Defense Advanced Research Projects AgencyTagged Content List

Photonics, Optics and Lasers

Science and technology dealing with the transmission and manipulation of light

Showing 6 results for Photonics + Complexity RSS
05/22/2015
Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts of additional information that may be carried by captured light.
08/15/2016
Developers of imaging systems have long been beholden to certain rules of optics designs so well established and seemingly immutable as to be treated as virtual “laws” of physics. One widely considered pillar of optical design, for example, is that imaging systems must be built from a series of complex and precisely manufactured optical elements arranged linearly. The result of such assumptions is that certain high-performance imagery devices inevitably end up being large and heavy, composed of dozens or more optical elements.
September 1, 2016,
Webcast
The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) is sponsoring a Proposers Day to provide information to potential proposers on the objectives of an anticipated Broad Agency Announcement (BAA) for the Extreme Optics and Imaging (EXTREME) program. The Proposers Day will be held on September 1, 2016 from 2:00 PM to 3:00 PM EDT. This event will be conducted solely via webcast and advance registration is required. For more information visit: http://go.usa.gov/xjugk.
The goal of the EXTREME Program is to develop new optical components, devices, systems, architectures and design tools using Engineered Optical Materials (EnMats) to enable new functionality and/or vastly improve size, weight, and power characteristics of traditional optical systems. EnMats are broadly defined to include, but are not limited to, metamaterials (both metallic and dielectric), scattering surfaces and volumes, holographic structures, and diffractive elements.
Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts of additional information that may be carried by captured light.