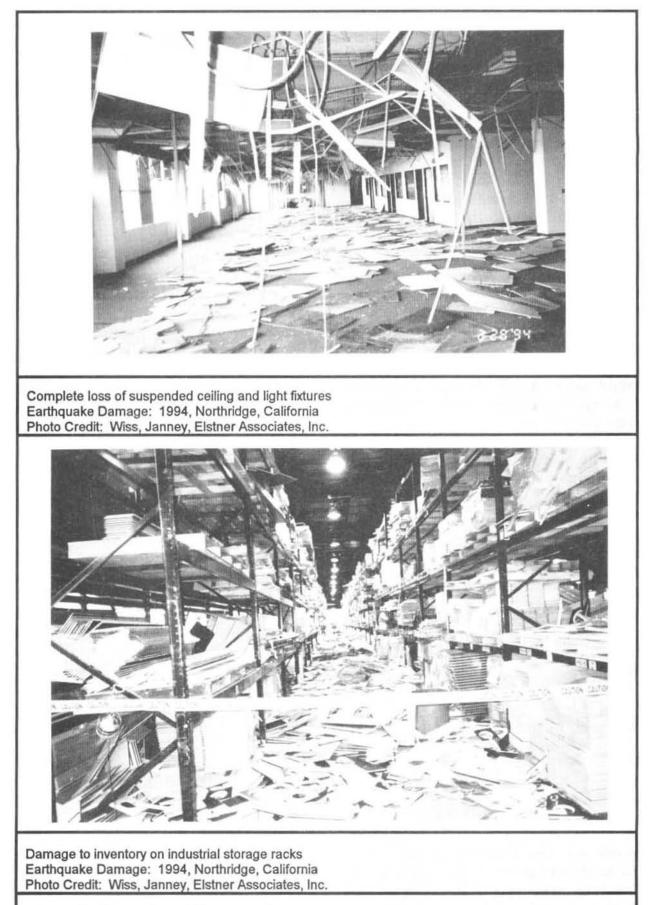


Figure 4 - Examples of Property Loss Due to Nonstructural Damage

outage caused the temporary evacuation of all patients.

Earthquake Damage: 1994, Northridge, California Photo Credit: Robert Reitherman

Figure 5 - Examples of Loss of Function Due to Nonstructural Damage

in some cases water was flowing for many hours. At one facility, water up to 2 feet deep was reported at some locations in the building as a result of damage to the domestic water supply tank on the roof. At another, the emergency generator was disabled when its cooling water line broke where it crossed a separation joint. Other damage at these facilities included broken glass, dangling light fixtures, elevator counterweight damage, and lack of emergency power due to failures in the distribution or control systems. Two of these facilities, Los Angeles County Olive View Medical Center and Holy Cross Medical Center, both in Sylmar, California, had suffered severe structural damage or collapse during the 1971 San Fernando earthquake and had been demolished and entirely rebuilt [3]. (See Figure 5).

• Of 32 data processing facilities surveyed following the 1989 Loma Prieta earthquake, at least 13 were temporarily out of operation for periods ranging from 4 to 56 hours. The primary cause of outage was loss of outside power; at least 3 facilities with Uninterruptible Power Supplies (UPS) or Emergency Power Systems (EPS) did not suffer any downtime. Reported damage included overturning of equipment (2 facilities); damage to access floors (4 facilities); movement of large pieces of computer equipment over distances ranging from a few inches to 4 feet (26 facilities); and dislodged ceiling panels (13 facilities). Twenty of these facilities reported having an earthquake preparedness program in place at the time of the earthquake, 3 reported no program, and information was unavailable for 9 facilities [2].

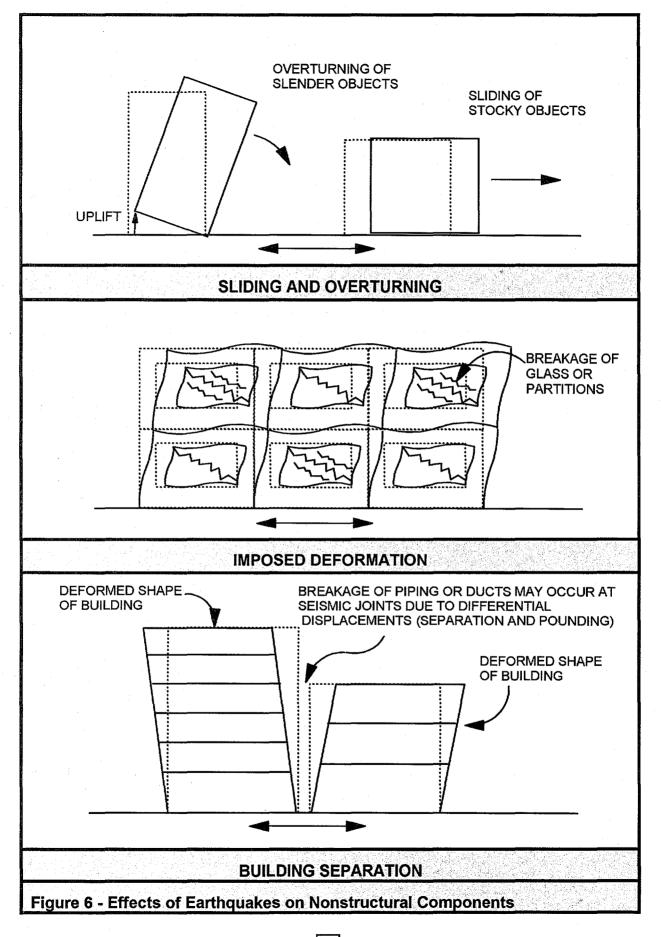
• The 1971 San Fernando earthquake caused extensive damage to elevators in the Los Angeles area, even in some structures where no other damage was reported. An elevator survey indicated 674 instances where counterweights came out of the guide rails, in addition to reports of other types of elevator damage. These elevators were inoperable until they could be inspected and repaired. Many thousands of businesses were temporarily affected by these elevator outages. The State of California instituted seismic elevator code provisions in 1975, and while these provisions appear to have helped reduce the damage, there were still many instances of counterweight damage in the San Francisco area following the 1989 Loma Prieta earthquake [2], and 688 cases in the Northridge earthquake [3].

In some cases, cleanup costs or the value of lost employee labor are not the key measures of the postearthquake impact of an earthquake. For example, data processing facilities or financial institutions must remain operational on a minute-by-minute basis to maintain essential services and monitor transactions at distant locations. In such cases, spilled files or damage to communications and computer equipment may represent less tangible but more significant outage costs. Hospitals and fire and police stations are all facilities with essential functions that must remain operational after an earthquake; damage to their nonstructural elements can be a major cause of loss of functionality.

CAUSES OF NONSTRUCTURAL DAMAGE

Earthquake ground shaking has three primary effects on nonstructural elements in buildings. These are inertial or shaking effects on the nonstructural elements themselves, distortions imposed on nonstructural components when the building structure sways back and forth, and separation or pounding at the interface between adjacent structures (Figure 6).

Inertial Forces When a building is shaken during an earthquake, the base of the building moves in unison with the ground, but the entire building and building contents above the base will experience inertial forces. These inertial


forces can be explained by using the analogy of a passenger in a moving vehicle. As a passenger, you experience inertial forces whenever the vehicle is rapidly accelerating or decelerating. If the vehicle is accelerating, you may feel yourself pushed backward against the seat, since the inertial force on your body acts in the direction opposite that of the acceleration. If the vehicle is decelerating or braking, you may be thrown forward in your seat. Although the engineering aspects of earthquake inertial forces are more complex than a single principle of physics, the law first formulated by Sir Isaac Newton, F = ma, or force is equal to the mass times the acceleration, is the basic principle involved. In general, the earthquake inertial forces are greater if the mass is greater (if the building or object within the building weighs more) or if the acceleration or severity of the shaking is greater.

File cabinets, emergency power-generating equipment, freestanding bookshelves, office equipment, and items stored on shelves or racks can all be damaged because of inertial forces. When unrestrained items are shaken by an earthquake, inertial forces may cause them to slide, swing, strike other objects, or overturn. Items may slide off shelves and fall to the floor. One common misconception is that large, heavy objects are stable and not as vulnerable to earthquake damage as lighter objects, perhaps because we may have difficulty moving them. In fact, many types of objects may be vulnerable to earthquake damage caused by inertial forces: since inertial forces during an earthquake are proportional to the mass or weight of an object, a heavily loaded file cabinet requires much stronger restraints to keep it from sliding or overturning than a light one with the same dimensions.

Building Distortion During an earthquake, building structures distort, or bend, from side to side in response to the earthquake forces. For example, the top of a tall office tower may lean over a few feet in each direction during an earthquake. The distortion over the height of each story, known as the story drift, might range from ¼ inch to several inches, depending on the size of the earthquake and the characteristics of the particular building structure. Windows, partitions, and other items that are tightly locked into the structure are forced to go along for the ride. As the columns or walls distort and become slightly out of square, if only for an instant, any tightly confined windows or partitions must also distort the same amount. The more space there is around a pane of glass where it is mounted between stops or molding strips, the more glazing assembly distortion the can accommodate before the glass itself is subjected to earthquake forces. Brittle materials like glass, plaster or drywall partitions, and masonry infill or veneer cannot tolerate any significant distortion and will crack when the perimeter gaps close and the building structure pushes directly on the brittle elements. Most architectural components such as glass panes, partitions, and veneer are damaged because of this type of building distortion, not because they themselves are shaken or damaged by inertial forces.

There have also been notable cases of structuralnonstructural interaction in past earthquakes, where rigid nonstructural components have been the cause of structural damage or collapse. These cases have generally involved rigid, strong architectural components, such as masonry infill or concrete spandrels, that inhibit the movement or distortion of the structural framing and cause premature failure of column or beam elements. While this is a serious concern for structural designers, the focus of this guide is on earthquake damage to nonstructural components.

Building Separations Another source of nonstructural damage involves pounding or movement across separation joints between

adjacent structures. A separation joint, is the distance between two different building structures, often two wings of the same facility, that allows the structures to move independently of one another. A seismic gap is a separation joint provided to accommodate relative lateral movement during an earthquake. In order to provide functional continuity between separate wings, building utilities must often extend across these building separations, and architectural finishes must be detailed to terminate on either side. For base-isolated buildings that are mounted on seismic shock absorbers, a seismic isolation gap occurs at the ground level, between the foundation and the base of the superstructure. The separation joint may be only an inch or two in older construction or as much as a foot in some newer buildings, depending on the expected horizontal movement, or seismic drift. Flashing, piping, fire sprinkler lines, HVAC ducts, partitions, and flooring all have to be detailed to accommodate the seismic movement expected at these locations when the two structures move closer together or further apart. Damage to items crossing seismic gaps is a common type of earthquake damage. If the size of the gap is insufficient, pounding between adjacent structures may result in damage to structural components but often causes damage to nonstructural components, such as parapets, veneer, or cornices on the facades of older buildings.

METHODS FOR REDUCING NONSTRUCTURAL HAZARDS

There are a variety of methods available to reduce the potential risks associated with earthquake damage to nonstructural components. These methods range from simple commonsense steps one can take oneself to complex solutions requiring professional help. Simple steps might include relocating top-heavy furniture away from the doorway or bed in a bedroom and installing some of the simple do-it-yourself anchorage details presented in this guide. Large organizations with complex facilities may need to hire professional consultants to design engineering details for building utilities and architectural components. For facilities such as hospitals, museums. libraries. research laboratories, facilities. and industrial professional consultants would probably be needed to provide specific design details for specialized building contents as well.

Facility Survey Nonstructural hazards may be present in any type of facility--a home, an office, a church, a day care center, a retail store, a nursing care facility, a school, a light Chapter 3 includes manufacturing plant. guidelines for performing a facility survey to identify potential nonstructural hazards. The forms and checklists provided in this guide are intended for use by laypersons, i.e., nonengineers, who are familiar with the building or facility to be surveyed. The process of conducting the survey should help to increase user awareness of the potential problems. The results of the survey should help building owners, managers, and/or occupants understand the scope of the potential problems and assess the building's seismic vulnerability, or present level of risk of nonstructural earthquake damage.

Commonsense Measures A facility survey may identify many items that represent a high or moderate risk in their present location but that could readily be relocated to reduce the potential risk. The answers to the following questions may help identify commonsense measures that can be used to reduce many of the potential risks.

• Where do you, your family, and your employees spend the most time? Are there heavy, unstable items near your desk or bed that could be moved? What is the probability that someone will be injured by various items if they fall? Which areas of the building have a higher occupant load and hence a potentially higher life safety risk? Are there items that no longer serve a useful function and can be removed? What items can be relocated to prevent possible injury and do not need to be anchored to prevent damage or loss?

• If something slides or falls, in what direction is it likely to go? While the answer to this question is not always obvious, it may be useful to rearrange some furniture and move tall or heavy objects to where they cannot block a door or an exit. Shelved items might be rearranged so that heavier items are near the bottom and lighter ones near the top. Incompatible chemicals can be moved to prevent mixing if the containers break. Excess supplies or inventory could be stored in the original shipping containers until ready for use, in order to reduce the possibility of breakage.

Upgrade Details There are many techniques available to reduce potential nonstructural earthquake damage. Possible upgrade schemes might include one or more of the following measures: use anchor bolts to provide rigid anchorage to a structural floor or wall: brace the item to a structural wall or floor; provide a tether or safety cable to limit the range of movement if the item falls or swings; provide stops or bumpers to limit the range of movement if the item slides; provide flexible connections for piping and conduit where they cross seismic joints or connect to rigidly mounted equipment; attach contents to a shelf, desktop, or countertop; provide base isolation or seismic shock absorbers for individual pieces of vital equipment.

Some of these methods are designed to protect the functional integrity of a particular item, some are designed merely to reduce the consequences of failure. It is important to understand the applicability and limitations of the various upgrade schemes and to select an appropriate scheme for a particular item in a particular context. Critical and expensive items warrant specialized attention. For essential facilities in areas where severe shaking is anticipated, any or all of the following elements may be needed in order to provide an appropriate level of nonstructural protection: specialized engineering expertise, higher design forces than those required by the code, experienced specialty contractors, special construction inspection, load-rated hardware, vendor-supplied equipment that has been tested on a shaking table, special design details such as base isolation for individual pieces of equipment, larger seismic gaps to prevent pounding between adjacent structures, or stiffer structural systems such as shear walls to avoid excessive distortion of the structural framing.

Organizational Planning Programs In an organizational setting, an effective program to reduce nonstructural earthquake hazards may have to be integrated with other organizational functions, including earthquake preparedness, emergency response, facilities maintenance, procurement. long-term planning, and/or facilities development. Some organizations might choose to embark on an ambitious program to anchor all of their existing equipment and contents, while others may concentrate on new facilities and new Many different implementation equipment. strategies are possible. Programs to develop employee awareness and provide emergency training might be in order for some organizations, since a successful nonstructural hazards reduction program has to address the many human factors issues along with the engineering issues.

BUILDING CODE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS

By and large, advances in earthquake engineering made in recent decades have been successfully applied to the task of making building structures safer. In comparison, there has been much less application of this technical knowledge to the nonstructural components of buildings, although this is gradually changing. Design professionals, code committees, and building owners are learning that the seismic resistance of critical nonstructural components must be addressed as part of the design process, since failures of nonstructural components may threaten the safety of building occupants and result in significant financial loss.

Code Philosophy Surveys of existing buildings indicate that many nonstructural items are never explicitly designed to resist horizontal forces. Instead, they are installed in accordance with common construction practice, which varies little from seismic to nonseismic areas. Modern building codes typically include some seismic provisions that apply to a limited list of nonstructural items. Many nonstructural items are not specifically addressed in the provisions and may therefore be interpreted as being exempt from code requirements. For example, some specific code provisions apply to concrete masonry unit fences taller than 6 feet, but a 5 foot tall masonry wall without proper reinforcing can also be a hazard.

The fact that the building code is not as specific about nonstructural items as it is about the structural portions of buildings is indicative of the general intent of the earthquake provisions to provide a minimum level of life safety and to avoid legislating property damage control measures. In general, the concepts of life safety and prevention of structural collapse have been used almost interchangeably in the thinking underlying the earthquake regulations in the building code, although it is apparent that there are significant nonstructural dangers to life and limb as well. In some cases, the potential for nonstructural property loss or outage is a strong reason for obtaining more than the code minimum level of protection. Indeed, even code requirements in early 1994 for the design of nonstructural items in medical facilities in California, which were more stringent than those for office and residential occupancies, were apparently not restrictive enough to completely prevent disruption of service following the January 1994 Northridge earthquake.

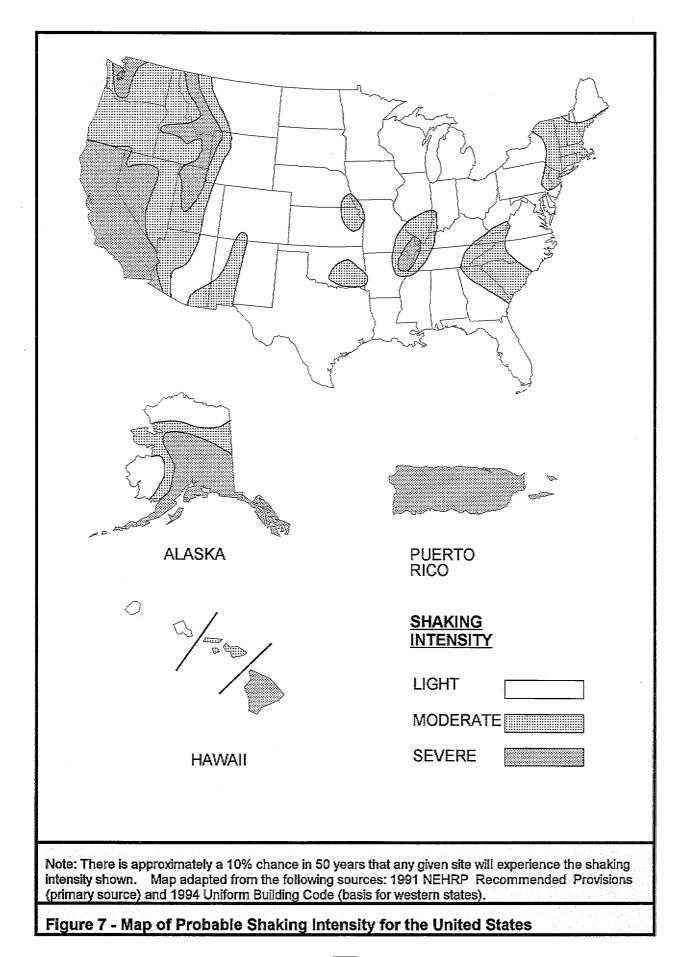
The point of this discussion is to emphasize the life safety focus of current building code provisions, which are intended primarily to reduce potential injuries, not to prevent costly damage or loss of function. Code provisions for nonstructural components are subject to revision every three years, and in the future these provisions may be revised to aim for a higher level of nonstructural protection.

Engineering Design To design protective devices such as bolted connections, snubbers, or restraining cables, engineers use a percentage of the weight of the object as the horizontal earthquake force that must be resisted by the design details. Design guidelines developed by the National Earthquake Hazards Reduction Program (NEHRP) are contained in NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings [9]. Many state and local codes have adopted similar design provisions for nonstructural components. These provisions specifically address earthquake inertial forces. The engineer must also account for the effects of building distortion (i.e., seismic relative displacements between two connection points in the same building or structural system) and the effects of building separations (i.e., seismic relative displacements between two connection points on separate buildings or structural systems) in the design.

The following is a brief description of the simplest type of engineering design procedure. Minimum design levels for architectural, mechanical, and electrical systems and components are described in the NEHRP provisions. The provisions specify horizontal seismic force factors to be used for the design of specific items, such as partitions, parapets, chimneys, ornaments, tank supports, storage racks over 8 feet tall, equipment or machinery, piping, and suspended ceilings. According to the NEHRP procedure, the design force depends on a variety of factors such as, the seismic zone, the type of component, the location of the item within a building, and the type of occupancy. Design forces are generally greater for emergency generators than for HVAC equipment, greater for police and fire stations than for ordinary office buildings, and greater at the roof than at the ground.

To use a specific case, the specified horizontal force for a piece of rigid equipment situated at ground level in a commercial facility in the Los Angeles area is 40% of the weight of the item. If the equipment weighs 1000 pounds, the engineer must design the bracing and floor or wall anchorage details to resist 400 pounds of horizontal force acting through the center of gravity of the item in any direction. If the item is used to store hazardous contents or is located on a floor above ground level, the NEHRP provisions require higher design forces. Under some circumstances, an owner who is particularly concerned about postearthquake operations may want a greater level of protection than is provided by the minimum requirements in the NEHRP provisions. In this case, the owner and engineer or equipment vendor should discuss the performance criteria at the beginning of the project, as described in Chapter 7.

This discussion of seismic forces is intended to illustrate the design procedure and the magnitude of the loads, not to turn the layperson into an engineer. This guide does not advocate the use by nonengineers of the calculation procedure described above.


SEISMIC HAZARD

The seismic risk for a particular nonstructural component at a particular facility is governed by a variety of factors, including the regional seismicity, the proximity to an active fault, the local soil conditions, the dynamic characteristics of the building structure, the dynamic characteristics of the nonstructural component and any connections to the structure, the location of the nonstructural component within the building, the function of the facility, and the importance of the particular component to the operation of the facility. While all of these factors may have to be considered in the evaluation of equipment in a hospital or nuclear facility, we will consider only the issue of regional seismicity for the purposes of this discussion.

The seismic hazard in a given region or geographic location is related both to the severity of ground shaking expected in the area and to the likelihood, or probability, that a given level of shaking will occur. Seismologists review historical earthquake activity, locations and characteristics of mapped faults, and regional geology to estimate the seismic hazard. This information is often depicted on a seismic hazard map.

For the purposes of this guide, seismic hazard has been characterized in terms of three levels of shaking intensity: namely light, moderate, and severe. The seismic hazard maps presented in Figure 7 show the geographic areas in the United States where light, moderate and severe shaking are likely to occur in future earthquakes.

For engineering purposes, earthquake shaking is often characterized by an effective peak acceleration (EPA), measured as a percentage of the acceleration of gravity. The effective peak

acceleration is often less than the maximum acceleration recorded during an earthquake. The three shaking intensity levels correspond approximately to the following EPA ranges:

- Light, less than 0.15g
- Moderate, between 0.15g and 0.3g
- Severe, greater than 0.3g

Several examples of earthquake motion recorded during the 1994 Northridge earthquake may help to put these acceleration ranges in perspective. The Northridge earthquake had a magnitude of The magnitude of an earthquake is a 6.7. measure of the amount of energy released by the fault rupture or ground shaking; it does not provide any information about the intensity of shaking at any particular location. During this earthquake, the intensity of ground shaking was severe in Northridge, near the earthquake epicenter. Several stations recorded ground motion with maximum accelerations in excess of 0.9g. Nevertheless, the majority of stations in downtown Los Angeles, at distances of approximately 30-40 kilometers from the epicenter, recorded moderate ground shaking-between 0.15g and 0.30g. Stations in Long Beach, approximately 60 kilometers from the epicenter, recorded light ground shaking--less than 0.15g [10]. EPA's from the Northridge earthquake records are lower than the maximum recorded accelerations indicated above, but the EPA's also show the same trend, that is, the

shaking intensity became less severe as the distance from the epicenter increased. While few people outside California may need to worry about the intensity of shaking experienced in Northridge, many areas of the country may experience the moderate or light shaking that was felt in downtown Los Angeles and Long Beach during the Northridge earthquake.

One further note regarding shaking intensity will serve to illustrate what appears to be one of the most extreme cases to date of recorded earthquake shaking intensity. A peak horizontal acceleration of 1.7g was recorded at the roof level of the Los Angeles County Olive View Medical Center in Sylmar during the Northridge The roof acceleration was 2.6 earthquake. times higher than the ground acceleration (0.65g) measured near the building [11]. The horizontal forces on items at the roof level were 170% of their weight, if only for an instant. Although some roof-mounted items at the hospital were severely damaged, most of the anchored items performed well because they were designed using the special seismic requirements of the California Hospital Seismic Safety Act. While this is an extreme case, standard code provisions are not adequate to protect items in essential facilities from shaking Even the above-average of this intensity. requirements of special codes, such as California's Hospital Act, are being revised to include lessons from the Northridge earthquake.

3 NONSTRUCTURAL SURVEY PROCEDURES

What types of nonstructural components are present in a particular facility? How does the owner or manager know what the potential problems are? How will a specific nonstructural item perform in an earthquake, and what are the consequences of failure in terms of life safety, property loss, and interruption or loss of function? If the decision is made to upgrade a facility, which problems should be addressed first? This chapter includes guidelines that will help answer these questions.

TYPICAL

NONSTRUCTURAL COMPONENTS

The nonstructural components listed in the tables and checklists provided in the appendixes are items that are most commonly found in commercial, multiple-unit residential, or public buildings. A complex facility such as a hospital, research laboratory, or industrial plant will contain many additional types of specialized equipment that are not addressed in this guide. The common components can be divided into three general categories as follows.

• Building Utility Systems

These are typically built-in nonstructural components that form part of the building. Examples include mechanical and electrical equipment and distribution systems, piping and conduit, fire detection and suppression systems, elevators or escalators, HVAC systems, and roof-mounted solar panels.

• Architectural Components

These are typically built-in nonstructural components that form part of the building. Examples include partitions and ceilings, windows, doors, lighting, interior or exterior ornamentation, exterior panels, veneer, and parapets.

• Furniture and Contents

These are nonstructural components belonging to tenants or occupants. Examples include office, computer, and communications equipment; cabinets and shelving for record and supply storage; library stacks; kitchen and laundry facilities; furniture; movable partitions; lockers; and vending machines.

Not every conceivable item is included in these lists, so some judgment is needed to identify the critical items in a particular facility. In general, items that are taller, heavier, or important to operations, items that contain hazardous materials, and items that are more expensive should be included before items that are shorter, lighter, nonessential, inexpensive, and do not contain hazardous materials.

FACILITY SURVEY

As a first step, it may be useful to perform a survey of your facility to identify nonstructural components that may be vulnerable to earthquake damage. As noted earlier, consultant expertise may be advisable. Keep in mind three basic questions as each nonstructural item is considered:

- Would anyone get hurt by this item in an earthquake?
- Would a large property loss result?
- Would interruptions and outages be a serious problem?

For some items, the answers to these three questions may not be immediately obvious,

since failure of an item may result in both direct damage and consequential damage. For example, if a fire sprinkler line breaks, this may cause minor damage to the sprinkler itself but result in major damage to architectural finishes and contents of the building. Even if the building did not sustain any other damage, the occupants may not be able to use the facility until the fire safety system is repaired. The potential direct and indirect property loss in this case is much greater than the repair cost for the sprinkler system. As another example, the battery rack used to start an emergency generator is generally located in a locked mechanical room and is unlikely to hurt anyone even if the rack and batteries all fall on the floor, resulting in a total loss for the battery rack. The direct life safety threat, that is, the threat of injury, is probably low, but if the emergency generator doesn't work, building occupants may be injured attempting to evacuate the building in the dark, or the lives of hospital patients on life-support systems may be jeopardized. Gas-fired residential water heaters rarely fall and hit anyone, but they have caused many postearthquake fires due to ruptured gas lines. In short, it is important not only to view each item as a discrete object that could tip or fall and hurt someone directly, but also to consider the consequences of failure.

A word of caution is in order regarding the field survey. When looking at mechanical equipment or office machines, it is sometimes easy to confuse a leveling bolt, which merely rests on the floor, with an anchor bolt, which is securely fastened to the floor. In the case of bookshelves in an office area, there may be hardware anchoring the shelving to the wall, but unless the hardware is secured to a solid wall or directly to a stud in a partition wall that is also braced, the anchorage may be ineffective in a strong earthquake. Anchor bolts that are ¹/₄ inch in diameter may be adequate to restrain a light file cabinet but are probably too small to effectively restrain any large piece of mechanical equipment. Thus, if any braces or anchors are visible, it is important to consider whether they will be effective for the expected shaking intensity.

Survey Forms The field survey may be performed by using the forms and checklists in Appendixes A, B, and C. Appendix A contains a blank nonstructural inventory form that can be used to record field observations. The questions in the checklist provided in Appendix B will help identify vulnerable nonstructural items and potential hazards associated with each item. The questions on the checklist are all stated in such a way that a "no" answer is indicative of a potential problem. Items with potential problems should be listed on the nonstructural inventory form. The space provided for notes may be used to identify the type of problem observed, e.g., "unanchored," "unbraced," "bolts undersized," "bolts no good, missed stud," etc. Information regarding the existing vulnerability, upgrade costs, and priority may be added to the form later, after the initial field survey is complete. Appendix page A-3 illustrates a sample nonstructural inventory form.

During the initial survey, it may be helpful to create a list containing a large number of items. The initial list may be shortened later, perhaps by dropping low-priority items. At the initial stage, it is better to be conservative and overestimate vulnerabilities than to be too optimistic.

ASSESSMENT PROCEDURES

Following the initial field survey, additional information must be added to complete the nonstructural inventory form. Estimated risk ratings for many common items are listed in Appendix C. Upgrade costs for selected items are found with the details shown in Chapter 4. **Estimating the Shaking Intensity** For the purposes of this nonstructural survey, the seismic risk, or shaking intensity, for a particular geographic location may be estimated by using the seismic maps shown in Figure 7. This figure shows the areas in the United States that are likely to experience light, moderate, or severe ground shaking during a future earthquake. Some of the areas that may experience severe shaking are California; the area near New Madrid, Missouri; the islands of Hawaii, Puerto Rico, and Guam (not shown); and portions of western Washington and southern Alaska. Locations such as southern Illinois, South Carolina, and much of New England may experience moderate shaking, although most of the Continental United States east of the Rockies will likely experience light shaking.

Shaking-intensity estimates based on the seismic risk maps in Figure 7 should be adequate for items situated at or near the ground in simple, nonessential facilities. For other situations, it may be advisable to choose the next higher shaking intensity or to seek the advice of professional consultants.

Estimating the earthquake forces on a particular item in a particular building can be a difficult technical problem. In order to perform engineering calculations, an engineer may have to consider one or more of the following factors: the proximity of the building site to an active fault, the soil conditions at the site, the flexibility of the building structure, the location of the item in the building, the flexibility of the floor framing or walls in the immediate vicinity of the item, the flexibility of the item, the weight and configuration of the item, the characteristics of any connection details between the item and the structure, the expected relative displacement between two connection points in adjacent stories or across a seismic gap, the function of the item, the function of the facility. One reason the use of professional consultants

for complex facilities is recommended is that the seismic risk maps in Figure 7 do not take any of these additional factors into consideration. detail Clearly, the complexity and of engineering calculations should ĥe commensurate with the complexity and importance of the facility and the item in question.

In addition, it may be appropriate to consider more than one earthquake scenario for a particular facility, since earthquakes of different magnitudes may occur at different average time intervals. For instance, a major earthquake with severe shaking might be likely to occur about once every 1000 years at a particular site, whereas the maps in Figure 7 are weighted toward more probable events and may show only moderate shaking for the site. While some installations may have to anticipate the most severe shaking, others may find it more economical to plan for a smaller, more frequent event.

Estimating Seismic Risk The risk ratings provided in Appendix C are based on a review of damage to nonstructural components in past earthquakes and the judgement of the authors and their advisory panel. Estimates of future earthquake damage to either the structural or nonstructural components of a building are only that -- estimates -- and should be used with discretion. The approximations provided in this guide are adequate for the purpose of making an initial determination of the seismic risk of the nonstructural components of a simple facility. For a facility that is more complex, or one where the potential risk is high, more detailed analyses should be performed by an in-house engineer or professional consultant.

The seismic risks for life safety, property loss, and loss of function have been rated simply as high, moderate, or low for different levels of shaking intensity. Appendix C contains more detailed notes concerning the definitions and assumptions used in assigning risk ratings. Stated briefly: Life Safety Risk is the risk of direct injury by the item; Property Loss Risk is the risk of incurring a repair or replacement cost as a result of damage to the item; Loss of Function Risk is the risk that the item will not function as a result of the damage incurred. The estimated risk ratings shown in Appendix C assume that the item is unbraced and unanchored and are intended for buildings with ordinary occupancies, not for essential facilities. The primary purpose of this information is to assist in assigning priority ratings, described below, and to help in identifying the most critical hazards.

Estimating Upgrade Costs Upgrade cost estimates are provided with selected details in Chapter 4. These unit cost estimates can be used to produce subtotals for each category itemized on the nonstructural inventory form, and then added together to estimate the total seismic upgrade cost for the entire facility. If a number of repetitive protective measures are to be installed in a large facility, the unit cost may be lowered.

The cost estimates can only be considered rough guides, since it is not possible to account for all the specific differences in construction conditions found in buildings or to allow for the variation in contractors' costs in changing construction market conditions and different regions of the country, or the difference between in-house labor versus outside contractor costs. The cost estimates cover labor and materials only and do not include any engineering or architectural services that may be required.

More detailed cost estimates should include the impact of any disruption that the installation of upgrade devices might necessitate, and any inconvenience associated with the daily use of the devices. For example, some of the upgrade measures described can be installed only when the building is not in normal use, and a scale factor might be needed to account for increased labor rates for work to be done during nonbusiness hours. The installation of straps or other removable restrainers for movable equipment implies that users will reattach the strap each time the anchored item is moved, perhaps resulting in an increase in the cost of operations in some facilities.

Detail Type Two types of upgrade details are presented in Chapter 4 of this guide and indicated in the lists presented in Appendix C. These two types of details are designated *Do-It-Yourself* and *Engineering Required* and are described in more detail in Chapter 4. The nonstructural inventory form includes space to indicate the detail number or detail type.

Priority Rating A simplified priority rating system might be used to indicate which items are more vulnerable to earthquake damage and to indicate those items whose failure is most likely to have serious consequences. All the items could be assigned a high, medium, or low priority, or each item or type of item could be ranked in order from highest to lowest. The highest priority might be assigned to those components where all three risk ratings are If loss of function is not a serious high. concern, the highest priority might be assigned to items where the life safety risk is high and the upgrade cost is lowest, since these hazards could be reduced most cost-effectively.

The assignment of priorities may vary widely for different types of facilities, and this guide merely provides some guidelines that can be used to establish a ranking system.

Cross-References Chapter 4 contains specific damage examples and anchorage details for a number of the listed items. For those items, cross-references are provided between the examples and the checklists in Appendixes B

and C.

COMPARISON OF ALTERNATIVES

Separate lists might be prepared to compare relative cost estimates for different approaches. One list could describe a complete upgrade package covering all the vulnerable items identified in the survey, while another might consist of a minimally protective and less expensive package that addresses only the most critical problems. On the other hand, separate lists might be prepared considering different levels of shaking intensity. In this way, costs can be compared for two different levels of protection. The nonstructural inventory form provided in Appendix A can easily be reproduced with the use of spreadsheet or database software to facilitate the process of estimating upgrade costs, sorting in order of priority, comparing costs for different intensity levels, and so on.

General advice on the subject of where to draw the line between completeness and quality, on the one hand, and cost, on the other, is difficult to provide. It is better to focus on the most significant problems and address them effectively than to develop an all-inclusive list that is too extensive to implement. A two-phase approach may be desirable: Draw up a short list of the most critical items and address these first. After evaluating the success of the first phase, develop a second-phase program to address less critical items further down the list. The installation of seismic upgrade details is often easier than it might first appear. The important thing is to make a start and to do the first effort well.