Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 5 results for Sensors + Electronics RSS
04/13/2015
State-of-the-art military sensors today rely on “active electronics” to detect vibration, light, sound or other signals. That means they constantly consume power, with much of that power and time spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months when operating from state-of-the-art batteries, and has slowed the development of new sensor technologies and capabilities. Moreover, the chronic need to redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.
05/21/2015
Many essential military capabilities—including autonomous navigation, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (think radar that uses light instead of radio waves). These technologies provide amazing high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-sensitive and often cost tens of thousands of dollars each—all factors that limit widespread adoption of current technologies for military and commercial use.
09/04/2015
See that black speck on the Lincoln’s penny-minted nostril? And on the right, notice another three of those specks comfortably framed by the eye of a needle? Those semiconductor chiplets, or “dielets” as DARPA Program Manager Kerry Bernstein calls them, could become Lilliputian electronic tamper-watching sentinels affixed to virtually every chip built into commercial and military systems.
The Direct On-Chip Digital Optical Synthesizer (DODOS) program seeks to create a technological revolution in optical frequency control analogous to the disruptive advances in microwave frequency control in the 1940s.
Program Manager
Dr. Roy (Troy) Olsson III joined DARPA as a program manager in June 2014. His research interests include materials, devices, and architectures that enable low-power processing of wireless and sensor signals, vanishing materials, electronics and structures, and phased array antennas.